Document Type
Article
Publication Date
2-8-2012
Abstract
Background
Approximately 32,000 people take their own lives every year in the United States. In Kentucky, suicide mortality rates have been steadily increasing since 1999. Few studies in the United States have assessed spatial clustering of suicides. The purpose of this study was to identify high-risk clusters of suicide at the county level in Kentucky and assess the characteristics of those suicide cases within the clusters.
Methods
A spatial epidemiological study was undertaken using suicide data for the period January 1, 1999 to December 31, 2008, obtained from the Kentucky Office of Vital Statistics. Descriptive analyses using Pearson's chi-square test and t-test were performed to determine whether differences existed in age, marital status, year, season, and suicide method between males and females, and between cases inside and outside high-risk spatial clusters. Annual age-adjusted cumulative incidence rates were also calculated. Suicide incidence rates were spatially smoothed using the Spatial Empirical Bayesian technique. Kulldorff's spatial scan statistic was applied on all suicide cases at the county level to identify counties with the highest risks of suicide. Temporal cluster analysis was also performed.
Results
There were a total of 5,551 suicide cases in Kentucky from 1999 to 2008, of which 5,237 (94%) were included in our analyses. The majority of suicide cases were males (82%). The average age of suicide victims was 45.4 years. Two statistically significant (p < 0.05) high-risk spatial clusters, involving 15 counties, were detected. The county level cumulative incidence rate in the most likely high-risk cluster ranged from 12.4 to 21.6 suicides per 100,000 persons. The counties inside both high-risk clusters had relative risks ranging from 1.24 to 1.38.
Conclusions
Statistically significant high-risk spatial clusters of suicide were detected at the county level. This study may be useful for guiding future research and intervention efforts. Future studies will need to focus on these high-risk clusters to investigate reasons for these occurrences.
Recommended Citation
BMC Public Health 2012, 12:108 doi:10.1186/1471-2458-12-108