Source Publication

Analytical Chemistry Research

Document Type


Publication Date





Ethylene glycol monobutyl ether (EGBE), also known as 2-butoxyethanol (2-BE), has been identified as a contaminant in hydraulic fracturing fluids. In order to determine the presence of 2-BE in hydraulic fracturing chemical additives, a reliable method for recovering 2-BE from aqueous phases by liquid-liquid extraction combined with gas chromatography/mass spectrometry (GC/MS) was established. The liquid-liquid extraction method was applied to samples matrices containing various amounts of salt. Using methylene chloride for liquid-liquid extraction in a sample to solvent ratio of 1:3, ≥99% 2-BE recovery may be achieved with less than 5% standard error. The limit of detection was determined to be 0.957 mg L−1 2-BE. Accuracy was determined to be 2.58% and precision was determined using the coefficient of variation, which was 3.5%. The method was used to recover 2-BE in a hydraulic fracturing chemical additive called Revert Flow and to quantify the weight percent of 2-BE in the chemical additive. Weight percent of two additional components of Revert Flow, D-limonene and 1-butoxy-2-propanol, were also determined. We also used the method to determine the abiotic of 2-BE in water, which was 5.55 days. The persistence of 2-BE in hydraulic fracturing fluid was also investigated and determined that 2-BE is more persistent in this environment.


This article was published openly thanks to the University of Tennessee Open Publishing Support Fund.

Licensed under a Creative Commons 4.0BY-NC-ND license.

Submission Type

Publisher's Version

Peer Review


Files over 3MB may be slow to open. For best results, right-click and select "save as..."