Doctoral Dissertations

Orcid ID

Date of Award


Degree Type


Degree Name

Doctor of Philosophy


Life Sciences

Major Professor

Bode A. Olukolu

Committee Members

Albrecht G. von Arnim, Tian Hong, Jennifer Morrell-Falvey


Functional and quantitative metagenomic profiling remains challenging and limits our understanding of host-microbe interactions. This body of work aims to mediate these challenges by using a novel quantitative reduced representation sequencing strategy (OmeSeq-qRRS), development of a fully automated software for quantitative metagenomic/microbiome profiling (Qmatey: quantitative metagenomic alignment and taxonomic identification using exact-matching) and implementing these tools for understanding plant-microbe-pathogen interactions in maize and sweetpotato. The next generation sequencing-based OmeSeq-qRRS leverages the strengths of shotgun whole genome sequencing and costs lower that the more affordable amplicon sequencing method. The novel FASTQ data compression/indexing and enhanced-multithreading of the MegaBLAST in Qmatey allows for computational speeds several thousand-folds faster than typical runs. Regardless of sample number, the analytical pipeline can be completed within days for genome-wide sequence data and provides broad-spectrum taxonomic profiling (virus to eukaryotes). As a proof of concept, these protocols and novel analytical pipelines were implemented to characterize the viruses within the leaf microbiome of a sweetpotato population that represents the global genetic diversity and the kernel microbiomes of genetically modified (GMO) and nonGMO maize hybrids. The metagenome profiles and high-density SNP data were integrated to identify host genetic factors (disease resistance and intracellular transport candidate genes) that underpin sweetpotato-virus interactions Additionally, microbial community dynamics were observed in the presence of pathogens, leading to the identification of multipartite interactions that modulate disease severity through co-infection and species competition. This study highlights a low-cost, quantitative and strain/species-level metagenomic profiling approach, new tools that complement the assay’s novel features and provide fast computation, and the potential for advancing functional metagenomic studies.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."