Document Type


Publication Date



We present an application of differential equation based local absorbing boundary conditions to molecular dynamics. The absorbing boundary conditions result in the absorbtion of the majority of waves incident perpendicular to the bounding surface. We demonstrate that boundary conditions developed for the wave equation can be applied to molecular dynamics. Comparisons with damping material boundary conditions are discussed. The concept is extended to the formulation of an atomistic-continuum multiscale scheme with handshaking between the regions based on absorbing boundary conditions. The multiscale model is effective in minimizing spurious reflections at the interface.


Copyright (2007) by the American Physical Society.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."