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Figure 29. Cross-section images of switchgrass and yellow poplar lignin carbon fibers used for 
Raman spectroscopy experiment. The light colored regions represent the sample and the darker 

ones correspond to the epoxy background. The background was filtered prior to averaging 
spectra patterns. 
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Figure 30. Average Raman spectroscopy of all lignin carbon fibers cross-section. 

Table 13. Raman scattering analysis of lignin carbon fibers. 

Sample 
name 

D-band  
Raman shift 
(cm -1) (±1.6) 

G-band 
Raman shift 
(cm -1) (±3.0) 

ID/IG ratios 
(±0.040) 

Crystallite size 
(nm) (±0.194) 

Fiber diameter 
(µm) 

SG 1356.6 1597.8 0.956 5.187 28.96 

YPLS 1356.6 1601.9 1.046 4.742 13.59 

YPHS 1352.5 1605.9 1.036 4.787 14.59 
YP75 SG25 1356.6 1597.8 0.990 5.009 39.59 
YP85 SG15 1356.6 1601.9 1.065 4.658 15.78 
Graphite 1352.6 1585.9 0.251 19.754 - 
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Figure 31. Raman spectroscopy and Lorentzian fit for cross-section lignin carbonized fiber 

switchgrass. 

 

Figure 32. Raman spectroscopy and Lorentzian fit for cross-section lignin carbonized fiber 
yellow poplar high severity. 
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Figure 33. Raman spectroscopy and Lorentzian fit for cross-section lignin carbonized fiber 
yellow poplar 75 wt. % and Switchgrass 25 wt.%. 

 

Figure 34. Raman spectroscopy and Lorentzian fit for cross-section lignin carbonized fiber 
yellow poplar 85 wt. % and switchgrass 15 wt.%. 
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Figure 35. Raman spectroscopy and Lorentzian fit for cross-section lignin carbonized fiber 

yellow poplar lower severity. 

 
Figure 36. Raman spectroscopy and Lorentzian fit for graphite powder used as reference 

material. 
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Table 14. Raman scattering of fitted curves using Lorenztian analysis of lignin carbon 
fibers. 

Sample 
name 

D-band 
Raman 

shift (cm -1) 
(±1.2) 

G-band 
Raman 

shift (cm -1) 
(±3.2) 

ID/IG 
ratios 

(±0.033) 

FWHM 
(D-band) 

(±8.1) 

FWHM 
(G-band) 

(±2.1) 

Crystallite 
size (nm) 
(±0.173) 

AD/AG 
ratios 

(±0.285) 

SG 1354.4 1599.5 0.952 233.3 90.0 5.210 2.891 

YPLS 1354.6 1594.4 1.045 253.0 93.0 4.747 3.507 

YPHS 1356 1599.7 1.002 250.3 90.0 4.950 3.399 
YP75 SG25 1353.4 1591.3 0.998 236.0 95.0 5.055 2.902 
YP85 SG15 1356.9 1596.1 1.039 247.4 90.0 4.775 3.511 
Graphite 1354.9 1585.6 0.270 46.0 32.0 18.343 0.381 

After showing a summary of the results of green lignin to carbon fibers 

comparison of these results proves that mechanical properties, such as tensile strength, 

have a lower tensile strength for switchgrass compared to yellow poplar and their 

blended fibers [67]. This is supported by SEM micrographs containing visible defects on 

the surface of these fibers, noting that yellow poplar has less defects than switchgrass 

[67]. The assumption is that the fiber processing causes defects. However, when we 

observe the nanomechanical properties of these materials switchgrass has a reduced 

modulus of 33 GPa and yellow poplar high severity 30.2 GPa. For the hardness of these 

materials switchgrass has a 5.69 GPa and yellow poplar high severity has 5.18 GPa 

[67]. Demonstrating that the monomeric structure of the switchgrass is suitable and 

promising for the carbon fiber applications.  

CONCLUSIONS 

Investigation of processing-structure-property relationship has been studied for 

two types of lignin sources extracted via organosolv fractionation, switchgrass and 

yellow poplar. These two sources were compared as green lignin fibers and carbonized 

fibers. Small angle neutron scattering was performed for the green lignin. Non-blended 

fibers and blends composed of both lignin types were studied for carbonized samples 

using Raman spectroscopy. The chemical modification of these fibers during blending 

and the varied processing severity impacts their mechanical properties. Contrast 
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variation was used to resolve pore structure and particle sizes using different solvents. 

Switchgrass has smaller but higher presence of pores than yellow poplar. Also, yellow 

poplar fibers attained a smoother surface compared to switchgrass fibers. The small 

pores in switchgrass lignin might occur as a result of its highly branch structure within 

the matrix. Furthermore, switchgrass produced larger crystallite sizes but demonstrated 

a lower tensile strength than yellow poplar. The product materials show evidence of a 

potential graphitic structure suitable for carbon fiber applications. 

Characterization results demonstrate that green lignin fibers from switchgrass 

contain more G units than S units. Also, the structure of the carbonized switchgrass 

fibers had less disordered structures compared to all other fibers. This indicates there 

exists an inverse correlation between G units content and amount of disorder domains 

in the carbonized structure. 13C-NMR study revealed a significant correlation among 

phenolic groups and tensile strength, while 31P-NMR study identified a negative 

correlation between aliphatic groups and tensile strength. Additional relationships 

connecting feedstock structure to carbonized fiber structure may be explored. For 

example, compare volume fraction of crystalline domains and crystallite sizes of carbon 

composites. This study can be enhanced with XRD and BET experiments to compare 

crystallinity, porosity, and surface area measurements. Ultra-SANS and ultra-SAXS 

experiments (Q range < ~0.005 Å-1) will help understand the internal hierarchical 

structure of polymeric units. Furthermore, incorporating softwood lignin fibers into the 

experiments will allow a more complete picture to establish processing-structure-

property relationships of these materials.  
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CHAPTER CONCLUSIONS  

Lignin is a natural amorphous polymer suitable as a graphite substitute for 

commercial carbon materials. Investigating lignin properties, extraction methods, and 

characterization techniques, combined with an understanding of the resulting carbon 

structure, helps associate the product material with synthetic carbon materials. 

Moreover, finding alternatives for kraft product applications, such as producing carbon 

materials, makes it attractive due to its lower cost ($0.04/kg lignin value as fuel in kraft 

pulp industries). Common lignin extraction methods and characterization techniques 

used in this study were presented. This is enhanced with a discussion of the general 

structure of carbon composites. Carbon materials have potential applications in the 

areas of electrochemical storage and automobile industries. 

In Chapter 2, processing-structure-property relationships for different types of 

lignin sources were investigated by varying the processing temperature, time, and 

environment. The lignin sources considered are kraft softwood, organosolv switchgrass, 

and ogranosolv hardwood. Also, the processing-structure relationships of these 

materials to produce a carbon-based material were investigated using characterization 

techniques presented in Chapter 1. The study used the carbon material for developing 

lignin-carbon anodes in lithium-ion batteries. XRD analysis for heat-treated kraft lignin 

showed that while increasing temperature (e.g., 1050, 1500, and 2000 ºC) during 

carbonization, an ordered graphitic material was obtained. Particle sizes were controlled 

by ball milling techniques to attain homogeneity, and the presence of iron detected after 

ball milling is assumed to affect electrochemical performance. Similarly, it is likely that 

the presence of oxygen in the structure is the main reason for lower electrochemical 

performance. Under optimal processing conditions, a coin cell with a lignin-based anode 

demonstrated capacity superior to the theoretical maximum capacity of 372 mAh g-1 for 

graphite. Elemental analysis for lignin was presented during heat treatments, and as 

expected carbon content increased while the temperature increased. Results support 

that a properly designed carbonization process for lignin is well suited to generating low-

cost, high-efficiency electrodes. 

In Chapter 3, additional lignin sources were used to identify structure-properties-

relationship.  Comparisons between switchgrass, hardwood, and blends of lignin fibers 
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were made. Material structure was investigated by performing SANS experiments (of 

green fibers) coupled with Raman spectroscopy (after carbonization). Determination of 

the type of C-C bond was explored for cross-section surfaces of carbonized lignin fibers, 

and then compared to graphite powder peaks. The Raman spectra indicated a more 

ordered graphitic structure for switchgrass compared to blends and hardwood lignin. 

Moreover, these results support the presence of defects in the material during 

processing fibers. Characterization results demonstrate that green lignin fibers from 

switchgrass contain more G monomeric units than S units. This indicates that there 

exists an inverse correlation between G content and amount of disordered domains in 

the carbonized structure. A statistical analysis based on 13C-NMR and 31P-NMR data 

supports the presence of a positive correlation between phenolic groups and tensile 

strength. On the other hand, a negative correlation occurs between aliphatic groups and 

tensile strength. 

SANS identified pores of larger sizes along the fibers in hardwood yellow poplar 

when compared to switchgrass. Also, SANS analysis dictates the presence of a less 

smooth surface in switchgrass than in yellow poplar. Pores in the nano scale are 

probably caused during fiber processing by the aliphatic groups that are volatile. 

Furthermore, switchgrass presents a lower tensile strength, 370 MPa, and lower tensile 

modulus, 34.7 GPa, as compared to the high severity yellow poplar with 544 MPa and 

36.5 GPa, respectively. Hardwood yellow poplar processed under low severity 

conditions produced 346 MPa in tensile strength and 32.9 GPa in tensile modulus [67]. 

A set of preliminary experiments for SANS was used to have a first glance of the fiber 

structures and note flaws in the design, for example, fiber alignment and understand the 

interaction between the polymeric structure and the solvents. This work motivated an 

improved design consisting of using different solvents to resolve the pore structure. 

IMPACT AND SIGNIFICANCE 

The main goal of this research is to understand and establish processing-

structure-property relationships during conversion of renewable sources and by-

products into lignin carbon products. With the enormous increase in demand for 

producing graphite in-house for energy storage applications, the search for graphite 
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substitutes increased as well. A novel aspect of this research is recycling kraft lignin by-

product to produce lignin carbon, that is, identifying a renewable resource as a graphite 

substitute. The lignin carbon electrode in Li-ion coin cells exhibits promising specific 

capacities with high Coulombic efficiencies that are comparable with the performance of 

graphite-based batteries. Characterization experiments support the formation of 

graphitic domains that mainly depend on the pyrolysis and reduction temperature, the 

amount of active material, and the anode coating thickness. Moreover, understanding 

the processing-structure-property relationships for electrochemical applications can 

serve as support for related research work, such as [85, 86], where molecular dynamics 

simulations identify differences in the binding mechanism during battery operation 

between graphite and lignin carbon. 

Another significance of these studies is the exploration of processing-structure-

property relationships between green and carbon lignin fibers that comes from 

switchgrass and hardwood, which were organosolv extracted at varying temperature 

severities. The study validates that switchgrass lignin consists of a polymeric matrix 

structure that is less smooth and contains smaller pores than hardwood lignin. 

Statistical analysis identifies a high correlation between tensile strength and phenolic 

groups of these sources. Using different lignin sources for initial experiments provided 

insight of how the structure behaves in order to improve the design of the material and 

prevent defects during processing. Therefore, it is feasible to process lignin sources that 

can serve in a variety of applications requiring carbon-based materials.  Moreover, 

because the ion binding mechanism of these lignin-based composites is fundamentally 

different than that seen in graphite, the potential to discover new materials with ion 

capacities higher than the theoretical capacity of graphite exists.   

FUTURE WORK 

This research serves as groundwork for designing and performing experiments to 

further understand processing-structure-property relationships of lignin materials. There 

still exist several open questions that are of interest and pave a roadmap for potential 

applications. A full characterization can be conducted for kraft softwood and organosolv 

switchgrass and hardwood sources before and after each processing stage. It is not 
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fully understood how the green fiber structure impacts carbonized structure, thus we 

intend to perform kinetic studies using TGA to understand interactions and thermal 

stability while processing. The kinetic studies help identify the structural groups that are 

reacting or changing as well as how fast the reaction occurs. Also, elemental analysis 

can help us understand the content of C, H, N, and O from the different lignin sources. 

We also want to look for approaches to prevent reaction between the reduced lignin 

samples and the nitrogen environment during BET measurements. Additional 

relationships connecting feedstock structure to carbonized fiber structure include the 

volume fraction of crystalline domains and crystallite sizes of carbon composites. 

Raman and XRD analysis provided different results for particle sizes. To 

understand the nature of these differences, Raman analysis needs to be performed for 

the lignin powders and XRD analysis to the carbonized lignin fibers after being 

grounded. To further understand the differences between switchgrass, yellow poplar, 

and kraft softwood lignin carbonized structures, Raman analysis needs to be performed 

for kraft softwood and green lignin, and SANS analysis to lignin carbon. Also, the 

internal structure of polymeric units can be investigated via molecular dynamics 

simulations and scatterings from USANS and USAXS. Moreover, we can combine these 

results with atomistic simulations to interpret lignin carbonaceous structures that are 

complex due to crystalline and amorphous domains. The computationally-intensive MD 

simulations can be used to develop a much more computationally efficient but still 

physics-based approach (a hierarchical decomposition) to interpreting the radial 

distribution function from scattering experiments. 

The high demand for carbon composites in energy storage applications 

stimulates the search for identifying which lignin source is optimal for battery anodes. 

Moreover, these studies should include a mix of anodes composed from both lignin 

fibers and powder. Conveniently, electrochemistry studies should be designed for 

switchgrass, yellow poplar, and kraft softwood lignin. We suspect battery anodes made 

of switchgrass lignin will result with optimal electrochemical properties due to its low 

disordered structure and high lignin purity (due to organosolv fractionation). 

Nevertheless, kraft softwood lignin seems to be the most viable due to its accessibility 

for large-scale production and lower processing cost when compared to organosolv 
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switchgrass and hardwood extraction method. The optimization of the choice of lignin 

source for manufacture of battery anodes superior to graphite is desired. A method to 

remove all contaminants that degrade electrochemistry performance needs to be 

explored. A proposed approach is to decrease all oxygen during heat treatments by 

varying heating rates and environment. Alternative ball-milling techniques will be 

explored to reduce contamination. 

A cost analysis can be included incorporating the extraction of lignin, the 

processing of lignin carbon materials, and the targeted application. Correlation of all 

these analyses will help to fully understand lignin structures paving a path to a low-cost, 

accessible, and efficient material suitable for large-scale industrial production. 
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