Date of Award


Degree Type


Degree Name

Doctor of Philosophy



Major Professor

Ziling Xue

Committee Members

Frank Vogt, Mark D. Dadmun, Rebecca A. Prosser


Development and studies of new electrochemical methods for the detection of various biologically and environmentally relevant substances are the focus of this dissertation. A dual amperometric sensor, capable of the simultaneous, real-time determination of NO and O,2, has been developed and optimized. Many tests were performed in order to reduce cross-talking between the two sensors, and an electro-deposited polymer, poly-5-amino-1-naphthol, was shown to reduce the cross-talking to insignificant levels. The use of bismuth-based electrodes in the detection of various metals has been explored. A bismuth bulk electrode has been developed, optimized, and used for the individual and simultaneous determination of Pb(II), Cd(II), and Zn(II). The fundamental electrochemistry of several bismuth-based electrodes in the system used for Cr(VI) analysis has also been explored, and many interactions among the electrode material, ligand, and analyte were observed, particularly the formation of a soluble bismuth-ligand complex. Electrochemical analysis of Cr(VI) was attempted at all of the bismuth-based electrodes, with success at the thin bismuth film electrode. A series of surface modifications were made to the glassy carbon substrate, in an attempt to remove any co-adsorbed contaminants and to understand the sensitivity of the chromium detection process. Inevitably, it was found that the contaminating source was contaminants in the nitrogen gas used for solution deaeration. Upon switching to argon, detection became highly reproducible and showed strong linearity with the Cr(VI) concentration.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."