Masters Theses

Date of Award


Degree Type


Degree Name

Master of Science


Landscape Architecture

Major Professor

Robert M. Augé

Committee Members

Tim Tschaplinski, Paul Hanson


The objectives of this study were to: (1) characterize stomatal response of six deciduous tree species to nonhydraulic root-to-shoot signals of soil drying, and (2) test whether species sensitivity to nonhydraulic signaling is allied with their drought avoidance and tolerance profiles. Saplings Ac6r rubrum, ChionBnthus virginicus, Cornus florida, Halasid Carolina, Liriodendron tulipifera, and Oxydendrum arboreum were grown with roots divided between two pots. Three treatments were compared: half of the root system watered and half draughted (WD), half of the root system watered and half severed (WS), and both halves watered (WW). Partial soil drying caused nonhydraulic declines in stomatal conductance (g2) in all species, with maximum declines ranging from 31% to 57% of WS controls. Declines in stomatal conductance were closely related to declining soil matric potential at soilψm below -0.10 MPa. Soil ψm required to cause declines in WD gs, to 80% of WS controls varied from -0.013 to -0.044 MPa. Stomatal conductance of some species declined and remained low as soil dried, while gs of other species declined initially with declining soil moisture and then increased as soil dried further. Leaf osmotic potentials during soil drying were mostly similar among treatments. Stomatal responses were not correlated with previously identified lethal leaf water potentials or osmotic adjustment, suggesting that stomatal sensitivity to nonhydraulic root signals may not be mechanistically linked to other characteristics defining relative species drought tolerance.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."