Doctoral Dissertations

Date of Award


Degree Type


Degree Name

Doctor of Philosophy


Computer Science

Major Professor

Max Schuchard

Committee Members

Scott Ruoti, Jinyuan Stella Sun, Jeff Nichols


The Internet has grown to support many vital functions, but it is not administered by any central authority. Rather, the many smaller networks that make up the Internet - called Autonomous Systems (ASes) - independently manage their own distinct host address space and routing policy. Routers at the borders between ASes exchange information about how to reach remote IP prefixes with neighboring networks over the control plane with the Border Gateway Protocol (BGP). This inter-AS communication connects hosts across AS boundaries to build the illusion of one large, unified global network - the Internet. Unfortunately, BGP is a dated protocol that allows ASes to inject virtually any routing information into the control plane. The Internet’s decentralized administrative structure means that ASes lack visibility of the relationships and policies of other networks, and have little means of vetting the information they receive. Routes are global, connecting hosts around the world, but AS operators can only "see" routes exchanged between their own network and directly connected neighbor networks. This mismatch between global route scope and local network operator visibility gives rise to adverse routing events like route leaks, which occur when an AS advertises a route that should have been kept within its own network by mistake. In this work, we explore our thesis: that malicious and unintentional route leaks threaten Internet availability, but pragmatic solutions can mitigate their impact. Leaks effectively reroute traffic meant for the leak destination along the leak path. This diversion of flows onto unexpected paths can cause broad disruption for hosts attempting to reach the leak destination, as well as obstruct the normal traffic on the leak path. These events are usually due to misconfiguration and not malicious activity, but we show in our initial work that vrouting-capable adversaries can weaponize route leaks and fraudulent path advertisements to enhance data plane attacks on Internet infrastructure and services. Existing solutions like Internet Routing Registry (IRR) filtering have not succeeded in solving the route leak problem, as globally disruptive route leaks still periodically interrupt the normal functioning of the Internet. We examine one relatively new solution - "Peerlocking" or defensive AS PATH filtering - where ASes exchange toplogical information to secure their networks. Our measurements reveal that Peerlock is already deployed in defense of the largest ASes, but has found little purchase elsewhere. We conclude by introducing a novel leak defense system, Corelock, designed to provide Peerlock-like protection without the scalability concerns that have limited Peerlock’s scope. Corelock builds meaningful route leak filters from globally distributed route collectors and can be deployed without cooperation from other networks

Files over 3MB may be slow to open. For best results, right-click and select "save as..."