Date of Award

8-2006

Degree Type

Thesis

Degree Name

Master of Science

Major

Electrical Engineering

Major Professor

Leon Tolbert

Committee Members

Jack Lawler, Fangxing Li

Abstract

To increase the efficiency and reduce emissions, the hybrid electric vehicle (HEV), fuel cell vehicle (FCV), and electric vehicle (EV) types were developed. All these vehicle types rely on power electronics (PEs) to function. Yet, the reliability and performance of PEs are directly related to the operating temperature. Therefore, cooling is considered an option to reduce the operating temperature.

An examination of multiple cooling methods including conventional cooling, direct and indirect cooling, and spray cooling shows that the use of thermoelectric (TE) modules has multiple justifications including reliability, thermal control, operation in harsh conditions, and the non-application of refrigerants. Nevertheless, the coefficient of performance (COP) of TE devices falls heavily with large ΔTs.

To meet the demands of cooling PEs with a large ΔT, layering TE modules must be performed. Although a minimum application of several layers can be performed, increasing the number of layers from the minimum demand results in an increased COP.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS