Date of Award

12-2011

Degree Type

Dissertation

Degree Name

Doctor of Philosophy

Major

Physics

Major Professor

Christian G. Parigger

Committee Members

Horace W. Crater, Trevor M. Moeller, Lloyd M. Davis, Norman Mannella

Abstract

The space simulation chambers at Arnold Engineering Development Complex (AEDC) allow for the testing and calibration of seeker sensors in cryogenic, high vacuum environments. During operation of these chambers, contaminant films can form on the components in the chamber and disrupt operation. Although these contaminant films can be composed of many molecular species, depending on the species outgassed by warm chamber components and any leaks or virtual leaks (pockets of gas trapped within a vacuum chamber) that may be present, water vapor is most common, and it will be the focus of this dissertation. In this dissertation, some properties of the water molecule and low pressure ice are reviewed with a focus on the optical properties. The method of angular coefficients is utilized to calculate flux distributions for general three dimensional situations and the program written is applied to a model of the AEDC 10V space simulation chamber. The optical effects of varying amounts of contamination on a generic germanium window and gold mirror, along with the effects on two components specific to the space chambers, is determined. Also, an experiment to measure the thickness and other properties of contaminant films is discussed, and initial results are given for the first two tests of the experimental setup.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."

Share

COinS