CMOS Based Impedance Sensing

Jinlong Gu

University of Tennessee, Knoxville, jgu3@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Part of the Electrical and Electronics Commons

Recommended Citation

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
To the Graduate Council:

I am submitting herewith a thesis written by Jinlong Gu entitled "CMOS Based Impedance Sensing." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Electrical Engineering.

Nicole McFarlane, Major Professor

We have read this thesis and recommend its acceptance:

Ben Blalock, Syed Islam

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)
ABSTRACT

This thesis focuses on a compact, low power circuit design for biological cell impedance sensing. Cell impedance sensing provides a new way to diagnose the cancers. Experiments done previously have shown that cancer cells have lower impedance than the normal cells, due to the thinner membrane of cancer cells. Traditional methods of cancer diagnosis require special chemicals, skilled personnel, and take long time to obtain the results. Two circuit structures are proposed in this work. One is a silicon cochlea based architecture. The other one is a current mode lock-in amplifier. Both of these two structures are able to measure the cell impedance at four different frequencies simultaneously, a significant advantage over commercially available equipment. Implementation in CMOS also significantly lowers the cost per unit device. A ramp ADC is used to perform data conversion for the silicon cochlea or the LIA. Using one comparator in each channel, it is a low-power structure for multi-channel data conversion.
TABLE OF CONTENTS

Chapter 1 Introduction ... 1
 1.1 CMOS LAB-On-a-Chip Design for Impedance Sensing.. 1
 Integrated Sensing and Signal Processing? ... 2
 1.2 Research Goals... 3
 1.3 Original Contributions .. 3
 1.4 Thesis Organization ... 3
Chapter 2 Literature Review ... 4
 2.1 Introduction... 4
 2.2 Why Integrated Sensing and Signal Processing? ... 4
 2.3 Implementations of Cell Impedance Sensing ... 4
 2.3.1 Electrical Cell-Substrate Impedance Sensing (ECIS) ... 4
 2.3.2 Microfluidic Cell Trap .. 5
 2.3.3 Microfluidic Cell Cytometry .. 5
 2.3.4 CMOS Based Impedance Sensing ... 6
 2.4 Applications of Impedance Sensing ... 8
 2.4.1 Cell Discrimination/ Detection .. 8
 2.4.2 Cell Counting .. 9
 2.4.3 Cell Viability .. 10
 2.5 Electrodes Design for the Impedance Sensing .. 10
 2.6 Challenges of Cell Impedance Sensing and Potential Solutions 11
 2.6.1 Long-Term Monitoring ... 11
 2.6.2 Real-time Monitoring ... 12
 2.6.3 High Throughput Readout .. 12
 2.6.4 Improving Accuracy ... 12
Chapter 3 Integrated Impedance sensing using a Silicon cochlea .. 14
 3.1 Silicon Cochlea based on Tau-cell in 0.5 μm process .. 14
 3.2 Silicon Cochlea Design in a 130 nm Process... 25
Chapter 4 Current mode integrated impedance sensing .. 29
 4.1 On-chip Lock-in Amplifier ... 29
 4.2 Ramp ADC ... 36
 Overview of the Architecture of Current-Mode Ramp ADC 36
 Test Results of the Ramp Generator: ... 40
Chapter 5 Conclusion and Future work ... 42
 Future Paths .. 43
List of Reference ... 44
Vita .. 50
LIST OF TABLES

Table 1. Bias current and capacitors of the filters in 0.5 μm process. 15
Table 2. Size of the Transistors of tau-cell. ... 17
Table 3. Aspect ratio of the transistors in Figure 18. .. 18
Table 4. Bias current of the silicon cochlea in Figure 18. ... 19
Table 5. Expected cut-off frequency and tested cut-off frequency of the filters in silicon
cochlea on 0.5 μm process. ... 20
Table 6. Average value and standard deviation of the cut off frequency from the test
results. ... 26
Table 7. Monte Carlo simulation of the filters with parasitic capacitors (only circuit
mismatch is considered).. 26
Table 8. Monte Carlo simulation of the filters with parasitic capacitors (only process
variation is considered). .. 27
Table 9. Sizes of the transistors in 130 nm process ... 27
Table 10. Cut-off frequency, bias current and load capacitors of the filters in 8RF. 28
Table 11. Expected cut-off frequency and tested cut-off frequency of the filters in the
silicon cochlea.. 28
Table 12. Transistor size of the 4-Q mixer. ... 31
Table 13. Efficient number of bits (ENOB) of the mixer. ... 32
LIST OF FIGURES

Figure 1. Working principle of cell impedance sensing 1
Figure 2. Impedance change with time as the cells are attached to the electrodes, Z is the complex impedance [15] ... 5
Figure 3. Block diagram of the microfluidic cell trap[32] 6
Figure 4. Diagram of the microfluidic cell cytometry[31] 6
Figure 5. Simplified schematic of the impedance-to-frequency converter[38] .. 7
Figure 6. Time curve of the comparator’s output Vout and its input Vel.[38] ... 8
Figure 7. working principle of the microfluidic cell cytometry[32] 9
Figure 8. Side schematic view of the micro-channel 10
Figure 9. Schematic of differential measurement[55] 13
Figure 10. Block diagram of the impedance sensor 14
Figure 11. Basic structure of a Tau-cell .. 16
Figure 12. Block diagram of silicon cochlea .. 16
Figure 13. The feedback circuit of the Tau-cell 16
Figure 14. Block diagram of two-stage low-pass filter based on tau cells ... 16
Figure 15. Schematic of the Tau-cell based low pass filter 17
Figure 16. Block diagram of the silicon cochlea 18
Figure 17. Photomicrograph of the silicon cochlea in 0.5 μm process 18
Figure 18. Silicon cochlea array with current bias 20
Figure 20. Frequency response of chip 2 channel 1, amplitude 21
Figure 21. Frequency response of chip 4, amplitude 21
Figure 22. Frequency response of chip 5, amplitude 21
Figure 23. Frequency response of chip 1 channel 2, amplitude 22
Figure 24. Frequency response of chip 1 channel 3, amplitude 22
Figure 25. Frequency response of chip2 channel 2, amplitude 22
Figure 26. Frequency response of chip 2 channel 3, amplitude 23
Figure 27. Frequency response of chip4 channel 2, amplitude 23
Figure 28. Frequency response of chip4 channel 3, amplitude 23
Figure 29. Frequency response of chip5 channel 2, amplitude 24
Figure 30. Frequency response of chip5 channel 3, amplitude 24
Figure 31. Test results of filter1 (cut off frequency supposed to be 100 kHz) 24
Figure 32. Monte Carlo simulation results of the filter 1 25
Figure 33. Monte Carlo simulation of filter1 with 8.34 pF load 26
Figure 34. Schematic of Tau-cell in 0.13 μm process 27
Figure 35. Phase response of the filters on chip 3 in 130 nm process 28
Figure 36. System diagram of the cell impedance sensor with readout circuits 30
Figure 37 Block diagram of the lock-in amplifier 31
Figure 38. Schematic of the 4-Q mixer in the LIA 31
Figure 39. Layout picture of the lock-in amplifier 32
Figure 40. Schematic of the 2-Q multiplier[61] 33
Figure 41. Output current of the 2Q multiplier versus Iin2 33
Figure 42. Output current of the 2Q multiplier versus Iin3 33
Figure 43. Frequency response of the LPF in the LIA 34
Figure 44. Block diagram of the 2-order MITE based bandpass filter 35
Figure 45. The schematic of the 2-order MITE based bandpass filter....................... 35
Figure 46. Experimental test result, pre-layout and post-layout simulation result of (a) bandpass filter 100 kHz (b) bandpass filter 10 kHz, (c) bandpass filter 1 kHz 36
Figure 47. Block diagram of the ramp ADC.. 37
Figure 48. Schematic of ramp generator... 38
Figure 49. Schematic of current comparator.. 38
Figure 50. Schematic of a 4-bit Gray code counter[62].. 39
Figure 51. Test setup of the ramp generator ... 40
Figure 52. Tested rising edge of I_{or} and the ideal I_{or}... 41
Figure 53. Linearity error of the ramp generator .. 41
CHAPTER 1 INTRODUCTION

1.1 CMOS LAB-On-a-Chip Design for Impedance Sensing

Impedance measurements, a tool frequently used in the circuits, has found innovative applications in the biomedical engineering field. It relies on the principle of Ohm’s law, $Z=V/I$, where Z is the impedance, V is the voltage, and I is the current. These quantities are measured across or through the analyte. For biomedical purposes, the analyte may be a variety of biomolecules. These molecules can include human or animal cells, DNA, or proteins. Figure 1 illustrates the theory behind impedance measurements of biomolecules. Two electrodes are submerged in the solution, which for cells, is typically the growth medium. An alternating current (AC) voltage source is added between the electrodes. The medium is typically conductive, and as a result the medium, electrodes and voltage source form a closed loop. If a current meter is added into this loop, it will measure the current flowing in this closed loop. Due to the conductivity of biomolecules being different to that of the medium and electrodes, when one or several biomolecules are close to or adhered onto the electrodes, they will change the current flowing through this loop. In many cases, biomolecules, being capacitive in nature, have a blocking effect on the current. If they are then added between or onto the electrodes, the current decreases. An alternative configuration uses three electrodes. However, this configuration is used in electrochemical impedance spectroscopy which typically relies on a reduction/oxidation or redox reaction taking place.

![Figure 1. Working principle of cell impedance sensing](image)

Impedance sensing has been widely used in biomedicine and biochemistry, and it has potential in cancer diagnosis and drug discovery. The membrane of a cell is electrically
similar to a capacitor, while the cytoplasm of a cell, being somewhat conductive, is electrically similar to a resistor. The membrane of a cancer cell is thinner than that of a normal cell due to the cancer cell’s higher rate of metabolism. The relationship between the thickness and capacitance of a cell membrane is: $C_{\text{mem}} = \varepsilon / d_{\text{mem}}$, where ε is the dielectric constant. Therefore, the capacitance of a cancer cell tends to be higher than a normal cell. Thus, the impedance of cancer cells at high frequency will be smaller than that of the healthy cell. From the frequency response curve of the cells, impedance sensing can discriminate between cancer cells and healthy cells. Clearly, this is of great value in the cancer research and treatment community.

The applications of cellular impedance spectroscopy (CIS) include cell discrimination, cell detection, cell counting, cell viability evaluation, and cell behavior monitoring. It has clinical implications in many aspects. CIS improves the accuracy and reduces the time to early diagnosis of cancer cells. By using CIS, health practitioners may be able to make early diagnosis of cancer, saving many lives. CIS is a label free and noninvasive method. It does not harm or even kill the cells during experiments, so it is suitable for long-term monitoring of cellular behavior. Using CIS as a way for disease diagnosis will reduce the pain that patients may undergo during the process. Compared to traditional methods, CIS has the potential to provide more accurate and reliable results. Since no reagent is needed in impedance measurement, it reduces the complexity of experiments, saving time and reducing cost. It also avoids some potential negative effects of reagents. For example, the chemical for disease diagnosis may be harmful to patients. Additionally, CIS is a real time measurement, allowing for a wider breadth of information in cellular research.

Impedance measurement on cell suspensions have been studied in the past 2 decades, and a variety of single-particle measurement methods have been developed [1, 2]. The advances in microfabrication and the lab-on-a-chip concept enabled electrical impedance spectroscopy (EIS) devices to detect and analyze a single cell using integrated probes. A single cell is placed inside an electric field that leads to a local distortion of the field, leading to the measurement of the characteristic impedance signature of the cell.

Integrated Sensing and Signal Processing?

Previously sensors have been fabricated singly on chips and were connected with bulky signal-processing equipment such as impedance analyzer or lock-in amplifier to form a sensing system [3]. The separation the sensors and signal-processing modules makes system vulnerable to noise. Due to the large parasitic capacitors and resistors between the discrete parts, the system will also have slow speed. The commercial instruments such as impedance analyzers are large and heavy, and they are extremely expensive. For example, a typical good impedance analyzer such as Agilent 4291A costs $7500, and a Keysight E4990A costs $21910. These equipment were originally developed for integrated circuit bench testing, and thus have limited input ports, leading to low throughput and long measurement times.
Thus, incorporating sensors with signal-processing circuits on the same chip are more and more attractive. There are three advantages of integrating sensors with signal readout and processing circuits on the same chip. Firstly, in order not to destroy the analytes, the signals applied on the analytes are quite weak, i.e. in the μV or nA range. If the distance between the transducer and the sensor can be reduced, the interference from environmental noise can be reduced. Secondly, integrating sensors with signal-processing circuits on the same chip can reduce the number of required connections. This also improves the robustness of the measurement setup. Thirdly, CMOS technology as the standard for integrated circuits offers the opportunity to produce an inexpensive integrated cell based sensor chip, thus for the first time making such a biosensor suitable for widespread application. This integration is not limited to silicon-based circuit. Sensors can also be integrated onto other semiconductor technology such as gallium arsenide or silicon germanium, depending on their specific application.

1.2 Research Goals
This thesis develops CMOS circuits to substitute bulky and costly commercial instruments. Two circuits have been proposed, a silicon cochlea and a current mode lock-in amplifier. The silicon cochlea is an analogy of the cochlea, which is especially suitable for multi-frequency signal processing. The lock in amplifier operates in current mode and enables signal processing and extraction on chip.

1.3 Original Contributions
The original contributions of this thesis include 1. Design of a silicon cochlea based approach for impedance sensing and 2. Design of a current mode approach with integrated signal processing for impedance sensing.

1.4 Thesis Organization
Chapter II gives an extensive literature review of the state of the art in impedance sensing of biological cells. Chapter III, concerns the design of a silicon cochlea based approach to impedance sensing, and chapter IV gives an overview of current mode approach to impedance sensing. The conclusion is given in Chapter V.
CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Cellular impedance spectroscopy (CIS) [4] provides a new and efficient way in various biophysical and biological applications. These applications include cell discrimination [5-8], cell detection [9-11], cell counting [11, 12], cell viability evaluation [13-15] and cell behavior monitoring [8, 16, 17].

Traditional methods for the single cell dielectric spectroscopy are dielectrophoresis (DEP) [18] and electrotation (ROT) [19]. The limitations of DEP and ROT are discussed by Hywel Morgan, et al. [20]: Measurement of DEP force or ROT torque requires that both the electro-rotation spectrum and the DEP properties (crossover) have to be measured [21]. The other major limitation of these techniques is that of speed. A typical ROT assay takes several seconds per cell (usually longer). This means that a limited number of cells are measured, and temporal variations in cell behavior are difficult to monitor. Impedance spectroscopy, on the other hand, is fast and gives the complex dielectric properties quickly.

2.2 Why Integrated Sensing and Signal Processing?

Previously impedance sensors were fabricated with electrodes singly on chips and then were connected with bulky signal-processing modules like impedance analyzer or lock-in amplifier to form a complete system. Separation of sensors with signal-processing modules has several drawbacks: firstly, instruments like impedance analyzers are large and heavy; secondly, they are expensive; thirdly, this separation makes system vulnerable to noise.

Now incorporating sensors with signal-processing circuits on the same chip are more and more attractive. There are three advantages of integrating sensors with signal readout and processing circuits on the same chip [5]. Firstly, the interference from the environmental noise can be reduces if the distance between the transducer and the sensor is reduced. Secondly, integrating sensors with signal-processing circuits on the same chip can reduce the number of required connections, which improves the robustness of the measurement setup. Thirdly, CMOS technology as the standard for integrated circuits and being quite mature, offers the opportunity to produce an inexpensive integrated cell based sensor chip. These reason, for the first time making such a biosensor suitable for widespread application.

2.3 Implementations of Cell Impedance Sensing

2.3.1 Electrical Cell-Substrate Impedance Sensing (ECIS)

Electric cell-substrate impedance sensing (ECIS) is a technique that analyzes the kinetic and biological phenomena by monitoring the change of impedance in real-time [13]. ECIS can follow the cell behavior continuously and noninvasively for hours, so that
certain long-term characteristics of cell attachment and spreading are accessible that have not been considered in traditional assays. Traditional method is harvesting cells from time to time and watching them under microscope. It is complex and it can only get the status of cells in discrete time [14]. In ECIS, small gold film electrodes are deposited on the bottom of cell culture dishes and measure the electrode impedance. When cells deposit, get attached and spread on the electrode surface, the impedance between electrodes will increase. Since it has been shown previously that cells anchor essentially in the same way to the gold-film electrodes as they do to normal culture dishes made from treated polystyrene, results extracted from ECIS data are both relevant and significant [22].

ECIS has been exploited in such studies as cell morphology [23], cell-substrate interactions [24], cell layer barrier function [25], cell motility and wound healing [13]. In vitro studies of processes like tumor metastasis, wound healing, or cell migration in general focus on the stationary and dynamic interactions of cultured cells with a particular substrate [26]. Even in more technical fields, like the development and modification of biomaterials for anatomical implants [27] or the construction of cell–semiconductor interfaces [27, 28], cell attachment is an important parameter.

![Figure 2. Impedance change with time as the cells are attached to the electrodes, Z is the complex impedance [15]](image)

2.3.2 Microfluidic Cell Trap

Cell trapping is another method to perform adherent impedance measurement. ECIS is usually used for analyzing large amount of cells, while cell trap is used to analyze single cell. ECIS lets cells get attached to the planar electrodes by gravity. One cell trap can only measure one cell once. It uses fluid flow to drive cell to between two stick-like electrodes.

2.3.3 Microfluidic Cell Cytometry

Microfluidic cell cytometry is a non-adherent way of impedance measuring. It is a well-established technique for counting, identifying and sorting cells [12, 29, 30]. Cells are driven by syringes or micropumps to pass through two coplanar electrodes. When cells pass through electrodes, they will bend the electric fields set up between electrodes. The change of electric field between electrodes results in change of current flowing between
electrodes, which will be detected by the sensors. This change represents the impedance of cells. Cell cytometry can analyze thousands of cells per second [31, 32], it is suitable for high throughput impedance measuring.

![Figure 3. Block diagram of the microfluidic cell trap][32]

![Figure 4. Diagram of the microfluidic cell cytometry][31]

2.3.4 CMOS Based Impedance Sensing

Some impedance sensors have been implemented on CMOS chips instead of PCB boards to save space and power [33, 34]. There are also some CMOS readout circuits proposed in the past few years. In 2001, a circuit for measuring impedance with a relaxation oscillator was proposed [35]. Four-signal technique was used in the impedance measurement. The accuracy of this circuits is 0.1 ohms for resistors and 0.1 pF for capacitors. In 2010 a readout circuit with switch capacitor amplifier for impedance sensor was proposed [36]. This circuit has short response time and low noise. In 2015, Vooka and George [37] proposed an impedance sensor transfers impedance to digital signals.
The measurement error is from -0.15% to 0.15%. This circuit is based on dual slope technique, so it is highly resistant to the noise and interference. Another CMOS impedance sensing circuit is based on Ohms law. A human cell may be modeled as a capacitor. Biomedical research has shown that the cancer cell has a higher rate of metabolism, the membrane of a cancer cell is thinner than a normal cell. Therefore the capacitance of a cancer cell may be higher than the normal cell. This means the impedance of cancer cells at high frequencies is smaller than that of the normal cells. It is possible to differentiate between cancer cells and normal cells from the frequency response curve of cells.

Another CMOS based impedance sensor is impedance-to-frequency converter[38]. The cell under test is modeled as a resistor Rel connected in series with a capacitor Cel. Two DC current source are used to sink or source the cell. They are controlled by the output of the comparator A. When the voltage of the cell Vel decreases to the minimum value VrefL, it begins to be charged by the current source on the top, then Vel increases until it reaches its maximum value VrefH, and begins to be discharged. The frequency f of Vout is related to the impedance of the cell:

\[
f = \frac{I_0}{2C_{el}(\Delta V - 2R_{el}I_0)},
\]

Where \(\Delta V = V_{\text{refH}} - V_{\text{refL}}\). From the curve of the output voltage, we can get Rel, and substitute Rel to the equation above, we can get Cel.

Figure 5. Simplified schematic of the impedance-to-frequency converter[38]
2.4 Applications of Impedance Sensing

2.4.1 Cell Discrimination/Detection

Cell discrimination is applied in areas like blood analysis and cancer diagnosis. Traditionally cells are discriminated through optical methods. A well-established optical technique to perform cell discrimination is flow cytometry [31], which, however, suffers two drawbacks: It most often requires cell modification by markers and antibodies, and the equipment is rather expensive and complex to operate [31]. An alternative and successful approach is cell characterization by means of electrical techniques.

![Time curve of the comparator's output Vout and its input Vel](image)

Figure 6. Time curve of the comparator’s output Vout and its input Vel.[38]

Tao Sun et al. [10] proposed a circular 16-electrode array fabricated with electrodes positioned with equal spacing around a cell culture chamber. They used electrical impedance spectroscopy (EIS) for cell imaging. Federica Caselli et al. [12] proposed a similar structure to discriminate human blood cells. Multiple electrode arrays helps increase measure sensitivity to conductivity distribution which is the issue of primary concern in the associated reconstruction problem. The availability of more than two electrodes allows one to overcome the performance limitation at low frequency due to electrode polarization.

David Holmes introduced an innovative concept for leukocyte discrimination [6]. Two frequencies are the ratio of magnitude of outputs at these two frequencies is termed as “opacity”. The experiment showed that at 2 MHz and 5 MHz the opacity of three leukocytes (monocytes, lymphocytes and neutrophils) are not overlapped, which means at these two frequencies these three cells can be discriminated. From the electrical impedance experiment of normal and abnormal red blood cell, it was examined that the electrical impedance between normal and abnormal red blood cells was significantly different in magnitude and phase shift. A novel device [11] with micro-channels for flowing cells and twin microcantilever arrays for measuring the electrical impedance of a
single cell show that the normal cell can be taken apart from the abnormal cell by electrical impedance measurement. The data shows distinct differences in the impedance properties of leukocyte subpopulations at specific frequencies. A micro-EIS (MEIS) system has the ability to differentiate cells based on cellular properties associated with the plasma membrane and the intracellular contents [39-42]. This allows for detection of abnormal cells as well as classification of normal cell types. Due to the sensitivity of the measurement in response to the relative position of a cell between the impedance measurement probes, positioning the target cell precisely at a desired location is important. A microsystem that can manipulate and trap a single cell precisely between the impedance measurement electrodes has been developed and used for characterizing ion channel activities of single cells [43, 44].

![Diagram of Microfluidic Cell Cytometry](image)

Figure 7. working principle of the microfluidic cell cytometry[32]

2.4.2 Cell Counting

David Holmes *et al.* fabricated an innovative device [11] for label-free single-cell leukocyte counting by impedance sensing. Differential signals were applied to reduce noise and create a pair of positive and negative peaks for cell counting. S.Gawad *et al.* proposed a device [31] for cell counting and separation in hematology, oncology or toxicology. In the experiment, human erythrocytes and erythrocyte ghost cells (contents of cell removed) were measured. When a single cell passes the electrodes, it will generate a current peak which reflects its impedance. The impedance of the ghost cells was smaller than the normal cells. Based on the number of the current peaks, they were able to obtain the ratio of the normal cells to the ghost cells.
2.4.3 Cell Viability

An impedance-to-frequency converter [45] was proposed to monitor the viability of human lung cells. The output frequency was proportional to the impedance, which represents the coverage of cells over the electrodes. The output frequency was an indicator which was related to the value of impedance. The system can easily be integrated with digital-signal-processing circuits on chip, because only a counter is needed.

Electric cell-substrate impedance sensing (ECIS) was used for monitoring the progression of cytopathic effect (CPE) due to influenza a virus infection [14]. The entire system was obtained from Applied Biophysics. This system included an impedance test control module, an array station and culture wells at the bottom of which gold electrodes are mounted. Evangelia Hondroulis, et al. [36] designed an array-formatted whole cell based electrical impedance sensing system (EIS) that is able to show the kinetic effects of gold or silver nanoparticles single walled carbon nanotubes (SWCNTs) and cadmium oxide (CdO) when in contact with CCL-153 and RTgill-W1 cells. It measures the impedance of a monolayer of cells cultured on the surface of electrodes. This system was compact, easy to use, and capable of measuring multiple samples simultaneously in real time. Gold electrodes were used in fabrication of the sensor arrays. Wilson Roa et al. [46] used real-time cell-impedance sensing (RT-CES) system (ACEA Biosciences, San Diego, CA, USA) to measure the impedance of cells to evaluate cancer radiotherapy [47].

2.5 Electrodes Design for the Impedance Sensing

S. Gawad et al. [31] measured the differential variation of impedance $Z_{AC} - Z_{BC}$ as the cell passes consecutively into two successive channel segments shown in Figure 8.

![Figure 8. Side schematic view of the micro-channel](image)

Figure 8 shows the side schematic view of the microchannel showing a particle passing over three electrodes (A, B and C). The impedance signal is measured differentially (Z_{AC}...
– Z_{BC}). Hydrodynamic focusing is used to center the particle in the channel. (b) Impedance signal. As the distance between the two measurement areas and time t_r separating the signal spikes are known, the speed of the particle can be calculated. In this type of sequential differential sensor the reference and measurement electrodes are inherently switched, revealing uneven drift of electrode properties. The innovative design includes two arrays of electrodes instead of just two pairs of coplanar or parallel-facing electrodes. The availability of more than two electrodes allows one to overcome the performance limitation at low frequency due to electrode polarization.

Meinrad Schienle et al. [48] presented a single sensor consists of interdigitated gold working electrodes. Electrode width and spacing are 1 μm, total sensor diameter is 250 μm. The chip was realized in a 5V, 0.5μm, 2 metal CMOS process extended with extra process steps to form gold sensor electrodes [49]. The chip occupies 6.4 mm × 4.5 mm. The electrical behavior of the chip is characterized for a specified range of currents between 1 pA and 100 nA. In a test mode, these currents are forced into the circuits via a test input using an external current source. The electrode proposed by Xiaoqiu Huang et al. [9] is 50 μm × 50 μm, which is small enough to monitor behaviors of single cells. The electrode arrays were fabricated in standard CMOS process.

2.6 Challenges of Cell Impedance Sensing and Potential Solutions

2.6.1 Long-Term Monitoring

A high-density sensor array complementary metal-oxide-semiconductor (CMOS) chip [8] is presented with 16,000 pixels, a frame rate of 2 kiloframes per second and a pitch of 7.8 μm × 7.8 μm for imaging of neural activity. A mismatch-canceling calibration circuitry with current mode signal representation is used. Total area 6.5 mm × 5.2 mm.

Recording the activity of neural networks has always been a central goal in neurobiology and is gaining importance in cell-based pharma screening. Compared to traditional ways, the advantage of using a high-density electrode array to detect the motion of neurons is its high throughput and suitability for long-term monitoring. Using an electrode array makes it suitable to detect neuron network, which means it can monitor a group of neurons in parallel. The design of this electrode array chip is based on the fact that the action potentials to be considered correspond to sodium and potassium ion currents through ion channels in the cell membrane. Consequently, the idea behind these approaches is to monitor these ion currents instead of the transmembrane voltage.

H.R. Siddiquei et al. [15] cultured DF-1 cells (derived from chicken embryonic fibroblasts, CEF cells) in Dulbecco’s Modification of Eagle’s Medium (DMEM) media. The cells’ growth rate was monitored over a period of 3 days by continuous impedance measurements using an impedance analyzer. This measuring method provides several advantages: (i) it is less time consuming compared to conventional methods, (ii) it is possible to automate and quantify cell morphology measurements, and (iii) the fluctuating impedance pattern can be used as signature for a cell [50].
2.6.2 Real-time Monitoring
Real-time monitoring of live cells in lab-on-chip systems has proven useful in various applications [2, 31, 46, 51]. In pharmaceutical research, it allows, for example, an effective screening of new drug candidates, thus reducing costs and the number of necessary animal experiments. Another promising application is the detection of environmental toxins, where mammal or even human-derived cell lines make highly sensitive yet broadband indicators for substances that could harm man or animal [45].

2.6.3 High Throughput Readout
A micromachined impedance spectroscopy flow cytometer [31] measured the spectral impedance of individual cells or particles and allows screening rates over 100 samples per second on a single-cell basis. Instead of scanning the entire electrode array, the approach presented here provides a reconfigurable electrode/readout-channel routing to select an arbitrary subset of electrodes for recording and stimulation. This enables both, low-noise signal recording, and cellular or subcellular resolution, since the front-end circuitry can be placed outside the array, where sufficient area for a low-noise circuit implementation is available. Special post-CMOS processing and packaging steps are required to render the chip capable of operating in physiological solution with cell cultures on top. The 2-mask post-processing step includes sputtering Ti:W (20 nm) as adhesion and platinum (200 nm) as electrode materials and patterning of the metals with the help of a lift-off process. The size of the chip is 7.5 × 6.1 mm, the size of the electrode array is 2.0 × 1.75 mm.

Lim Lay Keng et al. [52] presented the CMOS implementation of a high throughput biosensor array that consists of 96 × 96 electrodes. It is a single cell-based biosensor, which is targeted to achieve both detection and identification of cell type. The magnitude and phase of the cell impedance are measured from 100 Hz to 100 KHz. A grand challenge for circulating cancer cell (CTC) detection technologies was formulated and published in the Lab-on-a-chip journal in 2011. It proposed a multipoint addressable design with high throughput electro-chemical detection [53].

2.6.4 Improving Accuracy
The main design challenge of biosensors is to increase the SNR and DR while minimizing the complexity of both the assay and the detector [54]. Differential measurement is one solution to improve the accuracy. The solution resistance and the surface capacitance are affected by ion concentration and temperature. Using differential structure can reduce the measurement error results from these factors. [55]
Figure 9. Schematic of differential measurement[55]
CHAPTER 3 INTEGRATED IMPEDANCE SENSING USING A SILICON COCHLEA

Figure 10 shows the system diagram of an impedance sensor. AC voltage is applied across the electrodes on the bottom of the culture well. When the cells are attached to the electrodes, they block electric field generated by the voltage source, thus reducing the current flowing through the electrodes. The impedance sensing circuits can detect this change and obtain the cell impedance from it. The ramp ADC is used to transform the output of the impedance sensing circuits to digital data which is easier to be stored in the memory of the computer.

3.1 Silicon Cochlea based on Tau-cell in 0.5 μm process

The impedance sensing circuit can be the silicon cochlea, which is derived from the biological cochlea. It is used for multi-frequency impedance sensing. The silicon cochlea is composed of several series connected low pass filters. The filters have different cut-off frequencies. The input signals are divided into several components of different frequencies. These components are applied on the cells to obtain the impedance based on Ohm’s law. There are two methods have already been used for impedance sensing: Fast Fourier Transformation (FFT) and Frequency Response Analysis (FRA). Compared to FFT, the silicon cochlea saves power because FFT needs to be implemented by the high speed digital circuits. Compared to FRA, the silicon cochlea is more efficient because it is able to measure the impedance at different frequencies simultaneously. Figure 10 shows the block diagram of the silicon cochlea. It is composed of four series connected low pass filters. The cut-off frequencies are from 100 Hz to 100 kHz in logarithmic scale because previous test results [5, 6] have shown that the human cancers cells have lower impedance than the normal cells in this frequency span.

![Figure 10. Block diagram of the impedance sensor](image-url)
The low pass filters in the silicon cochlea are working in subthreshold region so it can work in low voltage supply and saves some power. Tau-cell is used in this design, because it is suitable for the synthesis of the subthreshold circuits. In this design, the filter is composed of two cascaded tau-cells[56]. Figure 11 is the schematic of one tau-cell. Its main structure is a translinear loop composed of four transistors M_1, M_2, M_3 and M_4. The capacitor C and current I_0 determines the time constant of the tau cell: $\tau=CU_T/I_0$ where U_T is the thermal voltage (25.9 mV). I_1 is the output current of this tau cell, while I_{i+1} is the output current of the next stage, I_{i-1} is the output current of the tau cell before this stage. A_i is the feedback coefficient of stage i, the feedback circuit is shown in . The relationship of I_{i-1}, I_i and I_{i+1} is:

$$I_{i-1} = \left[\tau_s + 1 - A_i\right]I_i + A_i I_{i+1},$$

The transfer function of the tau cell is:

$$T_i = \frac{I_i}{I_{i-1}} = \frac{1}{\left[\tau_s + 1 - A_i\right] + A_i T_{i+1}},$$

where T_{i+1} is the transfer function of the next stage. The transfer function of the filter is the production of all the cascaded Tau cells [56]. In this design, the low-pass filters have two cascaded Tau cells, the diagram is shown in Figure 15. In Figure 15, I_2 is the output of the filter. When $\tau_1 = \tau_2, A_1=2-1/Q$, the transfer function of the two-order low-pass filter based on Tau cell can be written as:

$$T = \frac{1}{\tau^2 s^2 + \tau s / Q + 1},$$

The silicon cochlea is made up of 4 series-connected low-pass filter based on Tau-cell. Figure 16 shows the block diagram of the silicon cochlea. The cut-off frequency of the four filters are 100 kHz, 10 kHz, 1 kHz and 100 Hz. The cut-off frequency is determined by the bias current I_{bias} and capacitors C_1 and C_2. The bias current and capacitors’ values are shown in Table 1. Figure 17 shows the chip picture of the silicon cochlea in 0.5 μm process. The chip occupies 1.5 mm × 1.5 mm, and it has 40 pins. The voltage supply is 5 V.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Cut-off frequency</th>
<th>I_{bias}</th>
<th>$C_{1,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter1</td>
<td>100 kHz</td>
<td>50 nA</td>
<td>100 fF</td>
</tr>
<tr>
<td>Filter2</td>
<td>10 kHz</td>
<td>2 nA</td>
<td>100 fF</td>
</tr>
<tr>
<td>Filter3</td>
<td>1 kHz</td>
<td>200 pA</td>
<td>100 fF</td>
</tr>
<tr>
<td>Filter4</td>
<td>100 Hz</td>
<td>20 pA</td>
<td>100 fF</td>
</tr>
</tbody>
</table>
Figure 11. Basic structure of a Tau-cell

Figure 12. Block diagram of silicon cochlea

Figure 13. The feedback circuit of the Tau-cell

Figure 14. Block diagram of two-stage low-pass filter based on tau cells
Figure 15. Schematic of the Tau-cell based low pass filter

Table 2. Size of the Transistors of tau-cell.

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn1,2,3,4,5,6,8,11,12,13,14,15</td>
<td>12 μm / 12 μm</td>
</tr>
<tr>
<td>Mn9,10</td>
<td>24 μm / 12 μm</td>
</tr>
<tr>
<td>Mn16</td>
<td>1.5 μm / 12 μm</td>
</tr>
<tr>
<td>Mn9,10</td>
<td>24 μm / 12 μm</td>
</tr>
<tr>
<td>Mn16</td>
<td>1.5 μm / 12 μm</td>
</tr>
<tr>
<td>Mn9,10</td>
<td>24 μm / 12 μm</td>
</tr>
<tr>
<td>Mn16</td>
<td>1.5 μm / 12 μm</td>
</tr>
<tr>
<td>Mn9,10</td>
<td>24 μm / 12 μm</td>
</tr>
<tr>
<td>Mn16</td>
<td>1.5 μm / 12 μm</td>
</tr>
<tr>
<td>Mn9,10</td>
<td>24 μm / 12 μm</td>
</tr>
<tr>
<td>Mn16</td>
<td>1.5 μm / 12 μm</td>
</tr>
<tr>
<td>Mn9,10</td>
<td>24 μm / 12 μm</td>
</tr>
<tr>
<td>Mn16</td>
<td>1.5 μm / 12 μm</td>
</tr>
<tr>
<td>Mn9,10</td>
<td>24 μm / 12 μm</td>
</tr>
<tr>
<td>Mn16</td>
<td>1.5 μm / 12 μm</td>
</tr>
<tr>
<td>Mn9,10</td>
<td>24 μm / 12 μm</td>
</tr>
<tr>
<td>Mn16</td>
<td>1.5 μm / 12 μm</td>
</tr>
</tbody>
</table>
Figure 16. Block diagram of the silicon cochlea

Figure 17. Photomicrograph of the silicon cochlea in 0.5 μm process.

Table 3. Aspect ratio of the transistors in Figure 18.

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Aspect Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1,2</td>
<td>1.5 μm/12 μm</td>
</tr>
<tr>
<td>MN1-4, MN6-9, MN11-14, MN16-20, MN15, MN17-20</td>
<td>1.5 μm/12 μm</td>
</tr>
<tr>
<td>MP3</td>
<td>3 μm/12 μm</td>
</tr>
<tr>
<td>MP4</td>
<td>12 μm/12 μm</td>
</tr>
<tr>
<td>MN5</td>
<td>6 μm/12 μm</td>
</tr>
<tr>
<td>MN10</td>
<td>30 μm/12 μm</td>
</tr>
</tbody>
</table>
Table 4. Bias current of the silicon cochlea in Figure 18.

<table>
<thead>
<tr>
<th>Bias Current</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{b1}</td>
<td>100 nA</td>
</tr>
<tr>
<td>I_{b2}</td>
<td>10 nA</td>
</tr>
<tr>
<td>I_{b3}</td>
<td>1 nA</td>
</tr>
<tr>
<td>I_{b4}</td>
<td>100 pA</td>
</tr>
</tbody>
</table>

Figure 18 shows the schematic of the bias circuit of the silicon cochlea. The bias current of the filters in Figure 18 are shown in Table 4. The input bias current of the silicon cochlea I_b is 100 pA. The bias current of the filters are obtained by amplifying I_b through the current mirror. The channel length of the transistors in Figure 19 are 12 μm which is a big value compared to the feature length of 0.5 μm process, so the channel length modulation has little effect on the current mirror. There are four identical silicon cochleae on the chip so that this chip can measure the impedance of four culture wells simultaneously. The reference voltage V_{ref} and V_{reff} are used to make sure that the circuits are working properly in the subthreshold region.

Five chips were fabricated for the test. They were numbered from 1 to 5. Chip No.3 didn’t work because the bonding wires might be broken when the chip was open to take pictures of the layout. When testing, the SR785 signal analyzer provided a 20 mV input signal. The sensitivity of SR570 current amplifier is 1 μA/ V. Figure 19 to Figure 29 show the gain response and phase response of the four filters of the silicon cochlea chip No.1, No.2, No.4 and No.5 respectively. The tested cut-off frequency of the four filters and their expected cut-off frequency in the design are listed in Table 5.
Table 5. Expected cut-off frequency and tested cut-off frequency of the filters in silicon cochlea on 0.5 μm process.

<table>
<thead>
<tr>
<th>No of Chip</th>
<th>No. of Filter</th>
<th>Expected f_{-3db}</th>
<th>Tested f_{-3db}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip 1</td>
<td>Filter 1</td>
<td>100 kHz</td>
<td>62.3 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 2</td>
<td>10 kHz</td>
<td>62.3 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 3</td>
<td>1 kHz</td>
<td>5.7 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 4</td>
<td>100 Hz</td>
<td>19.6 kHz</td>
</tr>
<tr>
<td>Chip 2</td>
<td>Filter 1</td>
<td>100 kHz</td>
<td>79.7 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 2</td>
<td>10 kHz</td>
<td>41.7 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 3</td>
<td>1 kHz</td>
<td>4.8 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 4</td>
<td>100 Hz</td>
<td>4.8 kHz</td>
</tr>
<tr>
<td>Chip 4</td>
<td>Filter 1</td>
<td>100 kHz</td>
<td>55.8 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 2</td>
<td>10 kHz</td>
<td>55.8 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 3</td>
<td>1 kHz</td>
<td>3.8 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 4</td>
<td>100 Hz</td>
<td>3.8 kHz</td>
</tr>
<tr>
<td>Chip 5</td>
<td>Filter 1</td>
<td>100 kHz</td>
<td>70.4 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 2</td>
<td>10 kHz</td>
<td>54 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 3</td>
<td>1 kHz</td>
<td>50.6 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 4</td>
<td>100 Hz</td>
<td>1.4 kHz</td>
</tr>
</tbody>
</table>
Figure 19. Frequency response of chip 2 channel 1, amplitude

Figure 20. Frequency response of chip 4, amplitude

Figure 21. Frequency response of chip 5, amplitude
Figure 22. Frequency response of chip 1 channel 2, amplitude

Figure 23. Frequency response of chip 1 channel 3, amplitude

Figure 24. Frequency response of chip2 channel 2, amplitude
Figure 25. Frequency response of chip 2 channel 3, amplitude

Figure 26. Frequency response of chip 4 channel 2, amplitude

Figure 27. Frequency response of chip 4 channel 3, amplitude
Figure 28. Frequency response of chip5 channel 2, amplitude

Figure 29. Frequency response of chip5 channel 3, amplitude

Figure 30. Test results of filter1 (cut off frequency supposed to be 100 kHz)
The cut-off frequency is the most important parameter to assess the performance of the low pass filter in the silicon cochlea, because it determines the output accuracy of the filters. There are four low pass filters in each silicon cochlea, and they are numbered. The cut-off frequencies of the filters in the silicon cochlea are 100 kHz (Filter1), 10 kHz (Filter2), 1 kHz (Filter3) and 100 Hz (Filter4). There are three identical silicon cochlea on each chip, and four chips were tested, so there are 12 samples of each filter. The measured cut-off frequencies of Filter1 are plotted as a histogram shown in Figure 30. This histogram shows that most samples have a noticeable deviation to the desired value (100 kHz). To make sure if the process variation and circuit mismatch are the reasons cause the deviation, Monte Carlo simulation results are compared with the test results.

Test results of filter 1 show that the cut off frequency is mostly at 5 kHz, while the Monte Carlo simulation result show that the cut off frequency is mostly at 80 kHz. This difference means that besides process variation there are some other reasons cause the deviation of the cut off frequency. Further research shows that the parasitic capacitance is the main factor that cause the decrease of the cut off frequency. Table 6 to Table 8 show the average value and standard deviation of the cut off frequencies of the filters from test results and Monte Carlo simulation. Simulation results have also shown that process variation has more effect on the deviation of the cut off frequency.

3.2 Silicon Cochlea Design in a 130 nm Process

We designed the silicon cochlea in a 6 metal 1 poly 130 nm process. The schematic of the Tau-cell in Figure 33 is almost the same as the in the 0.5 μm process, the sizes of the transistors are different. Table 9 shows the sizes of the transistors in the tau-cell based filter. The only difference is the bias current is sinking instead of draining.
The structure of the silicon cochlea in 130 nm is the same as that in 0.5 µm, which is shown in Figure 2. Table 10 shows the bias current, cut-off frequency and load capacitor of the filters in the 130 nm process.

Figure 34 shows the frequency response of silicon cochlea (chip 4) in 130 nm process. The cut off frequency of filter 1, 2, 4 are supposed to be 100 kHz, 10 kHz, and 100 Hz, respectively. Table 11 shows the expected cut-off frequencies of the filters and the tested values. Test results show that since the parasitic capacitors are considered, the performance of the silicon cochlea in 130 nm is better than that in 0.5 µm process. The cut off frequency of filter 2 is much larger than the desired value, this is because of the current mirror’s channel length modulation.

![Figure 32. Monte Carlo simulation of filter1 with 8.34 pF load](image)

Table 6. Average value and standard deviation of the cut off frequency from the test results.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Average/ Hz</th>
<th>Standard Deviation/ Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter1</td>
<td>32.6k</td>
<td>27.5k</td>
</tr>
<tr>
<td>Filter2</td>
<td>29.7k</td>
<td>22.4k</td>
</tr>
<tr>
<td>Filter3</td>
<td>19.3k</td>
<td>25.3k</td>
</tr>
<tr>
<td>Filter4</td>
<td>15.9k</td>
<td>18.6k</td>
</tr>
</tbody>
</table>

Table 7. Monte Carlo simulation of the filters with parasitic capacitors (only circuit mismatch is considered).

<table>
<thead>
<tr>
<th>Filter</th>
<th>Average/ Hz</th>
<th>Standard Deviation/ Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter1</td>
<td>1.68k</td>
<td>421</td>
</tr>
<tr>
<td>Filter2</td>
<td>2.29k</td>
<td>713.5</td>
</tr>
<tr>
<td>Filter3</td>
<td>782.4</td>
<td>45.6</td>
</tr>
<tr>
<td>Filter4</td>
<td>71.3</td>
<td>9.5</td>
</tr>
</tbody>
</table>
Table 8. Monte Carlo simulation of the filters with parasitic capacitors (only process variation is considered).

<table>
<thead>
<tr>
<th>Filter</th>
<th>Average/ Hz</th>
<th>Standard Deviation/ Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter1</td>
<td>1.62k</td>
<td>409.5</td>
</tr>
<tr>
<td>Filter2</td>
<td>2.23k</td>
<td>677.3</td>
</tr>
<tr>
<td>Filter3</td>
<td>737.3</td>
<td>396.2</td>
</tr>
<tr>
<td>Filter4</td>
<td>66.3</td>
<td>52.4</td>
</tr>
</tbody>
</table>

Figure 33. Schematic of Tau-cell in 0.13 μm process

Table 9. Sizes of the transistors in 130 nm process

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn1,2,3,4,5,6,8,11,12,13,14</td>
<td>2.4 μm/ 2.4 μm</td>
</tr>
<tr>
<td>Mn9,10</td>
<td>4.8 μm/ 2.4 μm</td>
</tr>
<tr>
<td>Mn15</td>
<td>2.4 μm/ 2.4 μm</td>
</tr>
<tr>
<td>Mn16</td>
<td>0.6 μm/ 2.4 μm</td>
</tr>
<tr>
<td>Mp1</td>
<td>1.8 μm/ 2.4 μm</td>
</tr>
<tr>
<td>Mp2</td>
<td>3 μm/ 2.4 μm</td>
</tr>
<tr>
<td>Mp3,4</td>
<td>2.4 μm/ 2.4 μm</td>
</tr>
</tbody>
</table>
Table 10. Cut-off frequency, bias current and load capacitors of the filters in 8RF.

<table>
<thead>
<tr>
<th>Filter</th>
<th>Cut-off frequency</th>
<th>Ibias</th>
<th>Cl2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filter1</td>
<td>100 kHz</td>
<td>1.2 nA</td>
<td>153 fF</td>
</tr>
<tr>
<td>Filter2</td>
<td>10 kHz</td>
<td>1.2 nA</td>
<td>2.6 pF</td>
</tr>
<tr>
<td>Filter3</td>
<td>1 kHz</td>
<td>120 pA</td>
<td>21.3 pF</td>
</tr>
<tr>
<td>Filter4</td>
<td>100 Hz</td>
<td>2 pA</td>
<td>53.3 pF</td>
</tr>
</tbody>
</table>

Table 11. Expected cut-off frequency and tested cut-off frequency of the filters in the silicon cochlea.

<table>
<thead>
<tr>
<th>No of Chip</th>
<th>No. of Filter</th>
<th>Expected f-3db</th>
<th>Tested f-3db</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip 4</td>
<td>Filter 1</td>
<td>100 kHz</td>
<td>68 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 2</td>
<td>10 kHz</td>
<td>55 kHz</td>
</tr>
<tr>
<td></td>
<td>Filter 3</td>
<td>1 kHz</td>
<td>No Data</td>
</tr>
<tr>
<td></td>
<td>Filter 4</td>
<td>100 Hz</td>
<td>100 Hz</td>
</tr>
</tbody>
</table>

Figure 34. Phase response of the filters on chip 3 in 130 nm process
CHAPTER 4 CURRENT MODE INTEGRATED IMPEDANCE SENSING

*Portions of this chapter originally published as:

4.1 On-chip Lock-in Amplifier

The lock in amplifier (LIA) is an instrument for measuring the reactance i.e. both the real and the imaginary parts of the impedance. Measuring the cell impedance is useful for cancer diagnosis, because biomedical research has proved that the tumor cells have lower impedance than the normal cells. There has been some previous work on cell impedance sensing. ECIS is a method to measure impedance and capacitance of the cell layer. Previous work has shown that the cell impedance can be measured by a lock-in amplifier with multi electrode arrays.

Fast and portable cancer diagnosis requires incorporating the ECIS system onto a silicon IC chip, because the commercial LIA is bulky and costly. On chip LIAs will make biomedical analysis easier and cheaper.

There has been some work on the silicon LIAs [57-60]. However, all of them are in voltage mode. It is difficult for them to obtain the magnitude and phase of the input signal in analog domain because it is difficult to implement pythagorator and arctangent circuits in voltage mode. Consequently, most impedance sensing systems require digital signal processing (DSP) modules to calculate the magnitude and the phase from the outputs of the LIA which are in-phase and quadrature-phase components. In this thesis, we propose a current-mode LIA which can calculate the magnitude and phase of the input signal directly. This structure saves power and chip area because digital signal processing (DSP) module is not needed in this proposed structure.

The LIA has four channels. Each channel has two sub-channels, one is for measuring the real part of the impedance, and the other one is for the imaginary part. Each channel contains a mixer and a low pass filter. The bandpass filter and phase shifter are used to generate the LO signals. The transconductors are used to transfer the voltage into current. The pythagorator obtains the magnitude of the impedance, while the divider obtains the tangent of the impedance. The phase of the impedance is derived from the arctangent of the divider output.
The cutoff frequency of the four channels are different, so that the LIA can measure the impedance of the cells at different frequency simultaneously. The frequency resolution is dictated by the frequency divided by the number of channels.

The mixer of the LIA is a 4-Quadrant current mode multiplier. It is derived from a 2-Quadrant multiplier. In the test, the inputs are generated from on-chip transconductors. Those transconductors are composed of an OPAMP, a single MOS transistor and a resistor. One input AC signal is transferred into two differential AC current. The mixer is in current mode, while the signal generator in the lab are in voltage mode. So the off transconductors are made on vector board for generating the current input for testing the mixer. Figure 37 shows the schematic of the transconductor, and Table 12. The efficient number of bits (ENOB) is a parameter to assess the output accuracy of the LIA. When designing a LIA, the mixer’s performance determined the accuracy of the LIA. Previous research [5, 14] has shown that in order to tell the difference between the normal cells and the cancer cells, the ENOB of the LIA show be above 5 bits. Table 13 shows the measured ENOB of the mixer. The test results show that the mixer’s performance has achieved the requirement for cell discrimination.

Figure 35. System diagram of the cell impedance sensor with readout circuits
Figure 36 Block diagram of the lock-in amplifier

Figure 37. Schematic of the 4-Q mixer in the LIA

Table 12. Transistor size of the 4-Q mixer.

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1,2,3,4</td>
<td>6 µm/ 1 µm</td>
</tr>
<tr>
<td>MP5~12</td>
<td>20 µm/ 2 µm</td>
</tr>
<tr>
<td>MN1,2,3,4</td>
<td>3 µm/ 1 µm</td>
</tr>
</tbody>
</table>
Table 13. Efficient number of bits (ENOB) of the mixer.

<table>
<thead>
<tr>
<th>Frequency/ Hz</th>
<th>ENOB/ bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 k</td>
<td>5.94</td>
</tr>
<tr>
<td>10 k</td>
<td>5.40</td>
</tr>
<tr>
<td>1 k</td>
<td>5.40</td>
</tr>
<tr>
<td>100</td>
<td>6.32</td>
</tr>
</tbody>
</table>

The divider is derived from 2-Q translinear multiplier. Four pmos transistors form a translinear loop, and the aspect ratio of the transistors are 20 μm/ 2 μm. The divider obtains the tangent of the phase by making I_Y divided by I_X. The circuit is the same as the 2-quadrant multiplier in figure 6. $I_1 = I_Y$, $I_2 = 1$ nA, $I_3 = I_X$, so the output is:

$$I_4 = \frac{I_1 I_2}{I_3},$$

$$I_X = \frac{A^2}{I_3} \cos(\varphi),$$

$$I_Y = \frac{A^2}{I_3} \sin(\varphi),$$

$$I_{out} = I_2 \tan \varphi = 1 \times 10^{-9} \tan \varphi,$$

This output signal will be transformed into φ after the arctangent circuit.

Figure 38. Layout picture of the lock-in amplifier
Figure 39. Schematic of the 2-Q multiplier[61]

Figure 40. Output current of the 2Q multiplier versus lin2

Figure 41. Output current of the 2Q multiplier versus lin3
The LIA was designed in a 0.18 \(\mu \)m process. There were five chips tested. The multiplier was tested by sweeping input current \(I_{in2} \) and \(I_{in3} \). DC sweep test result showed that the output current \(I_0 \) is in positive ratio to \(I_{in3} \), which is in consistence to the simulation results. \(I_0 \) shows a random response to \(I_{in2} \), but according to the equation, the output current should also be in positive ratio to \(I_{in2} \). The reason that causes this difference is unknown, but could be due to process variations and layout.

A current mode bandpass filter is used in this design. The transfer function of a 2-order bandpass filter is:

\[
H(s) = \frac{s + \frac{\tau}{Q}}{s^2 + \frac{\tau}{Q} + \frac{\tau}{s + 1}},
\]

The bandpass filter cannot be synthesized directly, so a 2-order low pass filter and a 1-order low pass filter are used to generate a bandpass filter. Figure 43. Block diagram of the 2-order MITE based bandpass filter shows the block diagram of the 2-order multiple input translinear element (MITE) filter. The equation of the synthesis is shown below:

\[
X_2 = X_1 - Y_1 = \frac{\tau}{Q}s^2 + \frac{\tau}{Q}s + \frac{\tau}{s + 1} X_1 = \frac{\tau}{Q}(Qrs + 1) X_1,
\]

\[
Y_2 = Y_1 \times X_2 = \frac{\tau}{Q} X_2 = \frac{\tau}{Q} X_1 = \frac{\tau}{Q} X_1,
\]

\[
\frac{Y_2}{X_1} = \frac{Y_2}{X_2} \times \frac{X_2}{X_1} = \frac{\tau}{Q} \frac{(Qrs + 1)}{Q} \frac{1}{Q} \frac{\tau}{s + 1} = \frac{\tau}{Q} \frac{s}{s + 1}.
\]

Figure 44 shows the schematic of the bandpass filter. Its output is connected to the input of the multiplier in Figure 39, so that the DC current of the bandpass filter is the same as that of the multiplier, which is 32 nA. In order to ensure the filter is working in weak inversion, the aspect ratios of all the PMOS transistors in the bandpass filter are 40 \(\mu \)m/3 \(\mu \)m. The aspect ratios of all the NMOS transistors are 24 \(\mu \)m/3 \(\mu \)m.
Figure 43. Block diagram of the 2-order MITE based bandpass filter

Figure 44. The schematic of the 2-order MITE based bandpass filter
4.2 Ramp ADC

Overview of the Architecture of Current-Mode Ramp ADC

Our goal is to design a 10-bit low power, multi-channel current ramp ADC with a sampling rate of 200 KHz. The figure below shows the block diagram of the current mode ramp ADC. The main modules comprise a current ramp generator, current comparator, delay lock loop (DLL) and counter. A two-step conversion technique is used in this ADC. The digital counter is used for coarse conversion, while the DLL is used for fine conversion. When the input current is sampled and added to the input of comparator, the ramp generator begins to work. The comparators are then used to compare the input signals with the current provided by ramp generator. When the output of the ramp generator becomes larger than the input signal, the comparator’s output changes from low to high, which will trigger the memory to record the output of the counter at that time. The output of counter is not consistent with the output of ramp generator, so the digital value recorded by the memory is the result of coarse conversion of ADC. The fine conversion is accomplished by DLL. In the next section we discuss in detail the design of the current mode ramp generator and current mode comparator.

Current Mode Ramp Generator

Figure 47 shows the schematic of the current mode ramp generator. In the integration phase, the input current source is charging the capacitor at the input of operational amplifier. As the input voltage of operational amplifier increases, the output current increases accordingly. In the Figure 47, the channel length of the current mirror is large enough so that Early effect can be neglected. The output current of ramp generator may be given by:

$$I_{or} = \frac{I_s}{C R_s} t,$$
where I_{oc} is the output current of ramp generator, I_g is the input current, C is the capacitor connected to the input of the operational amplifier (opamp), R_S is the resistor connected to the source follower and t is the time. I_S is decided by the amplitude of the silicon cochlea output currents. The value of C, R_S and I_g depends on the trade-off between the power consumed and the chip area. The capacitor is implemented on chip, it should therefore not occupy too large an area. The capacitor is chosen to be 1 pF based on these design considerations. I_g is provided by a bandgap reference source. In order to save power, we do not want a large input current, so I_g is chosen to be 20 nA. The output of comparator changes from low to high when I_{in} crosses 15 μA. $I_{in} = I_{or} - I_{oc}$, where I_{oc} is the amplified output current of silicon cochlea, I_{or} is the output of ramp generator. I_{oc} is a constant value ranges from 0 to 10 μA in each integration period, so we need to make I_{or} increase from 15 μA to 25 μA. A Cascode current mirror is used to increase the linearity of ramp generator. Since the ramp generator needs to drive multiple comparators, it has multiple outputs.

Current Mode Comparator

Figure 48 shows the low power high speed comparator used in this ADC. When the input current increases to a certain value, the comparator’s output will change from 0 to V_{dd}. Positive feedback increases the charging speed and gain of current amplifier. The resistor improves matching in the current mirror. The aspect ratio of transistors M1-M4 determine the current gain, and R_0 is used for reducing the DC offset. Transistors M9 to M12 comprise two inverters. These inverters are used to ensure the output signal can achieve rail-to-rail quickly.

![Figure 46. Block diagram of the ramp ADC](image-url)
Figure 47. Schematic of ramp generator

Figure 48. Schematic of current comparator
Gray Code Counter

A Gray code counter is used for coarse conversion in this design. The advantage of Gray code counter is that only one digit of its output will change in each clock period. This prevents logic competition and adventure which causes the circuit receiving the output of counter to go through states that are out of Gray code sequence. There are 2 D flip-flops in each stage. This counter is only composed of feed-forward stages. The flip-flops are divided into two groups. The upper group works as T flip-flops with XOR gates, while the lower group is used for generating gray codes. It is a partly synchronous counter. Ripple of this counter is smaller than traditional gray-code counters, because of its synchronous operation. The rate of change in upper bits is reduced in this structure. This structure also reduces the number of logic gates and power consumption.

![Figure 49. Schematic of a 4-bit Gray code counter][62]

Delay Locked Loop

In our design, the sampling rate is 200 KHz. For a traditional 10-bit ramp ADC, if the sampling rate is 200 KHz, the clock frequency of the counter, f_{CLK} is $2^{10} \times 200$ KHz, which is approximately 205 MHz. The circuit will consume a lot of power when it is working at that high frequency. In our design, we want to keep the power consumption as low as possible, because we are designing an ADC for an impedance sensing chip which will be driven by battery (i.e. portable). A technique has been proposed and used in this design to loosen the limit of sampling rate. The delay locked loop (DLL) is used to reduce the number of bits in the counter, so that the clock frequency required by the counter can be reduced.

The DLL is composed of two channels, channel A, channel B, and a phase detector. Channel A consists of a group of inverters. Channel B consists of a group of inverters connected with a D flip flop. The outputs of the inverters in group A are the results of fine conversion. If the comparator produces a rising edge which will trigger the memory between the counter counts n-1 and n ($0 < n < 2^{10}$), the outputs of DLL will also be recorded. The delay time of the inverters are controlled by the phase detector so the output of the DLL will be synchronous with the output of the digital counter.
The main advantage of the DLL is that it does not work until the comparator’s output changes from low to high, which saves the power of the chip. The DLL begins to propagate this high signal through the inverter chain with a time interval \(1/(m+p)f_{\text{clk}}\), where \(m\) is the number of inverters in channel A and \(p\) is the number of inverters in channel B. The number \(m\) determines the factor of clock frequency we can reduce. The choice of \(m\) depends on the trade of stability of DLL and the power we want to save. Based on this tradeoff, \(m\) is equal to 32 in our design. The clock frequency of our ADC will be reduced from 205 MHz to 6.4 MHz.

Test Results of the Ramp Generator:

The ramp generator in the ADC was fabricated in 130 nm process and tested. Figure 50 shows the test setup for the ramp generator. The circuit in the dashed area is the ramp generator on the chip. The switches are used to control the charging and discharging of the integration capacitor \(C_{\text{int}}\). When the \(C_{\text{int}}\) is charging, the output of the ramp generator. This output \(I_{\text{or}}\) is compared with the reference input \(I_{\text{ref}}\) of the comparator. When \(I_{\text{or}}\) becomes larger than \(I_{\text{ref}}\), the comparator will generate a rising pulse to stop the counter and store the output of counter into the memory. The MCP6024 in Figure 50 is a commercial amplifier used as a buffer, because the output of the ramp generator will be affected seriously by the parasitic components from the pads and package.

The output of the ramp generator is measured when it is in charging period. Figure 51 shows the curve of \(I_{\text{or}}\) versus time when the switch is controlled by a clock signal, the rising edge of the curve is compared with the ideal curve to get the linear error of the ramp generator. The linearity error is shown in Figure 52.

\[
I_{\text{or}} = \frac{I_g}{CR_t} - I_t,
\]

where \(I_g\) is the input current, \(C\) is the capacitor connected to the input of the operational amplifier (opamp), \(R_s\) is the resistor connected to the source follower and \(t\) is the time. The input range of the 10-bit ramp ADC is 85 \(\mu\)A, so the LSB is 0.083 \(\mu\)A. The maximum error of the ramp generator is 0.6 \(\mu\)A. The effective resolution is about 7 bits.
Figure 51. Tested rising edge of I_{out} and the ideal I_{out}

Figure 52. Linearity error of the ramp generator
CHAPTER 5 CONCLUSION AND FUTURE WORK

In this thesis, two CMOS circuit architectures are proposed for cell impedance measurement. The silicon cochlea and the lock in amplifier (LIA) are designed to measure the impedance at different frequencies simultaneously. The silicon cochlea connected to the ramp ADC can obtain the magnitude of the cell impedance, while the LIA can obtain both the magnitude and the phase of the impedance.

The silicon cochlea is designed to measure the cell impedance. The silicon cochlea designed in this work is composed of series connected 2-order low pass filters. These filters are based on tau-cell in sub-threshold mode. The cutoff frequencies of the filters are in logarithmic scale from 100 kHz to 100 Hz. The silicon cochlea transfer the input signal into several sinusoidal signals. Two silicon cochleae are needed for cell impedance measurement. One is for analyzing the current flowing through the cells, another one is for generating the reference frequency. The silicon cochlea is designed and fabricated in 0.5 µm and 0.13 µm process. Monte Carlo simulation results showed the circuit mismatch only contributes 10% of the frequency deviation of the filters, while the process variation causes much more deviation the circuit mismatch. The test results showed that the cutoff frequency of the 100 kHz and 10 kHz filter are reduced to below 10 kHz because of the parasitic capacitors.

The ramp ADC was designed for multi-frequency impedance sensing. The silicon cochlea has four channels to measure the impedance at four frequencies simultaneously. The simulation results show that the ramp generator and the capacitor has achieved 10 bit accuracy. The test results show that the resolution of the ramp ADC is 7 bit, suitable for the required application.

An innovative low-power multi-frequency on-chip LIA was also proposed. It measures the complex impedance directly in analog domain and does not require a DSP module as traditional LIAs do. Results show a power consumption of 207.7 µW, with the largest magnitude deviation being less than 7 %, and the largest phase deviation less than 4%. Monte Carlo simulation shows the LIA’s mismatch is acceptable in 80% of the cases. The core of the LIA system, the bandpass filters were fabricated and experimental spectrums show excellent agreement with simulated results.

To summarize, the novel contributions of this thesis included:

1. Design of a silicon cochlea based impedance measurement system in a 0.5µm and 130nm process.
2. Design of a current mode lock-in amplifier in a 180nm process.
3. Design of a ramp ADC in a 180nm process.
Future Paths

There are many possible future paths to extend this thesis work. Future work could include the design of high Q filters to improve the accuracy of the impedance measurement. The arctangent circuit can be implemented as a polynomial function by using Taylor approximation, where the polynomial function could be implemented by multiple input translinear circuits. The concept of applying information theoretic models to quantify tradeoffs could be applied to include noise sources and to optimize the impedance sensing circuits described in this thesis.
LIST OF REFERENCE

W. Roa, X. Yang, L. Guo, B. Huang, S. Khatibisepehr, S. Gabos, et al., "Real-time cell-impedance sensing assay as an alternative to clonogenic assay in

VITA

Jinlong Gu was born on March 18th, 1984 in Shanghai, China. He received his bachelor’s degree in microelectronics from Fudan University in 2006, and received a master’s degree in the same university in 2009. The topic of his thesis was “a 10-bit 110 MS/s Pipeline ADC Design”. After graduation from Fudan University, he worked as a CMOS IC design engineer from June 2009 to December 2010.

He entered the University of Tennessee as a graduate student in spring 2011. Under the support of Dr. McFarlane, he has been working on CMOS translinear circuits for cell impedance sensors. He has designed and tested a silicon cochlea, lock-in amplifier, and ramp ADC. Additionally, he worked on quantifying the noise, power and input signal characteristic using techniques from information theory and applied to perimeter gated single photon avalanche diodes. He has published 2 conference and 1 journal papers in the past 5 years. His research interest is in mixed signal CMOS integrated circuit design.