Doctoral Dissertations

Date of Award


Degree Type


Degree Name

Doctor of Philosophy


Ecology and Evolutionary Biology

Major Professor

Joseph H. Williams

Committee Members

Edward E. Schilling, Randall L. Small, Andreas Nebenfuhr


The period between pollination and fertilization, or the progamic phase, is a critical life history stage in seed plants and innovations in this life history stage are hypothesized to have played an important role in the diversification of flowering plants. Over the course of this dissertation research, I investigated programic phase development in Nymphaeales (water lilies), an ancient angiosperm lineage that diverged from the basalmost or next most basal node of the angiosperm phylogenetic tree and that is represented in the oldest angiosperm fossil record. I used field experiments and microscopy to document pollination biology, breeding system, and reproductive developmental traits in two families of Nymphaeales: Cabombaceae (Brasenia, Cabomba) and Hydatellaceae (Trithuria). Nymphaeales exhibits considerable variation in reproductive traits and true carpel closure, wind-pollination, and a primarily selfing breeding system have arisen independently in the lineage. Pollen tube pathway length, timing of stigma receptivity, and pollen tube growth rates are conspicuous traits that have undergone considerable modification in concert with shifts in pollination biology and breeding system. Post-pollination developmental processes in Nymphaeales appear to experience selective pressures similar to those experienced by more derived angiosperms and to evolve in similar ways. Nymphaeales also exhibits traits, such as accelerated pollen tube growth, callosic pollen tube walls, and the formation of callose plugs, that are almost certainly plesiomorphic in angiosperms and may have facilitated modification of carpel structure and progamic phase ontogenies. The finding that pollen tube traits that underlie developmental flexibility were already in place before the divergence of Nymphaeales supports the hypothesis that innovations in male gametophyte development were instrumental in facilitating early angiosperm diversification.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."