Date of Award


Degree Type


Degree Name

Doctor of Philosophy



Major Professor

Randall Small

Committee Members

Karen Hughes, Barry Bruce, Beth Mullin


The purpose of this study was to examine the molecular evolution of floral developmental MADS-box genes in diploid and allotetraploid cotton (Gossypium, Malvaceae). We isolated and characterized both cDNA and genomic DNA sequences of four MADS-box genes, B-sister, APETALA3 (AP3), PISTILLATA (PI, two copies) and AGAMOUS (AG), in seven Gossypium species (2 A-genome species, 2 D-genome species, 1 C-genome species and 2 AD-genome species) as well as an outgroup species, Gossypioides kirkii. We then studied the expression patterns of each gene by reverse-transcriptase PCR (RT-PCR) in each flower part for different flower stages of G. arboreum (A-genome), G. raimondii (D-genome) and G. hirsutum (AD-genome). We found that these MADS-box genes are evolving independently at the DNA sequence level but exhibit highly variable expression patterns in allotetraploid G. hirsutum.

These MADS-box genes contain highly conserved exon lengths and exon/intron structures, high nucleotide identity with homologs in Arabidopsis thaliana and Antirrhinum majus, and conserved gene phylogeny within the genus Gossypium. All the genes exhibit evidence of codon bias. The AP3 gene in Gossypium appears to be subject to positive selection, while the PI-small copy of the PI gene appears to be subject to strong functional constraints together with a very low mutation rate. Within G. hirsutum, the B-sister gene exhibits gene silencing of the A-subgenomic homoeolog and the PI-big copy of the PI gene has experienced pseudogenization by insertion of a copia-like retroelement. The AP3, PI-small and AG genes show biased expression patterns in G. hirsutum. These MADS-box genes also demonstrated developmentally regulated expression patterns in G. arboreum, G. raimondii and G. hirsutum.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."