Doctoral Dissertations

Date of Award


Degree Type


Degree Name

Doctor of Philosophy


Exercise and Sport Sciences

Major Professor

Clare E. Milner

Committee Members

Songning Zhang, Dixie Thompson, Xiopeng Zhao


With increasing rates of obesity, research has begun to focus of co-morbidities of obesity such as osteoarthritis. The majority of existing research has focused on older adults as the group most likely to suffer from osteoarthritis. The purpose of this study was to determine if overweight and obese young adults exhibit biomechanical risk factors for knee osteoarthritis, and to determine if young adults with biomechanical risk factors of osteoarthritis can modify these with instruction. This purpose was divided into two separate studies.

Study 1: Thirty adults between 18-35 years old were recruited into three groups according to body mass index: normal, overweight, and obese. Participants walked through the lab while we collected 3-d kinematic and kinetic data. Overweight and obese young adults walked with similar gait compared to normal weight young adults.

Study 2: Nine young adults between 18-35 years were recruited who walked with stiff-knee gait. Baseline measures of gait were collected in the form of 3-d kinematics and kinetics as participants walked through the laboratory. They then completed the gait instruction program which consisted of four blocks of training. Each block included ten single steps where the participant was provided feedback, followed by 100 practice steps around the laboratory. Participants were successful in increasing sagittal plane kinematics and kinetics of interest in the study.

Conclusion: Identifying individuals who had biomechanical risk factors of osteoarthritis according to body mass index was not possible. According to the results of our study, obese and overweight young adults are not at increased risk of osteoarthritis compared to normal weight young adults. Individuals who may be at increased risk due to stiff-knee gait were able to improve their gait following instruction.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Included in

Biomechanics Commons