Date of Award

8-2010

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Materials Science and Engineering

Major Professor

Peter Liaw

Committee Members

Hahn Choo, James Morris, John Landes

Abstract

This dissertation addresses two critical issues in the deformation of nc metals and alloys: (1) A stress-induced genuine grain growth after the plastic deformation rather than just a change of the grain shape; (2) A systematically quantitative study of micrsostructural evolution during the plastic deformation.

These two critical issues point to the deformation of nc materials with the average-grain sizes within the range of 10 to 50 nm, which is the most interesting and controversial region in the current time. The current study provides a systematic and detailed microstructural evolution for this region, which is definitely beneficial for the investigation of the deformation mechanism in this region, especially for the simulation.

The main experimental and data-analysis methods employed in this research are synchrotron high-energy X-ray diffraction, X-ray line profile analysis, and texture analysis. The combination of these methods is beneficial to the accurate microstructural interpretation of the bulk materials.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Included in

Metallurgy Commons

Share

COinS