An Analysis of the Aboriginal Ceramic Artifacts from Chota-Tanasee, an Eighteenth Century Overhill Cherokee Town

James Frederick Bates

University of Tennessee, Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Part of the Anthropology Commons

Recommended Citation

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
To the Graduate Council:

I am submitting herewith a thesis written by James Frederick Bates entitled "An Analysis of the Aboriginal Ceramic Artifacts from Chota-Tanasee, an Eighteenth Century Overhill Cherokee Town." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology.

Gerald F. Schroedl, Major Professor

We have read this thesis and recommend its acceptance:

Charles H. Faulkner, Jeff Chapman

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)
To the Graduate Council:

I am submitting herewith a thesis written by James Frederick Bates entitled "An Analysis of the Aboriginal Ceramic Artifacts from Chota-Tanasee, an Eighteenth Century Overhill Cherokee Town." I have examined the final copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology.

Gerald F. Schroedl, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Vice Chancellor
Graduate Studies and Research
AN ANALYSIS OF THE ABORIGINAL CERAMIC ARTIFACTS FROM CHOTA-TANASEE,
AN EIGHTEENTH CENTURY OVERHILL CHEROKEE TOWN

A Thesis
Presented for the
Master of Arts
Degree
The University of Tennessee, Knoxville

James Frederick Bates
August 1982
ACKNOWLEDGEMENTS

I wish to acknowledge the assistance and encouragement of several people, agencies, and institutions without whom this thesis would never have been possible. I am indebted to the National Park Service, the Tennessee Valley Authority, and the Cherokee Historical Association for funding excavations at the site. Artifacts and facilities were made available for the study by the Frank H. McClung Museum, The University of Tennessee, Knoxville, and the Museum of the Cherokee Indian, Cherokee, North Carolina.

I am especially grateful to Dr. Gerald F. Schroedl for his continued guidance, support, and counsel through the extended period of this study. I wish to thank Drs. Charles Faulkner and Jefferson Chapman for their editorial criticisms and helpful suggestions. I appreciate very much the assistance of Dr. Duane King, Dr. Roy Dickens, Mr. William Baden, Mr. Richard Polhemus, Ms. Ann Reed, and others who shared many ideas concerning historic cherokee ceramics.

I am indebted to Mr. William Baden for his invaluable assistance in developing a ceramic computer coding sequence and constructing, implementing, and interpreting various computer programs vital to the study. Mr. Baden and Ms. Betty Duggan translated the majority of the analysis notes to the computer coding system. I wish to thank Dr. Richard Jantz and Mr. Charles Killian for their advice and assistance concerning the factor and clustering analyses and Ms. Alice Beauchene at The University of Tennessee Computer Center, Knoxville, for the use of their facilities.
Finally, I wish to thank my parents for their continued support and guidance toward the completion of this thesis and especially my mother, Ms. Hettie Bates, for typing the rough draft and final manuscript.
ABSTRACT

The Chota-Tanasee (40MR2-40MR62) ceramic analysis incorporates all aboriginal ceramics recovered during seven excavation seasons at the site. The total ceramic assemblage consists of 154,444 artifacts. Ceramics indicate that the site was utilized sporadically from the Early Woodland Period to protohistoric times. Throughout the eighteenth century the site was intensively occupied by the historic Overhill Cherokee.

A descriptive classification system is developed which is used to define 55 ceramic types and residual categories primarily on the basis of temper and surface treatment attributes. Discrete attributes are further utilized to describe vessel and rim sherd morphology.

The distribution of the various ceramic types are examined among the different excavation areas and the co-occurrence of historic types within feature assemblages is discussed. The analysis indicates that Overhill and Qualla series sherds display distinctly different patterns of occurrence in feature assemblages. Fatherland Incised ceramics occur most often with the Overhill series and are not highly correlated with Qualla types. However, a review of the distribution of ceramic types within the site indicates a high degree of overall uniformity. No area of the site is markedly different in total ceramic content than another. This is attributed to the rather brief occupation at the site by the Overhill Cherokee and the predominance of Overhill Plain ceramics in all areas.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. HISTORICAL BACKGROUND</td>
<td>5</td>
</tr>
<tr>
<td>Chota-Tanasee: History</td>
<td>5</td>
</tr>
<tr>
<td>Chota-Tanasee: Archaeological Investigations</td>
<td>7</td>
</tr>
<tr>
<td>III. ABORIGINAL CERAMIC DESCRIPTIVE TYPOLOGY</td>
<td>10</td>
</tr>
<tr>
<td>Ceramic Classification System and Computer Coding Sequence</td>
<td>10</td>
</tr>
<tr>
<td>Type Description Format and Classification System Terminology</td>
<td>18</td>
</tr>
<tr>
<td>Type Descriptions: Miscellaneous</td>
<td>25</td>
</tr>
<tr>
<td>Type Descriptions: Shell Tempered</td>
<td>25</td>
</tr>
<tr>
<td>Type Descriptions: Quartz Tempered</td>
<td>72</td>
</tr>
<tr>
<td>Type Descriptions: Sand Tempered</td>
<td>96</td>
</tr>
<tr>
<td>Type Descriptions: Limestone Tempered</td>
<td>101</td>
</tr>
<tr>
<td>Type Descriptions: Mixed Tempered</td>
<td>106</td>
</tr>
<tr>
<td>IV. THE DISTRIBUTION OF ABORIGINAL CERAMIC ARTIFACTS</td>
<td>111</td>
</tr>
<tr>
<td>Total Site Assemblage</td>
<td>111</td>
</tr>
<tr>
<td>Site Ceramic Distribution</td>
<td>116</td>
</tr>
<tr>
<td>Historic Aboriginal Ceramic Patterning</td>
<td>140</td>
</tr>
<tr>
<td>REFERENCES CITED</td>
<td>148</td>
</tr>
<tr>
<td>VITA</td>
<td>153</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Chota-Tanasee Ceramic Computer Coding Sequence</td>
<td>11</td>
</tr>
<tr>
<td>2. Chota-Tanasee Ceramic Attribute Coding Lists</td>
<td>12</td>
</tr>
<tr>
<td>8. Shell Tempered Incised Rim Sherd Morphology, 40MR2:1939</td>
<td>66</td>
</tr>
<tr>
<td>11. Total Aboriginal Ceramic Assemblage, 40MR2-40MR62.</td>
<td>112</td>
</tr>
<tr>
<td>12. Distribution of Body and Rim Sherds, 40MR2:1939</td>
<td>117</td>
</tr>
<tr>
<td>16. Historic Aboriginal Ceramic Variables and Samples</td>
<td>137</td>
</tr>
<tr>
<td>17. Varimax Rotated Factor Matrix: Historic Aboriginal Ceramic Variables</td>
<td>143</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Location Map of Historic Overhill Cherokee Towns</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Excavations of Chota-Tanasee</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Selected Decorated and Modified Shell Tempered Sherds; Aboriginal Clay Pipes; and Shell Tempered Appendages</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>Overhill Plain Rim Forms</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Reconstructed Overhill Plain Jar</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Partial Overhill Plain Jar</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Overhill Plain Bowls</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>Partial Overhill Plain Bowls</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>Reconstructed Overhill Plain Bowls</td>
<td>36</td>
</tr>
<tr>
<td>10</td>
<td>Reconstructed Overhill Plain Bowl</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>Overhill Plain Pans</td>
<td>38</td>
</tr>
<tr>
<td>12</td>
<td>Overhill Plain Pan</td>
<td>39</td>
</tr>
<tr>
<td>13</td>
<td>Selected Decorated Overhill Series Body and Rim Sherds</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>Selected Decorated Overhill Series Body and Rim Sherds; Mississippian Body Sherds</td>
<td>64</td>
</tr>
<tr>
<td>15</td>
<td>Selected Qualla Series Body and Rim Sherds</td>
<td>73</td>
</tr>
<tr>
<td>16</td>
<td>Selected Qualla Series Stamped Body and Rim Sherds</td>
<td>83</td>
</tr>
<tr>
<td>17</td>
<td>Selected Limestone, Quartz, and Sand Tempered Rim and Body Sherds</td>
<td>91</td>
</tr>
<tr>
<td>18</td>
<td>Clay-Sand-Shell Tempered Plain Vessel</td>
<td>107</td>
</tr>
<tr>
<td>19</td>
<td>Selected Fatherland Incised Body and Rim Sherds</td>
<td>108</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Chota and Tanasee (40MR2-40MR62) are among several historic Overhill Cherokee towns investigated by the Tellico Archaeological Project between 1967 and 1979. The two sites are situated at $35^\circ 33' 18''$ North Latitude and $84^\circ 07' 57''$ West Longitude on the first and second terraces east of the Little Tennessee River in Monroe County, Tennessee and are separated by a small unnamed creek (Figures 1 and 2). They occupy together approximately 60 to 80 acres.

Excavations at the sites were conducted in eight major field seasons beginning in the 1880s (Thomas 1894) and ending in 1974. Chota was especially chosen for intensive investigations among the Overhill towns because of its historic importance as the center of Overhill political, economic, social and religious life in the eighteenth century. Chota offered the advantage of a known occupation of less than one hundred years and appeared to possess a relatively "pure" Overhill ceramic component free from earlier Dallas ceramics (Gleeson 1970:15).

The Chota-Tanasee ceramic analysis examines all aboriginal ceramics recovered during seven excavation seasons at the site. The total ceramic assemblage consists of 154,444 artifacts. Of this number, all are portions of ceramic vessels except for 46 aboriginal clay pipes. Most of the sample belongs to the historic Cherokee occupation. Of the total assemblage the Overhill series comprises 94.8%, the Qualla series 2.0%, Fatherland Incised sherds 0.2%, and mixed tempered varieties 0.2%. Shell tempered Mississippian period sherds make up 0.1% of the collection.
Figure 1. Location Map of Historic Overhill Cherokee Towns. (after Schroedl and Russ, 1982)
Figure 2. Excavations of Chota-Tanasee.
(after Schroedl and Russ, 1982)
The Woodland period is well represented by 2.2% limestone tempered, 0.1% quartz tempered, and 0.3% sand tempered wares.

The analysis of the Chota-Tanasee ceramic assemblage provides a valuable opportunity for the study of an eighteenth century Overhill Cherokee ceramic assemblage. Three major areas of analysis are involved in the study. The primary objective is the descriptive classification and quantification of ceramics into established types and provisional categories. This analysis defines the nature and boundaries of the Chota-Tanasee ceramic assemblage and describes the classification system for the site ceramic series. A second major concern of the study is the identification and description of Overhill vessel morphology. This is completed predominantly through the examination and description of rim attributes. The final portion of the analysis, utilizing statistical techniques, determines relationships between different ceramic types, and examines historic ceramic feature patterning.
CHAPTER II

HISTORICAL BACKGROUND

Chota-Tanasee: History

The position of Chota and Tanasee as major Overhill Cherokee settlements in the eighteenth century is well documented. Tanasee was first mentioned as a leading Overhill town in 1725 by Colonel George Chicken (Williams 1928:99-104). It was visited by Sir Alexander Cuming in 1730 (Williams 1928:122) and appears on maps of the region drawn by John Herbert in 1725 (Lewis and Kneberg 1947) and George Hunter in 1730 (Williams 1928). Historic sources, however, do not include Chota as an Overhill town at this early date.

Chota is first documented by James Adair following his visit to the Overhill country in the late 1730s (Williams 1930:85, 166). The town is described as an "old-beloved, ancient, holy, or white town" (Williams 1930:166-167). It was considered a place of refuge where no blood could be shed. Chota later appears on Mitchell's map of 1755 (Lewis and Kneberg 1947) and on Lieutenant Henry Timberlake's map of 1762 (Williams 1927). Chota was distinguished easily from the earlier settled Tanasee by the middle 1740s (Corkran 1942).

The importance of first Tanasee and later Chota as the principal town of the Overhills closely parallels the centralization and increase of social, political, and religious power among the Little Tennessee Cherokees during the middle 1700s (Alden 1944, Corkran 1962, Crane 1929, Gearing 1974). By the 1730s the English colonies in Virginia and South Carolina were conducting extensive economic, political and
military dealings with the Overhills. The English first treated with the Overhills through the representation of the Moytoy of Tellico. His leadership ceased at his death in 1741 and Chota gradually surplanted Tellico as the capitol of the Overhill towns and remained so until the end of the century (Corkran 1942:16).

Chota residents accepted an important leadership role during the Cherokee War of 1759 to 1761 (Corkran 1942, Williams 1927). Following the destruction of Fort Loudoun and 15 Cherokee Lower, Middle, Valley, and Out towns, Chota and the Overhills sued for peace in 1761 (Corkran 1942). Chota and Tanasee emerged from the war undamaged. Chota was recognized as a leading influential town among the other Cherokee groups and by the English colonial governments.

Timberlake's map (Williams 1927) in 1761 shows Chota at its zenith, clearly separated from, and dominating Tanasee. The two settlements are divided by a small creek. Chota contained 52 houses, a townhouse, and 175 warriors, while Tanasee is represented by 9 to 12 houses and 21 warriors.

Chota continued to be the center of Overhill Cherokee society during the Revolutionary War. The dispersal of the Lower and Valley settlements during the war led to the migration of other Cherokee groups to the Overhill region and contributed to Chota's importance. It was spared the destruction of other Overhill towns by the Americans in 1776 (Williams 1930:166) but was burned in 1780 (Williams 1944:189). The town was rebuilt and in 1784 Brother Martin Schneider reports more than 30 houses at Chota (Williams 1928:256). He described it as one of the largest Indian towns on the river. Following the 1780s the population
of the Overhill area and Chota declined rapidly. Tanasee is no longer mentioned and Chota contained only five houses when visited in 1799 by Moravian missionaries Steiner and Schweinitz (Williams 1928:472). The town ceased to exist in the first decade of the nineteenth century. Based on historic records, the most intensive occupation at the two sites was during a period of approximately 65 years in the middle eighteenth century.

Chota-Tanasee: Archaeological Investigations

Archaeological fieldwork was performed during eight major field seasons at Chota and Tanasee. Approximately 220,000 square feet of ground surface were removed in more than 20 excavation areas (Schroedl, personal communication 1981). The first systematic archaeological investigations were conducted by J. W. Emmert under the supervision of Cyrus Thomas in the 1880s (Whiteford 1952:207). Chota and Tanasee were located and tested in 1884 through reference to Lt. Timberlake's 1762 map of the Little Tennessee Overhill towns (Thomas 1894:367, 397). Excavations at the site were not extensive and were confined to the exploration of one mound and a few scattered test pits. The location of artifact samples from these excavations remains unknown and little information useful to the present ceramic study was obtained through the Emmert investigations.

Extensive excavations were first initiated at the site in 1939 by the University of Tennessee, Department of Anthropology, with funds from the Works Progress Administration (Gleeson 1970:50) (Figure 2). Material recovered from three main excavation areas totaling about 20,000 square feet was analyzed and catalogued by T. M. Lewis and
Madeline Kneberg (1939). A total of 5,706 ceramic artifacts from these excavations are included in this study.

In 1967, an opportunity arose for further work at Chota-Tanasee when the University of Tennessee, Department of Anthropology, began a program of salvage archaeology in the proposed confines of the Tennessee Valley Authority Tellico Dam Project. Excavations commenced at Chota in June of 1969 (Gleeson 1970:50). Research continued under the direction of J. W. Greene during 1969, 1970, and 1973 at Chota and 1972 at Tanasee. A small excavation was supervised by Duane King in the Summer of 1971 at Chota. Sixteen separate excavation units containing approximately 75,000 square feet were opened during the five field seasons. Numerous burials, features, postholes and structures were exposed and 87,544 aboriginal ceramics were recovered.

Extensive excavations were continued at Chota in 1974 by Gerald Schroedl in order to obtain more information concerning Cherokee settlement patterning and the distribution of structures and features at the site. Approximately 122,500 contiguous square feet were machine stripped of plowzone. Additional postholes, features, and structures were identified and 61,148 aboriginal ceramics were obtained for study. Excavations at the site were suspended at the close of the 1974 field season.

During the seven excavation seasons, beginning in 1939, 1,059 features, 117 burials, 7,564 postmolds, two townhouses, and 36 other structures were exposed, excavated and recorded from a combined area of approximately 217,000 square feet (Gerald Schroedl, personal communication 1981). A total of 154,444 aboriginal ceramic artifacts were
recovered and catalogued for study.

Several problems are inherent in the use of the ceramic data from the seven excavation seasons at Chota-Tanasee. Though most of the ceramics were recovered from features and only a small sample from general cuts, postmolds and surface collections, there were seven different excavation grid coordinate systems utilized. Recovery and excavation techniques also differ between the seasons. It is often not clear what methods were utilized to recover artifacts from feature fill. The 1974 excavations are the only season in which water screening was performed on all features. These problems should be understood when particular feature assemblages from the site are examined and compared.
CHAPTER III

ABORIGINAL CERAMIC DESCRIPTIVE TYPOLOGY

Ceramic Classification System and Computer Coding Sequence

Data for the Chota-Tanasee ceramic analysis is divided into three main analytical units. These are the 1939; 1969 and 1970; and 1971 through 1974 ceramic assemblages. For this study, a ceramic classification system was devised to record the individual ceramic attributes representing the variability present in the 1971-1974 Chota-Tanasee assemblage. The system is compatible with the classification systems used in former analyses to describe the 1939, 1969, 1970 samples. A computer storage and retrieval system was developed so that the large ceramic attribute sample could be quickly and easily recorded, stored, and retrieved for frequency distribution studies. This computer system also is designed to incorporate the results of the previous analyses.

The descriptive classification system uses two forms of information. The first places ceramics into established types, provisional types, or residual categories based on primary attributes of temper and surface treatment. The second distinguishes body sherds and vessel parts from rim sherds. Seven attribute sets are used to record the observations found on an individual artifact. The seven attribute sets are gross classification or temper, surface treatment, unit of analysis (vessel part), rim form, rim strip, lip surface, and applique or decoration (Table 1). Specific attributes are coded for computer storage and are listed for each of the seven attribute categories in
TABLE 1

Chota-Tanasee Ceramic Computer Coding Sequence

<table>
<thead>
<tr>
<th>Column</th>
<th>Provenience/Attribute Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>State</td>
</tr>
<tr>
<td>3-4</td>
<td>County</td>
</tr>
<tr>
<td>5-8</td>
<td>Site Number</td>
</tr>
<tr>
<td>9-10</td>
<td>Excavation Area or Grid Section Number</td>
</tr>
<tr>
<td>11</td>
<td>Numerical Designation for Postmold, Burial, Feature, General Cut or Surface</td>
</tr>
<tr>
<td>12-17</td>
<td>Catalogue Number</td>
</tr>
<tr>
<td>18-28</td>
<td>Grid Coordinates</td>
</tr>
<tr>
<td>26-29</td>
<td>Quantity of Artifacts</td>
</tr>
<tr>
<td>30-33</td>
<td>Minimum Number of Vessels</td>
</tr>
<tr>
<td>34-35</td>
<td>Gross Classification or Temper</td>
</tr>
<tr>
<td>36-37</td>
<td>Surface Treatment</td>
</tr>
<tr>
<td>38-39</td>
<td>Unit of Analysis</td>
</tr>
<tr>
<td>40-41</td>
<td>Rim Form</td>
</tr>
<tr>
<td>42-43</td>
<td>Rim Strip</td>
</tr>
<tr>
<td>44-45</td>
<td>Lip Surface</td>
</tr>
<tr>
<td>46-47</td>
<td>Applique or Decoration</td>
</tr>
<tr>
<td>76-80</td>
<td>Comment Number</td>
</tr>
</tbody>
</table>

Table 2. The attribute categories are hierarchical. Within each set individual attributes are mutually exclusive. The recording of body sherds, which are the majority of the sample, requires three attributes. Rim sherds require as many as seven attributes.

The examination, classification, description and computer coding of the 1971 through 1974 ceramics constitutes the primary analysis for this thesis. Data from the 1939, 1969, and 1970 analyses provides a secondary source of ceramic information. Ceramics from these excavation seasons were not re-examined. Most of the 1939 sherds were discarded following
<table>
<thead>
<tr>
<th>Code</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Non Applicable</td>
</tr>
<tr>
<td>01</td>
<td>Overhill</td>
</tr>
<tr>
<td>02</td>
<td>Dallas</td>
</tr>
<tr>
<td>03</td>
<td>Hiwassee Island</td>
</tr>
<tr>
<td>04</td>
<td>Mississippian</td>
</tr>
<tr>
<td>05</td>
<td>Shell Tempered</td>
</tr>
<tr>
<td>06</td>
<td>Qualla</td>
</tr>
<tr>
<td>07</td>
<td>Pisgah</td>
</tr>
<tr>
<td>08</td>
<td>Connestee</td>
</tr>
<tr>
<td>09</td>
<td>Pigeon</td>
</tr>
<tr>
<td>10</td>
<td>Watts Bar</td>
</tr>
<tr>
<td>11</td>
<td>Swift Creek</td>
</tr>
<tr>
<td>12</td>
<td>Quartz Tempered</td>
</tr>
<tr>
<td>13</td>
<td>Sand Tempered</td>
</tr>
<tr>
<td>14</td>
<td>Bluff Creek</td>
</tr>
<tr>
<td>15</td>
<td>Longbranch</td>
</tr>
<tr>
<td>16</td>
<td>Flint River</td>
</tr>
<tr>
<td>17</td>
<td>Limestone</td>
</tr>
<tr>
<td>18</td>
<td>Fatherland</td>
</tr>
<tr>
<td>19</td>
<td>Clay-Sand-Shell Tempered</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Non Applicable</td>
</tr>
<tr>
<td>01</td>
<td>Plain</td>
</tr>
<tr>
<td>02</td>
<td>Check Stamped</td>
</tr>
<tr>
<td>03</td>
<td>Simple Stamped</td>
</tr>
<tr>
<td>04</td>
<td>Complicated Stamped; Rectilinear</td>
</tr>
<tr>
<td>05</td>
<td>Complicated Stamped; Curvilinear</td>
</tr>
<tr>
<td>06</td>
<td>Complicated Stamped; Undetermined</td>
</tr>
<tr>
<td>07</td>
<td>Complicated Stamped; Other</td>
</tr>
<tr>
<td>08</td>
<td>Residual Stamped</td>
</tr>
<tr>
<td>09</td>
<td>Incised; Hatchured Triangle</td>
</tr>
</tbody>
</table>
TABLE 2 (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Incised; Cross-hatched</td>
</tr>
<tr>
<td>11</td>
<td>Incised; Chevrons</td>
</tr>
<tr>
<td>12</td>
<td>Incised; Bisected Chevrons</td>
</tr>
<tr>
<td>13</td>
<td>Incised; Undetermined</td>
</tr>
<tr>
<td>14</td>
<td>Incised; Other</td>
</tr>
<tr>
<td>15</td>
<td>Cord Marked</td>
</tr>
<tr>
<td>16</td>
<td>Roughened</td>
</tr>
<tr>
<td>17</td>
<td>Cane Impressed</td>
</tr>
<tr>
<td>18</td>
<td>Fabric Impressed</td>
</tr>
<tr>
<td>19</td>
<td>Trailed</td>
</tr>
<tr>
<td>20</td>
<td>Brushed</td>
</tr>
<tr>
<td>21</td>
<td>Residual</td>
</tr>
<tr>
<td>22</td>
<td>Incised Parallel Lines</td>
</tr>
<tr>
<td>23</td>
<td>Incised Meander</td>
</tr>
<tr>
<td>24</td>
<td>Combed</td>
</tr>
<tr>
<td>25</td>
<td>Engraved</td>
</tr>
<tr>
<td>00</td>
<td>Non Applicable</td>
</tr>
<tr>
<td>01</td>
<td>Body Sherd</td>
</tr>
<tr>
<td>02</td>
<td>Rim Sherd; Inverted</td>
</tr>
<tr>
<td>03</td>
<td>Rim Sherd; Everted</td>
</tr>
<tr>
<td>04</td>
<td>Rim Sherd; Direct</td>
</tr>
<tr>
<td>05</td>
<td>Rim Sherd; Undetermined</td>
</tr>
<tr>
<td>06</td>
<td>Residual Rim Strip</td>
</tr>
<tr>
<td>07</td>
<td>Vessel</td>
</tr>
<tr>
<td>08</td>
<td>Partial Vessel</td>
</tr>
<tr>
<td>09</td>
<td>Basal Sherd</td>
</tr>
<tr>
<td>10</td>
<td>Strap Handle</td>
</tr>
<tr>
<td>11</td>
<td>Lug Handle</td>
</tr>
<tr>
<td>12</td>
<td>Loop Handle</td>
</tr>
<tr>
<td>13</td>
<td>Pode</td>
</tr>
<tr>
<td>14</td>
<td>Node</td>
</tr>
<tr>
<td>15</td>
<td>Pipe</td>
</tr>
<tr>
<td>16</td>
<td>Disc</td>
</tr>
<tr>
<td>17</td>
<td>Effigy</td>
</tr>
<tr>
<td>18</td>
<td>Rim Sherd; Vertical</td>
</tr>
</tbody>
</table>
TABLE 2 (Continued)

<table>
<thead>
<tr>
<th>Code</th>
<th>Rim Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Non Applicable</td>
</tr>
<tr>
<td>01</td>
<td>Plain</td>
</tr>
<tr>
<td>02</td>
<td>Notched Extended</td>
</tr>
<tr>
<td>03</td>
<td>Notched Unextended</td>
</tr>
<tr>
<td>04</td>
<td>Unnotched Extended</td>
</tr>
<tr>
<td>05</td>
<td>Other Thickened Exterior</td>
</tr>
<tr>
<td>06</td>
<td>Other Thickened Interior</td>
</tr>
<tr>
<td>07</td>
<td>Thickened Interior and Exterior</td>
</tr>
<tr>
<td>08</td>
<td>Collared</td>
</tr>
<tr>
<td>09</td>
<td>Rolled</td>
</tr>
<tr>
<td>10</td>
<td>Residual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Rim Strip</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Non Applicable</td>
</tr>
<tr>
<td>01</td>
<td>Notched</td>
</tr>
<tr>
<td>02</td>
<td>Unnotched</td>
</tr>
<tr>
<td>03</td>
<td>Punctated</td>
</tr>
<tr>
<td>04</td>
<td>Indeterminate/No Rim Strip</td>
</tr>
<tr>
<td>05</td>
<td>Rim Strip Present/No Other Information</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Lip Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Non Applicable</td>
</tr>
<tr>
<td>01</td>
<td>Rounded</td>
</tr>
<tr>
<td>02</td>
<td>Flattened</td>
</tr>
<tr>
<td>03</td>
<td>Angled</td>
</tr>
<tr>
<td>04</td>
<td>Missing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Applique or Decoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Non Applicable</td>
</tr>
<tr>
<td>01</td>
<td>Strap Handle</td>
</tr>
<tr>
<td>02</td>
<td>Lug Handle</td>
</tr>
<tr>
<td>03</td>
<td>Loop Handle</td>
</tr>
<tr>
<td>Code</td>
<td>Attribute</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>04</td>
<td>Pode</td>
</tr>
<tr>
<td>05</td>
<td>Node</td>
</tr>
<tr>
<td>06</td>
<td>Effigy</td>
</tr>
<tr>
<td>07</td>
<td>Punctated</td>
</tr>
<tr>
<td>08</td>
<td>Notched</td>
</tr>
</tbody>
</table>

TABLE 2 (Continued)

(Applique or Decoration (continued))
the Lewis and Kneberg analysis. The original analysis notes, however, contain sufficient information to be included in the classification and interpretation of the total site ceramic assemblage (Lewis and Kneberg 1939, n.d.). The sherds from the 1969 and 1970 excavation years were not re-examined because the analyses are structured very similar to the 1971 through 1974 analysis (Earnest 1971, King 1970). The 1939, 1969, and 1970 analyses notes were translated into the new classification and computer coding system so that the ceramic information could be more easily organized and retrieved for study.

The classification schemes utilized in the analysis of the 1939, 1969, and 1970 studies sometimes used different classification terms and excluded information considered in the 1971 through 1974 analysis. In 1939 many of the presently accepted type names such as Overhill, Qualla, and Miwassee Island were unused. Sherds from that season were classified as shell tempered or grit tempered. Furthermore, terms describing rim morphology, although accounting for the same basic information, differ from subsequent studies at Chota-Tanasee. Terminology utilized in the 1969 and 1970 analyses with slight differences is equivalent to that used to classify the 1971 through 1974 samples. Terms differ predominantly in the definition of rim morphology. Disparity in rim terminology and the problems of translation to the computer coding system are elaborated in the type description section below.

The Chota-Tanasee ceramic coding sequence is self explanatory in most instances (Table 1). Columns 1 through 8 are reserved for information concerning site identification and location. Columns 9 through 25 identify the type and location of individual provenience units within
the site. Grid coordinates were coded only for features and burials. The remaining columns are for coding information pertaining to individual artifact types.

The minimum number of vessels classification (MNV) (columns 30-33) was calculated solely for the 1971 through 1974 assemblages. The MNV figures are rough estimates of the number of vessels representing each Overhill and Qualla type from a given provenience unit. The gross classification or temper attribute category (columns 34-35) refers to established type names and tempering materials (Table 2). Classification of surface treatment (columns 36-37) is in accordance with previous research in the Southeastern United States and each of these attributes is described in the type descriptions. In the category for unit of analysis (columns 38-39) most ceramics are classified as either body sherds or rim sherds. Rim contour is included at this level of analysis. Rim contour and other attributes of rim morphology such as rim form (columns 40-41), rim strip (columns 42-43), and lip surface (columns 44-45) are defined below in the section on type description, format, and terminology. Those ceramics classified as handles, nodes, or podes in the unit of analysis category are detached from rim or body sherds and form an independent analysis unit. In the section on applique or decoration (columns 46-47) handles, nodes, or podes are coded when attached to sherds. The terms effigy, punctated, and notched refer to additional decoration of sherds with another predominant surface treatment. Comment numbers (columns 76-80) are assigned to define any ceramic variation which could not be coded in the other categories. There are few comment designations and each was easily retrieved from the other ceramic
attribute information. Paste characteristics such as temper particle size, frequency of temper particles, sherd hardness and sherd color were not computer coded. These ceramic characteristics were independently determined for the type descriptions after inspection of samples of each ceramic type.

Type Description Format and Classification System Terminology

The classification system defined 55 ceramic types and residual categories. Descriptions of these types and explanation of the descriptive format and terminology are given below. In the type descriptions the total sample of rim sherds, body sherds, and appendages are provided for each classification. A MNV figure is given for the Overhill and Qualla rims from the 1971 through 1974 excavations. Each type description includes sections on the method of manufacture, temper characteristics, surface treatment, and rim and vessel morphology based on available ceramic samples. In the case of the Overhill, Qualla, Connestee, and some limestone tempered types, selected portions of the descriptions are deleted when they correspond to those previously described for types from the same series. This is indicated where appropriate in the type descriptions.

Type Designations

Ceramics are assigned to type groupings primarily on the basis of temper and surface treatment attributes. Established Southeastern ceramic type names are utilized whenever identification is possible. Often ceramics could not be positively assigned to an established type. In these instances provisional types were created based on surface
treatment and temper attributes. Residual categories were utilized to classify all ceramics of particular temper types too badly weathered or fragmented to allow determination of surface finish.

Sample

A total count of the body and rim sherds recovered from the site is included under each type designation. A minimum number of vessels calculation is also given for each Overhill and Qualla series type. Rim curvature, rim thickness, surface finish and decoration, estimated orifice diameter, and lip surfaces are among the rim sherd characteristics used to determine which rim sherds may have belonged to the same vessel. In most instances rim sherds from the same vessel are readily apparent but if sherds are similar in the above traits they are counted as one vessel, therefore lowering the estimated MNV. It should be emphasized that this calculation is only an approximation of the number of Overhill and Qualla vessels represented in the 1971 through 1974 assemblages.

Method of Manufacture

Examination of the ceramic assemblage indicates that, with few exceptions, vessels were constructed through the addition of successive coils to an initial circular clay base. Additional scraping, smoothing, and beating of the vessel surface with a plain or design bearing carved wooden paddle completed vessel body manufacture. Ceramic forms or vessel parts such as pipes, handles, nodes, podes, and rims were modeled.
Paste

Paste is defined in terms of varying attributes of temper, hardness, and color. Temper is described according to parent material, particle size, and particle surface characteristics. Hardness is defined according to Moh's hardness scale. Ceramic color is expressed in broad color categories similar to the terminology utilized in Munsell Soil color charts.

Surface Finish

Interior and exterior surface finishes are described for each ceramic type. Incised, stamped, or impressed decorations are specified when recognizable and represent an established type motif.

Form

Vessel form is considered in terms of rim and total vessel morphology. Morphological terminology is presented below.

- **Rim.** Rims are defined as the terminal portion of the vessel wall at the vessel orifice. The rim classification system is designed in particular to account for the variability displayed in the Overhill and Qualla series sherds. Rims from the other ceramic types at the site are also well defined by the same classification system. Rim sherds are classified according to their rim form, rim contour, lip surface, and rim strip attributes.

- **Rim Form.** Rim form refers to the morphology and elaboration of the rim area. Rim form classifications are determined by the mode of thickening of the vessel wall at the rim. Five basic rim forms are
distinguishable and are represented predominantly in the Overhill and Qualla series. These forms are the plain rim, notched extended lip, notched unextended lip, unnotched extended lip, and rolled rim. They are used to define rim form for the 1969 through 1974 ceramic assemblages. Terms for rim form were not noted for the 1939 material analyzed by Lewis and Kneberg (1939). Additional rims were found to have other forms of lip thickening not readily recognizable as established types. These are enumerated when appropriate in the individual ceramic type descriptions. Plain rims are rims which show no alterations or thickening of the vessel wall. Rolled rims were formed by turning the terminal coil of the vessel wall out and downward in a rolling motion. The resulting rim is rounded in profile and often shows spirals of laminated shell in cross section. Notched extended and notched unextended lips are both characterized by a series of fingernail or tooled impressions along the exterior margin of the rim or lip surfaces. The main difference between the two forms is the exterior thickening of the final coil in the notched extended lip form. These rims usually have flattened rather than rounded lip surfaces. Unnotched extended lips are of the same general morphology as notched extended lips but lack notching.

Rim Contour. Rim contour classification is based on two types of information. The most important distinguishing factor is the actual direction of the rim when aligned with the vertical plane of the vessel. A secondary consideration is the direction of the rim with respect to the neck or vessel wall directly below the rim. The four rim contour classifications utilized in the analysis of the 1971 through 1974 assemblages are everted, inverted, direct, and undetermined. For the 1969 and 1970
ceramic analyses the terms indeterminate, excursive, incurvate, and others were utilized. These terms are generally equivalent to those used in the later classification. In the 1939 analysis, Lewis and Kneberg used the terms incurved, inclined, excursive, flared, direct, undetermined, and vertical to describe rim contour.

Everted rims are directed outward both with respect to the vessel wall or neck immediately below the rim and to the vertical plane of the vessel. This term is believed to directly correspond with the excursive classification of the 1969 and 1970 analyses. It also appears to be equivalent to the terms flared and excursive used in the 1939 analysis.

Rims with a direct contour are a continuation of the vessel wall to the rim without alterations of contour or line of direction. The actual direction of the rim with respect to the vertical plane of most Overhill and Qualla vessels with direct rims is everted. However, some direct rims assume a vertical or near vertical orientation at the lip. On smaller sherds orientation is difficult to interpret. The term direct was not utilized in the 1969 and 1970 analyses. It is assumed that the rims conforming to the definition of direct contour were classed as incurvate, indeterminate, or other. Translation of the 1939 analysis notes indicated several direct rims.

Inverted rims are directed inward with respect to the vertical plane of the vessel and in relation to the vessel wall directly below the rim. In Overhill and Qualla vessels the inward turn of the inverted rim is often delineated by a sharp angle. Incurvate as used in the 1969 and 1970 analyses does not correspond exactly with inverted as used in the 1971 through 1974 analysis. A small number of rims previously
classed as incurvate would be termed direct in the later typology. A similar problem exists with the 1939 material where the terms incurved and inclined are employed.

Undetermined rims from the 1971 through 1974 analysis are too fragmented or lack sufficient curve to establish contour classification. The term indeterminate utilized in the 1969 and 1970 analyses corresponds to undetermined as used in this study. Rims of undetermined contour were not identified in the 1939 analysis.

Lip Surface. The lip surface is the area where the rim terminates at the vessel orifice. Lips are classified as having either flattened, rounded, or sharp angular surfaces. These terms are used in the 1969 through 1974 analysis. No lip surface data was recorded for the 1939 material.

Rim Strip. The presence or absence and morphology of a modeled rim strip are also used as attributes in the classification of Overhill and Qualla series rim types. In most instances the final clay coil was added to the exterior surface of the rim, pinched down and out to form the rim strip, and smoothed along its upper edge to form the lip of the rim. Some rim strips were formed below the final coil as in the case of double rim strips and rim strips at the shoulder of vessels. In these instances the rim strips were also manufactured from one coil applied to the outside of the vessel wall. The addition of a rim strip at the vessel shoulder may have strengthened that portion of the vessel. Overhill and Qualla rim strips usually were notched by either a fingernail or sharp instrument. Rarely were rim strips left unnotched or punctated along the outer edge with a reed or stylus. Rim strips are
classified as notched, unnotched, or punctated. Rim strips detached from the rim are defined as residual rim strips.

Total Vessel Morphology. An attempt was made to identify general vessel forms for the various ceramic type designations. Few whole or partially whole vessels were recovered from the site. Almost all of these are from the Overhill or Qualla series. Most of the type descriptions contain little or no information on total vessel morphology because of the fragmentary nature of the majority of the ceramic assemblage. Vessel reconstructions and ideas about morphology are derived predominantly from the analysis of rim sherds. Vessel morphology is expressed in general terms such as jar, open and shouldered bowls, and pan. Measurements and ranges of size variation are included in the type descriptions when possible.

Appendages. Nodes, podes, and lug, strap and loop handles are represented in the assemblage. The majority of these are from the Overhill series. Included in the description of these appendages is the method of attachment, type of sherd and position of attachment, and possible appendage decoration.

Effigy Applique. Very few instances of effigy applique occur in the assemblage. These are described at the close of the appropriate type descriptions.
Type Descriptions: Miscellaneous

Aboriginal Clay Pipe Fragments

Sample. Forty-six aboriginal clay pipe fragments were recovered from the site (Figure 3). Eleven of these fragments are coarse shell tempered, 28 are fine sand tempered, and 6 do not display any measurable amount of tempering. The majority of the pipe fragments are from the pipe bowl and rim area. All are crudely modeled from a single piece of clay. Two sand tempered bowl fragments bear the bisected chevron incised pattern and one pipe bowl is modeled into an animal effigy (Figure 3). The pipe fragments are considered to be associated with the historic Cherokee occupation at the site.

Type Descriptions: Shell Tempered

Plain

Sample. The sample contains 752 rim sherds and 4,616 body sherds (Figure 3) (Table 3). Almost all of the Shell Tempered Plain ceramics are from the 1939 excavations. The remaining 16 sherds are from the 1969 and 1970 analyses. They comprise 3.4% of the total ceramic assemblage. The cultural affiliation of these sherds remains undetermined in the translated analyses notes (Earnest 1970; King 1969; Lewis and Kneberg 1939). Most of of the 1939 Shell Tempered Plain ceramics are considered Overhill Plain although a Mississippian period wall trench structure in the 1939 excavations indicates that Mississippian varieties are included in this classification (Lewis and Kneberg 1939).
Figure 3. Selected Decorated and Modified Shell Tempered Sherds; Aboriginal Clay Pipes; and Shell Tempered Appendages.

(A) Overhill Plain body sherd with stylus punctations. (B) Overhill Plain everted plain rim with reed punctations; rounded lip surface. (C) Overhill Plain inverted rim with reed punctations and notched rim strip; lip is missing. (D) Shell Tempered Plain disc. (E) Shell Tempered Plain body sherd with drilled hole. (F) Clay pipe bowl fragment with incised bisected chevron motif. (G–H) Shell Tempered Plain pipe fragments. (I) Shell Tempered Plain zoomorphic effigy pipe bowl. (J) Shell Tempered Plain pipe bowl. (K–L) Shell Tempered Plain pipe stem fragments. (M) Overhill Plain notched strap handle. (N–O) Mississippian Shell Tempered Plain loop handles. (P) Overhill Plain direct rim with double node applique; flattened lip surface. (Q) Overhill Plain everted rim with notched lug applique; flattened lip surface. (R) Overhill Plain body sherd with strap handle. (S) Overhill Plain everted plain rim sherd with notched rim strip and strap handle; flattened lip surface. (T) Overhill Plain everted rim with notched rim strip on strap handle; rounded lip surface.
Figure 3
Surface Finish. The predominant surface finish is smoothed plain. Five rim sherds and 15 body sherds from the 1939 Shell Tempered Plain sample were classified as having a notched decoration. Notched is undefined in the analysis notes. One 1939 Shell Tempered Plain body sherd is punctated.

TABLE 3

Shell Tempered Plain Rim Sherd Morphology
40MR2:1939

<table>
<thead>
<tr>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Incurvate</th>
<th>Execurvate</th>
<th>Vertical</th>
<th>Direct</th>
<th>Undetermined</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain</td>
<td>Rim Strip</td>
<td>22</td>
<td>176</td>
<td>97</td>
<td>24</td>
<td>1</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>No Rim Strip</td>
<td>32</td>
<td>44</td>
<td>48</td>
<td>23</td>
<td>1</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>Residual Rim Strip</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>281</td>
<td>281</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>54</td>
<td>220</td>
<td>145</td>
<td>47</td>
<td>283</td>
<td>749</td>
</tr>
</tbody>
</table>

Form. Excurvate and vertical rims are most common in the 1939 Shell Tempered Plain ceramic assemblage. They comprise 29% and 19% of the rim sample, respectively. Rims of undetermined contour represent an additional 38%. Notched rim strips are present on 80% of the rims. Total vessel morphology is similar to that described below for Over-hill Plain.
A total of 19 Shell Tempered Plain appendages are reported from the 1939 excavations. There are six strap handles. One of these is attached to a rim sherd and five are detached. Four lugs, two of which are notched, were recovered. The remaining appendages are two nodes on rim sherds and seven detached loop handles. The loop handles are from a Mississippian occupation (Figure 3).

One rim and two body sherds from the 1939 excavation season are defined as having an effigy applique. The exact nature of these decorations is unspecified in the analysis notes (Lewis and Kneberg 1939). Three Shell Tempered Plain discs are also identified from the site (Figure 3). One plain body sherd is perforated with a hole drilled after firing.

Overhill Plain (King 1970:61-64)

Sample. The sample contains 13,288 rim sherds, 119,224 body sherds, and 6091 MNV (Figures 4-12) (Tables 4 and 5). The 1969 through 1974 excavations yielded 132,512 Overhill Plain body and rim sherds. Overhill Plain sherds proved to be the most numerous ceramic type from every excavation unit in these years both at 40MR2 and 40MR62. They constitute 85.7% of the total ceramic assemblage.

Method of Manufacture. Vessels were manufactured by the addition of successive coils to an initial modeled circular clay base. Individual coils are not readily detectable in the finished vessel but it is apparent from the direction of laminated shell temper that each new coil on the lower vessel wall was welded to the inner surface of the preceding coil and then pinched outward. In the case of open bowl forms
Figure 4. Overhill Plain Rim Forms.

(A) Everted plain rim; flattened lip surface. (B) Direct plain rim; rounded lip surface. (C) Everted rolled rim; rounded lip surface. (D) Everted rolled rim; flattened lip surface. (E) Direct rolled rim; rounded lip surface. (F) Everted notched extended lip; flattened lip surface. (G) Undetermined notched extended lip; flattened lip surface. (H) Everted notched extended lip; flattened lip surface. (I) Direct plain rim; rounded lip surface. (J) Direct unnotched extended lip; flattened lip surface. (K) Undetermined unnotched extended lip; flattened lip surface. (L) Inverted plain rim with notched rim strip; rounded lip surface. (M) Direct plain rim with notched rim strip; flattened lip surface. (N-O) Everted plain rim with notched rim strip; flattened lip surface. (P) Everted plain rim with unnotched rim strip; flattened lip surface. (Q) Everted plain rim with notched rim strip; flattened lip surface. (R) Everted plain rim with double unnotched rim strip; flattened lip surface. (S) Everted plain rim with double notched rim strip; flattened lip surface.
Figure 5. Reconstructed Overhill Plain Jar.

Jar with everted plain rim and notched rim-strip; no base, flattened lip surface.
Figure 6. Partial Overhill Plain Jar.

Jar with everted plain rim and notched rim strip; no base; flattened lip surface.
Figure 7. Overhill Plain Bowls.

(A) Shouldered bowl with everted plain rim and notched rim strip; rounded base; flattened lip surface. (B) Shouldered bowl with everted plain rim and notched rim strip; rounded base; flattened lip surface. (C) Shouldered bowl with inverted plain rim; rounded base; flattened lip surface.
Figure 8. Partial Overhill Plain Bowls.

(A) Open bowl with direct plain rim and notched rim strip; rounded base; rounded lip surface. (b) Shouldered bowl with inverted plain rim and notched rim strip; rounded base; flattened lip surface.
Figure 9. Reconstructed Overhill Plain Bowls.

(A) Open bowl with direct plain rim; rounded base; flattened lip surface.
(B) Open bowl with direct plain rim; reconstructed base; flattened lip surface.
(C) Open bowl with direct plain rim; rounded base; flattened lip surface.
Figure 10. Reconstructed Overhill Plain Bowl.

Open bowl with direct unnotched extended lip; flattened base; flattened lip surface.
Figure 11. Overhill Plain Pans.

(A) Everted plain rim sherd from shallow wide mouthed pan; flattened base; flattened lip surface. (B) Shallow wide mouthed pan with direct rim and unnotched rim strip; flattened base; flattened lip surface. (C) Direct plain rim sherd with unnotched rim strip from a shallow wide mouthed pan; flattened base; flattened lip surface.
Figure 12. Overhill Plain Pan.

Shallow wide mouthed pan with direct rolled rim; rounded base; rounded lip surface.
TABLE 4

Overhill Plain Rim Sherd Morphology
40HR2:1969-1970

<table>
<thead>
<tr>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Incurvate</th>
<th>Excurvate</th>
<th>Other</th>
<th>Indeterminate</th>
<th>Total Shers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
</tr>
<tr>
<td>Plain Rim</td>
<td>N</td>
<td>147 145</td>
<td>158 934</td>
<td>1,026 291</td>
<td>6 7</td>
<td>83 60</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>2 16</td>
<td>3 18</td>
<td>15 2</td>
<td></td>
<td>2 5</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>175 187</td>
<td>2 251</td>
<td>226 5</td>
<td>9 6 17</td>
<td></td>
</tr>
<tr>
<td>Notched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Lip</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unextended Lip</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unnotched</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Lip</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4 (Continued)

<table>
<thead>
<tr>
<th>Rim Form</th>
<th>Rim Strip<sup>a</sup></th>
<th>Incurvate</th>
<th>Excurvate</th>
<th>Other</th>
<th>Indeterminate</th>
<th>Total Sherd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lip Surface<sup>b</sup></td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td></td>
</tr>
<tr>
<td>Rolled Rim</td>
<td>N</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Residual Rim</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Strip</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>334</td>
<td>350</td>
<td>-</td>
<td>164</td>
<td>1,112</td>
<td>1,111</td>
</tr>
</tbody>
</table>

^aN = Notched Rim Strip; U = Unnotched Rim Strip; P = Punctated Rim Strip; W = Without Rim Strip.

^bR = Rounded Lip Surface; F = Flattened Lip Surface; A = Angled Lip Surface; M = Missing Lip Surface.
TABLE 5
Overhills Plain Rim Sherd Morphology

<table>
<thead>
<tr>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Inverted Lip Surface</th>
<th>Everted Lip Surface</th>
<th>Direct Lip Surface</th>
<th>Undetermined Lip Surface</th>
<th>Total Shards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Rim</td>
<td>N</td>
<td>18</td>
<td>88</td>
<td>-</td>
<td>90</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-4</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>6</td>
<td>25</td>
<td>-</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>Notched Lip</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Notched Extended Lip</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Notched Extended Lip</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Notched Extended Lip</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Unnotched Lip</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnotched Extended Lip</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnotched Extended Lip</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unnotched Extended Lip</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

Total Shards: 4,624

Table 5 (Continued)

<table>
<thead>
<tr>
<th>Rim Form</th>
<th>Rim Strip<sup>a</sup></th>
<th>Inverted <sup>b</sup></th>
<th>Everted</th>
<th>Direct</th>
<th>Undetermined</th>
<th>Total Shards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Lip Surface<sup>b</sup></td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>P</td>
<td>A</td>
<td>H</td>
<td>HWV</td>
</tr>
<tr>
<td>Other</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thickened</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exterior RIM</td>
<td>P</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Other</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thickened</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interior RIM</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rolled Rim</td>
<td>N</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Rolled Rim</td>
<td>U</td>
<td>98</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>46</td>
</tr>
<tr>
<td>Residual</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Residual</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Residual</td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Residual</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TOTAL | 43 | 129 | 98 | 210 | 727 | 2,888 | 19 | 495 | 3,883 | 173 | 924 | 2 | 47 | 755 | 522 | 1,410 | 10 | 1,247 | 1,239 | 6,091 | 8,764 |

^aN = Notched Rim Strip; U = Unnotched Rim Strip; P = Punctuated Rim Strip; W = Without Rim Strip.

^bR = Rounded Lip Surface; F = Flattened Lip Surface; A = Angled Lip Surface; M = Missing Lip Surface.
this manner of coil addition continued to the rim. However, on shoul­
dered vessels such as jar forms the direction of coil application was
often reversed at the point where the vessel wall turns inward. Addi­
tional coils were applied to the exterior of the preceding coil and
pinched inward. This procedure was continued up the vessel neck to
the rim. The final coil on many vessels was applied to the outside of
the rim and pinched downward to form the characteristic Overhill rim
strip.

Paste. Sherds are tempered with varying amounts of coarse crushed
shell. Shell particles range in size from a predominant 1-2 mm to 5 mm
in diameter and make up from 15-25% of the paste. Fine sand is often
included in the paste but never comprises an appreciable proportion of
the temper. The hardness is 2.5 to 3.0 and varies according to weather­
ing and the amount of shell temper lost due to leaching. Color is
extremely variable. Mottled sherds are very common due to differential
firing. Colors frequently encountered are black, dark brown, yellowish
brown, reddish brown, gray and tan.

Surface Finish. The characteristic exterior surface finish is
roughly smoothed and often indicates scraping. Irregular shallow
striations are common. Interior surfaces are smoother but also show
the results of scraping. Striations on both surfaces are usually
aligned horizontal to the vessel wall. Eight Overhill Plain body sherds
and 22 rim sherds exhibit reed or stylus punctations. Three of the
1969 and 1970 rim and body sherds are classified as having a notched
decoration. The definition of notched is not given in the analyses
notes (Earnest 1970; King 1969).
Form. The most frequently occurring Overhill Plain rim form is the plain rim (Figure 4, page 30) (Tables 4 and 5, pages 40-43). Plain rims comprise 90% of the 1969-1970 rim sample and 79% of those recovered in the 1971-1974 excavations. The second most numerous form is the rolled rim which constitutes approximately 3% of the entire Overhill Plain rim assemblage. Notched extended and notched unextended lips each represent less than 1% of the whole and occur in nearly equal numbers. Unnotched extended lips are the least common of the five recognized Overhill forms from the site.

The 1969-1970 and 1971-1974 analyses indicate somewhat different frequencies and distributions of the Overhill Plain contour types. The major disparities between the two analyses are due to the use of different descriptive terminologies. The largest sample of Overhill Plain rim sherds from 1969-1970 has an excurvate contour. They comprise 65% of the rims recovered. Of the remaining assemblage, rims with incurvate, excurvate, and other contours constitute 19%, 15%, and less than 1% respectively. Of the 1971-1974 material, 47% of the Overhill Plain rims have an everted contour, 37% an undetermined contour, 13% a direct contour, and 3% an inverted contour.

Lip surface information was recorded for the Overhill rim sherds recovered in the 1969 through 1974 excavation seasons. No lip surface data was reported for the 1939 material. Flattened surfaces are found on 41% of the 1969-1970 and 61% of the 1971-1974 lips. Rounded lips comprise an additional 41% of the 1969-1970 sample and 17% of the 1971-1974 material. Except for a few sherds with angled lip surfaces, the remaining rims are missing lips. The lip surface attribute has
limited value in determining differences in Overhill rim types. Lips are roughly formed and in many instances a single vessel or rim sherd has both rounded and flattened lip surfaces.

The majority of Overhill Plain rims from every excavation unit have rim strips which have been notched by either a fingernail or sharp instrument. Notched rim strips occur on 70% of the 1969-1970 and 67% of the 1971-1974 rims. A little more than 1% of the rim strips from each of these analyses are unnotched. A few rim sherds exhibit double rim strips or rim strips which have been punctated with a cane reed or stylus.

Common Overhill Plain vessel types are jars, open and shouldered bowls, and pans. From the examination of rim forms, jars are the most numerous vessel form (Figures 5 and 6, pages 32 and 33). They are approximately 10-50 cm in height and have an orifice diameter of approximately 10-40 cm. Vessel wall thickness varies from the base to the rim and may be 15 mm wide at the base and 2-6 mm at the rim. Bases are almost always rounded but flattened bases do occur. Bowl forms comprise the majority of the remaining vessels recovered. Bowls are either open, shouldered with inverted rims, or shouldered with an everted rim (Figures 7-10, pages 34-37). Vessel height is approximately 5-20 cm and orifice diameters are from 5-40 cm. Sherd thickness varies from 4-13 mm, with bases usually thicker than the mid-vessel wall or rim. Bases are usually rounded but occasionally are flat. Shallow wide mouthed pans are another Overhill Plain vessel form. They either have flat bottoms with sharply sloping sides or rounded bottoms which curve to the rim (Figures 11 and 12, pages 38 and 39). Vessel heights
range from 4-9 cm and vessel orifices measure approximately 30-50 cm in diameter. Sherd thickness is greatest at the base where it may reach 15 mm. Vessel walls average 8-10 mm thick.

A total of 133 shell tempered appendages were recovered in the 1969 through 1974 excavations. Most are considered to belong to the Overhill series. There are 60 strap handles. Of these, 16 are attached to rim or body sherds. The remaining 44 are detached. One strap handle has a notched rim strip and two are notched along the edges (Figure 3, page 27). The lug handle sample is 47. Thirty-seven lug handles occur on rim or body sherds. The remaining 10 are detached. Eleven of the 47 lug handles are notched. The loop handle sample numbers 11. Seven of these are from the 1969 investigations and four from the 1970 work. Five of the loop handles are attached to rim and body sherds and six are independent units. One loop handle is notched. Fifteen nodes were recovered. Fourteen are attached to rim or body sherds and one is unattached.

Two Overhill Plain rim sherds and six body sherds from the 1970 excavation seasons have an effigy applique. The exact nature of this decoration is not explained in the original analysis notes (Earnest 1970).

Overhill Check Stamped (Lewis and Kneberg 1946:105-106)

Sample. The sample contains 23 rim sherds, 807 body sherds and 8 MNV (Figure 13) (Tables 6 and 7). Overhill Check Stamped sherds are the second most numerous Overhill ceramic type and constitute 52% of the total assemblage. One shell tempered check stamped rim and 21 shell
Figure 13. Selected Decorated Overhill Series Body and Rim Sherds.

(A-C, E, G) Overhill Check Stamped body sherds. (D) Historic Cord marked body sherd. (F) Overhill Check Stamped direct rim, flattened lip surface; stylus punctations below the lip. (H) Overhill Simple Stamped body sherd. (I) Overhill Simple Stamped everted rim with a notched extended lip; flattened lip surface. (J-O) Overhill Rectilinear Complicated Stamped body sherds. (P) Overhill Curvilinear Complicated Stamped everted rolled rim; rounded lip surface. (Q) Overhill Curvilinear Complicated Stamped body sherd.
Figure 13
<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Form</th>
<th>Rim Strip<sup>a</sup></th>
<th>Rim Contour</th>
<th>Total Sherd<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incurvate Lip Surface</td>
<td>Excurvate Lip Surface</td>
</tr>
<tr>
<td>Check Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notched Unextended Lip</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Rim Form</td>
<td>Rim Strip(^a)</td>
<td>Incurvate Lip Surface(^b)</td>
<td>Excurvate Lip Surface</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R F A M</td>
<td>R F A M</td>
</tr>
<tr>
<td>Undetermined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complicated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stamped</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Notched Extended</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolled Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Rim Form</td>
<td>Rim Stripa</td>
<td>Incurvate Lip Surfaceb</td>
<td>Excurvate Lip Surface</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------</td>
<td>------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RFAM</td>
<td>RFAM</td>
</tr>
<tr>
<td>Residual Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatchured Triangle Incised</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td></td>
<td>N</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Notched Unextended Lip</td>
<td></td>
<td>N</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

\(a \) Categories indicated by R, F, A, M

\(b \) Categories indicated by RFAM
<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Form</th>
<th>Rim Strip(^a)</th>
<th>Incurvate (\text{Lip Surface})^b</th>
<th>Excurvate (\text{Lip Surface})</th>
<th>Other (\text{Lip Surface})</th>
<th>Indeterminate (\text{Lip Surface})</th>
<th>Total Shards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chevron Incised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>N</td>
<td>- - - 3</td>
<td>2 - - 1</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>- - - -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>- - - -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>1 - - 2</td>
<td>1 - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - 4</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1 - - 5</td>
<td>3 - - 1</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - 4</td>
<td>13</td>
</tr>
<tr>
<td>Undetermined Incised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>N</td>
<td>- - - 8</td>
<td>- - 2 - 1</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - 1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>- - - -</td>
<td>- 1</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>- - - 2</td>
<td>1 10 - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>1 - - 2</td>
<td>21</td>
</tr>
<tr>
<td>Residual Rim Strip</td>
<td>N</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>- - - -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>- - - -</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>- - - -</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2 2 - 12</td>
<td>1 12 - 1</td>
<td>- - - -</td>
<td>- - - -</td>
<td>1 - - 5</td>
<td>36</td>
</tr>
</tbody>
</table>

\(^a\)N = Notched Rim Strip; U = Unnotched Rim Strip; P = Punctated Rim Strip; W = Without Rim Strip.

\(^b\)R = Rounded Lip Surface; F = Flattened Lip Surface; A = Angled Lip Surface; M = Missing Lip Surface.
TABLE 7

Overhill Decorated Rim Sherds Morphology

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Contour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inverted</td>
</tr>
<tr>
<td></td>
<td>Lip Surface</td>
</tr>
<tr>
<td></td>
<td>RF</td>
</tr>
<tr>
<td>Check Stamped</td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>U</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
</tr>
<tr>
<td>Simple Stamped</td>
<td></td>
</tr>
<tr>
<td>Notched Extended Lip</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-</td>
</tr>
<tr>
<td>U</td>
<td>-</td>
</tr>
<tr>
<td>P</td>
<td>-</td>
</tr>
<tr>
<td>W</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Rim Form</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Undetermined Complicated Stamped</td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Undetermined</th>
<th>Plain Rim</th>
<th>Residual</th>
<th>Stamped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inverted</td>
<td>Everted</td>
<td>Direct</td>
<td>Undetermined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R F A H MV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>U</td>
<td>P</td>
<td>W</td>
</tr>
<tr>
<td>Undetermined Complicated Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td></td>
<td>Undetermined</td>
<td>Plain Rim</td>
<td>Residual</td>
<td>Stamped</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inverted</td>
<td>Everted</td>
<td>Direct</td>
<td>Undetermined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R F A H MV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>U</td>
<td>P</td>
<td>W</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Undetermined</th>
<th>Plain Rim</th>
<th>Residual</th>
<th>Stamped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inverted</td>
<td>Everted</td>
<td>Direct</td>
<td>Undetermined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R F A H MV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>U</td>
<td>P</td>
<td>W</td>
</tr>
<tr>
<td>Undetermined Complicated Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td></td>
<td>Undetermined</td>
<td>Plain Rim</td>
<td>Residual</td>
<td>Stamped</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inverted</td>
<td>Everted</td>
<td>Direct</td>
<td>Undetermined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R F A H MV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>U</td>
<td>P</td>
<td>W</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Undetermined</th>
<th>Plain Rim</th>
<th>Residual</th>
<th>Stamped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inverted</td>
<td>Everted</td>
<td>Direct</td>
<td>Undetermined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R F A H MV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>U</td>
<td>P</td>
<td>W</td>
</tr>
<tr>
<td>Undetermined Complicated Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td></td>
<td>Undetermined</td>
<td>Plain Rim</td>
<td>Residual</td>
<td>Stamped</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
<td>Lip Surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Inverted</td>
<td>Everted</td>
<td>Direct</td>
<td>Undetermined</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R F A H MV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N</td>
<td>U</td>
<td>P</td>
<td>W</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7 (Continued)
<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Inverted Lip Surface</th>
<th>Everted Lip Surface</th>
<th>Direct Lip Surface</th>
<th>Undetermined Lip Surface</th>
<th>Total Sherds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectilinear Complicated Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rolled Rim</td>
<td>N</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Curvilinear Complicated Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolled Rim</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Rim Contour</td>
<td>Rim Form</td>
<td>Rim Strip</td>
<td>Lip Surface</td>
<td>Inverted</td>
<td>Everted</td>
<td>Direct</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Chevron Incised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>- 3 - - 1</td>
<td>- 1 - 1</td>
<td>- 5 - 4</td>
<td>- 1 - 1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>- - - -</td>
<td>- 1 - 4</td>
<td>- 4 - 3</td>
<td>- 1 - 1</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>- 3 - - 1</td>
<td>- 1 - 1</td>
<td>- 5 - 4</td>
<td>- 1 - 1</td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Undetermined Incised</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>- 1 - 4</td>
<td>- 2 - 2</td>
<td>- 4 - 3</td>
<td>- 1 - 1</td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>- 1 - 4</td>
<td>- 2 - 2</td>
<td>- 4 - 3</td>
<td>- 1 - 1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notched Unextended Lip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>- 2 - 6</td>
<td>- 2 - 4</td>
<td>- 6 - 1</td>
<td>- 1 - 3</td>
<td>18</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Hatched Triangle</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incised</td>
<td>NIV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rim Form</td>
<td>Rim Strip</td>
<td>Lip Surface</td>
<td>N</td>
<td>F</td>
<td>A</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Inverted</td>
<td>Lip Surface</td>
<td>R</td>
<td>F</td>
<td>A</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Everted</td>
<td>Lip Surface</td>
<td>R</td>
<td>F</td>
<td>A</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Direct</td>
<td>Lip Surface</td>
<td>R</td>
<td>F</td>
<td>A</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Undetermined</td>
<td>Lip Surface</td>
<td>R</td>
<td>F</td>
<td>A</td>
<td>H</td>
<td>M</td>
</tr>
<tr>
<td>Plain Rim</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>19</td>
<td>14</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Unnotched</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extended Lip</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thickened</td>
<td>N</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Interior/Exterior</td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>7</td>
<td>25</td>
<td>23</td>
<td>3</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Rim Form</td>
<td>Rim Strip<sup>a</sup></td>
<td>Lip Surface<sup>b</sup></td>
<td>Inverted</td>
<td>Everted</td>
<td>Direct</td>
<td>Undetermined</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Cob Marked</td>
<td>Plain Rim</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

^aN = Notched Rim Strip; U = Unnotched Rim Strip; P = Punctated Rim Strip; W = Without Rim Strip.

^bR = Rounded Lip Surface; F = Flattened Lip Surface; A = Angled Lip Surface; M = Missing Lip Surface.
tempered check stamped body sherds from the 1939 excavations are included in this category. The method of manufacture, temper, hardness, sherd thickness, and color are the same as those of Overhill Plain ceramics.

Surface Finish. Exterior surface treatment consists of a series of stamped square, rectangular, or diamond shaped impressions in a grid pattern. The size of the individual checks is variable but ranges from 2-6 mm on a side. Overstamping is common. Available sherds indicate that the entire external vessel surface was stamped. Interior surfaces are finished similarly to Overhill Plain vessels. They are roughly smoothed and often show the effects of scraping. Two check stamped rim sherds are punctated with a stylus below the lip.

Form. The majority of the rim sherds are everted or excursive. Inverted, incurvate, and direct rims were found in lesser numbers. There is one incurvate plain rim from the 1939 excavations. Rim morphology from the remaining seasons is shown in Tables 6 and 7, pages 50-59. Rim morphology indicates shouldered or open bowl and jar forms with everted or direct rim contours.

Overhill Simple Stamped (King 1970:54)

Sample. The sample consists of 3 rim sherds, 126 body sherds and 1 MNV (Figure 13, page 48) (Tables 6 and 7, pages 50-59). Overhill Simple Stamped sherds represent .1% of the assemblage and are the least numerous of the Overhill stamped varieties. The temper, method of manufacture, thickness, color, and hardness of the sherds are characteristic of Overhill Plain ceramics.
Surface Finish. Partial vessels indicate that the stamping pattern was applied roughly vertical to the exterior vessel wall. On some vessels stamping continues to the rim, but on other examples only the vessel body is stamped, leaving the rim and neck undecorated. Grooves measure 2-4 mm across, while lands are slightly narrower at 1-2 mm. Impressions are roughly parallel but overlapping and smearing occurs. Interior surfaces are irregularly smoothed.

Forms. The Overhill Simple Stamped rim sherds are everted or excursive. One has a notched extended lip (Figure 13, page 48). One partial vessel is a flat bottomed bowl with an everted flaring plain rim.

Overhill Complicated Stamped (Lewis and Kneberg 1946:105)

Sample. The sample consists of 38 rim sherds, 604 body sherds and 9 MNV (Figure 13, page 48) (Tables 6 and 7, pages 50-59). Overhill Complicated Stamped sherds represent .4% of the ceramic assemblage and are the third largest numbered Overhill type. Included in this category are 10 shell tempered complicated stamped body sherds from the 1939 excavations. The temper, method of manufacture, color, thickness, and hardness of the sherds are the same as for Overhill Plain ceramics.

Surface Finish. Surface treatment motif is either rectilinear, curvilinear, or undetermined for the 1939 and 1971-1974 analyses. The 1969 and 1970 analyses notes do not specify motif so all of the Overhill Complicated Stamped sherds from those seasons are listed as undetermined in motif (Earnest 1970; King 1969). The 242 rectilinear
complicated stamped sherds contain such design elements as concentric diamonds, concentric triangles, and zig-zag lines. Sherds are rarely large enough to identify a complete motif. Grooves are 2-5 mm wide, while lands average 2-3 mm across. The 73 curvilinear complicated stamped sherds are decorated with concentric circles and wavy line motifs. Groove and land diameter are the same as in rectilinear complicated stamped. Overstamping is common in both varieties and the surface treatment is often smeared. Frequently the stamping continues to the rim. The 327 Undetermined Complicated Stamped sherds are from the 1969 and 1970 excavations or are so badly smeared, overstamped, or too small to be accurately determined as rectilinear or curvilinear in motif.

One partial vessel with an everted plain rim is decorated with a row of stylus punctations on the neck above a zone of rectilinear complicated stamping. Overhill Complicated Stamped vessels have roughly smoothed interiors.

Form. Rim sherds are predominately everted, excurvate, or direct in contour. Two incurvate rims were recovered. Plain rims with or without notched rim strips are most common, but rolled rims are also prevalent. There are three notched extended lips. Rim morphology indicates shouldered or open bowl and jar forms with everted or direct rim contours.

Overhill Residual Stamped

Sample. The sample consists of 3 rim sherds, 50 body sherds and 1 MNV (Tables 6 and 7, pages 50-59). Overhill Residual Stamped is used to classify all stamped sherds with the general temper, hardness,
thickness, and color of the Overhill series which are so badly weathered or fragmentary that their stamping motif is indeterminable. Most of these sherds are small and decorated with a few parallel lands and grooves. They represent less than .1% of the ceramics.

Form. The three rim sherds are excurvate, direct, and undetermined in contour. No rim strips are present. Total vessel morphology is not determined.

Overhill Incised (King 1970:55)

Sample. The sample consists of 210 rim sherds, 252 body sherds and 96 MNV (Figure 14) (Tables 6 and 7, pages 50-59). Overhill Incised ceramics comprise .3% of the ceramic assemblage. The temper, method of manufacture, thickness, color, and hardness of the sherds are characteristic of Overhill Plain. Twenty-three shell tempered incised sherds from the 1939 analysis are included in this count. Rim morphology of the 1939 sample is given in Table 8.

Surface Finish. Incising is fine lined and was usually applied with a pointed or less often, blunt ended tool. Design motifs are complete and incomplete hatchured triangles, chevrons, bisected chevrons, and cross-hatched triangles. Many fragmentary sherds with incised parallel lines are placed in the undetermined motif incised category. The 1939 analysis classified four rim sherds and four body sherds as having a meander motif. One body sherd from that season was classified as combed and one body sherd as engraved. Neither motif was explained in the analysis notes of Lewis and Kneberg (1939). The majority of the Overhill
Figure 14. Selected Decorated Overhill Series Body and Rim Sherds, Mississippian Body Sherds.

(A) Overhill Incised everted plain rim with notched rim strip; flattened lip surface; chevron motif. (B) Overhill Incised inverted plain rim with a notched rim strip; missing lip surface; chevron motif. (C) Overhill Incised inverted plain rim with a notched rim strip; flattened lip surface; bisected chevron motif. (D) Overhill Incised direct rim with unnotched extended lip and notched rim strip; flattened lip surface; incomplete hatchured triangle motif. (E) Overhill Incised inverted plain rim; rounded lip surface; variation of hatchured triangle motif with stylus punctations beneath the lip. (F) Overhill Incised everted plain rim with notched rim strip; flattened lip surface; cross-hatched motif. (G) Overhill Incised direct plain rim with reed punctated rim strip flattened lip surface; complete hatchured triangle motif. (H) Overhill Incised inverted rim with unnotched extended lip and notched rim strip; flattened lip surface; complete hatchured triangle motif. (I-J) Shell Tempered Mississippian Cord Marked body sherds. (K) Hiwassee Island Red Filmed body sherd. (L-N) Shell Tempered Mississippian Fabric Impressed body sherds. (O-P) Overhill Cob Marked body sherds. (Q) Shell Tempered Cane Impressed body sherd.
TABLE 8

Shell Tempered Incised Rim
Sherd Morphology
from 40MR2: 1939

<table>
<thead>
<tr>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Rim Contour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incurvate</td>
<td>Excurvate</td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Strip</td>
<td></td>
</tr>
<tr>
<td>No Rim</td>
<td>Strip</td>
<td>-</td>
</tr>
<tr>
<td>Residual</td>
<td>Rim Strip</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Incised sherds have the hatchured triangle motif. Incising is predominately confined to the rim, neck, and shoulder areas of vessels. One excurvate plain rim from the 1969 excavations has notching below a hatchured triangle motif, and one body sherd from the 1970 excavations has the incised undetermined motif and is punctated. Interior vessel surfaces are roughly smoothed and indicate scraping.

Form. Inverted and incurvate rims are most common on Overhill Incised vessels. Everted or excurvate rims and direct rims are also common. Most rims come from small bowls. Closed or shouldered bowls
Shell Tempered Incised Rim
Sherd Morphology
from 40MR2: 1939

<table>
<thead>
<tr>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Rim Contour</th>
<th>Incurvate</th>
<th>Excurvate</th>
<th>Vertical</th>
<th>Direct</th>
<th>Undetermined</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Rim</td>
<td>Rim Strip</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>No Rim Strip</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Residual Rim Strip</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>4</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Incised sherds have the hatchured triangle motif. Incising is predominately confined to the rim, neck, and shoulder areas of vessels. One excurvate plain rim from the 1969 excavations has notching below a hatchured triangle motif, and one body sherd from the 1970 excavations has the incised undetermined motif and is punctated. Interior vessel surfaces are roughly smoothed and indicate scraping.

Form. Inverted and incurvate rims are most common on Overhill Incised vessels. Everted or excurvate rims and direct rims are also common. Most rims come from small bowls. Closed or shouldered bowls
are most frequent. One detached strap handle with an incised hatchured triangle motif was recovered in the 1974 excavations.

Overhill Cob Marked (Polhemus 1968)

Sample. The sample contains 11 rim sherds, 193 body sherds and 2 MNV (Figure 14) (Table 7, pages 54-59). Overhill Cob Marked ceramics are the least numerous of the Overhill types found at the site. They have the same general temper, method of manufacture, thickness, color, and hardness as Overhill Plain.

Surface Finish. Sherds in this classification display an irregular roughened exterior surface finish. Roughening is in the form of irregular rows of striations formed by rolling a corncob across the wet clay surface. Rim sherds indicate that the rows of striations are usually oriented roughly vertical to the vessel wall. The rows of striations are usually indistinct and the corncob was probably passed over the same vessel surface more than once. Interior vessel surfaces are roughly smoothed.

Form. All of the Overhill Cob Marked rim sherds are everted with plain rims. Ten of the rims have a notched rim strip and one has an unnotched rim strip. Vessel morphology is either small jars or bowls with everted rims.

European Fabric Impressed (King 1970:56)

Sample. One European Fabric Impressed body sherd was recovered in the 1969 excavations. It is of historic origin and associated with
the Cherokee occupation at the site. The temper, method of manufacture, thickness, color, and hardness of the sherd is similar to Overhill Plain.

Surface Finish. The exterior surface finish displays close knit fabric impressions. King (1970:56) suggests that this pattern was formed by pressing a cloth of European origin against the wet clay surface. The interior vessel surface is roughly smoothed.

Fabric Impressed

Sample. One rim sherd and 16 body sherds were recovered (Figure 14). Nine Shell Tempered Fabric Impressed body sherds from Feature 235 in Area C of the 1970 excavations are described by King (1970:22) as having the same general paste characteristics as the Overhill series. The remaining shell tempered fabric impressed sherds do not have Overhill series characteristics and are likely associated with Mississippian period occupations.

Surface Finish. The exterior surfaces of most of the sherds exhibit a simple twined, coarse open weave. Cord impressions are approximately 1 mm wide. Two sherds display a more closely woven simple plaited pattern. All sherds have roughly smoothed interior surfaces.

Form. The shell tempered fabric impressed rim sherd is undetermined in contour. No total vessel morphology can be determined.

Historic Cord Marked

Sample. The sample includes two rim sherds and seven body sherds (Figure 14). Very few sherds of this shell tempered variety were
recovered. They have the same general temper, method of manufacture, thickness, color, and hardness of the Overhill series. The ceramics are therefore considered historic in origin and belong to the Cherokee occupation at the site.

Surface Finish. Sherds in this classification display a series of irregular cord impressions on the exterior vessel surfaces. Cord thickness is approximately 1 mm. Cord impressions are sloppily executed and often have been smeared over. Interior vessel surfaces are roughly smoothed.

Form. Both rim sherds are from the same vessel which has an excursive plain rim and notched rim strip. They are probably derived from a small jar form.

Cord Marked

Sample. The sample consists of 2 rim sherds and 243 body sherds (Figure 14, page 64). Sixteen cord marked body sherds from the 1974 excavations do not have Overhill series characteristics and are considered to be from Mississippian period occupations. Two rim sherds and 227 body sherds from the 1939 excavations were not available for examination and were defined by Lewis and Kneberg (1939) as shell tempered cord marked. Because of the Mississippian wall trench structure uncovered in those excavations, most of the cord marked sherds from 1939 are probably Mississippian in affiliation.

Paste. Sherds are tempered with small amounts of laminated finely crushed shell. Shell particles range from 1-2 mm in size. Sherd
hardness is approximately 2.5 but varies depending on the amount of shell temper lost to leaching. Most of the sherds are badly leached. The sherds are a tan or buff color.

Surface Finish. The majority of the sherds are badly weathered but exhibit a series of fine roughly parallel twisted cord impressions on their exterior surfaces. Impressions measure 1 mm or less across and often overlap. Interior surfaces are smoothed but weathered.

Form. One rim sherd from the 1939 excavations has an inverted contour and notched rim strip. It may belong to the historic Cherokee occupation. The other rim sherd from the 1939 excavations was defined as a vertical rim. Body sherd thickness ranges from 3-6 mm. No total vessel morphology can be determined.

Plaited Cane Impressed (King 1970:56)

Sample. The sample contains 30 body sherds (Figure 14, page 64). Ceramics in this category have the same general temper, method of manufacture, thickness, color, and hardness as the Overhill series and are considered to be historic.

Surface Finish. The exterior surface finish of these sherds displays a woven split cane matting impression. The weaving pattern alternates two to four canes over, then under. Cane width is 3-5 mm. Cane impressions are often smeared and hard to distinguish. Interior vessel surfaces are roughly smoothed.
Form. No rim sherds were recovered. Most of the sherds are from flat bottomed pans.

Hiwassee Island Red Filmed (Lewis and Kneberg 1946:103-104)

Sample. The sample contains two rim sherds and two body sherds (Figure 14, page 64). Very few Hiwassee Island component ceramics were recognized at the site. Because the type name was not in use in 1939, any Hiwassee Island sherds from that season were not identified. The four Hiwassee Island Red Filmed sherds came from the 1969, 1970, and 1974 excavations. Available sherds indicate coil construction.

Paste. Sherds are tempered with small amounts of very fine crushed shell. Shell particles are less than 1 mm in size. Sherd hardness ranges from 2.5 to 3.0. Interior vessel surfaces and sherd cores are buff or tan in color. Sherd surfaces from vessel exteriors are covered with a red iron oxide paint.

Surface Finish. Both interior and exterior sherd surfaces are very well smoothed. Painted exterior sherd surfaces are weathered.

Form. Both rim sherds are from the 1970 excavations. One is a plain rim with indeterminate contour. The other plain rim has a flaring rim. Total vessel morphology can not be determined.

Residual

Sample. The sample contains 19 rim sherds and 6,357 body sherds. Shell Tempered Residual is used as a classification for all shell tempered sherds from the 1969 through 1974 excavation seasons which
are so badly weathered or fragmented that no definite surface treatment could be recognized. They comprise 4.1% of the ceramic assemblage. Nearly all of the sherds in this category have the same general temper, hardness, thickness, and color of the Overhill series. The majority of the rim sherds in this class are undetermined in contour.

Type Descriptions: Quartz Tempered Plain

Plain

Sample. The sample consists of 4 rim sherds and 55 body sherds. Forty-six sherds from the 1939 analysis of Lewis and Kneberg (1939) were classified as Grit Tempered Plain. Many of these sherds may be from the historic occupation of the site but their cultural affiliation remains unknown because the Qualla series was undefined at the time of the 1939 analysis. The three rim sherds from the 1939 season have everted or vertical contours. The remaining rim sherd and 12 body sherds are from the 1969 and 1970 excavations. They are defined as Grit Tempered Plain of possible Woodland period derivation in the 1969 and 1970 analyses notes (Earnest 1970; King 1969). The one rim sherd has a plain incurvate rim.

Qualla Plain (Egloff 1967:40)

Sample. The sample contains 184 rim sherds, 955 body sherds and 57 MNV (Figure 15) (Tables 9 and 10). Sherds in the Qualla Plain classification were recovered from the 1969 through 1974 excavations. Qualla Plain was undefined at the time of the 1939 Lewis
Figure 15. Selected Qualla Series Body and Rim Sherds.

(A) Qualla Plain undetermined rolled rim; rounded lip surface.
(B) Qualla Plain direct palin rim; flattened lip surface. (C) Qualla Plain undetermined plain rim; rounded lip surface. (D) Qualla Plain everted plain rim; rounded lip surface. (E) Qualla Plain everted plain rim with a notched rim strip; rounded lip surface. (F) Qualla Plain everted rim with a notched extended lip; rounded lip surface.
(G) Qualla Incised inverted plain rim with a notched rim strip; rounded lip surface; variation of hatchured triangle motif. (H) Qualla Corn Cob Impressed everted rim with a notched extended lip; flattened lip surface.
Figure 15

A B C D
E F G
H
<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Contour</th>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Incurvate</th>
<th>Excurvate</th>
<th>Other</th>
<th>Indeterminate</th>
<th>Total Sherds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rim Surface</td>
<td>Rim Surface</td>
<td>Rim Surface</td>
<td>Rim Surface</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>F</td>
<td>A</td>
<td>N</td>
<td>R</td>
<td>F</td>
<td>A</td>
</tr>
<tr>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td></td>
<td>N</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>10</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Rolled Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Residual Rim Strip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>40</td>
<td>26</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE 9 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Form</th>
<th>Rim Strip<sup>a</sup></th>
<th>Rim Contour</th>
<th>Total Sherds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Incurvate</td>
<td>Excurvate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>F</td>
</tr>
<tr>
<td>Check Stamped</td>
<td></td>
<td></td>
<td>R</td>
<td>F</td>
</tr>
<tr>
<td>Plain</td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Notched Extended</td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Lip</td>
<td></td>
<td></td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Rolled Rim</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Complicated Stamped			15	7	1	-	15	7	1	-	-	-	-	-	-	-	-	-	-	-	24
Plain			9	-	-	-	9	-	-	-	-	-	-	-	-	-	-	-	-	-	9
Notched Extended			1	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Lip			24	8	1	-	24	8	1	-	-	-	-	-	-	-	-	-	-	-	34

^aN = Notched Rim Strip; U = Unnotched Rim Strip; P = Punctated Rim Strip; W = Without Rim Strip.

^bR = Rounded Lip Surface; F = Flattened Lip Surface; A = Angled Lip Surface; M = Missing Lip Surface.
<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Form</th>
<th>Rim Strip</th>
<th>Inverted a Lip Surface</th>
<th>Everted Lip Surface</th>
<th>Direct Lip Surface</th>
<th>Undetermined Lip Surface</th>
<th>Total NNW</th>
<th>Total Sherds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>F</td>
<td>A</td>
<td>N</td>
<td>NWV</td>
<td>R</td>
</tr>
<tr>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>N</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>Notched Extended Lip</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Rolled Rim</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Residual Rim Strip</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>16</td>
<td>12</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

TABLE 10

Qualla Rim Sherd Morphology
40HR2-40HR62:1971-1974
TABLE 10 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Contour</th>
<th>Inverted Lip Surface</th>
<th>Everted Lip Surface</th>
<th>Direct Lip Surface</th>
<th>Undetermined Lip Surface</th>
<th>Total HNV Sheds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>F</td>
<td>A</td>
<td>M</td>
<td>HNV</td>
</tr>
<tr>
<td>Checked Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notched</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Lip</td>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complicated Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 10
TABLE 10 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Rim Form</th>
<th>Rim Strip<sup>a</sup></th>
<th>Inverted<sup>b</sup></th>
<th>Everted</th>
<th>Direct</th>
<th>Undetermined</th>
<th>Total Sherd</th>
</tr>
</thead>
</table>

Notched Triangle Incised

<table>
<thead>
<tr>
<th>Lip Surface</th>
<th>R</th>
<th>F</th>
<th>A</th>
<th>H</th>
<th>M</th>
<th>MIV</th>
<th>Total Sherd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Rim</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>1 33</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>35</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>4 42</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>35</td>
<td>34</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5 75</td>
</tr>
</tbody>
</table>

Undetermined Incised

<table>
<thead>
<tr>
<th>Lip Surface</th>
<th>R</th>
<th>F</th>
<th>A</th>
<th>H</th>
<th>M</th>
<th>MIV</th>
<th>Total Sherd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Rim</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Corn-cob Impressed

<table>
<thead>
<tr>
<th>Lip Surface</th>
<th>R</th>
<th>F</th>
<th>A</th>
<th>H</th>
<th>M</th>
<th>MIV</th>
<th>Total Sherd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notched</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>W</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

^a N - Notched Rim Strip; U - Unnotched Rim Strip; P - Punctated Rim Strip; W - Without Rim Strip.

^b R - Rounded Lip Surface; F - Flattened Lip Surface; A - Angled Lip Surface; M - Missing Lip Surface.
and Kneberg investigations. The type constitutes .7% of the total ceramic assemblage.

Method of Manufacture. Vessels were constructed by the addition of successive clay coils to an initial circular clay base in a method similar to that utilized in the manufacture of Overhill Plain vessels. Individual coils are hard to discern in the finished vessel.

Paste. Temper consists of fine to medium sized grains of crushed quartz and fine grained river sand. Quartz grains rarely exceed 1 mm in size and make up approximately 10-20% of the paste. Mica flecks are common in the paste. The hardness ranges from 2.5-3.0. Most sherds are light to dark gray. Some others display tan, buff, or shades of yellowish-brown and orange.

Surface finish. Both interior and exterior sherd surfaces are well smoothed. In many instances sherd surfaces have been burnished following smoothing. Burnishing is most common on interior vessel surfaces. Less well finished sherds retain striations from the smoothing process. Sherds rarely show marked effects of weathering. One Qualla Plain everted rim with an unnotched extended lip has a row of stylus punctations directly below the lip.

Form. Plain rims comprise 95% of the 1969-1970 and 91% of the 1971-1974 Qualla Plain rim forms (Tables 9 and 10, pages 75-79). The second most numerous form is the rolled rim which constitutes approximately 6% of the 1971-1974 Qualla Plain rim assemblage.
The 1969-1970 and 1971-1974 analyses indicate somewhat different frequencies and distributions of the Qualla Plain rim contour types. The major disparities between the two analyses are due primarily to the use of different descriptive terminologies. The most common rim form from the 1969-1970 analyses has an excursive contour. They comprise 71% of the rims recovered in those years. Of the remaining 1969-1970 assemblage, 18% have an incurvate contour and 8% are undetermined in contour. Of the 1971-1974 material, 40% of the Qualla Plain rims have a direct contour, 34% an everted contour, 15% an undetermined contour, and 10% an inverted contour.

Lip surface information was recorded for the Qualla rim sherds recovered in the 1969 through 1974 excavation seasons. No lip surface data was reported for the 1939 material (Lewis and Kneberg 1939). Flattened surfaces are found on 33% of the 1969-1970 and 60% of the 1971-1974 lips. Rounded lips comprise an additional 56% of the 1969-1970 sample and 33% of the 1971-1974 material. The remaining rims are missing lips.

Rims which have a rim strip notched with either a fingernail or sharp instrument comprise 52% of the 1969-1970 and 27% of the 1971-1974 Qualla Plain rim sample. Four rim strips remain unnotched and two are punctated.

The most common rim form is the everted or excursive plain rim with a notched rim strip. Direct, inverted, incurvate rims are also common. Rim morphology differs little from Overhill Plain rim forms but fewer styles are represented in the Qualla series than in the Overhill series. Sample sizes are probably responsible for the difference.
Qualla Plain body sherds range from 5-10 mm in thickness. Sherds are thickest at the vessel base. The most prevalent vessel forms are medium sized jars with everted rims and notched rim strips and small bowls with inverted, incurvate, or direct rim contours. One Qualla Plain strap handle was recovered in Area G of the 1970 excavations.

Qualla Check Stamped (Egloff 1967:41-42)

Sample. The sample contains 13 rim sherds, 164 body sherds and 1 MNV, (Figure 16) (Tables 9 and 10, pages 75-79). All the Qualla Check Stamped sherds are from the 1969 through 1974 excavations. No Quartz Tempered Check Stamped sherds were recovered in the 1939 excavation. They comprise .1% of the ceramic assemblage and are equal in number to Qualla Simple Stamped as the second and third most numerous Qualla types. The method of manufacture, temper, hardness, thickness, and color are the same as in Qualla Plain ceramics.

Surface Finish. Exterior vessel surfaces were first roughly smoothed and then stamped with square, rectangular, or diamond shaped check impressions in a grid pattern. Earnest (1971:25) identified one sherd with a combination of square, diamond, and bisected diamond checks in a triangular pattern. Overstamping and smearing following stamp application sometimes obliterated individual checks. Stamping sometimes continues to the rim lip (Figure 16). Interior vessel surfaces are smoothed similar to Qualla Plain and usually are burnished.

Form. There are very few Qualla Check Stamped rims recovered from the site. Ten of the 13 examples have excurvate rim contours. Five
Figure 16. Selected Qualla Series Stamped Body and Rim Sherds.

(A) Qualla Simple Stamped everted plain rim with a punctated rim strip; flattened lip surface. (B-D) Qualla Check Stamped body sherds. (C) Qualla Check Stamped direct rim with a notched extended lip; flattened lip surface. (E) Qualla Complicated Stamped body sherd. (F) Qualla Complicated Stamped plain rim with unnotched rim strip; flattened lip surface. (H-I) Qualla Complicated Stamped body sherds.
sherds have notched extended lips and six sherds have rolled rims. Representative sherds appear to be from small jars or shouldered bowls with excursate rims.

Qualla Simple Stamped

Sample. The sample contains 18 rim sherds, 159 body sherds and 3 MNV (Figure 16)(Tables 9 and 10, pages 75-79). During the 1972 through 1974 excavations 156 body sherds and 18 rim sherds were recovered which are here designated Qualla Simple Stamped. An additional three body sherds from Area A, 1969 were described as Grit Tempered Simple Stamped in the original analysis notes and are included in this category (King 1969). Together they comprise .1% of the ceramic assemblage. The method of manufacture, temper, hardness, thickness, and color of these sherds are the same as in Qualla Plain ceramics.

Surface Finish. Rim sherds indicate that the stamping pattern consists of a series of parallel impressions which are oriented roughly vertical to the exterior vessel wall. The stamping sometimes continues to the rim lip. Grooves measure 3-4 mm across while lands are 1-2 mm across. The parallel impressions are usually clear but smeared and overstamped examples do occur. Interior vessel surfaces are smoothed and are often burnished.

Form. Thirteen of the 18 Qualla Simple Stamped rim sherds came from the same vessel. These are everted rim sherds with a stylus punctated rim strip. On these rim sherds stamping continues to the rim strip (Figure 16). The vessel is a shallow wide mouthed jar. The remaining rims have four everted and one direct rim contours.
Qualla Complicated Stamped (Egloff 1967:38-39)

Sample. The sample contains 36 rim sherds, 574 body sherds and 2 MNV (Figure 16)(Tables 9 and 10, pages 75-79). Qualla Complicated Stamped sherds form .4% of the ceramic sample and are the second most frequently recovered Qualla type. Included in this category are one grit tempered and two sand tempered rectilinear complicated stamped body sherds from the 1939 excavations. The temper, method of manufacture, color, thickness, and hardness of these sherds is the same as in Qualla Plain.

Surface Finish. Surface treatment motif is unspecified in the analyses notes from the 1969 and 1970 excavations (Earnest 1970; King 1969) so that all of the Qualla Complicated Stamped sherds from those seasons are here listed as undetermined complicated stamping motif. For the 1939 and 1971-1974 analyses stamping motifs are either rectilinear, curvilinear, or undetermined. The 72 rectilinear complicated stamped sherds display roughly parallel impressions in concentric square, concentric diamond, or line and block motifs. The ten curvilinear complicated stamped sherds are decorated with concentric circles and wavy line patterns. A few sherds combine both curvilinear and rectilinear elements (Figure 16). Five of these are from Area C in the 1972 excavations at 40MR62. The remaining complicated stamped sherds with combined curvilinear and rectilinear elements are from the 1969 (King 1970:58) and 1970 (Earnest 1971:25) excavations. These are counted among the 552 Undetermined Complicated Stamped sherds which are either from the 1969 and 1970 seasons or are so badly smeared,
overstamped, or too small to determine exact stamping pattern. Qualla Complicated Stamped sherds are often overstamped and the exterior surface finish is often smeared. The stamping sometimes continues to the rim. Grooves and lands measure 2-5 mm across. Interior vessel surfaces are often smoothed and burnished.

Form. Except for one, the rim sherds have everted or excursive contours. The exception, classified in 1970, has a straight profile (Earnest 1970). Most rims have notched rim strips. Nine have un-notched rim strips. Jars are the predominant vessel form.

Qualla Residual Stamped

Sample. The sample consists of 69 body sherds. Qualla Residual Stamped is used to classify all stamped sherds with the general paste characteristics of the Qualla series which are so badly weathered or fragmentary that their stamping motif is indeterminable. Most of these sherds are small and display a few parallel lands and grooves. They represent less than .1% of the ceramic assemblage.

Qualla Incised

Sample. The sample contains 75 rim sherds, 32 body sherds and 6 MNV (Figure 15, page 73) (Tables 9 and 10, pages 75-79). Qualla Incised sherds comprise less than .1% of the total ceramic assemblage. Their temper, method of manufacture, thickness, color, and hardness are characteristic of Qualla Plain ceramics. The majority of the sherds are from the 1974 excavations.
Surface Finish. Both interior and exterior vessel surfaces are well burnished. Incising was applied with a sharp pointed instrument and is very fine lined. Seventy-four rim sherds and 25 body sherds display a variant of the incomplete hatchured triangle motif. Sixty-six rim sherds with an inverted contour and notched rim strips and 16 body sherds with this pattern were recovered from Feature 558 of the 1974 excavations. Seven sherds with an incomplete or complete hatchured triangle motif were also found in 1974. One rim sherd and seven body sherds which are small and show only parallel incised lines were classified as undetermined incised. Incising is almost solely confined to the shoulder and rim areas of vessels. One body sherd is described in the 1970 analysis notes as undetermined incised and punctated (Earnest 1970).

Form. Most of the rim sherds come from a single vessel found in Feature 558 of the 1974 excavations (Figure 15, page 73). This vessel is a wide mouthed shallow bowl with an inverted rim and notched rim strip. The orifice diameter of the vessel is estimated at 40 mm. Other inverted rim sherds indicate similar vessels at the site. The remaining rim sherds predominantly have direct contours indicating small open bowl forms.

Appendages. There are two Qualla Incised lug handles from the same vessel. One lug is detached and the other is attached to the shoulder of a vessel with an inverted rim. Both display the complete triangle motif. Incising runs from the vessel lip down the rim and onto the lug handles at the vessel shoulder.
Qualla Corncob Impressed (Egloff 1967:43)

Sample. The sample contains 1 rim sherd, 25 body sherds and 1 MNV (Figure 15, page 73) (Table 10, pages 77-79). Qualla Corncob Impressed proved to be the second least numerous Qualla type from the site. Sherds in this classification have the same paste characteristics as Qualla Plain ceramics.

Surface Finish. Surface finish is similar to that of Overhill Cob Marked ceramics. The exterior surface treatment is in the form of irregular rows of striations formed by rolling a corncob across the wet clay surface. The rows of striations are oriented roughly vertical to the vessel wall on the sole rim sherd recovered. The corncob impressions on this vessel do not actually extend to the rim area but are restricted to the lower vessel body and shoulder. The rim and neck surface remain plain. If this pattern of decoration is prevalent, it may explain the lack of recognized rim sherds from Qualla Corncob Impressed vessels. Interior vessel surfaces are roughly smoothed and sometimes burnished.

Form. The only rim sherd has an everted contour and a notched extended lip (Figure 15, page 73). This vessel is a shallow jar with an estimated orifice diameter of 18 cm.

Qualla Cord Marked (Egloff 1967:42-43)

Sample. Qualla Cord Marked is represented by four body sherds and is the least numerous Qualla type from the site. One sherd was recovered
in the 1972 excavations and three sherds were found in 1969. The sherds have the general paste characteristics of Qualla Plain.

Surface Finish. Both the interior and exterior surfaces were smoothed before stamping. Exterior vessel surfaces display a series of irregular twined cord impressions. Cord thickness is approximately 1 mm. Cord impressions are often smeared and stamping is sloppily executed.

Form. No rim sherds were recovered. Vessel morphology remains undetermined.

Qualla Residual

Sample. The sample contains 87 body sherds. Qualla Residual is used as a classification for all sherds with the same paste characteristics as the Qualla series, but which are so badly weathered or fragmented that no definite surface treatment could be recognized. All of these sherds are from the 1970 excavations (Earnest 1971:24). No vessel morphology is determinable.

Pisgah Plain (Holden 1966:76-77)

Sample. The sample contains three rim sherds and one body sherd (Figure 17). One Pisgah Plain rim is identified in the 1969 analysis notes (King 1969) and two Pisgah Plain rims are defined in the 1970 analysis notes (Earnest 1970). The body sherd was recovered in the 1972 excavations of 40MR62.
Figure 17. Selected Limestone, Quartz, and Sand Tempered Rim and Body Sherds.

(A-C) Limestone tempered cord marked body sherds. (D) Limestone tempered incised body sherd. (E) Limestone tempered everted plain rim; flattened lip surface. (F) Limestone tempered everted plain rim; rounded lip surface. (G) Limestone tempered brushed body sherd. (H-I) Limestone tempered brushed and cord marked body sherds. (J,L) Bluff Creek Simple Stamped body sherds. (K) Bluff Creek Simple Stamped basal sherd. (M) Connestee Cord Marked everted plain rim; flattened lip surface. (N) Connestee Cord Marked direct plain rim; rounded lip surface. (O) Connestee Cord Marked body sherd. (P-Q) Pigeon Check Stamped body sherds. (R) Pigeon Rectilinear Complicated Stamped body sherd. (S) Connestee Plain body sherd. (T) Swift Creek Curvilinear Complicated Stamped body sherd. (U) Watts Bar Cord Marked body sherd. (V) Pisgah Plain body sherd with loop handle. (W) Connestee Simple Stamped body sherd.
Figure 17
Method of Manufacture. Vessels were manufactured by the addition of successive coils to an initial molded clay base. Individual coils are not readily detected in the finished vessel.

Paste. Temper consists of crushed quartz and fine to medium grained sand particles. Crushed quartz particles measure 1-3 mm while most sand grains are less than 1 mm in size. Mica particles are abundant, with some pieces as large as 2 mm. Temper constitutes approximately 20-30% of the paste. Hardness varies from 2.5 to 3.5, depending on the percentage of tempering particles. The color is dark gray to black.

Surface Finish. Both exterior and interior surfaces have been roughly smoothed and indicate the effects of floating. Interior vessel surfaces are slightly better finished than exterior surfaces which have a granular appearance. All three rims display V-shaped punctations.

Form. Two incurvate and one excurvate collared rims are represented. Jar and bowl forms are the suggested vessel forms. Sherd thickness ranges from 7-10 mm.

Appendages. One body sherd was recovered. It shows attachments for a riveted loop handle (Figure 17).

Pigeon Check Stamped (Holden 1966:65-66)

Sample. The sample consists of two body sherds. They were recovered in the 1974 excavation season.
Method of Manufacture. Vessels were constructed by the addition of successive clay coils. These were welded and finished by paddling.

Paste. Temper consists of large angular crushed quartz and fine sand particles. Quartz particles average 1-2 mm in size, but some are as large as 5 mm. Temper constitutes 25-35% of the paste. Hardness is 2.5 to 3.5. Sherd color is light brown, tan, and light gray.

Surface Finish. The exterior vessel surface was first scraped smooth and then stamped with a carved wooden paddle in a rectangular gridded check pattern. Check impressions range from 3-6 mm across. Interior surfaces are scraped smooth. Sherd surfaces are granular in appearance due to the large amount of temper in the paste.

Form. No rim sherds were recovered and vessel morphology remains undetermined. Body sherd thickness is 5 mm.

Pigeon Complicated Stamped (Keel 1976:260)

Sample. One body sherd was recovered during the 1974 excavations (Figure 17). The method of manufacture, temper, hardness, thickness, and color are similar to the Pigeon Check Stamped sherds.

Surface Finish. The exterior vessel surface was first scraped and then stamped with a carved wooden paddle in a rectilinear motif. The pattern consists of a set of lands and grooves which intersect at roughly a right angle. The interior sherd surface is scraped smooth. Sherd surfaces are granular in appearance.
Watts Bar Cord Marked (Lewis and Kneberg 1957:7)

Sample. The sample contains 1 rim sherd and 70 body sherds (Figure 17). All of the sherds were identified in the 1969 and 1970 analyses.

Method of Manufacture. Vessels were manufactured utilizing a coiling technique.

Paste. The temper consists of fine to coarsely crushed angular quartz particles. Temper occurs in moderate amounts throughout the paste. The hardness is 2.5 to 3.5, depending on the amount of tempering utilized. Most sherds are dark brown.

Surface Finish. Both interior and exterior vessel surfaces are scraped. Exterior surfaces have fine twined parallel cord impressions approximately 1 mm wide. Cord marking is oriented vertical or diagonal to the vessel wall and extends to the lip. Cord marking is often overstamped or smoothed over.

Form. The only rim sherd is plain with an incurvate contour and rounded lip surface. Sherd thickness averages 4-6 mm.

Watts Bar Fabric Marked (Lewis and Kneberg 1957:7)

Sample. Five body sherds were recovered from the site. All of the sherds were identified in the 1969 and 1970 analyses (Earnest 1970; King 1969). They have the same paste characteristics as Watts Bar Cord Marked.
Surface Finish. Both the interior and exterior vessel surfaces were scraped smooth. Exterior sherd surfaces show the impressions of a coarse plain fabric. Impressions are sometimes smoothed over.

Form. The lack of rim sherds makes vessel form indeterminable.

Residual

Sample. The sample contains 7 rim sherds and 86 body sherds. Quartz Tempered Residual is used as a classification for all crushed quartz tempered sherds from the 1969 through 1974 excavation seasons which are so badly weathered or fragmented that no definite surface treatment could be recognized. They comprise less than .1% of the ceramic sample. Although some of these sherds may be associated with the historic or Mississippian occupations at the site, the majority are considered to be Woodland period in origin. Most of the rims have an undetermined contour.

Type Descriptions: Sand Tempered

Plain

Sample. The sample contains 32 rim sherds and 61 body sherds. Ninety-three fine sand tempered sherds have plain surfaces. They represent less than .1% of the total ceramics. Their cultural affiliation is unknown (Earnest 1971:26). Most of the rim sherds are from small open bowls with plain rims.
Connestee Plain (Holden 1966:71-72)

Sample. The sample contains 5 rim sherds and 162 body sherds (Figure 17, page 91). All of the Connestee Plain sherds came from the 1972 through 1974 excavations. Of these, 155 are from Area C at 40MR62. They comprise .1% of the ceramic assemblage.

Method of Manufacture. Vessels were constructed utilizing a coil technique.

Paste. Temper consists predominantly of very fine sand. Rounded sand particles up to 1 mm large, mica flecks, and angular or rounded quartz fragments up to 5 mm in size are also present in small amounts in the paste. Temper comprises 15-30% of the paste. The hardness ranges from 2.0 to 3.0. Most exterior sherd surfaces are light brown or tan, but a few are light gray. Interior sherd surfaces are dark brown to black.

Surface Finish. Both interior and exterior sherd surfaces are very well smoothed but not burnished. Eroded or weathered surfaces are uncommon. This may be due to the high density of sand temper in the paste. Surfaces are sandy to the touch.

Form. The rim sherds are all plain with direct or undetermined contours. Sherd thickness ranges from 3-6 mm. Vessel morphology is undetermined.
Connestee Cord Marked (Holden 1966:68-69)

Sample. The sample contains 2 rim sherds and 26 body sherds (Figure 17, page 91). The Connestee Cord Marked sherds came from the 1972 through 1974 excavations. Of these, the greatest concentration was in Area C of 40MR62 where 25 sherds were recovered. These sherds have the same paste characteristics as Connestee Plain.

Surface Treatment. Interior surfaces are smoothed and exterior surfaces are covered with twined cord impressions oriented vertical to the vessel wall. The impressions are 1 mm to 2 mm wide. The entire exterior vessel surface is decorated. Sherds are sandy to the touch.

Form. One rim sherd is a direct plain rim with a rounded lip surface and the other is an everted plain rim with a flattened lip surface.

Cord Marked

Sample. One sand tempered body sherd was recovered from Area C, 40MR2. It shows crossed-over cord impressions on the exterior surface. It was classified by Earnest (1971:26) as Undesignated Cord Marked and is probably associated with the Connestee series.

Connestee Simple Stamped (Keel 1976:252)

Sample. The sample contains 11 body sherds (Figure 17, page 91). All of the Connestee Simple Stamped sherds are from Area C, 40MR62. Nine of these are from the same vessel and are from the plowzone. They have the same paste characteristics as Connestee Plain.
Surface Finish. Interior sherd surfaces are well smoothed. Exterior sherd surfaces were smoothed and stamped with a series of parallel line impressions. The impressions are oriented horizontal to the vessel wall and are fine lined.

Form. No rim sherds were recovered and vessel morphology is undetermined but body sherd curvature indicates a large vessel. Sherds average 4-5 mm in thickness.

Swift Creek Complicated Stamped (Jennings and Fairbanks 1939:1)

Sample. The sample contains three body sherds. Two body sherds were recovered from Area A of the 1970 excavations. The other body sherd is from Area C, 40MR62.

Method of Manufacture. Vessels were constructed utilizing a coiling technique.

Paste. Sherds are tempered with a very fine micaceous sand. Temper is sparse. Hardness is 2.0 to 2.5. Exterior sherd surfaces are dark brown and interior surfaces are dark gray-brown to black.

Surface Finish. Interior sherd surfaces are well smoothed. Exterior surfaces are smoothed and stamped with a curvilinear pattern of concentric circles or spirals. Grooves and lands measure 3 mm across. One sherd has a hole drilled along one edge (Figure 17, page 91).

Form. No rim sherds were recovered and vessel morphology is undetermined.
Residual Stamped

Sample. One sand tempered body sherd from Area A in the 1969 excavations was classified as Unidentified Sand Tempered Stamped. It is probably Woodland period in derivation.

Trailed

Sample. One small sand tempered body sherd from Area K, 40MR2, has a smoothed surface and shows faint trailed lines. It is called Undesignated Trailed by Earnest (1971:26). The sherd is probably associated with the Woodland occupation at the site.

Incised

Sample. One sand tempered body sherd from Area C, 40MR2, displays a deep incised line (Earnest 1971:26). It is probably associated with the Woodland assemblage from that area.

Residual

Sample. The sample contains 17 rim sherds and 101 body sherds. Sand Tempered Residual Plain is used as a classification for sand tempered sherds which are so badly weathered or fragmented that no definite surface treatment can be recognized. They comprise less than .1% of the ceramic sample. Although some of these sherds may be associated with the historic or Mississippian occupations at the site, the majority are considered Woodland period in origin. Most of the rims have incurvate or excurvate contours with flat lip surfaces.
Type Descriptions: Limestone Tempered

Plain

Sample. The sample contains 83 rim sherds, 1,228 body sherds (Figure 17, page 91). Limestone Tempered Plain ceramics were recovered from almost every excavation unit. Large concentrations were discovered in Area C, 40MR62, and in Areas C, H, and K, of the 1970 excavations at 40MR2.

Method of Manufacture. Vessels were constructed utilizing a coiling technique.

Paste. Sherds were tempered with crushed limestone which measures from 1-5 mm in size. The limestone has been leached from every sherd. Sherd hardness is 2.0 to 3.0. Sherds exhibit light to dark gray, tan, buff, and yellowish-orange colors.

Surface Finish. Both interior and exterior sherd surfaces are scraped and roughly smoothed. Scraping marks are noticeable on some sherds.

Form. All of the rim sherds have plain rims. The most prevalent form is everted with a rounded lip. Other rims have direct or undetermined rim contours. Most rim sherds are small and vessel morphology remains undetermined. Sherd thickness ranges from 4-7 mm.

Cord Marked

Sample. The sample contains 5 rim sherds and 1,435 body sherds (Figure 17, page 91). All the Limestone Tempered Cord Marked sherds
from the site are included in this designation. Seventeen sherds from
the 1969 excavation season (King 1970:60) and 11 from the 1970 excava-
tions (Earnest 1971:28) which were classified as Candy Creek Cord
Marked (Lewis and Kneberg 1946:102-103) in the former Chota site reports
are included in this count. Most of the sherds are comparable to Candy
Creek Cord Marked and a few resemble Hamilton Cord Marked (Lewis and
Kneberg 1946:102-103). The sherds have paste characteristics similar
to the Limestone Tempered Plain ceramics. They constitute .9% of
the ceramic assemblage.

Surface. Interior sherd surfaces are scraped smooth. Exterior
sherd surfaces are impressed with fine tightly twisted cords. Cord
impressions are clear, closely spaced, and individual cords often
overlap (Figure 17, page 91). Rims indicate that the cords run
vertical to the vessel wall. Only a few of the sherds are overstamped
or smoothed over.

Form. All five rim sherds have everted contours. Three have
rounded lips and two have flattened lip surfaces. Sherd thickness
ranges from 4-7 mm. Vessel morphology was not determined.

Brushed

Sample. The sample contains 26 rim sherds and 50 body sherds
(Figure 17, page 91). Included in this category are sherds classified
in the 1969 (King 1970:61) and 1970 (Earnest 1971:28) analyses as
Undesignated Trailed. These sherds are similar to Flint River Brushed
(Heimlich 1952:20). They constitute less than .1% of the ceramic
assemblage and have the same paste characteristics as Limestone Tempered Plain.

Surface Finish. Interior sherd surfaces are scraped smooth. Exterior surfaces are marked with a series of parallel striations 1-3 mm wide. Striations are oriented vertical to the vessel wall. Body sherds are from the neck portions of vessels.

Form. All rim sherds have everted contours. Most have flattened lips. No vessel morphology is determinable and the sherd thickness ranges from 6-10 mm.

Cord Marked and Brushed

Sample. The sample contains two rim sherds and six body sherds (Figure 17, page 90). Two sherds from the 1969 excavations (King 1970:61) and one sherd from the 1970 season (Earnest 1971:28) which were classified as Limestone Tempered Trailed and Cord Marked are included in this category. The sherds have the same paste characteristics as Limestone Tempered Plain ceramics.

Surface Finish. Sherds display both the surface finish of Limestone Tempered Cord Marked and Limestone Tempered brushed ceramics. Cord marking extends from the vessel body to above the shoulder and onto the neck area. From there, sherds are brushed to the lip. Vessels are predominantly cord marked. It is possible that some rim sherds classified as Limestone Tempered Brushed may have come from vessels which were partially cord marked.
Form. All sherds are from either the neck or rim areas of vessels. The two rim sherds have everted contours but the lips are missing. No vessel morphology is determinable but sherd thickness ranges from 5-10 mm.

Bluff Creek Simple Stamped (Haag 1939:18)

Sample. The sample contains 67 body sherds (Figure 17, page 91). All but two of the sherds were recovered from Area C at 40MR62. They have the same general paste characteristics as Limestone Tempered Plain ceramics.

Surface Finish. Interior surfaces are scraped and smoothed. Exterior surfaces are stamped with parallel lands and grooves approximately 2-5 mm wide. The pattern on most sherds is eroded and over-stamping is common.

Form. No rim sherds were recovered. One conical vessel base was found in Feature 85 of 40MR2 (Figure 17, page 91). Body sherd thickness ranges from 4-8 mm. Vessel morphology remains undetermined.

Residual Stamped

Sample. Two body sherds from the 1970 excavations are classified as Limestone Tempered Stamped in the analysis notes (Earnest 1970). They are placed in this category for lack of further information.

Long Branch Fabric Marked (Haag 1939:10)

Sample. One body sherd was recovered from Area A of the 1969 excavations (King 1970:60) and two body sherds were found in the
1974 season. The sherds have the same general paste characteristics as Limestone Tempered Plain ceramics.

Form. No rim sherds were recovered. Body sherd thickness ranges from 5-9 mm.

Incised

Sample. The sample contains six body sherds (Figure 17, page 91). Limestone Tempered Incised sherds were found in the 1970, 1971, and 1974 excavation seasons. They have the same general paste characteristics as Limestone Tempered Plain ceramics and are considered Woodland period in origin.

Surface Finish. All of the sherds display deep narrow parallel incised lines.

Form. No rim sherds were recovered. Body sherds are 6-8 mm thick. No vessel form was determined.

Residual

Sample. The sample contains 36 rim sherds and 915 body sherds. Limestone Tempered Residual is used as a classification for all limestone tempered sherds which are so badly weathered or fragmented that no definite surface finish could be recognized. They comprise .6% of the ceramic assemblage. Although a few of these sherds
may be associated with the historic or Mississippian occupations at the site, most are considered to be Woodland period ceramics.

Type Descriptions: Mixed Tempered

Clay-Sand-Shell Tempered Plain

Sample. The sample contains 21 rim sherds and 189 body sherds (Figure 18). Most sherds in this category are from the 1970 excavations (Earnest 1971:27). They have paste and surface characteristics similar to Fatherland Incised ceramics (Quimby 1942:263-264). One short necked globular water bottle was recovered from Feature 60, Area A, 40MR2 (Figure 18). It is represented by 6 rims and 61 body sherds. King (1970:53) states that this vessel "is similar in form to vessels used by such groups as the Creeks and Natchez." The vessel rim is plain with an excursivate contour and rounded lip. The remaining sherds in this category are probably historic and many are probably from plain surfaces of Fatherland Incised vessels. The predominant rim contour is excursivate. Three rims are rolled.

Fatherland Incised (Quimby 1942:263-264)

Sample. The sample contains 47 rim sherds and 320 body sherds (Figure 19). In the 1969 and 1970 analyses 28 body sherds were classified as Fatherland Incised (Earnest 1971:27; King 1970:134). In the analysis of the 1971-1974 ceramics, Fatherland Incised sherds were divided into those which exhibit incisions and those which are plain surfaced but are from Fatherland Incised vessels. Twelve rim sherds and 190 body sherds are plain surfaced and 35 rim sherds and 102 body
Figure 18. Clay-Sand-Shell Tempered Plain Vessel.
Figure 19. Selected Fatherland Incised Body and Rim Sherds.

(A-D, J) Fatherland Incised direct plain rims; flattened lip surfaces. (E-I) Fatherland Incised body sherds.
sherds are incised. Feature 596 of the 1974 excavations contained 196 Fatherland Incised sherds representing 3 vessels.

Method of Manufacture. Vessels were constructed using a coiling technique.

Paste. Temper consists of a mixture of very fine crushed shell, clay, and sand particles. Only the shell particles which are less than 1 mm in size and are widely dispersed throughout the paste are readily apparent on the finished vessel surfaces. Some very fine mica flecks are also included in the paste which suggests a probable local manufacture. Sherd hardness is 2.5 to 3.0. Sherd color is light to dark grayish-brown. Interior surfaces are darker.

Surface Finish. Both interior and exterior vessel surfaces are well smoothed and burnished. Burnishing marks are present on the interior surfaces. Exterior surfaces are incised with a three, four, or five line curvilinear pattern (Figure 19). Most of the sherds are incised with three lines. Incisions are usually flat bottomed.

Form. There are 43 direct plain rims with flattened lip surfaces. One direct rim has a rounded lip surface. Two plain rims have undetermined contours and flat lip surfaces and one is everted with a rounded lip. The predominant vessel type is a large open mouthed bowl. One vessel recovered from Feature 556 in 1974 has an estimated orifice diameter of 28 cm. Body sherd thickness ranges from 5 to 8 mm.
Clay-Sand Tempered Undesignated Incised

Sample. The sample contains five rim sherds and eight body sherds. Sherds in this category are similar to Fatherland Incised in paste and color but shell temper is absent and clay particles are larger. Earnest (1971:27) states that the sloppy incising on one sherd resembles Manchac Incised (Quimby 1942:263-264) which is a type associated with the historic Natchez. Rim sherds have incurvate, excurvate, and undetermined contours.

Limestone-Clay-Quartz Tempered Plain

Sample. Five body sherds with mixed limestone, clay, and quartz tempering were recovered from Feature 775 of the 1974 excavations. They are considered to be from a Woodland occupation.

Method of Manufacture. Vessels were constructed using a coiling technique.

Paste. Crushed limestone, clay and quartz particles are 2-3 mm large. Hardness is 2.0 to 3.0. Sherds are tan or buff colored.

Surface Finish. Both interior and exterior sherd surfaces are scraped smooth.

Form. Body sherds are 5-9 mm thick. No vessel form was determined.
CHAPTER IV

THE DISTRIBUTION OF ABORIGINAL CERAMIC ARTIFACTS

Total Site Assemblage

In seven excavation seasons 154,444 aboriginal ceramic artifacts were recovered from Chotâ-Tanasee. Ceramics indicate that the site was utilized sporadically from the Early Woodland period to proto-historic times. The site was intensively occupied during the eighteenth century by the historic Overhill Cherokee. Ceramic types have been roughly grouped by archaeological period and the total site assemblage is provided in Table 11.

The earliest recovered ceramics are Early Woodland Watts Bar Cord Marked, Watts Bar Fabric Marked, Pigeon Check Stamped, and Pigeon Complicated Stamped. The Early Woodland period is also represented by Quartz Tempered Plain and Residual categories. Middle and Late Woodland occupations are identified by limestone and sand tempered varieties mainly of the Candy Creek and Connestee series. Limestone tempered varieties are Plain, Cord Marked, Brushed, Cord Marked and Brushed, Bluff Creek Simple Stamped, Residual Stamped, Long Branch Fabric Marked, Incised and Residual. Sand tempered types are Plain, Connestee Plain, Connestee Cord Marked, Cord Marked, Connestee Simple Stamped, Swift Creek Complicated Stamped, Residual Stamped, Trailed, Incised and Residual. Limestone-Clay-Quartz Tempered Plain is also from the Woodland period.

Mississippian period occupations are represented by only a few sherds. Hiwassee Island Red Filmed sherds and loop handles indicate
<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aboriginal Clay Pipes</td>
<td>26</td>
<td>.03</td>
</tr>
<tr>
<td>Shell Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>5,368</td>
<td>3.48</td>
</tr>
<tr>
<td>Overhill Plain</td>
<td>132,512</td>
<td>85.80</td>
</tr>
<tr>
<td>Overhill Check Stamped</td>
<td>830</td>
<td>.54</td>
</tr>
<tr>
<td>Overhill Simple Stamped</td>
<td>129</td>
<td>.08</td>
</tr>
<tr>
<td>Overhill Complicated Stamped</td>
<td>642</td>
<td>.42</td>
</tr>
<tr>
<td>Overhill Residual Stamped</td>
<td>53</td>
<td>.03</td>
</tr>
<tr>
<td>Overhill Incised</td>
<td>462</td>
<td>.30</td>
</tr>
<tr>
<td>Overhill Cob Marked</td>
<td>204</td>
<td>.13</td>
</tr>
<tr>
<td>European Fabric Impressed</td>
<td>1</td>
<td>*</td>
</tr>
<tr>
<td>Fabric Impressed</td>
<td>17</td>
<td>.01</td>
</tr>
<tr>
<td>Historic Cord Marked</td>
<td>9</td>
<td>*</td>
</tr>
<tr>
<td>Cord Marked</td>
<td>245</td>
<td>.16</td>
</tr>
<tr>
<td>Plaited Cane Impressed</td>
<td>30</td>
<td>.02</td>
</tr>
<tr>
<td>Hiwassee Island Red Filmed</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>Residual</td>
<td>6,376</td>
<td>4.13</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Total</td>
<td>Percent</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>59</td>
<td>.04</td>
</tr>
<tr>
<td>Qualla Plain</td>
<td>1,138</td>
<td>.74</td>
</tr>
<tr>
<td>Qualla Check Stamped</td>
<td>177</td>
<td>.11</td>
</tr>
<tr>
<td>Qualla Simple Stamped</td>
<td>177</td>
<td>.11</td>
</tr>
<tr>
<td>Qualla Complicated Stamped</td>
<td>610</td>
<td>.39</td>
</tr>
<tr>
<td>Qualla Residual Stamped</td>
<td>69</td>
<td>.04</td>
</tr>
<tr>
<td>Qualla Incised</td>
<td>107</td>
<td>.07</td>
</tr>
<tr>
<td>Qualla Corncob Impressed</td>
<td>26</td>
<td>.02</td>
</tr>
<tr>
<td>Qualla Cord Marked</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>Qualla Residual</td>
<td>87</td>
<td>.06</td>
</tr>
<tr>
<td>Pisgah Plain</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>Pigeon Check Stamped</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>Pigeon Complicated Stamped</td>
<td>1</td>
<td>*</td>
</tr>
<tr>
<td>Watts Bar Cord Marked</td>
<td>71</td>
<td>.05</td>
</tr>
<tr>
<td>Watts Bar Fabric Marked</td>
<td>5</td>
<td>*</td>
</tr>
<tr>
<td>Residual</td>
<td>93</td>
<td>.06</td>
</tr>
<tr>
<td>Sand Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>96</td>
<td>.06</td>
</tr>
<tr>
<td>Connessetee Plain</td>
<td>167</td>
<td>.11</td>
</tr>
<tr>
<td>Connessetee Cord Marked</td>
<td>28</td>
<td>.02</td>
</tr>
</tbody>
</table>
TABLE 11 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Tempered (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cord Marked</td>
<td>1</td>
<td>*</td>
</tr>
<tr>
<td>Connessee Simple Stamped</td>
<td>11</td>
<td>.01</td>
</tr>
<tr>
<td>Swift Creek Complicated Stamped</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td>Residual Stamped</td>
<td>1</td>
<td>*</td>
</tr>
<tr>
<td>Trailed</td>
<td>1</td>
<td>*</td>
</tr>
<tr>
<td>Incised</td>
<td>1</td>
<td>*</td>
</tr>
<tr>
<td>Residual</td>
<td>118</td>
<td>.08</td>
</tr>
<tr>
<td>Limestone Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>1,311</td>
<td>.85</td>
</tr>
<tr>
<td>Cord Marked</td>
<td>1,440</td>
<td>.93</td>
</tr>
<tr>
<td>Brushed</td>
<td>76</td>
<td>.05</td>
</tr>
<tr>
<td>Cord Marked and Brushed</td>
<td>8</td>
<td>*</td>
</tr>
<tr>
<td>Bluff Creek Simple Stamped</td>
<td>67</td>
<td>.04</td>
</tr>
<tr>
<td>Residual Stamped</td>
<td>2</td>
<td>*</td>
</tr>
<tr>
<td>Long Branch Fabric Marked</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td>Incised</td>
<td>6</td>
<td>*</td>
</tr>
<tr>
<td>Residual</td>
<td>951</td>
<td>.62</td>
</tr>
<tr>
<td>Mixed Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay-Sand-Shell Tempered Plain</td>
<td>210</td>
<td>.14</td>
</tr>
<tr>
<td>Fatherland Incised</td>
<td>367</td>
<td>.24</td>
</tr>
</tbody>
</table>
TABLE 11 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Total</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Tempered (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay-Sand Tempered Undesignated Incised</td>
<td>13</td>
<td>.01</td>
</tr>
<tr>
<td>Limestone-Clay-Quartz Tempered Plain</td>
<td>5</td>
<td>*</td>
</tr>
<tr>
<td>TOTAL</td>
<td>154,444</td>
<td>100.00</td>
</tr>
</tbody>
</table>

*Represented by less than .01% of total assemblage.
an Early Mississippian presence. Shell Tempered Cord Marked and Fabric Impressed sherds are from Later Mississippian occupations. The Late Mississippian period is represented by Pisgah Plain ceramics. A few of the Shell Tempered Plain sherds may be from Mississippian occupations. Most of the ceramics from the site are from the historic Cherokee occupation. Historic Cherokee ceramics are represented by the Overhill and Qualla series. Overhill types have plain, check stamped, simple stamped, residual stamped, incised, cob marked, and residual surfaces. Shell Tempered Historic Cord Marked, European Fabric Impressed, Plaited Cane Impressed, and some Fabric Impressed sherds are also associated with the Overhill series. Qualla series sherds have residual, plain, check stamped, simple stamped, complicated stamped, residual stamped, incised, corncob impressed, and cord marked surfaces. Additional historic types have mixed tempering. These are Fatherland Incised, Clay-Sand-Shell Tempered Plain, and Clay-Sand Tempered Incised.

Site Ceramic Distribution

The occurrence of ceramics in individual excavation areas was examined to determine differences in the distribution of ceramic types between areas. Unusual concentration of some types and their distribution in some areas of the site were delineated. These are discussed below. The total body and rim sherd counts by excavation season and area are given in Tables 12-16. Except for the 1974 season, these counts represent ceramic assemblages recovered from the plow zone and all sub-surface disturbances in each area, including features, post-molds, and burials. The ceramics from the 1974 excavation are all from features.
<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Sherd Type</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>749</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>4,603</td>
</tr>
<tr>
<td>Check Stamped</td>
<td>Rim</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>21</td>
</tr>
<tr>
<td>Rectilinear</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td>Complicated Stamped</td>
<td>Body</td>
<td>6</td>
</tr>
<tr>
<td>Undetermined</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td>Complicated Stamped</td>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Hatchured</td>
<td>Rim</td>
<td>3</td>
</tr>
<tr>
<td>Triangle Incised</td>
<td>Body</td>
<td>2</td>
</tr>
<tr>
<td>Bisected Chevron</td>
<td>Rim</td>
<td>1</td>
</tr>
<tr>
<td>Incised</td>
<td>Body</td>
<td>-</td>
</tr>
<tr>
<td>Meander</td>
<td>Rim</td>
<td>4</td>
</tr>
<tr>
<td>Incised</td>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Combed</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td>Incised</td>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Undetermined</td>
<td>Rim</td>
<td>4</td>
</tr>
<tr>
<td>Incised</td>
<td>Body</td>
<td>8</td>
</tr>
<tr>
<td>Cord Marked</td>
<td>Rim</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>227</td>
</tr>
<tr>
<td>Fabric</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td>Impressed</td>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Plaited Cane</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td>Impressed</td>
<td>Body</td>
<td>9</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Sherd Type</td>
<td>Sample</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Shell Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engraved</td>
<td>Rim</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Sand Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>2</td>
</tr>
<tr>
<td>Limestone Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>2</td>
</tr>
<tr>
<td>Cord Marked</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>5,706</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Sherd Type</td>
<td>Area A</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>Shell Tempered</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Plain</td>
<td>Rim</td>
<td>1,096</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>8,865</td>
</tr>
<tr>
<td>Overhill Check Stamped</td>
<td>Rim</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>23</td>
</tr>
<tr>
<td>Overhill Simple Stamped</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>21</td>
</tr>
<tr>
<td>Overhill Undetermined Complicated Stamped</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>23</td>
</tr>
<tr>
<td>Overhill Residual Stamped</td>
<td>Rim</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Overhill Hatchured Triangle Incised</td>
<td>Rim</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>3</td>
</tr>
<tr>
<td>Overhill Chevron Incised</td>
<td>Rim</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Overhill Undetermined Incised</td>
<td>Rim</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Overhill Cob Marked</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>31</td>
</tr>
<tr>
<td>European Fabric Impressed</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
</tr>
<tr>
<td>Historic Cord Marked</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
</tr>
<tr>
<td>Plaited Cane Impressed</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE 13 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Sherd Type</th>
<th>Area A</th>
<th>Area B</th>
<th>Area C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiwassee Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Island Red Body</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Filmed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual Rim</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Body</td>
<td>965</td>
<td>387</td>
<td>168</td>
<td></td>
<td>1,520</td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Qualla Plain Rim</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Body</td>
<td>45</td>
<td>6</td>
<td>41</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>Qualla Check Stamped Rim</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Qualla Simple Stamped Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Qualla Undetermined Rim Stamped Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>13</td>
<td>-</td>
<td>1</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Qualla Residual Stamped Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Qualla Undetermined Incised Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Qualla Cord Marked Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pisgah Plain Rim</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Watts Bar Cord Marked Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>60</td>
<td>-</td>
<td>1</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>Watts Bar Fabric Marked Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Sherd Type</td>
<td>Area A</td>
<td>Area B</td>
<td>Area C</td>
<td>Total</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual Rim</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Body</td>
<td>18</td>
<td>-</td>
<td>3</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Sand Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swift Creek Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complicated Stamped Body</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Residual Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stamped Body</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Residual Rim</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td>26</td>
<td>1</td>
<td>7</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Limestone Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain Rim</td>
<td>1</td>
<td>-</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td>3</td>
<td>4</td>
<td>17</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Cord Marked Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
<td>7</td>
<td>138</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>Brushed Rim</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cord Marked and Brushed</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Branch Fabric Marked</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Residual Rim</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Mixed Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay-Sand-Shell Tempered Plain Rim</td>
<td>6</td>
<td>-</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td>61</td>
<td>-</td>
<td>3</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 13 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Sherd Type</th>
<th>Area A</th>
<th>Area B</th>
<th>Area C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatherland</td>
<td>Rim</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Incised</td>
<td>Body</td>
<td>22</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>11,356</td>
<td>2,078</td>
<td>4,151</td>
<td>17,585</td>
<td></td>
</tr>
<tr>
<td>Ceramic Types</td>
<td>Sherd Type</td>
<td>Surface</td>
<td>Area C</td>
<td>Area D</td>
<td>Area E</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Shell Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Overhill Plain</td>
<td>Rim</td>
<td>30</td>
<td>1,146</td>
<td>209</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>187</td>
<td>12,684</td>
<td>1,918</td>
<td>73</td>
</tr>
<tr>
<td>Overhill Check</td>
<td>Rim</td>
<td>-</td>
<td>5</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>2</td>
<td>52</td>
<td>158</td>
<td>4</td>
</tr>
<tr>
<td>Overhill Simple</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Overhill</td>
<td>Rim</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Undetermined</td>
<td>Body</td>
<td>-</td>
<td>20</td>
<td>46</td>
<td>-</td>
</tr>
<tr>
<td>Complicated Stamped</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Residual</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>6</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>Overhill Hatchered</td>
<td>Rim</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triangle Incised</td>
<td>Body</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceramic Types</td>
<td>Sherd Type</td>
<td>Surface</td>
<td>Area C</td>
<td>Area D</td>
<td>Area E</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Shell Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Bisected</td>
<td>Rim</td>
<td>2</td>
<td>1</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Chevron Incised</td>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill</td>
<td>Rim</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Undetermined Incised</td>
<td>Body</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Cob Marked</td>
<td>Rim</td>
<td>11</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Marked</td>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undetermined Fabric</td>
<td>Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impressed</td>
<td>Body</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Cord Marked</td>
<td>Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marked</td>
<td>Body</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaited Cane Impressed</td>
<td>Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impressed</td>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiassee Island Red Fired</td>
<td>Rim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>Rim</td>
<td>1</td>
<td>767</td>
<td>145</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic Types</td>
<td>Sherd Type</td>
<td>Surface</td>
<td>Area C</td>
<td>Area D</td>
<td>Area E</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Plain</td>
<td>Rim</td>
<td>-</td>
<td>13</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
<td>43</td>
<td>6</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Qualla Check Stamped</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Qualla Undetermined Complicated Stamped</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Body</td>
<td>-</td>
<td>6</td>
<td>95</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Qualla Residual Stamped</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Qualla Undetermined Incised</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Corn Cob Impressed</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Residual</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pisgah Plain</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ceramic Types</td>
<td>Sherd Type</td>
<td>Surface</td>
<td>Area C</td>
<td>Area D</td>
<td>Area E</td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watts Bar Cord Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Watts Bar Fabric Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Residual</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>1</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Sand Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>-</td>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>8</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>Cord Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Trailed</td>
<td>Rim</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Incised</td>
<td>Rim</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

TABLE 16 (Continued)
<table>
<thead>
<tr>
<th>Ceramic Types</th>
<th>Sherd Type</th>
<th>Surface</th>
<th>Area C</th>
<th>Area D</th>
<th>Area E</th>
<th>Area F</th>
<th>Area G</th>
<th>Area H</th>
<th>Area I</th>
<th>Area J</th>
<th>Area K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limestone Tempered</td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>-</td>
<td>6</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>21</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>11</td>
<td>108</td>
<td>30</td>
<td>-</td>
<td>33</td>
<td>26</td>
<td>386</td>
<td>11</td>
<td>373</td>
<td>978</td>
<td></td>
</tr>
<tr>
<td>Cord Marked</td>
<td>Rim</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>6</td>
<td>224</td>
<td>3</td>
<td>-</td>
<td>28</td>
<td>48</td>
<td>2</td>
<td>6</td>
<td>21</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>Brushed</td>
<td>Rim</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Cord Marked and</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td>Brushed</td>
<td>Body</td>
<td>-</td>
</tr>
<tr>
<td>Bluff Creek</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td>Simple Stamped</td>
<td>Body</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Residual Stamped</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Inclined</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Residual</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>
Table 14 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Types</th>
<th>Sherd Type</th>
<th>Surface</th>
<th>Area C</th>
<th>Area D</th>
<th>Area E</th>
<th>Area F</th>
<th>Area G</th>
<th>Area H</th>
<th>Area J</th>
<th>Area K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Tempered</td>
<td></td>
</tr>
<tr>
<td>Clay - Sand - Shell Tempered Plain</td>
<td>Rim</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>3</td>
<td>17</td>
<td>47</td>
<td>-</td>
<td>28</td>
<td>6</td>
<td>5</td>
<td>-</td>
<td>9</td>
<td>115</td>
</tr>
<tr>
<td>Fatherland Incised</td>
<td>Rim</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Clay - Sand Tempered Undesignated Incised</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>255</td>
<td>15,211</td>
<td>2,761</td>
<td>77</td>
<td>9,550</td>
<td>4,390</td>
<td>4,385</td>
<td>1,396</td>
<td>2,206</td>
<td>40,231</td>
</tr>
</tbody>
</table>
TABLE 15

Distribution of Body and Rim Sherds

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Sherd Type</th>
<th>40MR2 1971</th>
<th>40MR62 1972</th>
<th>40MR2 1973</th>
<th>40MR2 1974</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area F</td>
<td>Area A</td>
<td>Area C</td>
<td>Area C</td>
<td></td>
</tr>
<tr>
<td>Shell Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Plain</td>
<td>Rim</td>
<td>487</td>
<td>70</td>
<td>971</td>
<td>985</td>
<td>6,251</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>4,413</td>
<td>736</td>
<td>11,127</td>
<td>6,890</td>
<td>50,115</td>
</tr>
<tr>
<td>Overhill Check</td>
<td>Rim</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Stamped</td>
<td>Body</td>
<td>2</td>
<td>6</td>
<td>18</td>
<td>20</td>
<td>415</td>
</tr>
<tr>
<td>Overhill Simple'</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Stamped</td>
<td>Body</td>
<td>-</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>86</td>
</tr>
<tr>
<td>Overhill Rectilinear</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Complicated</td>
<td>Body</td>
<td>2</td>
<td>-</td>
<td>45</td>
<td>28</td>
<td>148</td>
</tr>
<tr>
<td>Stamped</td>
<td>Overhill Curvilinear</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complicated</td>
<td>Body</td>
<td>-</td>
<td>1</td>
<td>44</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Sherd Type</td>
<td>40MR2 1971</td>
<td>40MR62 1972</td>
<td>40MR2 1973</td>
<td>40MR2 1974</td>
<td>Total</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Area F</td>
<td>Area A</td>
<td>Area C</td>
<td>Area C</td>
<td></td>
</tr>
<tr>
<td>Overhill Rim</td>
<td></td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Overhill Body</td>
<td></td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Undetermined Body</td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>Complicated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Residual</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Stamped Body</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Overhill Hatchered</td>
<td></td>
<td>11</td>
<td>19</td>
<td>2</td>
<td>61</td>
<td>93</td>
</tr>
<tr>
<td>Triangle Incised</td>
<td></td>
<td>2</td>
<td>8</td>
<td>-</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>Overhill Cross</td>
<td></td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Hatched Incised</td>
<td></td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Overhill Chevron</td>
<td></td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Incised Body</td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Overhill Bisected</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chevron Incised</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Overhill</td>
<td></td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>Undetermined Incised</td>
<td></td>
<td>3</td>
<td>28</td>
<td>13</td>
<td>81</td>
<td>125</td>
</tr>
</tbody>
</table>

TABLE 15 (Continued)
<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Sherd Type</th>
<th>40MR2 1971</th>
<th>40MR62 1972</th>
<th>40MR2 1973</th>
<th>40MR2 1974</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area F</td>
<td>Area A</td>
<td>Area C</td>
<td>Area C</td>
<td>Total</td>
</tr>
<tr>
<td>Shell Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Cob Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11 11</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>4</td>
<td>1</td>
<td>8</td>
<td>24</td>
<td>93 130</td>
</tr>
<tr>
<td>Historic Cord Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>- 2</td>
</tr>
<tr>
<td>Cord Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Fabric Impressed</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Plaited Cane</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Impressed</td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>- 2</td>
</tr>
<tr>
<td>Hiwassee Island</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Red Filmed</td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Residual</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>- 3</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>112</td>
<td>263</td>
<td>1,401</td>
<td>189</td>
<td>1,223 3,188</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Sherd Type</td>
<td>40MR2 1971</td>
<td>40MR62 1972</td>
<td>40MR2 1973</td>
<td>40MR2 1974</td>
<td>Total</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Area F</td>
<td>Area A</td>
<td>Area C</td>
<td>Area C</td>
<td></td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td></td>
<td></td>
<td>Area C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Plain</td>
<td>Rim</td>
<td>6</td>
<td>18</td>
<td>26</td>
<td>37</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>22</td>
<td>10</td>
<td>204</td>
<td>85</td>
<td>709</td>
</tr>
<tr>
<td>Qualla Check Stamped</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Qualla Simple Stamped</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>154</td>
<td>156</td>
</tr>
<tr>
<td>Qualla Rectilinear</td>
<td>Rim</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Complicated Stamped</td>
<td>Body</td>
<td>2</td>
<td>36</td>
<td>23</td>
<td>12</td>
<td>73</td>
</tr>
<tr>
<td>Qualla Curvilinear</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complicated Stamped</td>
<td>Body</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>Qualla Undetermined</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complicated Stamped</td>
<td>Body</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Qualla Residual</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Stamped</td>
<td>Body</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE 15 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Sherd Type</th>
<th>40MR2 1971</th>
<th>40MR62 1972</th>
<th>40MR2 1973</th>
<th>40MR2 1974</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area F</td>
<td>Area A</td>
<td>Area C</td>
<td>Area C</td>
<td></td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Hatchered</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>74</td>
</tr>
<tr>
<td>Triangle Incised</td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>Qualla Undetermined</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Incised</td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Qualla Corn Cob</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Impressed</td>
<td>Body</td>
<td>1</td>
<td>-</td>
<td>14</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td>Qualla Cord Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Pisgah Plain</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Pigeon Check Stamped</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Pigeon Rectilinear</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Complicated Stamped</td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Sherd Type</td>
<td>40MR2 1971 Area F</td>
<td>40MR62 1972 Area A</td>
<td>40MR2 1973 Area C</td>
<td>40MR2 1974 Area C</td>
<td>Total</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>Rim</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>3</td>
<td>9</td>
<td>29</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Sand Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Connessee Plain</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>151</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Connessee Cord Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>23</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Connessee Simple Stamped</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Swift Creek Complicated Stamped</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Residual</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>40</td>
</tr>
</tbody>
</table>
TABLE 15 (Continued)

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>Sherd Type</th>
<th>40MR2 1971</th>
<th>40MR62 1972</th>
<th>40MR2 1973</th>
<th>40MR2 1974</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Area F</td>
<td>Area A</td>
<td>Area C</td>
<td>Area C</td>
<td></td>
</tr>
<tr>
<td>Limestone Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>Rim</td>
<td>1</td>
<td>-</td>
<td>7</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>9</td>
<td>-</td>
<td>163</td>
<td>8</td>
<td>44</td>
</tr>
<tr>
<td>Cord Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>11</td>
<td>2</td>
<td>31</td>
<td>66</td>
<td>839</td>
</tr>
<tr>
<td>Brushed</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>Cord Marked and Brushed</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Bluff Creek Simple Stamped</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>65</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Long Branch Fabric Marked</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Incised</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Sherd Type</td>
<td>40MR2 1971</td>
<td>40MR62 1972</td>
<td>40MR2 1973</td>
<td>40MR2 1974</td>
<td>Total</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Area F</td>
<td>Area A</td>
<td>Area C</td>
<td>Area C</td>
<td></td>
</tr>
<tr>
<td>Limestone Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>9</td>
<td>5</td>
<td>555</td>
<td>13</td>
<td>318</td>
</tr>
<tr>
<td>Mixed Tempered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay - Sand -</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Shell Tempered</td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatherland Incised</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>1</td>
<td>19</td>
<td>2</td>
<td>2</td>
<td>270</td>
</tr>
<tr>
<td>Limestone - Clay -</td>
<td>Rim</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quartz Tempered</td>
<td>Body</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Plain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5,111</td>
<td>1,115</td>
<td>15,092</td>
<td>8,410</td>
<td>61,148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90,876</td>
</tr>
<tr>
<td>Ceramic Type</td>
<td>Total</td>
<td>Percent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Plain</td>
<td>47,297</td>
<td>92.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Check Stamped</td>
<td>203</td>
<td>.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Simple Stamped</td>
<td>63</td>
<td>.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Complicated Stamped</td>
<td>239</td>
<td>.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Incised</td>
<td>192</td>
<td>.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Cob Marked</td>
<td>82</td>
<td>.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overhill Residual</td>
<td>1,617</td>
<td>3.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Plain</td>
<td>487</td>
<td>.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Check Stamped</td>
<td>5</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Simple Stamped</td>
<td>173</td>
<td>.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Complicated Stamped</td>
<td>68</td>
<td>.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Incised</td>
<td>153</td>
<td>.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qualla Corncob Impressed</td>
<td>20</td>
<td>.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatherland Incised</td>
<td>298</td>
<td>.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50,897</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The only concentration of Early Woodland period ceramics at the site is in Area A at 40MR2, which is located on the first river terrace (Figure 2, page 3). In Area A, 5% of the ceramics are Watts Bar series and 5% are Quartz Tempered Plain or Quartz Tempered Residual. No features are identified on the basis of ceramics as Early Woodland and most Watts Bar sherds were recovered from the plow zone.

Although small numbers of Middle and Late Woodland period sand and limestone tempered ceramics were recovered from most site areas, the greatest occurrences are in Areas H and K at 40MR2, and in Area C at 40MR62. In Area H, limestone tempered types constitute 8.9% of the ceramic assemblage, and in Area K, limestone tempered sherds account for 18.8% of the whole. Neither Area H nor Area K contained many sand or quartz tempered Woodland types. In Area C, the ceramic sample is 5.7% limestone tempered, 2% quartz tempered, and 1.3% Connestee types. Area C contained the only concentration of Connestee ceramics found at the site. Areas H, K, and C are located near one another on the second river terrace.

Mississippian period ceramics represent less than 1% of the total assemblage. The only recognized Mississippian occupation area is in the vicinity of a wall trench structure uncovered in the 1939 excavations at 40MR2. Little is known about these shell tempered ceramics since most of the sherds were discarded following the 1939 ceramic analysis. Seven loop handles were saved and these are from a Hiwassee Island component. Also, 229 Shell Tempered Cord Marked sherds from 1939 are probably Mississippian. The remaining Mississippian sherds are scattered throughout the site. These are 4 Hiwassee Island Red
Filmed, 16 Shell Tempered Cord Marked, 9 Shell Tempered Fabric Impressed, and 4 Pisgah Plain sherds.

Ceramics from the historic Cherokee occupation account for approximately 96.9% of the total ceramic assemblage. Together, they are the most numerous types in every excavation unit. Of the historic sherds, the Overhill series comprises 94.9%, the Qualla series 1.6%, and Fatherland Incised and other historic varieties .4% of the site assemblage.

The predominant ceramic types from the site belong to the Overhill series. Overhill Plain makes up approximately 85.8% of the total site sample. Overhill Residual sherds represent 4.1% of the assemblage and exhibit the same paste characteristics as Overhill Plain sherds. Shell Tempered Plain ceramics are included with the Overhill series. Most of the Shell Tempered Plain sherds, which constitute 3.4% of the assemblage, were recovered and classified in 1939 before the Overhill series designation was utilized (Lewis and Kneberg 1939). Most were probably Overhill Plain. The Overhill stamped types comprise 1.1%, and the remaining Overhill types .5% of the site collection.

The distribution of Overhill ceramics is fairly uniform. In all excavation areas except Area J, 40MR2, Overhill Plain and Overhill Residual represent 80% or more of the sample. Overhill Check Stamped and Overhill Complicated Stamped are the second and third most numerous Overhill types, but no one area has a particularly dense concentration of these ceramics. The remaining Overhill types are also scattered among the various excavation areas. It is apparent that all excavated portions of the site were intensively occupied by the historic Overhill Cherokees.
Qualla series ceramics make up approximately 1.6% of the total site assemblage. The series is represented by 3.6% Qualla Residual, 47.5% Qualla Plain, 25.5% Qualla Complicated Stamped, 7.4% Qualla Simple Stamped, 7.4% Qualla Check Stamped, 4.5% Qualla Incised, and 2.9% Qualla Residual Stamped. Stamped varieties constitute 43.1% of the Qualla series sherds from the site. Qualla concentrations were located in Areas J, H, and D, and in Section 3 of the 1974 excavation area at 40MR2 (Figure 2, page 3). The Qualla sample from Area J is 26%, Area H is 7.3%, Area D is 4.9%, and Section 3 is 6.3%.

Fatherland Incised is the third major historic ceramic classification at Chota-Tanasee. It constitutes .2% of the entire ceramic assemblage. The only concentration of this type was in the 1974 excavations at 40MR2 in the vicinity of the townhouse. Two features in this area contained 31 and 196 Fatherland Incised sherds respectively. Other Fatherland Incised ceramics were scattered throughout the site. A globular necked water bottle similar to Fatherland ceramics was recovered in Area A, 40MR2 (King 1970:53). Several mixed tempered sherds recovered in the 1969 and 1970 excavations may also be associated with the Fatherland ceramics.

Historic Aboriginal Ceramic Patterning

The principal focus of the Chota-Tanasee analysis has been the examination, definition, and explanation of the historic Overhill Cherokee occupation at the site. Because of the relatively brief and intensive occupation, the site offers an excellent opportunity for the study of morphological and spatial patterning of an historic aboriginal
ceramic assemblage. Therefore, a large sample of historic ceramics was selected for an independent distributional study.

The distributional analysis had three main objectives. The first was the establishment of a pattern of occurrence among the historic ceramic types. The second was the examination of historic ceramic feature content to determine possible feature patterning. Finally, because historic references establish separate towns of Chota and Tanasee, historic ceramics were examined to determine any recognizable temporal or cultural differences between the two towns.

The principal reason for this analysis is to determine the characteristics of an eighteenth century Overhill Cherokee ceramic assemblage. Individual sherds from the site have been quantified and described. The distributional analysis attempts to further qualify the occurrence of historic aboriginal ceramics at the site. Historic sherds are examined not as individual units, but as assemblages from features. In this context, ceramics are evaluated in spatial terms.

The historic aboriginal ceramic sample selected for the study was recovered from 114 features in Area C at 40MR62 and from 149 features from a 60,000 square foot portion of the 1974 excavation at 40MR2 comprising Sections 1 through 6. A total of 50,897 sherds was included. They represent 14 historic ceramic types from the Overhill, Qualla, and Fatherland series (Table 16).

The first method utilized in the analysis is the SPSS (PA 1) factoring method without iteration (Nie et al. 1975). The objective of this principal component procedure is to measure variability represented between the feature assemblages and the degree of occurrence of the particular 14 historic ceramic types or variables. The procedure
produces an orthogonal, varimax rotated principal factor solution without iteration and constructs a varimax rotated factor matrix composed of components with an eigenvalue greater than or equal to 1.0.

The initial data set for the principal component analysis consists of 2,264 frequency of occurrence scores. These scores reflect the number of each of the 14 ceramic types in each of the 263 feature assemblages. The scores are adjusted to lessen the effects of widely differing feature ceramic assemblage sizes upon the study. This adjustment was accomplished by dividing the number of a ceramic type in each feature by the total number of that type in the entire collection. The frequency of occurrence scores therefore are the proportion of a ceramic type from the total assemblage found in the individual feature.

Results of the principal component analysis indicate patterns of variation and correlation among the historic ceramic types. Five factors were defined at the 1.0 eigenvalue level. They account for 66.8% of the cumulative variance present in the historic ceramic assemblage. The varimax rotated factor matrix (Table 17) indicates the levels of association among the 14 ceramic types on the basis of their proportional representation within the individual 263 feature assemblages. The degrees of relationship between the ceramic variables are designated by their factor loadings.

Isolated high factor loadings delineate ceramic types which are correlated and account for the majority of the variance represented by each factor. Examination of the factor loadings indicates distinct patterns of occurrence in the historic ceramic artifacts in the features based on their series classification. The Overhill series accounts for
<table>
<thead>
<tr>
<th>Ceramic Types</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
<th>Factor 5</th>
<th>Commuinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhill Plain</td>
<td>0.90165</td>
<td>0.08642</td>
<td>-0.05046</td>
<td>0.27134</td>
<td>0.09115</td>
<td>0.90492</td>
</tr>
<tr>
<td>Overhill Check Stamped</td>
<td>0.03563</td>
<td>0.00975</td>
<td>-0.05591</td>
<td>0.72714</td>
<td>-0.01978</td>
<td>0.60882</td>
</tr>
<tr>
<td>Overhill Simple Stamped</td>
<td>0.06237</td>
<td>0.96607</td>
<td>-0.01751</td>
<td>-0.02177</td>
<td>-0.00271</td>
<td>0.93798</td>
</tr>
<tr>
<td>Overhill Complicated Stamped</td>
<td>0.11510</td>
<td>-0.01453</td>
<td>-0.05052</td>
<td>0.76318</td>
<td>0.06787</td>
<td>0.60337</td>
</tr>
<tr>
<td>Overhill Incised</td>
<td>0.86314</td>
<td>0.05026</td>
<td>-0.04109</td>
<td>0.09416</td>
<td>-0.04124</td>
<td>0.75783</td>
</tr>
<tr>
<td>Overhill Cob Marked</td>
<td>0.30448</td>
<td>-0.06863</td>
<td>0.00165</td>
<td>0.29723</td>
<td>-0.13500</td>
<td>0.20165</td>
</tr>
<tr>
<td>Overhill Residual</td>
<td>0.83864</td>
<td>0.73566</td>
<td>-0.00025</td>
<td>0.14091</td>
<td>0.00335</td>
<td>0.77804</td>
</tr>
<tr>
<td>Qualia Plain</td>
<td>-0.08957</td>
<td>-0.04006</td>
<td>0.89463</td>
<td>-0.06690</td>
<td>0.07571</td>
<td>0.81880</td>
</tr>
<tr>
<td>Qualia Check Stamped</td>
<td>-0.01800</td>
<td>-0.00820</td>
<td>0.41525</td>
<td>-0.05567</td>
<td>-0.03081</td>
<td>0.17807</td>
</tr>
<tr>
<td>Qualia Simple Stamped</td>
<td>0.09070</td>
<td>0.96615</td>
<td>-0.01617</td>
<td>-0.01240</td>
<td>-0.00185</td>
<td>0.95240</td>
</tr>
<tr>
<td>Qualia Complicated Stamped</td>
<td>-0.01710</td>
<td>0.00973</td>
<td>0.06132</td>
<td>0.13725</td>
<td>-0.05294</td>
<td>0.48711</td>
</tr>
<tr>
<td>Qualia Incised</td>
<td>0.06415</td>
<td>-0.00835</td>
<td>0.00638</td>
<td>0.00396</td>
<td>0.90489</td>
<td>0.97016</td>
</tr>
<tr>
<td>Qualia Corn Cob Impressed</td>
<td>0.06390</td>
<td>-0.01635</td>
<td>0.59995</td>
<td>-0.09263</td>
<td>0.04234</td>
<td>0.32481</td>
</tr>
<tr>
<td>Fatherland Incised</td>
<td>0.84167</td>
<td>-0.09479</td>
<td>-0.00148</td>
<td>-0.17395</td>
<td>0.01403</td>
<td>0.78185</td>
</tr>
<tr>
<td>Eigenvalue</td>
<td>1.39135</td>
<td>1.85892</td>
<td>1.80149</td>
<td>1.28376</td>
<td>1.01136</td>
<td>66.8</td>
</tr>
<tr>
<td>% Variance</td>
<td>24.2</td>
<td>13.3</td>
<td>12.9</td>
<td>9.2</td>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>
most of the variance in factors 1 and 4. Qualla series ceramics have high factor loadings in factors 3 and 5. Fatherland Incised is highly correlated with Overhill types in factor 1, but has a low or negative correlation with Qualla types in all factors. Only in factor 2 are Qualla and Overhill types highly correlated.

Factor loadings indicate that the Overhill and Fatherland series, and the Qualla series had distinctly different patterns of occurrence within the 263 features used for the historical distributional analysis. Factor 1 represents the largest percentage of variance and shows a very high loading for Overhill Plain, Overhill Incised, Overhill Residual, and Fatherland Incised. The high correlation of these types is probably due to the large number of Overhill Plain and Overhill Residual sherds in the sample. Fatherland Incised co-occurs with the Overhill types and has a low or negative correlation with Qualla types, probably because the Overhill types have a much larger representation in the sample than all Qualla sherds combined. Therefore, the probability that Fatherland sherds would occur with Overhill Plain ceramics is higher than with any other ceramic type at the site. The second largest percentage of variance is represented in factor 2. High loadings in factor 2 are for Overhill Simple Stamped and Qualla Simple Stamped. Factor 2 is the only factor in which the Overhill and Qualla series are highly correlated. The total number of these ceramics is small. Their high degree of association is probably attributable to 37.7% of these sherds from the sample being found in Feature 566 in Section 3 of the 1974 excavations and 54.7% from Feature 493. Factor 3 contains high loadings for the majority of the Qualla types. The representation of Qualla
series sherds in the various features was small. In most instances, where Qualla ceramics occurred, they represented less than 5% of the assemblage. The loadings in factor 3 indicate that, although small in number, Qualla ceramic types display a distinct pattern of co-occurrence in the feature assemblages. Factor 4 contains high loadings for Overhill Check Stamped and Overhill Complicated Stamped types. It is not understood why these types did not correlate highly with Overhill Plain and Overhill Residual types in factor 1. However, Overhill Simple Stamped in factor 2 also failed to correlate with Overhill Plain ceramics. This indicates a distinctly different occurrence pattern between Overhill stamped types and Overhill Plain ceramics. Factor 5 indicates that the Qualla Incised type fails to correlate significantly with any other ceramic type. This is probably because 53.6% of the Qualla Incised type used in this study came from Feature 558 in Section 3 of the 1974 excavations.

The factor analysis demonstrated that distinct recognizable patterns of ceramic occurrence were located at the site. Factor loadings indicate a difference on the basis of ceramic series affiliation. Overhill and Qualla sherds are clearly defined as occurring differently by the analysis. The high loading for Fatherland Incised sherds in factor 1 definitely associates the occurrence of the series at the site with Overhill ceramics more so than with Qualla ceramics which are negatively associated with Fatherland sherds in factor 3. The systematic differentiation of ceramic series within features suggests that there were attendant cultural differences pertaining to the production, utilization, and disposal of the three historic series
at the site. The exact nature of these proposed cultural differences has not been determined in this study.

Ceramics at Chota-Tanasee from the Overhill, Qualla, and Fatherland series are considered to have been produced by three different cultural groups (Egloff 1962, Lewis and Kneberg 1946, Quimby 1942). Patterns in their distribution and occurrence in features have been recognized above and are attributed to possible cultural differences. The factor analysis does not, however, indicate how the features themselves are associated or distributed in terms of their similarity or differences in ceramic assemblages. A cluster analysis procedure was employed to examine the possible interrelationships of the feature assemblages. The procedure chosen is the hierarchical grouping analysis (Veldman 1967: 308-317).

The clustering analysis divided the 263 assemblages into groups of features in order to determine patterns of common feature characteristics. Among the feature characteristics examined were morphological type, volume, proximity to structures, ceramic assemblage size, and ceramic and dated European artifact content. Features were also checked to see if there were any recognizable feature clusters which differentiated Chota from Tanasee.

The results of the analysis indicate that when the clustering procedure reduced the representative assemblages to twenty groups, the error level rose to an unacceptable level. Beyond this error level feature assemblages were forced into clusters with little validity or meaning.

The examination of the characteristics of the resulting clusters yielded no recognizable pattern. No pattern of dissimilarity was
observed to occur between the assemblages at Chota and Tanasee. Instead, historic aboriginal ceramics from both areas have a similar uniform distribution within features. This distribution indicates no ceramic evidence for the temporal or cultural separation of the two towns.

Results of the Chota-Tanasee aboriginal ceramic analysis agree with what is known historically about the site. Ceramics indicate a rather brief intensive historic Overhill Cherokee occupation. Ceramic types, or their pattern of occurrence within features, vary little between different excavation areas. Much of this uniformity is attributable to the preponderance of Overhill Plain ceramics in the total site assemblage.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dickens, Roy S., Jr.</td>
<td>1976</td>
<td>Cherokee Prehistory; The Pisgah Phase in the Appalachian Summit Region.</td>
<td>University of Tennessee Press, Knoxville.</td>
</tr>
</tbody>
</table>
Heimlich, Marion D.

Holden, Patricia Padgett

Jennings, Jesse D. and Charles H. Fairbanks

Keel, Bennie C.

King, Duane H.

Lewis, T. M. N. and Madeline Kneberg
1939 Chota-Tanasee (2M2-3M2) Ceramic Analysis Notes. Ms. on file at the Frank H. McClung Museum, University of Tennessee, Knoxville.

n.d. Manual of Field and Laboratory Techniques Employed by the Division of Anthropology, University of Tennessee, Knoxville. Ms. on file at the Frank H. McClung Museum, University of Tennessee, Knoxville.

Milligan, Joseph W.
Mooney, James

Polhemus, Richard R.
1968 Eighteenth Century Overhill Cherokee Ceramics. Ms. on file at the Frank H. McClung Museum, University of Tennessee, Knoxville.

Quimby, George I.

Schroedl, Gerald F. and Kurt Russ

Thomas, Cyrus

Veldman, Donald J.

Whiteford, Andrew H.

Williams, Samuel Cole
Williams, Samuel Cole

1944 Tennessee During the Revolutionary War. University of Tennessee Press, Knoxville.
VITA

James Frederick Bates was born in Durham, North Carolina on July 22, 1953. He received his Bachelor of Arts degree in Anthropology from The University of Georgia in 1975. In the Fall of 1975 he entered the Graduate School of The University of Tennessee, Knoxville to pursue the Master of Arts degree with a major in Anthropology. This degree was awarded in 1982.

He has participated in historical and prehistoric archaeological research in Florida, Alabama, Georgia, South Carolina, North Carolina and Tennessee. He is a member of the American Anthropological Association, the Society for American Archaeology, the Southeastern Archaeological Conference, the Society for Historical Archaeology, the Tennessee Anthropological Association and the Georgia Trust for Historic Preservation.