Masters Theses

Date of Award


Degree Type


Degree Name

Master of Science



Major Professor

Heidi Goodrich-Blair

Committee Members

Elizabeth Fozo, Daniel Jacobson


Microbial symbionts contribute to the health of their host in both positive and negative ways. In the Steinernema nematode symbiosis, Xenorhabdus symbionts traditionally mediate insect virulence by producing toxins and other virulence proteins against the insect prey that they both need for sustenance. In this work, I took a bidirectional approach to the question: what is the larger role of Xenorhabdus in virulence against insect prey? 1) I investigated a novel protein family, typified by the Xenorhabdus bovienii polymorphic protein (Xbpp) with strain-level protein diversity. I found that Xbpp contributes to X. bovienii virulence in a Manduca sexta tobacco hornworm insect model. 2) I sequenced the microbiome of S. scapterisci, a nematode associated with a symbiont, X. innexi, that has notably low virulence relative to other Xenorhabdus. I found that the S. scapterisci microbiome shares many members with the Steinernema frequently associated microbiome proposed by Ogier et al. (2020). This community changed depending on the insect host through which the IJs were propagated. Overall, I found that Xenorhabdus insect virulence is highly dynamic and may include associations with additional microbial community members that contribute to the parasitic lifestyle of the Steinernema-Xenorhabdus complex.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Included in

Microbiology Commons