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Abstract 

Active human Plasminogen Activator Inhibitor 1 (PAI-1) is most often found in complex 

with Vitronectin (VN), an ~62kDa glycoprotein.   Research has shown PAI-1 and VN form 

higher order complexes in tissues, and our work indicates a 2:1 (PAI-1:VN) stoichiometry for 

these complexes.  A logical model for PAI-1:VN interaction proposes that two PAI-1 molecules 

bind VN at separate sites.  However, our small-angle neutron scattering (SANS) data suggest that 

there is a PAI-1: PAI-1:VN interaction, in which PAI-1 forms a dimer when in complex with 

VN.  We tested this novel arrangement of PAI-1 within the complex by using a variety of 

biophysical methods.  Through the use of VN binding deficient PAI-1 variants we were able to 

detect binding deficient PAI-1 in PAI-1:VN complexes, thus supporting the existence of a PAI-

1:PAI-1:VN interaction.  In addition to studying the PAI-1:VN complex assembly and 

macromolecular arrangement, we probed the disordered domain of VN in order to identify the 

effect of PAI-1 binding on the disordered nature of the domain.  Additionally, we sought to 

examine the postulated binding site for PAI-1 in this domain.  It is known that a class of proteins 

containing intrinsically disordered domains (IDDs) frequently undergoes a conformational 

change upon ligand binding.  We present evidence that the disordered domain of VN can be 

classified as an IDD based on sequence composition and SANS data that demonstrate the IDD 

undergoes a disorder to order transition upon PAI-1 binding.  Additionally, our SANS data 

support a model in which the IDD of VN interacts with the secondary binding site for VN on 

PAI-1.  Overall, this work has greatly advanced the field, and has opened new paths of study for 

future research efforts in the Peterson lab.  
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Chapter 1 - A tale of two proteins: PAI-1 and 

Vitronectin 
 

1.1 Introduction to Plasminogen Activator Inhibitor - 1 

1.1.a An Overview of Plasminogen Activator Inhibitor - 1  

Plasminogen Activator Inhibitor 1 (PAI-1) is found throughout the human body, both in 

circulation, and in the extracellular matrix (ECM).  PAI-1 is expressed in the liver, adipose 

tissue, smooth muscle cells, and platelets.  Tumor cells and other inflammation activated cells 

have also been shown to secrete PAI-1 [1, 2].  PAI-1 plays a role in a wide variety of 

physiological processes due to its involvement in fibrinolysis, ECM remodeling, and cell 

migration (figure 1.1) through inhibitory and non-inhibitory processes [3-5].   

  As the name implies, PAI-1 is involved in the delicate regulation of plasminogen 

activation.  Plasminogen, the zymogen form of plasmin, is a ubiquitous protein expressed in all 

major tissues and organs. Plasminogen binding to cell surface receptors and fibrin renders it 

more readily activated through a cleavage mechanism [6].  Plasmin is a multifunctional, highly 

efficient protease that, if left unchecked, could lead to a hemorrhagic state within minutes due to 

its role in fibrin degradation.  Plasminogen, and the active form plasmin, are both regulated at 

several levels in order to maintain a ready supply of the protein, and preserve the hemostatic 

integrity of the systems in which it is involved [7].  Plasminogen plays a key role in fibrinolysis, 

cell adhesion, cell migration, wound healing, clotting, inflammation, ECM degradation, and 

promotes hormone, and growth factor release [4, 7, 8].  Mice deficient in plasminogen have 

delayed wound healing, and deficiency in EMC remodeling. Additionally, plasmin also plays 
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Figure 1.1 Physiological Role of PAI-1 

PAI-1 inhibits plasminogen activators and through them the activation of plasminogen to 

plasmin.  Through this inhibition, PAI-1 plays a role in fibrinolysis, ECM remodeling and cell-

migration. 
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role in cancer progression, in which elevated levels typically result in a poor prognosis due to 

increased ECM remodeling [6, 9].    

PAI-1 acts to limit the generation of plasmin by inhibiting tissue type and urokinase type 

plasminogen activators (known as tPA and uPA respectively) [10, 11].  This cleavage is 

consistent with the standard mechanism of serine proteases, a protein family to which tPA, uPA, 

and plasmin belong, and involves the recognition and binding of the protease to a specific 

peptide sequence, then cleavage through the formation of tetrahedral and acyl intermediates [12, 

13].  Through this mechanism, tPA and uPA are able to generate the active protease, plasmin.  

PAI-1 inhibits this activation by permanently inactivating tPA and uPA through the classic serine 

protease inhibitor (serpin) mechanism (figures 1.2 and 1.3) wherein the PA cleaves the reactive 

center loop of PAI-1, triggering a mechanism that results in the translocation of the PA, and 

disruption of the PA active site [14, 15]. 

Through its role in regulating the activation of plasmin, PAI-1 plays a key role in the 

same processes that plasmin effects.   PAI-1 also has non-inhibitory effects on cell migration and 

adhesion through its interaction with cell receptors and vitronectin (VN).  PAI-1 binds to Low 

density lipoprotein receptor-related protein 1 (LRP1) and is endocytosed, along with the cell 

surface receptor.  This mechanism not only clears PAI-1 from the system, but also leads to 

cellular migration through endocytosis of cellular receptors, as well as through the activation of 

the JAK/Stat pathway [16-19].  PAI-1 also has an anti-apoptotic effect through its activation of 

the PkP/Akt pathways [20].   

Imbalances in PAI-1 levels, or alterations to the activity of PAI-1, are frequently 

associated with disease states.  Low levels of PAI-1 are typically tied to mild or moderate  
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Figure 1.2 Serpin mechanism 

Serpins structure includes a reactive center loop (RCL) which contains a region that mimics the 

consensus sequence of certain proteases.  The protease binds to this region, forming a Michaelis 

complex.  Once the protease has bound to the serpin, it forms the acyl intermediate and 

undergoes the first cleavage reaction, releasing one half of the RCL as the first product.  At this 

point, there are two fates for the protease-serpin complex.  In the first, cleavage of the RCL 

triggers a conformational change in the serpin, leading to the insertion of the RCL into the 

central β-sheet.  This results in an ~70A translocation of the protease, leading to a 

conformational change in the protease active site that renders it unable to complete the final 

hydrolysis step that would release it from the serpin.  The second fate occurs when the serpin is 

in a substrate form, and results in the protease completing the final hydrolysis step that allows it 

to release the RCL and escape in active form.  Figure adapted from our work with Blouse et al 

2009 [21]. 
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Figure 1.3 Serpin Inhibition of Serine Protease 

Serpins utilize the RCL as “bait” to attract target serine proteases.  Upon cleavage of the RCL by 

the serine protease, the RCL inserts into the central β-sheet, causing the serine protease to 

undergo a 70Å translocation which causes disruption of the proteases active site.  This is a 

suicide inhibitory mechanism, as the proteins are now covalently attached.  On the right is the 

PAI-1:uPA complex – pre cleavage [10].  On the left is the α-1-Antitrypsin:Trypsin complex – 

post cleavage.   [14] 
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bleeding disorders and frequently go undiagnosed although severe deficiencies can be life 

threatening [22, 23].  These PAI-1 deficiencies manifest in abnormal bleeding following surgery, 

heavy menstruation, and are typically a heritable trait [24-26].  However, there is at least one 

case of acquired PAI-1 deficiency in a patient with cirrhosis of the liver [27].   

On the other side of the balance, elevated PAI-1 levels are associated with a variety of 

pathological symptoms.  Imbalances in PAI-1 levels are brought about by a variety of factors and 

PAI-1 not only serves as a marker for many disease states, but it also exacerbates several 

pathologies [28, 29].   High levels of PAI-1 are tied to disease states in cancer, skin fibrosis, 

insulin resistance syndrome, cardiovascular disease, multiple sclerosis, Alzheimer’s, 

hypertension, and fibrosis   [16, 30-36].  Additionally, elevated levels of PAI-1 are tied to genetic 

factors, as well as weight, diet, and other environmental factors [37-40].  Some studies have 

published conflicting data regarding the role of PAI-1 in disease states, however, when these 

studies are compared, it is found that the discrepancies are due to variances in experimental 

conditions, and the alternate roles of PAI-1 in different tissues [6, 18, 41, 42].  This is important 

to note as it demonstrates that PAI-1 adopts different roles based on its environment and 

interaction partners.  

Because of the myriad of disease states PAI-1 is involved in, particularly cancer, it has 

become a promising subject for study as science seeks to understand the physiological role that 

PAI-1 plays, so that it can be utilized as a therapeutic agent [23, 29, 42-49].  Many approaches 

have been taken to modulate PAI-1 function with synthetic inhibitors [45, 50]. One method is to 

target the flexible joint region of PAI-1 in order to render it unable to inhibit plasminogen 

activation, either through speeding the latency transition, or converting PAI-1 to the substrate 

form [51-53].  Other groups have sought to alleviate elevated PAI-1 prior to the translation phase 
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[43, 54].  Still other groups have turned to naturally existing substances to find a way to lower 

elevated PAI-1 [55, 56].  Unfortunately, while many of these inhibitors were effective in vitro, 

very few function in vivo at levels that would allow them to be adopted for widespread 

therapeutic use.  Successful inhibitors need further refinement to improve on current options with  

features such as a higher affinity for PAI-1, ability to bind PAI-1 when it is in complex with VN, 

the ability to bind glycosylated PAI-1, greater solubility, and a longer half-life in vivo [5, 53, 

57].  This struggle to identify effective PAI-1 inhibitors highlights the need for further research 

into PAI-1 and  its interaction partner VN as a piece in the puzzle that is therapeutic targeting of 

PAI-1.  

 

1.1.b PAI-1 and its Role as a Serine Protease Inhibitor.   

PAI-1 belongs to the protein superfamily known as serpins (serine protease inhibitors).  

There are over 3,000 serpins throughout eukarya, bacteria, archaea and certain viruses [58, 59].  

The serpin superfamily of proteins acts to regulate thrombolysis and apoptosis, control cell 

development and survival, maintain homeostasis, and function as part of the host defense system 

vs pathogens and predators.   Due to the many processes that serpins regulate, imbalances in 

normal levels, high or low, of serpins are frequently linked to disease states. Their primary mode 

of action is inhibition of serine and cysteine proteases. However, it has also been found that some 

serpins can act as chaperones, and hormone transporters. [58-63].  Inhibitory serpins serve as 

protease inhibitors via a highly conserved mechanism (shown in figure 1.2) wherein the reactive 

center loop (RCL) on the serpin functions as “bait” for the protease, and upon cleavage, inserts 

into the central β-sheet, disrupting the protease active site in the process [12].  Serpins share a 

common three-dimensional structure consisting of three beta-sheets, nine alpha-helices, and a 
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reactive center loop that contains the scissile bond recognized by the target serine proteases [12] 

(figure 1.4).  This RCL is a crucial component of the serpin inhibitory mechanism and as such 

the length is highly conserved despite variations in amino acid composition [64].   

While PAI-1 shares the key structural and mechanistic features of other serpins, there are 

differences between PAI-1 and the rest of the serpin family.  Unlike many other serpins, PAI-1 is 

highly metastable.  Where nearly all serpins remain in the stressed, or active, state until cleaved 

by a serine protease, PAI-1 will spontaneously convert to the latent, or relaxed, state under 

physiological conditions and does so more rapidly than other members of the serpin family.  [59, 

65, 66] (figure 1.4).  The latency conversion occurs when the reactive center loop spontaneously 

inserts into the central beta sheet of PAI-1, without a protease cleavage event, rendering the 

protein inactive for future inhibitory activity [59, 67].  This difference, likely part of a delicate 

control mechanism to regulate activity [59, 68], is thought to be due to variations in the protein 

sequence [69, 70].   Several factors influence the rate of latency transition in PAI-1 including pH, 

and ligand binding [71, 72].  

While the metastable nature of PAI-1 helps regulate the delicate balance of plasminogen 

activation, the metastable nature of PAI-1 makes study of this serpin difficult.  PAI-1 has a half-

life of only 60 minutes [66, 73] at 37° C.  Because of this, mutations in the PAI-1 sequence have 

been generated that lengthen the half-life of PAI-1 considerably.  The first stable PAI-1 variant, 

commonly referred to as “14-1B” PAI-1, contains four separate mutations (N150H, K154T, 

Q319L, and M354I) and was the first active PAI-1 construct to be crystalized [74, 75].   
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Figure 1.4 Structures of PAI-1 

Three PAI-1 structures are displayed above. The central β-sheet is highlighted in green, and the RCL is shown in blue. Because of the 

inherent flexibility of the RCL in active PAI-1 it is missing from the crystal structures. A dashed blue line is included in active 

structures to represent the RCL. The leftmost structure is the active form of W175F PAI-1. This active structure is shown, rather than 

141B, as the W175F PAI-1 construct is used throughout this work.  The center structure is latent Wt PAI-1. In this structure the RCL 

has inserted into the central β-sheet as strand 4. The rightmost structure is the co-crystal structure of 141B PAI-1 and the SMB domain 

of VN. The SMB domain is shown in cyan. [76-78] 



10 

 

A second stable PAI-1 variant has also been crystalized more recently, known by its point 

mutation W175F.  This PAI-1 variant slows the latency transition by restricting pre-insertion of 

the RCL [76, 79].  W175F PAI-1 has been shown to have a similar thermodynamic stability in 

comparison with wild type PAI-1 (Wt PAI-1) [76, 79], unlike 14-1B PAI-1 which is much more 

thermodynamically stable than Wt PAI-1.  A study using epitope specific PAI-1 antibodies, as 

well as several PAI-1 variants, has demonstrated that 14-1B PAI-1 contains structural differences 

compared with Wt PAI-1 that affect interaction with VN, antibodies, and small peptides [80].  

These discrepancies have demonstrated that 14-1B PAI-1 is a less than ideal model for studying 

PAI-1 in a physiologically relevant way.  W175F PAI-1, contains a much more conservative 

mutation, and is considered to be a more appropriate stable PAI-1 variant for physiological 

relevance.  Consequently, this study used W175F PAI-1for all experiments in which a stable 

PAI-1 variant was needed.  

In addition to the metastable nature of PAI-1, there is another distinction between PAI-1 

and other serpins.  Many serpins form multimers in solution, which lead to the development of a 

class of pathological states referred to as serpinopathies.  Often these multimers are formed 

through domain swapping when the RCL on one serpin inserts into the central β-sheet of another.  

This interaction causes disease through formation of polymers and depletion of functional 

serpins [61, 62].  This “self-interaction” is a feature that PAI-1 does not share when alone in 

solution, under physiological conditions.  PAI-1 does have the ability to polymerize when under 

low pH and high salt conditions.  However, even these PAI-1 polymers differ from other 

polymerized serpins in that they can dissociate back into functional PAI-1 monomers [81].   
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1.2 Introduction to Vitronectin 

1.2.a An Overview of Vitronectin 

Vitronectin (VN) is an abundant glycoprotein found in plants, algae, insects, and 

vertebrates and fungi.  In higher vertebrates it is primarily synthesized in the liver.  However, it 

is a diffusible protein and is consequently found in many bodily fluids and nearly all tissues.  

Despite this broad distribution of VN, it is primarily found in circulation and the ECM, though it 

is also stored in platelets [82, 83].  VN has a significant role in cell migration, tissue repair, 

fibrinolysis, platelet aggregation, and membrane attack complex formation. It also enhances the 

inflammatory response [82, 84, 85].  Many of the biological functions of VN are dependent on 

its conformational state, which is in turn dependent on ligand interactions.  These binding 

partners include PAI-1, fibrinogen/fibrin, thrombin, urokinase, plasminogen/plasmin, heparin, 

intergrins, and other cell surface receptors [82, 86-88].  This multifunctional aspect of VN is in 

part, due to the multiple VN domains [83].   

VN is composed of four domains, the somatomedin B domain (SMB), the intrinsically 

disordered domain (IDD), the central domain, and the C-terminal domain (figure 1.5).  The 

central and C-terminal domains have been computationally predicted to fold into a β-propeller 

type structure and β-blade (half a propeller) type structure respectively [83, 89].  The only VN 

domain with experimentally derived structural data is the SMB domain.  The SMB has been 

crystalized in complex with PAI-1 and the solution structure has also been determined via NMR.  

The SMB only contains two structural features, a single turn α-helix and a partial 3-10 helix.  

The rest of the SMB domain is comprised of unstructured loops, linked into a knot via disulfide 

bonds [90-93].  No full length crystal structure is available for VN.   However, a three  
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Figure 1.5 Structure of VN domains 

Model of the four domains of VN.  The somatomedin B domain is shown in blue.  This is the 

only domain of VN to have an experimentally determined structure available [90, 93, 94].  The 

IDD is shown in orange.  The Central and C-terminal domains are shown in red and green 

respectively.  These two domain structures were generated via computational predictions.  Figure 

adapted from our work with Lynn et al. [95] 
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dimensional model has been proposed based on computational modeling of small-angle x-ray 

scattering (SAXS) data (figure 1.6).   

Through interaction with its multitude of partners, VN accumulates at sites of injury and 

stabilizes platelet-fibrinogen/fibrin bridges, also concentrating PAI-1 at the site of fibrin clots to 

prevent early lysis.  The expression of VN is upregulated under stress conditions as part of the 

pro-inflammatory response and also serves to facilitate wound healing [87, 96].   VN also 

interacts with components in the ECM and with cell surface receptors and intergrins to regulate 

cell migration [97, 98].  It accumulates in the extravascular space and in the interstitial space 

through interaction with cell surface receptors, playing a role in cell motility and adhesion.  This 

function of VN is important for hemostasis and wound healing, but also is appropriated by 

cancers and several pathogens [85, 97, 99].   Due to a role in some disease states, VN has also 

been the target of therapeutic research though not as heavily targeted as PAI-1 [96, 100, 101].  

 

1.2.b The Field of Intrinsically Disordered Domains and How it Applies to VN 

Intrinsically disordered proteins (IDPs) and intrinsically disordered domains (IDDs) 

represent an enigmatic face of protein structure research that, until the last decade, had been 

largely understudied.  For decades, the overarching doctrine was that function required structure 

[102, 103].  The difficulty of studying IDPs and IDDs certainly contributed to their time in the 

shadows of biochemistry.  However, in the eighties, disordered proteins got a second look.  

Highly dynamic regions of proteins were assigned function and disorder was characterized as an 

aspect of protein structure [104].  Now, many significant biological functions are known to 

directly depend on disorder.  IDPs are common across all domains of life, particularly among  
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Figure 1.6 Three Dimensional Model of VN Using SAXS 

Using small-angle x-ray scattering our group, in collaboration with others, was able to create a 

spatial envelope for VN in solution.  This envelope was then used to orient the four VN in three-

dimensional space to generate a model for full-length VN. At the top portion of the SAXS 

envelope, the SMB domain is fitted.  In the neck of the SAXS envelope an orange cylinder is 

used to represent the disordered VN domain.  The central and C-terminal domains are aligned in 

the bottom of the SAXS envelope.  This figure is adapted from Lynn et al [95]. 

 

 

 

 

 



15 

 

eukaryotes.  Disorder is a common feature in proteins involved in neural development, synaptic 

transmission, and cell cycle regulation [105, 106].  Signaling sequences are commonly located in 

disordered regions and scaffolding proteins utilize intrinsic disorder to facilitated mechanisms 

which enhance function [107-111].  Intrinsic Disorder is now acknowledged as a powerful tool 

to facilitate the complexity of living systems [112].   

Disorder defines the ability of some proteins to serve as promiscuous binders.  This 

feature of IDPs is demonstrated by the many proteins in sub-nuclear organelles, many of which 

are enriched in disorder [113].   RNA binding proteins and domains are also rich in disorder.  

The long disordered regions that exist in these proteins establish extended, conserved interfaces 

that specifically interact with RNA partners via an induced fit mechanism, yet possess 

multifunctional binding due to their disordered state [114].  IDPs have also been shown to adopt 

secondary structure when interacting with different binding partners.  A notable example of this 

is found in p53 which can adopt different secondary structural features upon binding to its 

myriad of partners [115].  This disorder to order transition allows for versatility in binding 

partners, while still forming specific interactions [110, 116].  Not all disorder to order transitions 

are beneficial for IDPs however.  Nearly 20% of disease causing mutations in IDPs cause 

disorder to order transitions, drastically affecting the function and role of the IDP [117].  Many 

more mutations that affect the disorder properties of IDPs have also been shown to cause disease 

[118].  

The newly recognized importance of intrinsic disorder has led to the development of 

databases and prediction tools to identify disorder and has also resulted in a concerted effort to 

define what makes an IDP [119-121].  Not all unstructured sections of a protein are considered to 

be IDDs. In fact, a recent study analyzed a database of proteins/protein domains and found 
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several traits that are present in IDDs and IDPs when compared to other proteins with minimal 

(<5%) secondary structure.  Notably, IDPs are enriched in glutamate (E), aspartate (D), and 

glutamine (Q), and simultaneously depleted of glycine (G) and cysteine (C).  These findings 

demonstrate that there is more to IDPs than a simple lack of secondary structure [122].  In 

comparing the second domain of VN to these qualifications, we note that nearly 30% of the 

second domain of VN is composed of aspartate, glutamate, and glutamine.  Additionally, the 

disordered domain of VN has a number of negative charge repulsive interactions within four 

residues, as opposed to positive charge repulsions, which is another characteristic of IDPs.  

These findings support the classification of the disordered region in VN as an IDD.  

 

1.3 Interactions between PAI-1 and VN 

1.3.a An Overview of PAI-1:VN interactions 

VN and PAI-1 are well characterized binding partners. VN is known to localize PAI-1, 

bringing PAI-1 to sites of function through interactions with proteins such as fibrin [123].  VN 

binding stabilizes PAI-1, increasing the length of time that PAI-1 is able to function as a protease 

inhibitor [124].  This stabilization, and other protective effects, is accomplished through 

restriction of movement in β-sheet A, particularly the movement of strand 5 (s5A) [69, 125, 

126].  VN and PAI-1 also serve to expand their respective physiological roles through binding 

induced conformational changes [21, 127, 128]. For instance, PAI-1, when bound to VN, has 

expanded protease functions and is able to inhibit thrombin, and also to protect against cardiac 

fibrosis [129, 130].  Indeed, VN binding has been demonstrated to affect the conformation of the 

RCL, causing the scissile bond to be more solvent exposed [131].  PAI-1 also serves to expand 

the function of VN, which remains in a monomeric, non-adhesive state until PAI-1 binding at 
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both the primary and secondary sites, inducing a permanent conformational change in the 

glycoprotein [132].   

PAI-1 and VN are primarily found in plasma, the ECM, and platelets.  Indeed, the largest 

pool of PAI-1 is stored in platelets, ready for deposition at sites of injury [83, 97].  However, 

only 5% of the PAI-1 present in platelets is active [133].  VN is also stored in platelets, in the 

multimeric form, due to PAI-1 interactions.  Upon secretion of PAI-1 and VN, the multimeric 

VN promotes aggregation of the platelets while active PAI-1 prevents fibrin breakdown and 

latent PAI-1 promotes wound healing through LRP1 mediated cell migration [16, 83, 124].  PAI-

1 and VN also serve to modulate the migratory properties of each other.  Notably, the PAI-1:VN 

complex is non-motogenic, whereas each protein has pro-migratory roles when not in complex 

with the other.  Imbalances in PAI-1:VN levels, and disruption of the complex through PAI-1 

activity or latency transition, free both partners to promote cell migration [16, 17, 134, 135]. 

 

1.3.b Interactions between PAI-1 and VN. The PAI-1 Perspective 

PAI-1 and VN interact at two distinct and separate sites.  The first site of interaction to be 

characterized between these two proteins was between the somatomedin B (SMB) domain of VN 

and the shutter region of PAI-1 (specifically helices E and F and strand 1 of β-sheet A) [136].  

This site has been well characterized, and a co-crystal structure of PAI-1 and the SMB domain 

was published in 2003 (figure 1.3)  [77] .  PAI-1 and the SMB domain of VN have a very tight 

binding affinity (Kd ~1 nM), so much so that all active PAI-1 in circulation is in complex with 

VN [21, 77].  This tight binding is only applicable to the active form of PAI-1 however.  Even 

though VN, and the SMB domain, are able to stabilize PAI-1, over time a latency transition still 
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occurs and the affinity for PAI-1 is reduced (Kd ~100nM) , resulting in a dissociation of PAI-1 

from the protein complex [77, 137]. 

The secondary, lower affinity (Kd = 29nM), binding site for VN, on PAI-1, was 

characterized in 2008 [137, 138].  A series of point mutations in PAI-1 were used to pinpoint the 

location of the secondary site at which PAI-1 interacts with VN (outside the SMB domain).  In 

order to test this, a VN construct, lacking the SMB domain was used.  Schar et al. found that an 

extended region of PAI-1 serves as the binding interface for ∆SMB VN, and that PAI-1 and 

∆SMB VN interact with a 1:1 stoichiometry while in circulation [137].   

PAI-1 and the VN fragments, that only contain a single PAI-1 binding site, interact in a 

1:1 ratio.  Additionally, PAI-1 and full-length VN interact in a 1:1 ratio in circulation.  However, 

PAI-1 and VN have been shown to interact with a 2:1 stoichiometry when in the ECM and in 

vitro [132]. This difference in stoichiometry is due in part to PAI-1 concentrations in circulation 

versus the concentration in the platelets and the ECM where higher PAI-1 concentrations 

(~200ng/mL) make binding at the secondary, lower affinity, site more likely [21, 128, 139].   

The 2:1 stoichiometry for PAI-1:VN interaction was first by Podor et al in 2000 using 

sedimentation equilibrium Analytical Ultracentrifugation (AUC) [140].  The existence of a 2:1 

complex was a novel discovery that greatly advanced the field, and clarified controversy that had 

arisen due to the observation of multiple PAI-1 binding sites on VN.  Podor et al demonstrated 

that both PAI-1 binding sites can be occupied simultaneously and that the newly discovered 2:1 

complex can go on to form higher order oligomers.  In 2005, Minor et al expanded upon the 

observations made by Podor in 2000 by demonstrating that the 2:1 complex serves as an 

intermediary in the assembly of higher order PAI-1:VN complexes [128].  They noted that the 
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formation of the 2:1 complex only occurs under higher concentrations of PAI-1 and that 

sequential binding of PAI-1 results in the formation of the 2:1 complex.  This 2:1 complex then 

acts as a modular unit in assembly of higher order PAI-1:VN oligomers.  In 2008, Schar et al 

measured the distance between the two PAI-1 molecules in a 2:1 PAI-1 VN complex using 

FRET and found that the two PAI-1 molecules are separated by 57Å [138].  The discovery of the 

2:1 complex and development of techniques to study the higher order PAI-1:VN interactions 

greatly advanced the field and laid the ground work for this study. 

In 2009, Blouse et al measured the distance between PAI-1 molecules using fluorescence 

measurements and stopped –flow.  They discovered that PAI-1 binding to full-length VN is a 

rapid, biphasic, process.  The first phase of binding occurred rapidly, and the second phase 

occurred more slowly, or at a lower affinity site than the first.   Notably, PAI-1 binding to the 

SMB is a monophasic interaction identical to the first phase of binding for PAI-1 and VN. These 

data reveal that a single PAI-1 binds to both sites on VN in relatively quick succession. Blouse et 

al also discovered that PAI-1 binding induces a structural change in VN that occurs more rapidly 

that VN oligomerization, indicating that the conformational change precedes VN oligomerization 

[21].  Their data, and that of Schar [137], support a model in which the first PAI-1 binds to VN 

at two separate interfaces and the second PAI-1 is recruited following a conformational change 

induced when the first PAI-1 binds [21].   

 

1.3.c Interactions between PAI-1 and VN: The VN perspective 

The primary site of interaction between PAI-1 and VN occurs in and around the single 

turn α-helix of the SMB domain.  This interaction doubles the half-life of PAI-1 from 
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approximately 60 minutes to around 120 minutes.  Interestingly, while SMB type domains exist 

throughout biology, only the VN SMB domain is able to bind PAI-1, demonstrating that binding 

specificity between these proteins is linked to a specific sequence, in addition to tertiary structure 

[141]. A secondary binding site for PAI-1 exists within VN, outside of the SMB domain.  This 

site is still uncharacterized; however, two regions have been proposed to house the second PAI-1 

binding domain.  One site is at the C-terminal end of the IDD, discovered using bacterial 

protease V8 to digest VN.  The other proposed site is in the heparin binding region of the central 

domain, isolated through CNBr cleavage [142-144].  

While VN has many interaction partners, including cell surface receptors, PAI-1 is a key 

partner of VN in both the ECM and in circulation and has a significant effect on the biological 

functions of VN, and competes with other binding partners of VN   [97, 145, 146].  The 

concentration of VN in plasma is significantly higher than that of PAI-1 (3-6µM VN compared 

to <1.5nM PAI-1) [1, 5, 124].  When in circulation, all active PAI-1 is bound to VN in a 1:1 

stoichiometry.  This is not surprising as the Kd for PAI-1 interacting with the SMB domain is 

~1nM, and the Kd for PAI-1 interactions with the second PAI-1 binding domain is ~30nM.  In 

the ECM and platelets, PAI-1 is found at higher concentrations and PAI-1 and VN are usually 

found in higher order oligomeric complexes with a 2:1 stoichiometry of PAI-1 to VN.  This 

oligomerization is brought about by a permanent conformational change in VN that occurs upon 

interaction with PAI-1.  Indeed, once PAI-1 becomes latent and dissociates with VN, the VN 

molecules remain in an oligomeric adhesive state. In this way, PAI-1 and VN serve as a 

molecular switch, wherein their interaction and subsequent dissociation sends each protein on to 

a new biological role [127, 132]. 
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1.4 Preliminary Data from Peterson Lab 

1.4.a Small Angle Neutron Scattering Data 

A few years ago, in order to gain better insight in the interaction between PAI-1 and VN, 

our lab performed contrast variation, small angle neutron scattering experiments (cvSANS).  The 

power of SANS comes from the scattering properties of neutrons as they refract off of different 

elements.  In particular, neutrons experience a negative scatter when hitting hydrogen, and a 

positive scatter when hitting deuterium.  This difference in scattering means that the signal from 

a deuterated protein will be distinct from that of a hydrogenated protein (figure 1.7) allowing for 

the identification of scattering signal from individual proteins within a complex.   

Taking advantage of this scattering property of neutrons, we mixed deuterated W175F 

PAI-1, and protonated VN and measured neutron scattering.  W175F PAI-1 was used for these 

experiments for two key reasons.  First, W175F PAI-1 has a significantly longer half-life 

(>7hours) [137], which allowed the PAI-1:VN complex to remain stable over the time course of 

the SANS experiments.  Second, W175F PAI-1 has been observed to have reduced higher order 

complex formation beyond 4:2 complexes, and the concentration of PAI-1 and VN in 4:2 

complexes would simplify data analysis. Next, the D2O composition of the buffer was varied in 

order to feature different components of the complex by exploiting the change in scattering that 

occurs when deuterium is present (figures 1.8 and 1.9).  By collecting data at multiple buffer 

D2O percentages, we were able to fade components of the complex from the scattering data, and 

use the data gathered to build a low resolution model of the complex in solution. 

Analysis of the cvSANS data for the PAI-1:VN complex revealed that PAI-1 and VN interact 

in with a 2:1 stoichiometry and formed a 4:2 complex.  This intermediate oligomerization state is 

in agreement with previously published [140].  However, the 4:2 complex we observed does not  



22 

 

 

Figure 1.7 Small Angle Neutron Scattering Differentiates between atoms 

Neutrons exhibit different scattering properties upon interaction with hydrogen and deuterium.  

This property makes neutron scattering a valuable tool for studying protein complexes using 

deuterium labeled protein.  
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Figure 1.8 Graph of Neutron Scattering Properties 

The scattering length density (SLD) of neutrons changes in relation to the molecule of interest as 

well as the D2O percentage found in the buffer.   This allows for differentiation between 

elements of a multicomponent complex.  

 

 

 

 

  



24 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Contrast Variation Small Angle Neutron Scattering Scheme for PAI-1:VN 

Contrast variation SANS involves collecting data on the sample of interest in buffer with varied 

D2O compositions. Deuterated PAI-1 was mixed with protonated VN and the buffer composition 

was varied in order to change the signal contribution from each of the complex components. 

Neither of the complex components are completely matched out in any buffer condition with this 

method, but the buffer variation allows on component of the complex to dominate the signal. 
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agree with the current accepted model wherein PAI-1 interacts at two separate sites on the VN 

molecule [128].  In all of our models, we show PAI-1, interacting with another PAI-1, which 

interacts with VN.  This 2:1 stoichiometric unit interacts with another identical unit via VN in a 

‘V’ shaped pattern (figure 1.10) [147].  These data break through several barriers currently found 

in the literature.  Not only is it the first experimentally determined structure of the PAI-1:VN 

complex, it also provides insight into the mechanism by which PAI-1 may polymerize following 

conformational changes induced upon interaction with VN at the both the primary and secondary 

sites.   

 

1.5 Research Goals 

1.5.a New Model for PAI-1:VN interactions 

 While our preliminary data are novel, they are not without support in the current 

literature. The two PAI-1 molecules in the 2:1 PAI-1 VN stoichiometric ratio, have been shown 

to be close in proximity when bound to VN [21].  Also, in the literature, it has been demonstrated 

that only binding at the primary site of interaction between PAI-1 and VN has a stabilizing effect 

on the PAI-1 molecule.  Binding at the secondary site alone does not stabilize PAI-1 [137].  This 

difference in the two binding sites for PAI-1 has raised questions about the role that the 

secondary PAI-1 binding site plays.  If the two binding sites actually form an extended 

interaction with a single PAI-1 molecule, the lack of stabilization from the second binding site is 

not concerning.  Finally, the ability of PAI-1 to form functional polymers has been demonstrated, 

however a conformational change must occur in order for this polymerization to take place [81].  

The model suggested by our SANS data provides potential answers to each of these concerns, 

building and expanding upon present knowledge.  
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Figure 1.10 SANS Model of the PAI-1:VN complex 

Representative model from analysis of the SANS data on PAI-1:VN [147].  Several models were 

generated and each had small variations.  However, all models shared important core features. 

These data show that the 4:2 PAI-1 and VN complex exists in a “V” shaped pattern.  This model 

also demonstrates that PAI-1 forms a dimer when in complex with VN.  Due to the low 

resolution of this model, no conclusions can be drawn regarding the sites of interaction between 

the proteins. However, it is reasonable to suggest that the region of VN interacting with the PAI-

1 molecule contains the SMB domain.  Additionally, the region of VN that is interacting with the 

second VN molecule likely contains the central and C-terminal domains.  This latter conclusion 

comes from the organization of domains shown in figure 1.6 and the understanding that the C-

terminal domain of VN plays a role in multimerization [148]. 
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This current work aimed to further test the model that has been revealed by the SANS 

data for the PAI-1:VN complex.  The hypothesis that drove this work is that PAI-1 interacts with 

another PAI-1 when in complex with VN (figure 1.11).  In order to probe this hypothesis, we 

generated a VN binding deficient PAI-1 which was then labeled in order to provide a means of 

studying its incorporation into a PAI-1:VN complex.  We then performed experiments to 

determine if the addition of VN binding PAI-1 was able to rescue the incorporation of binding 

deficient PAI-1 into the PAI-1:VN complex.  

 

1.5.b Elucidating the role of the IDD in PAI-1:VN interactions 

This work also sought to better understand the role of the IDD of VN in PAI-1:VN 

interactions.  While the secondary binding site of PAI-1 has not been identified, one potential 

site of interaction is found in the IDD.  This, along with a desire to further understand the role 

that IDD of VN plays in the PAI-1 VN interaction prompted this branch of the project. We used 

SANS, and other techniques, to study the effect of PAI-1 binding on the IDD.  The hypotheses 

that drove this work were that PAI-1 binding affects the structure of the IDD, causing the IDD to 

become more compacted, possibly through the adoption of secondary structural elements and 

that the IDD contains the secondary binding site for PAI-1 on VN. 
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Figure 1.11 Proposed Model of PAI-1:VN Interactions 

On the left is shown the current model for PAI-1:VN interactions.  On the right is the model that 

our SANS data supports.  This work seeks to test the existence of   the model on the right though 

PAI-1:VN binding studies.  
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Chapter 2 - Materials and Methods 
 

2.1 Materials 

 PAI-1 cloned into the pET 24d expression vector was obtained from Dr.  Grant Blouse 

(Henry Ford Health Sciences Center, Detroit, MI) as a gift.  Rabbit anti-PAI-1 polyclonal 

antibody, and mouse anti-VN “1E9” monoclonal antibody were purchased from Molecular 

innovations Inc, Southfield, MI.  Secondary, peroxidase labeled anti-mouse and anti-rabbit, 

antibodies were purchased from Vector Labs, Burlingame, CA.  Rosetta 2(DE3)pLysS cells were 

purchased from EMD Millipore Corp, Billerica, MA.  The QuikChange II XL and QuikChange 

Lightning Multi-Site kits used for mutagenesis were purchased from Agilent Technologies, Santa 

Clara, CA.  Primers for the PCR mutagenesis reactions were purchased from Invitrogen
TM

 

Custom DNA Oligos.  DH5α cells were purchased from Thermo Scientific, Rockford, IL, and 

Rosetta 2(DE3)pLysS and Rosetta gami 2(DE3)pLysS cells were purchased from EMD 

Millipore Corp, Billerica, MA.  Wizard® Plus SV Minipreps DNA purification system was 

purchased from Promega, Madison, WI.  Protease inhibitor cocktail P8465 was purchased from 

Sigma Aldrich Corp., St.  Louis, MO.  Freshly frozen human plasma was purchased from Red 

Cross and Tennessee Blood Services.  PD-10 columns were purchased from GE Healthcare, 

Piscataway, NJ.  NHS activated Sepharose Fast Flow, DEAE Sephacel, blue Sepharose Fast 

Flow, heparin Sepharose, SP Sepharose Fast Flow, chelating Sepharose Fast Flow, high- 

resolution Sephacryl S100, and S200 resins were purchased from GE Healthcare, Piscataway, 

NJ.  Invitrogen
TM

 IANBD amide was purchased from Fisher Scientific, Pittsburg, PA.  Biotin EX 

link Iodoacetyl-LC-Biotin was purchased from Thermo Scientific, Rockford, IL.  Spectrozyme® 

tPA was purchased from American Diagnostica Inc, Stamford, CT.  HPLC column, BioSep-
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SEC-S2000 was purchased from Phenomenex, Torrance, CA.  CM5 SPR chip, HBS EP Buffer, 

and Acetate 5.0 buffer were all purchased from GE Healthcare, Piscataway, NJ.  Spectra/Por® 

Dialysis membranes were purchased from Spectrum Laboratories, Inc., Rancho Dominguez, CA.  

Slide-A-Lyzer® Dialysis Cassettes were purchased from Thermo Scientific, Rockford, IL.  

Nitrocellulose Membranes, 0.45µm were purchased from BioRad Laboratories, Hercules, CA.  

96-well, polystyrene, maxisorp C8 lockwell plates, and TMB substrate kit were purchased from 

Thermo Scientific, Rockford, IL.  Deuterated osmolytes were purchased from Cambridge Isotope 

Lab, Tewksbury, MA, and hydrogenated osmolytes were purchased from Sigma-Aldrich Corp., 

St.  Louis, MO.  All chemicals used, but not explicitly mentioned above were purchased from 

Fisher Scientific, Pittsburg, PA.    

 

2.2 Methods 

 

2.2.a Mutagenesis 

In order to mutate the PAI-1 sequence to generate the amino acid substitutions shown in table 

2.1, PCR mutagenesis was carried out on the PAI-1 cDNA cloned into the pet24d vector.  The 

primers used for these reactions are shown in table 2.2.  The protocol for the QuikChange kits 

was followed to generate 50uL reactions.  The PCR conditions are shown in figure 2.1.   

2.2.b DPN1 

PCR product DNA was digested using DPN1 provided with the QuikChange kit.  25µL of 

PCR product was transferred to a new .2mL thin walled tube and .5µL DPN1 was added to the  
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Table 2.1 PAI-1 Variant Constructs 

Table of PAI-1 variants constructed for use in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PAI-1 Constructs 

Wt 

S338C 

W175F 

Q123K 

Q123K, S338C 

Q123K, W175F 

Q123K, W175F, S338C 

Q123K, R115E, R118E 

Q123K, R115E, R118E, S338C 

Q123K, R115E, R118E, W175F 

Q123K, R115E, R118E, W175F, S338C 

R101A, M110A, Q123A 

R101A, M110A, Q123A, S338C 

R101A, M110A, Q123A, W175F 

R101A, M110A, Q123A, W175F, S338C 
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Table 2.2 PAI-1 Mutagenic Primer Sequences 

Sequence of primers used in site directed mutagenesis. 

 

 

 

Primer Name Primer Sequence 

R101A forward (5’  3’) CGTCCAGGCGGATTTGAAGCTG 

R101A reverse (3’  5’) CAAACCCGCCTGGACGAAGATCG 

M110A forward (5’  3’) GGCTTCGCCCCACTTC 

M110A reverse (3’  5’) GTGGGGCGCGAAGCCCTGGACC 

Q123K forward (5’  3’) CGGAGCACGGTCAAGAAAGTGGACTTTTCAGAG 

Q123K reverse (3’  5’) CTCTGAAAAGTCCACTTTCTTGACCGTGCTCCG 

Q123A forward (5’  3’) GGTCAAGGCAGTGGACTTTCAG 

Q123A reverse (3’  5’) GTCCACTGCCTTGACCGTGCTCCGG 

W175F forward (5’  3’) CTACTTCAACGGCCAGTTTAAGACTCCCTTCCCCG 

W175F reverse (3’  5’) GATGAAGTTGCCGGTCAAATTCTGAGGGAAGGGGC 

S338C forward (5’  3’) GTGGCCTCCTCATGCACAGCTGTCATAGTC 

S338C Q123A reverse 

(3’  5’) 

CACCGGAGGAGTACGTGTCGACAGTATCAG 

PAI-1 middle sequencing 

primer forward (5’  3’) 

CTTGGGAAAGGAGCCGTGGA 

PAI-1 middle sequencing 

primer reverse (3’  5’) 

AAGTAGAGGGCATTCACCA 
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Figure 2.1 PCR Cycle Parameters 

Cycle parameters used for site directed mutagenesis.  
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PCR product.  This mixture was incubated at 37°C for 1hr and then stored at 4°C until further 

use.   

 

2.2.c Transformation 

DPN1 digested PCR product was transformed into DH5α following standard transformation 

protocols.  5µL of DNA was added to 20-50uL of DH5α cells.  The cells were then incubated on 

ice for 15-30 minutes.  Cells were then incubated in a 42°C water bath for 30s, followed by an 

immediate incubation on ice for 2min.  300µL of SOC media was then added to the cells, and the 

cells were agitated at ~200rpm at 37°C for at least one hour.  Cells were then streaked on an LB 

agar + Kanamycin (50µg/mL) plate and incubated at 37°C over-night.    

2.2.d DNA Purification 

Single colonies were selected from a plate and used to inoculate a 5-10mL culture of LB 

+ Kanamycin (50µg/mL).  Cultures were incubated overnight (15-18 hours) at 37°C shaking at 

~200rpm.  Cells were then spun down at 14,000xg for eight minutes and the supernatant was 

discarded. Pellets were then either frozen at -20°C or immediately moved to the next step.  

  DNA was harvested from cell pellets according to the Wizard SV mini prep kit protocol 

with minor modifications.  Cell pellets were resuspended with 250µL resuspension buffer, then 

10µL alkaline protease and 250µL lysis buffer were added.  Mixture was inverted then allowed 

to incubate at room temperature for five minutes.  Neutralization solution was added, and the 

sample was spun in 2mL microfuge tubes at 14,000xg for 10 minutes.  The supernatant was then 

added to the spin columns and spun for 2 min.  Following the binding of DNA to the spin 

column, the columns were washed with 750µL of the wash solution twice, followed by 250µL, 

and then a two minute dry spin to ensure that all ethanol was removed.  60µL of H2O was then 
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added and allowed to incubate for 10 minutes prior to a final spin in order to elute the DNA.  

Purified plasmid concentrations were determined using a fluorimeter.   

 

2.2.e Sequencing 

DNA samples were submitted to the UTK core sequencing facility for sequence 

confirmation. T7 forward primer and a PAI-1 reverse primer were used to ensure full sequence 

coverage.   

 

2.2.f Transformation into expression cell lines 

Sequence confirmed DNA containing mutations in the PAI-1 sequence was transformed into 

the Rosetta 2(DE3)pLysS cell line following standard transformation protocol as described 

above.  Cells were plated on LB agar + Kanamycin (50µg/mL) + Chloramphenicol (34µg/mL) 

and incubated overnight at 37°C.   

 

2.2.g Small Scale Induction Screens 

Single colonies (3-4) were selected from the plate and cultured in TB + Kanamycin 

(50µg/mL) + Chloramphenicol (34µg/mL).  These cultures were grown to an OD600 of ~1 at 

37°C shaking at ~200rpm.  Cultures were then transferred to 15°C, shaking at 220, and induced 

with 1µM IPTG overnight (15-18 hours).  Prior to induction a sample of un-induced cells was 

taken, part was spun down, and the cell pellet frozen at -20°C.  The other sample portion was 

mixed with glycerol and frozen at -80°C. 
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The next day a sample of the induced cells was taken, spun down and the supernatant 

discarded.  Un-induced and induced cells were resuspended in H2O and concentrations were 

normalized according to OD600.  Samples were taken and boiled with reducing dye for three 

minutes.  Samples were then loaded on a 10% polyacrylamide gel with a protein ladder for 

standard comparison.  The gel was then run at a constant 120-150V, with SDS PAGE running 

buffer, for ~60 minutes.   

The gel was then partially transferred onto nitrocellulose, using a semidry blot transfer 

system, at 15V for 10 minutes.  The gel was then stained with Coomassie Blue buffer while 

gently shaking.  Once gel had been allowed to adequately stain, the dye was poured off and a 

destain solution was added and allowed to soak the gel while gently shaking until gel was 

destained. 

The western blot was blocked with 10% Non-Fat Milk (NFM) in PBS + .01% Tween 80 for 

one hour at room temperature while gently shaking.  The blot was then washed three times with 

PBS buffer before being incubated with primary PAI-1 antibody, at a 1:2000 dilution, for one 

hour at room temperature.  The blot was washed again, as before, before being incubated with 

the anti-Rabbit-HRP conjugated secondary antibody, at a 1:4000 dilution, for one hour at room 

temperature.  Finally, the blot was washed as before, and a mixture of 15mL PBS + 3mL 

3mg/mL 4-Chloro-1-Napthol in Methanol + 10µL H2O2 was added to the blot and allowed to 

react with the secondary antibody.  Once bands were visible, the blot was washed and imaged 

using the gel doc system.  The western blot and gel were then analyzed to determine which cell 

stock had optimal PAI-1 expression.   

 



37 

 

2.2.h Large Scale Expression 

Glycerol stocks were used to inoculate 10-15mL TB + Kanamycin (50µg/mL) + 

Chloramphenicol (34µg/mL) cultures.  These cultures were grown overnight at 37°C shaking at 

~200rpm.  The following morning, these starter cultures were used to inoculate 4L of TB + 

Kanamycin (50µg/mL) + Chloramphenicol (34µg/mL).  The 1L cultures were incubated at 37°C 

while shaking at 220rpm until the OD600 of the cultures was ~1.  Cultures were then cooled to 

15°C for one hour prior to induction with 1µM IPTG overnight (15-18hours).  Un-induced 

samples were taken for a gel prior to induction and treated as mentioned above.  The following 

morning, cells were pelleted at 15000rpm for 10 minutes.  Cell pellets were harvested and stored 

at -80°C until further use.   

 

2.2.i Purification of PAI-1 

PAI-1 constructs were purified following a common protocol, with minor alterations for PAI-

1 variants.  All buffers used to purify a PAI-1 construct containing the S338C mutation contained 

1mM DTT.  PAI-1 constructs containing mutations that reduced protein pI were purified in a 

lysis/SP buffer at pH 5.5 to ensure binding to the SP column.  PAI-1 constructs with a pI near 

that of wild type PAI-1 were purified in the same buffer, at pH 6.5.   

Cell pellets were resuspended in lysis buffer (50mM NaH2PO4, 1mM EDTA, pH 6.5) with 

20mg lysozyme and 1mg protease inhibitor per 100mg cell pellet.  The pellet, buffer mixture was 

stirred at room temperature for approximately one hour, until the pellet was fully dissolved.  

Resuspended cells were then lysed by sonication (30s pulse, 60s pause, cycled until 15min 
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runtime achieved).  The sonicator was set to pulse level 7, and the resuspended cells were stirring 

on ice to keep the mixture cool during sonication.   

Cell debris was removed by centrifugation at 15000rpm for 30 minutes at 4°C.  All further 

purification steps were carried out at 4°C to maintain PAI-1 activity.  The supernatant was 

loaded on a SP sepharose column (2.5 x 25cm), pre-equilibrated with lysis buffer containing 

80mM (NH4)2SO4 (designated hereafter as “SP buffer”).  Following loading of the lysate, the 

column was washed with SP buffer.  Protein was eluted off the column with a linear gradient of 

80mM – 500mM (NH4)2SO4 in SP buffer.  Total gradient volume was 800mL, with 10mL 

fraction size for the elutions.  Fractions were collected using a Pharmacia-LKB-SuperFrac 

Fraction collector, and BioRad Econo pumps, and flow adaptors were used to maintain constant 

flow. 

The A280 of every other fraction was taken, and SDS PAGE and western blotting were 

performed to identify the elutions containing PAI-1.  These elutions were then pooled and 

dialyzed, using 14,000 MWCO tubing, into imidazole buffer (50mM NaH2PO4, 500mM NaCl, 

20mM imidazole, pH 7.0).  The following day, the PAI-1 was loaded onto a chelating Sepharose 

column (2.5 x 10cm), pre-charged with nickel and equilibrated with imidazole buffer.  The 

column was then washed with imidazole buffer.  Protein was eluted off the column with a linear 

gradient of 20mM – 220mM imidazole.  Total gradient volume was 400mL, with 10mL fraction 

size.  Fractions were collected in tubes containing 2mL of collection buffer (500 mM K2HPO4, 

300 mM NaCl, 30 mM EDTA, pH 6.25) The A280 of every other fraction was taken, and SDS 

PAGE and western blotting were performed to identify the elutions containing PAI-1.  These 

elutions were then pooled and concentrated, with a 30kD MWCO, to 2-5mL, and loaded onto a 

high resolution Sephacryl S-100 column (2.5 x 115cm), pre-equilibrated with S-100 
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buffer(50mM NaH2PO4, 300mM NaCl, 1mM EDTA, pH 6.25).  Elution was carried out at 

.5mL/min with S-100 buffer, fraction size was 3mL.  The A280 of every other fraction was taken, 

and SDS PAGE and western blotting were performed to confirm the elutions containing PAI-1.  

Western transfer was performed on a BioRad Trans-Blot SD Cell Semi-Dry system.  Fractions 

were pooled and concentrated, then frozen at -80°C.  PAI-1 concentration was determined by 

measuring A280 and using ε280 = .93 mL*mg
-1

*cm
-1

 and a molecular weight of 43760g/mol (as 

calculated from the amino acid sequence).   

 

2.2.j NBD and Biotin Labeling 

PAI-1 constructs containing the S338C mutation were labeled with Biotin and NBD for 

detection purposes.  Biotin labeling was performed by preparing 1mL of PAI-1 at ~4mg/mL in 

“reaction buffer” (0.05M Tris-HCl, 5mM EDTA pH 8.0).  A PD-10 column was equilibrated 

with reaction buffer, then the PAI-1 was loaded on the column to de-salt it prior to biotin 

labeling.  Following PAI-1 addition to the column, it was then eluted with 2mL of reaction 

buffer.  All steps were carried out at 4°C under gravity flow.  After PAI-1 was de-salted, 100µL 

of 2mg/mL Biotin (in DMSO) was added to the PAI-1 and the mixture was incubated on ice, in 

the dark, overnight.  The following day, Biotin labeled PAI-1 was dialyzed into PBS pH 7.4 to 

remove free biotin, then frozen at -80°C until use.   

 NBD labeling was performed by preparing 1-3mg of protein in 2.5mL of “reaction 

buffer” (50mM NaH2PO4, 300mM NaCl, 1mM EDTA, pH 6.6).  A PD-10 column was 

equilibrated with reaction buffer, after which the PAI-1 was loaded on the column to de-salt it 

prior to NBD labeling.  Following PAI-1 addition to the column, it was then eluted with 3.5mL 
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of reaction buffer.  All steps were carried out at 4°C under gravity flow.  The eluted PAI-1 was 

then concentrated to ~200µL and 20x molar excess of NBD (in DMSO) was added and the 

mixture was incubated on ice, in the dark, overnight. The following day, free NBD was separated 

from the labeled protein by passage over a second PD-10 following the same protocol as before.  

NBD labeled protein was frozen at -80°C until use.  

 

2.2.k Activity Assays (Gel and Plate) 

PAI-1 was assayed for activity using two methods.  The first method, referred to as a 

“plate assay,” utilized a spectroscopic tPA substrate to measure PAI-1 activity.  In this plate 

assay, Spectrozyme tPA, PAI-1, and tPA were individually diluted in (100 mM Tris, 1% BSA, 1 

mM EDTA, pH 7.4 @ 37°C).  Once stock concentrations were generated, PAI-1 and tPA were 

mixed at various ratios.  The PAI-1:tPA mix was then incubated at room temperature for 30 

minutes in microfuge tubes.  Following incubation, the PAI-1:tPA mixture was added to a 96 

well plate and mixed with the Spec tPA substrate.  The plate was immediately placed in a plate 

reader and data were collected over the course of 20 minutes.  The data were then analyzed to 

determine the ratio of PAI-1:tPA at which PAI-1 is able to effectively inhibit the ability of tPA to 

cleave the substrate.  A ratio of 1:1, or 1:1.25 is considered to be an appropriate activity level.   

The second method by which the activity of PAI-1 was measured was a “gel assay.” In which 

PAI-1 and single chain tPA were mixed at varying ratios, as before, and incubated at room 

temperature for one hour at room temperature.   Samples were then analyzed by SDS-PAGE 

under non-reducing conditions at 150V for 2 hr on a 10% acrylamide gel.  Complex formation 

was assessed and again, a ratio of 1:1 or 1.25:1 PAI-1:tPA was considered to be active PAI-1. 
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2.2.l VN purification from Human Plasma 

Monomeric, full length, VN was purified from human plasma using a modified version of the 

protocol published by Dahlback & Podack [149].  This method was standardized by previous 

members of the Peterson lab, Dr.  Sumit Goswami, and Dr.  Larry Thompson [147].  2L of 

freshly frozen plasma, with sodium citrate as the anticoagulant agent, was thawed gently in a 

cool water bath.  The plasma was then subjected to BaCl2 precipitation, followed by (NH4)2SO4 

added to the plasma at 50% saturation.  All future steps were carried out at 4°C.   

After an overnight incubation the precipitant was harvested by ultracentrifugation, and 

resuspended in 1L of “DEAE buffer” (20mM NaH2PO4, 0.1 mM EDTA, pH 7.0) containing 

1mM dinitrothiobenzoate (DTNB) and centrifuged again.  The supernatant was dialyzed twice 

against 22L of the DEAE buffer, overnight at 4°C.  Protein was then loaded on a pre-equilibrated 

DEAE Sephacel column (5 x 21.5cm), then washed with DEAE buffer, then eluted with a 0 - 

0.5M NaCl linear gradient.  Total gradient volume was 4.4L, with 40mL fraction size for the 

elutions.  Fractions containing VN were pooled and precipitated with (NH4)2SO4 added to the 

pool at a 72.7% saturation.   

In two batches, the precipitated DEAE elution pool was centrifuged and the pellet containing 

VN was resuspended in “blue Sepharose buffer” (50mM Tris, 0.1mM EDTA and 150 mM NaCl 

pH 7.4) and dialyzed twice against 22L of the blue Speharose buffer, overnight at 4°C.  Protein 

was then loaded on a pre-equilibrated blue Sepharose column (5 x 21.5cm), followed by a wash 

with the same buffer.  VN was then eluted with a 0.15 - 3M NaCl linear gradient.  Total gradient 

volume was 4.4L, with 40mL fraction size for the elutions.  Fractions containing VN were 

pooled and concentrated, then precipitated with (NH4)2SO4 added to the pool at a 72.7% 

saturation. 
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In two batches, the precipitated blue Sepharose elution pool was centrifuged and the pellet 

containing VN was resuspended in “heparin buffer” (20mM Tris, 20mM NaCl, and 0.1mM 

EDTA pH 7.4) and dialyzed once against 22L of heparin buffer over-night at 4°C.  Protein was 

then loaded on a pre-equilibrated heparin Sepharose column (2.5 x 15cm) followed by a wash 

with the heparin buffer.  VN was then eluted with a 0.02 – 1.0M NaCl linear gradient.  Total 

gradient volume was 800mL, with 10mL fraction size for the elutions.  Fractions containing VN 

from both column runs were pooled, then run over the column again.   

The final heparin column pool was concentrated to ~10mL, and loaded onto a high resolution 

Sephacryl S-200 column (2.5 x 115cm), pre-equilibrated with “S-200 buffer” (50mM Tris, 

150mM NaCl, and 0.1mM EDTA pH 7.4).  Elution was carried out at .5mL/min with S-200 

buffer, fraction size was 3mL.  Fractions containing VN were pooled, and stored at 4°C under 

(NH4)2SO4 precipitation at 70 % saturation.  VN concentration, prior to precipitation, was 

determined at A280 and using ε280 = 1.0 mL*mg
-1

*cm
-1

 and a molecular weight of 62,000g/mol. 

 

2.2.m Generation of the PAI-1 Affinity Column 

W175F PAI-1 was expressed and purified, then bound to an NHS linked Sepharose column 

by cycling the W175F PAI-1 mixture over the column overnight.  The next day, the column 

was blocked with Ethanolamine.   

 

2.2.n VN fragment purification from E. Coli expression 

A plasmid containing the cDNA for the SMB-IDD fragment of VN was cloned into Rosetta 

gami  (DE3) cells.  This fragment was attached to a thioredoxin tag to prevent proteolysis of the 
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disordered VN domain.  Following standard transformation protocol as described above.  Cells 

were plated on LB agar + Kanamycin (50µg/mL) + Chloramphenicol (34µg/mL) + Tetracycline 

(12µg/mL) and incubated overnight at 37°C.  Colonies were then selected and grown in TB + 

Kanamycin (50µg/mL) + Chloramphenicol (34µg/mL) + Tetracycline (12µg/mL).  These 

cultures were then used to perform a small scale induction screen as described above, and a cell 

stock expressing SMB-IDD was then utilized for large scale expression.   

Large scale expression of the SMB-IDD VN fragment was altered somewhat from the PAI-1 

large scale expression.  Cultures were grown at 37°C and induced at 20°C overnight with 0.5µM 

IPTG once cultures reached an OD600 of ~ 1.   

Cells were lysed, while stirring on ice, by sonication at amplitude 7 (30s on 160s off, for 20 

cycles).  All further steps, unless otherwise noted, were performed at 4°C.  Following lysis, the 

lysate was spun at 10000xg for 30 min, and the supernatant was loaded onto a chelating 

Sepharose column (2.5 x 10cm), pre-charged with nickel and equilibrated with imidazole buffer.  

The column was then washed with imidazole buffer.  Protein was eluted off the column with a 

linear gradient of 20mM – 1.0M imidazole.  Total gradient volume was 800mL, with 10mL 

fraction size.  The A280 of every other fraction was taken, and fractions containing SMB-IDD 

were pooled and placed into dialysis against 4L of “thrombin buffer” (20mM Tris, 150mM NaCl, 

2.5mM CaCl2 pH 8.3) overnight.   

Protein was separated into ~45mL fractions, and 5U of biotinylated thrombin was added to 

each in order to remove the thioredoxin tag.  This mixture was then agitated over night at room 

temperature.  The following day, .4mL resuspended streptavidin agarose beads were added to 

each ~45mL aliquot of digested protein.  This mixture was then agitated for ~15min at room 
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temperature, then the beads were removed by passing the cleaved protein mixture through .22µm 

filter.   This solution was then dialyzed over-night into sodium phosphate buffer (50mM 

NaH2PO4, 300mM NaCl, 1mM EDTA pH7.4).    

SMB-IDD was loaded onto the pre-equilibrated W175F PAI-1 affinity column ~5mL at a 

time.  A PAI-1 affinity column was used to ensure that our final SMB-IDD pool would only 

contain VN fragments that had proper disulfide bond formation in the SMB domain. The column 

was then washed with sodium phosphate buffer (pH 7.4) for 10m minutes, then with pH 4.0 

buffer for 5 minutes, followed by pH 3 buffer for 15 minutes.  The column was then re-

equilibrated, and the process repeated until all SMB-IDD had been affinity purified.   

 

2.2.o AUC 

Sedimentation velocity experiments were performed on a Beckman Coulter Optima XL-1 

Analytical Ultracentrifuge. PAI-1 and full length VN were combined at at concentrations of 2-

10µM.  Prior to loading the AUC cells, proteins were dialyzed in Slide-A-Lyzer dialysis 

cassettes (10kD MWCO), over-night into PBS pH 7.4 at 4°C.  Protein was then spun at 14000xg 

for 15 minutes to pellet any precipitant that formed during dialysis.  Proteins were then mixed to 

desired concentrations then loaded into the sample sector of preassembled cells.  AUC cells were 

assembled with a double sector, charcoal-filled epon (12mm path length) centerpiece and 

sapphire lenses.  The cells were tightened to 130psi, then loaded with 400µL of protein samples 

in the sample sector and filtered dialysis buffer in the reference sector.  Cells were then aligned 

in an 8-hole 50 Ti rotor that had been temperature equilibrated inside the centrifuge under 
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vacuum for at least two hours.  Once the rotor and optics were assembled in the instrument, the 

chamber was allowed to equilibrate to 25°C under vacuum for one hour.   

The instrument was brought up to speed in stages in order to perform radial calibration and 

check laser offset settings for each cell.  Once the speed reached 50,000rpm, scans were taken 

every 50s, for ~16 hours.  Data analysis was carried out using the continuous c(s) distribution 

model, described by the lamb equation, with Sedfit [150].   

 

2.2.p HPLC 

HPLC experiments were performed on and Hewlett-Packard series 1100 instrument.  A 

Phenomenex SEC-2000 size exclusion column was used to separate PAI-1:VN complexes.  The 

column was run using PBS as the washing and eluting buffer.  Between column uses the column 

was cleaned with water and .1%TFA.   Prior to injecting the proteins of interest on the column, 

known protein standards were injected onto the column to identify the retention time of our 

proteins and protein complexes.   20µL of protein were injected onto the column at a time.   PBS 

buffer was then flowed over the column at .5mL/min for 30 min.   After this period of time the 

column had returned to baseline and was ready for the next protein injection. 

 

2.2.q ELISA 

Various ELISA methods were tested.  Described here is the method most commonly utilized, 

any deviation from this method will be noted in the experimental sections of this work.  The 

following description of the ELSA methods used, are also depicted in figure 2.2. 
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Figure 2.2 Illustrated ELISA Method 

Detailed scheme of ELISA method.  
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PAI-1 or VN were diluted into “coat buffer” (.2M Sodium Citrate pH 9.0) and 50µL was 

added to wells on a high binding 96 well plate and allowed to incubate overnight at 4°C.   The 

plates were then washed three times with 200µL of a Tris wash buffer (.02M Tris and .15M 

NaCl pH 7.4) and blocked with 300µL Pierce® protein free blocking buffer for one hour at room 

temperature.  Samples of PAI-1 and VN were mixed in serial dilutions, in the blocking buffer 

immediately prior to addition of 50µL of each sample, in duplicate, to the plate.  The samples 

were then incubated for 30 minutes at room temperature.  Following sample incubation the plate 

was washed with 200µL of Tris buffer, followed by the addition of 50µL of antibody diluted in 

blocking buffer.  The primary antibody was then incubated for one hour at room temperature, 

followed by another wash step and addition of the secondary antibody.  Following a one hour 

incubation of the secondary antibody, the plate was washed six times.  TMB substrate (3,3′,5,5′-

Tetramethylbenzidine) was mixed and 50µL added to the wells.  Once sufficient color change 

had occurred, the reaction was stopped with 2M H2SO4.  Absorbance at 450nm was then 

measured using a plate reader, and data were plotted in Excel.   

 

2.2.r SPR 

Surface Plasmon Resonance (SPR) experiments were performed on a Biacore-3000 

instrument.  A CM5 chip was used to study the interaction between PAI-1 and VN.  A 

preprogramed immobilization protocol was used to facilitate VN immobilization. Between 2100 

and 2500 Response Units (RU) of VN was covalently immobilized on the CM5 chips with a 

10mM sodium acetate buffer pH5.0 using 1-ethyl-3-(dimethylaminipropyl)carbodimide 

hydrochloride (EDC) and N-hydroxysulfosuccinimide (NHS).  Following immobilization, the 

chip was blocked with ethanolamine.  
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SPR experiments were all performed using the HBS-EP buffer commercially available from 

Biacore (.01M HEPES, .15M NaCl, 3mM EDTA, pH 7.4). PAI-1 variants were injected over the 

chip for multiple conditions and concentrations.  Between injections the chip was regenerated by 

injecting 10mM glycine pH 2.0 at 30µL/min for 60s followed by injecting .05% SDS at 

30µL/min for another 60s.  Data were analyzed using the built in tools in the BiaEvaluation 

software package. 

 

2.2.s Deuteration of PAI-1 

PAI-1 was deuterated by two different methods for this project. Initially, PAI-1 was 

deuterated using commercially available deuterated rich media. Glycerol stocks of E. coli 

expressing the W175F PAI-1 variant were used to inoculate this deuterated rich media and 

grown under the same conditions as un-deuterated PAI-1 (described in 2.2.h).  

Later, we utilized minimal media and fermentation to more efficiently and cost effectively 

deuterate PAI-1. In order to deuterate the PAI-1 in this manner we worked with the Bio-

deuteration lab at ORNL.  The cells were grown to an OD600 of ~35 in a deuterated minimal 

media. The cells were then cooled to 15°C and induced overnight according to standard PAI-1 

expression protocol.   

In both cases, cells were then harvested and stored at -80°C until purification (see 2.2.i). In 

nearly all cases, protein was immediately dialyzed into D2O PBS buffer (pH of 7.4) and then 

used in SANS experiments. The final expression using fermentation resulted in more protein 

than necessary for a single experiment. Excess protein was frozen at -80°C. Prior to use of frozen 

protein it was run over an S-100 size exclusion column to ensure all PAI-1 was monomeric.  
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Percent deuteration was determined computationally or experimentally via MALDI-TOF Mass 

Spec. 

 

2.2.t SANS 

Multiple SANS experiments were performed at the two SANS facilities at ORNL. 

Scattering data were collected on the BioSANS line at the High Flux Isotope Reactor (HFIR) and 

the EQ SANS line at the Spallation Neutron Source (SNS).  

Original PAI-1 VN Experiments were performed at HFIR. Deuterated PAI-1 and 

protonated VN were mixed in quartz cells and placed in the neutron beam at various D2O buffer 

percentages. Scattering data were gathered with the detector at a distance of .3m and again at 6m 

in order to fully capture the scatter.  

SMB-IDD:Osmolyte Experiments were performed at HFIR.  Protonated SMB-IDD was 

mixed with varying concentrations of deuterated osmolytes in a fixed D2O buffer. Samples were 

placed in quartz cells and exposed to the neutron beam.  Scattering data were gathered with the 

detector at a distance of .3m and again at 6m in order to fully capture the scatter. 

SMB-IDD:PAI-1 Experiments were performed at HFIR and SNS. Protonated SMB-IDD 

was mixed with deuterated W175F PAI-1 at various D2O buffer percentages. A 1:1 mixture of 

SMB-IDD:PAI-1 was studied at SNS in 0%, 10%, 20%, 85%, and 100% D2O. Samples were 

placed in quartz cells and exposed to the neutron beam. Due to the nature of the neutrons on the 

EQ SANS line, the detector could be left at a fixed distance for data collection. A 2:1 mixture of 

SMB-IDD was studied on the Bio SANS line at HFIR in 0%, 10%, 85%, and 100% D2O.  
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Scattering data were gathered with the detector at a distance of .3m and again at 6m in order to 

fully capture the scatter. 

 

2.2.u Analysis of SANS Data using MONSA and SUPCOMB 

MONSA and SUPCOMB are part of the ATSAS program suite [151].  MONSA is designed 

to generate low resolution models of biological macromolecules in solution [151, 152].  In this 

study, a 70Å sphere of closely packed dummy atoms was used as the dummy atom molecule 

(DAM) to ensure a large enough radius for the entire PAI-1: SMB-IDD complex to be modeled 

within.  The scattering curves were then fit within this DAM and a .pdb file was generated 

containing low resolution information for the PAI-1 and SMB-IDD components of the complex.   

SUPCOMB, was used to super impose the 3D crystal structure for PAI-1 and the SMB 

domain of VN onto the low resolution structure generated by MONSA [153].  SUPCOMB works 

by finding the minimum distance between points in each model and generates a normalized .pdb 

file of the two structures.   

 

2.2.v Analysis of SANS Data using EOM 

Ensemble Optimization Method (EOM), part of the ATSAS program suite, was used to 

generate 10,000 independent structures based on sequence and known structural information 

[151, 154-156].  The small angle scattering data were then compared with the 10,000 structures.  

1,000 structures were selected that best fit the experimental conditions for SMB-IDD in the 

presence of ethylene glycol (EG).   
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This process was repeated with the 100% D2O data for deuterated PAI-1 and SMB-IDD 

complex.  The data for the SMB-IDD were then isolated from the complex and the Radius of 

gyration (Rg) of the ensemble was then plotted and compared to the Rg of a random coil pool to 

study the change in the IDD of VN 

 

2.2.w Analysis of SANS Data using SASSIE 

SASSIE [157] is a suite of software tools that can be used to create high resolution 

models of protein complexes from experimental scattering data. In order to generate these 

models a series of steps were performed. Several energy minimized “starting structures” were 

created as starting points for further analysis.  

The PAI-1:SMB co crystal structure (PDB 1OC0)[77] was used as the core for all starting 

structures. First, the PAI-1 and SMB portion of the co-crystal structure were separated. Next the 

B chain from the W175F PAI-1 structure (PDB 3Q02) [76] was isolated, and the E and F helices 

of the W175F PAI-1 structure were aligned to PAI-1 from the co-crystal structure and it was 

determined that the alignment was good enough to continue using the PAI-1 component from the 

co-crystal structure. The W175F point mutation was added to this structure as were the five 

missing N-terminal residues and the missing portion of the RCL. The RCL was energy 

minimized for 1000 steps using NAMD [158]. Then the entire PAI-1 was energy minimized for a 

further 1000 steps. Torsion angle MD (10ps) was run on the RCL of the minimized PAI-1 and 

the last frame was used for the PAI-1 component of all structures.  

Starting Structure 1: The VN portion of the complex (SMB and IDD domains) was 

constructed using the SMB component from the co-crystal structure in order to preserve the PAI-
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1:VN interface. An additional 10 disordered residues were added to the “SMB” based on their 

presence in the NMR solution structure [94]. For starting structure 1, the IDD residues were 

added and set to be completely flexible, with no added constraints, such as secondary structure. 

This structure was then minimized for 1000 steps using NAMD and became the SMB-IDD 

portion of starting structure 1.  The PAI-1 and VN components were built back into a single 

structure and minimized for 1000 steps to generate starting structure 1.  

Starting structure 2: The second starting structure was constructed similarly to structure 

1. The first and second structures differ in that some structural constraints were introduced into 

the IDD portion of VN for structure 2.  Specifically, the IDD portion of starting structure 2 was 

compacted, so that the starting structure better agreed with the experimentally determined Rg. To 

predict possible helical structures PSIPRED, PHYRE2, and Chou-Fasman, GOR and neural 

network were used [159-165]. While short regions of helicity were predicted in some cases, there 

was no region that was consistently predicted to adopt helical structure between any of these 

methods. Consequently, no helical structure was deliberately introduced into the IDD. However, 

PSIPRED produced a more compact structure for this region, so this more compact structure was 

used in place of the fully extended flexible tail in structure 1. This structure was then minimized 

for 5000 steps to generate starting structure 2.  

Starting structure 3: Starting structure 3 was constructed such that part of the IDD 

wrapped around PAI-1, across the “front” of the central β-sheet in order to create a starting 

structure that had a center of mass value that better agreed with the center of mass value 

calculated from the experimental data. The interactive MD option within VMD [166] was used 

to apply force to the IDD (defined as residues 44 – 130) from starting structure 2 in order to 
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position the IDD on the opposite side of PAI-1 from the SMB. This structure was then 

minimized for 5000 steps to generate starting structure 3. 

From each of these starting 50,000 structures were generated. These structures were then 

analyzed for goodness of fit to the experimental data.



54 

 

Chapter 3 - Probing the global PAI-1:VN complex 

3.1 Introduction to PAI-1:VN Interactions 

The interaction between PAI-1 and VN has been under investigation since the two 

proteins were discovered to interact in the late 80’s [167].  A plethora of binding studies have 

been performed in an effort to identify the binding affinity and the site of interaction between 

PAI-1 and VN, both in circulation, as well as in the ECM.  Studies have also been performed to 

identify the effect that binding has on the conformational state of each protein, and how the PAI-

1:VN interaction affects the function of each protein’s physiological role [127, 132].  

 

3.1.a Identification of VN Binding Domains in PAI-1 

The discovery of the primary PAI-1:VN interaction site, as with many protein complexes, 

was made in bits and pieces. Early studies that demonstrated the presence of PAI-1 in the ECM 

noted that the interaction between PAI-1 and VN was not electrostatic due to the inability of 2M 

NaCl to release PAI-1 from the ECM [168].  PAI-1 was later shown to interact solely with VN in 

the ECM, confirming that the inability of high salt to remove PAI-1 from the ECM was due to 

the fact that the interaction between PAI-1 and VN is non-ionic [169].  The eventual co-crystal 

structure of PAI-1 and the SMB domain of VN confirmed the finding that the primary binding 

site for VN is composed of predominantly hydrophobic interactions [77].  

In 1994, two studies were published that served to localize the primary site of VN 

binding on PAI-1. In one study, antibodies were used to localize a site of interaction to helix E 

(hE), strand 1in  β-sheet A (s1A), and helix F (hF) [170] shown in figure 3.1. The second study  



55 

 

 

Figure 3.1 Primary Binding Site for VN on W175F PAI-1 Structure 

The active PAI-1 crystal structure (3Q02), derived from W175F PAI-1, is shown with the central 

β-sheet in green for orientation purposes.  The missing RCL residues have been added in as a 

dashed line. The regions important for interacting with VN, more specifically the SMB domain 

of VN, are highlighted in cyan. This primary interaction between PAI-1 and VN is hydrophobic. 
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 randomly mutagenized the PAI-1 sequence coding for amino acids 13-147.  Five point 

mutations were identified that selectively disrupted PAI-1:VN interactions while still retaining 

inhibitory activity.  All five residues are surface exposed, and several form a cluster in the three-

dimensional structure despite being separated in the primary sequence, indicating the importance 

of three-dimensional structure for PAI-1:VN interactions [171].  

The identification of this primary binding site for VN on PAI-1 was a significant 

advancement in the field. However studies showed that it wasn’t the only site of interaction 

between the two proteins. A mutational study of hE demonstrated that the primary binding site 

was not solely responsible for all interactions between PAI-1 and VN [172].  A ∆SMB VN 

construct was used to confirm the presence of a secondary binding site for VN on PAI-1. This 

∆SMB VN was studied in conjunction with a variety of PAI-1 variants that contained one or 

more amino acid substitutions. This process was used to identify an extended interaction surface 

comprised of individually weak interactions between PAI-1 and VN near the heparin binding 

domain in PAI-1 [137, 173] shown in figure 3.2.  

 

3.1.b Identification of PAI-1 Binding Domains in VN 

The primary binding site for PAI-1 on VN was originally identified through a series of 

cleavage experiments. VN was subjected to acid and cyanogen bromide (CNBr) cleavage and the 

resulting fragments were tested for the ability to interact with PAI-1. The fragment spanning 

residues 1-51, known as the SMB domain, retained the ability to bind PAI-1 [174].  Later 

experiments demonstrated that PAI-1 is able to bind to bind to a fragment comprised of residues 

1-40, but not to a fragment only containing residues 1-30 [136].  When the co-crystal structure of 

PAI-1 and the SMB domain was published, key residues for interaction with PAI-1 were  
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Figure 3.2 Secondary Binding Site for VN and the Heparin Binding Site on W175F PAI-1 Structure 

The active PAI-1 crystal structure (3Q02), derived from W175F PAI-1, is shown with the residues identified as important for binding 

to VN outside of the SMB [137] in cyan.  The residues identified as important for heparin binding [173] are shown in red.  Residues 

that explicitly overlap both binding sites are shown in light purple.  This overlay demonstrates that the secondary VN binding site and 

the heparin binding site overlap.  The central β-sheet is shown in green for orientation purposes.  The missing RCL residues have been 

added in as a dashed line.  This secondary interaction between PAI-1 and VN is electrostatic. 
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identified [77].  Together these studies demonstrate the importance of primary and tertiary 

structure in the PAI-1:SMB interaction.  

Notably, when a fragment of VN, spanning residues 1-45, was studied in competition 

assays with full length VN, it was found that the N-terminal fragment of VN only partially 

competed with full-length VN for PAI-1 binding. This strengthened speculation that more than 

one binding site for PAI-1 existed on VN.  It was proposed that the secondary binding site exists 

near the primary site in three dimensional space [175].  Other studies concur with the three 

dimensional proximity of the two binding sites. However, two separate regions have been 

proposed to house this secondary domain. Some studies have localized a PAI-1 binding site in 

the heparin binding region of the C-terminal domain of VN  [144] while others have identified a 

PAI-1 binding site within the IDD [143].  No consensus has been reached in the literature 

regarding the location of the second binding site at this time. However, studies with monoclonal 

antibodies demonstrated that the two binding sites in each protein are occupied simultaneously 

[140].  

 

3.1.c Conformational Effects of Complex Formation 

An important consequence of the PAI-1:VN interaction is the stabilizing effect that VN 

has on PAI-1 [176].  This stabilization results from the primary interaction between PAI-1 and 

the SMB domain, and is due to a restriction of flexibility in β-sheet A, slowing the rate of RCL 

insertion [77, 171].   Beyond this stabilization effect, the PAI-1:VN interaction  induces a 

conformational change in both PAI-1 and VN, particularly following interaction at both the 

primary and secondary sites.  It is important to note that the conformational change that occurs in 
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VN is permanent, and persists even after PAI-1 dissociates from the complex following latency 

transition or cleavage by PAs [21, 177].  The conformational change induced in VN by active 

PAI-1 enables VN to form multimers, of as many as 16 subunits, and act as an adhesive 

glycoprotein, which it is unable to do in the native monomeric state [148, 178, 179].    

While VN exists as a multimeric adhesive protein in the ECM, the monomeric form is 

predominant while in circulation. This is likely due to the low concentration of PAI-1 (0-

60ng/mL, approximately 0 – 1.4nM) in relation to the comparatively high concentration of VN 

(~200 – 700µg/mL, approximately 3.2 – 11.3µM) [5, 180, 181].  The association between PAI-1 

and VN is strong enough at the primary site (Kd ≈ 1nM) that this low concentration still allows 

binding. However, PAI-1 and VN exhibit weaker binding (Kd ≈ 30nM)  at the secondary binding 

site, with an ~10 fold difference in Kd making interaction at the secondary site unlikely while in 

circulation [138].  

This circulating pool of PAI-1 and VN is functionally distinct from that which exists 

inside of platelets.  Although 90% of the 200-300ng/mL of PAI-1 in platelets is inactive [5]  it is 

likely that much of the platelet PAI-1 was in complex with the platelet pool of VN at some point 

as platelet derived VN is multimeric and codistributes with PAI-1 following platelet lysis  [182].   

In tissues, higher local concentration of PAI-1, and a greater affinity for multimeric VN facilitate 

PAI-1:VN interactions and the “activation” of more VN molecules through conformational 

change, expanding the reactivity of VN greatly [124, 183].  
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3.1.d Research Goals 

In this portion of the project we sought to gain insight into the PAI-1:VN complex.  

Preliminary data from our lab (figure 1.10) demonstrate that the PAI-1 VN complex interacts in a 

way that is unique from the model that currently exists in the literature.  These data provide 

experimental evidence of a PAI-1 dimer when in the presence of VN.  While many serpins are 

able to polymerize [184], free PAI-1 does not polymerize under native conditions.  However, it is 

able to polymerize under conditions that induce conformational changes.  Furthermore, PAI-1 

polymerization under these conditions results in dimers that retain inhibitory function [81].  

These data, combined with the knowledge that PAI-1:VN interactions induce a conformational 

change in PAI-1, provide support for the PAI-1 dimer observed in our preliminary data.  

Additionally, previous publications from our group have suggested that the primary and 

secondary binding sites, between PAI-1 and VN, comprise an extended binding interface rather 

than two separate binding sites for two separate PAI-1 molecules [21, 137].  This too supports 

the revised model that we observed with SANS.  

Our goal was to experimentally determine, if PAI-1 is indeed able to interact with another 

PAI-1 molecule in the presence of VN.   The hypothesis that guided this project is PAI-1 and VN 

interact in a PAI-1:PAI-1:VN manner when in higher order complexes.  In order to test our 

hypothesis, we generated a series of VN binding deficient PAI-1 mutants.  These mutants were 

then labeled so that we could monitor their incorporation into PAI-1:VN complexes (figure 3.3).   

If our hypothesis is correct then we will have significantly advanced the field by 

developing a more accurate model for the PAI-1:VN interaction (figure 3.4). We will have 

offered a rationale for some of the questions that have long remained unanswered about the PAI-  

 

 



61 

 

 

Figure 3.3 Experimental Design for PAI-1:VN binding studies 

We hypothesize that PAI-1 forms a dimer when in a 2:1 complex with VN.  In order to test this 

hypothesis, we generated VN binding deficient PAI-1 (bdPAI-1) variants and experimentally 

confirmed their inability to interact with VN.  We will then mix this bdPAI-1 variant with PAI-1 

constructs that retain VN binding and monitor incorporation of the bdPAI-1 into PAI-1:VN 

complexes.  Incorporation of bdPAI-1 into PAI-1:VN complexes would confirm our hypothesis 

that PAI-1 forms a dimer when in a 2:1 complex with VN.  
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Figure 3.4 A New Model for PAI-1 VN Interaction 

We propose a new model for PAI-1:VN interactions in a 4:2 complex. Our data support a model 

in which PAI-1 is able to form a PAI-1:PAI-1 dimer upon interaction with VN. We propose that 

this previously unseen dimerization of PAI-1 under physiological conditions is able to occur due 

to the conformational change induced by VN binding.  We also propose that this dimerization is 

unlike that of other serpins, and does not result in a serpinopathy. 
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1:VN complex, and we will have demonstrated that PAI-1 can dimerize under physiological 

conditions, and does so as part of its normal interaction with VN. 

 

3.2 Methods 

3.2.a Generation of PAI-1 Constructs 

In order to probe the hypothesis of a PAI-1:PAI-1:VN complex several PAI-1 variants were 

created via site directed mutagenesis (table 3.1).   The point mutations that were created within 

the PAI-1 sequence have previously been shown to reduce PAI-1:VN binding.  The Q123K 

mutation was demonstrated to drastically reduce the ability of PAI-1 and VN to interact and is 

considered to be deficient for binding at the primary site based on its location in the PAI-1 

molecule [171].  The R115E and R118E double mutation was shown to diminish binding at the 

secondary interaction site [137].  W175F is a stabilizing mutation [76] and also diminishes the 

ability of PAI-1 and VN to form higher order oligomers beyond the 4:2 complex [147], but still 

allows for 4:2 and lower order complex formation.  The S338C mutation was used to introduce a 

cysteine in the Reactive Center Loop (RCL) to allow for labeling of the variants.  This mutation 

has been repeatedly used in the literature as a means of labeling PAI-1 and studying RCL 

movements.  Neither the mutation, nor labeling at this position significantly alter PAI-1 activity 

or VN binding [185-187]. 

Following purification of the PAI-1 variants, each was analyzed for activity to ensure that 

PAI-1 was still functional as described in 2.2.k.  All variants were reasonably active when 

compared to normal wild type PAI-1 activity. PAI-1 variants containing the S338C mutation  
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Table 3.1 Key Characteristics of PAI-1 Constructs 

List of the PAI-1 variants used in this study. A “Y” in one or both of the VN binding columns 

indicates that no mutations have been made that alter the VN binding capacity of the PAI-1 

construct to the primary or secondary site of interaction. A “-” in one or both of the VN binding 

columns indicates that the PAI-1 construct has reduced binding at the primary or secondary site.  

Labeling accessibility indicates that the S338C mutation has been added to allow for labeling 

with Biotin or NBD. 

PAI-1 Constructs 

Shorthand 

For PAI-1 

Variants 

Key Characteristics of PAI-1 Mutants 

Primary 

Binding 

Secondary 

Binding 

Accessible 

for Labeling 

Wt Wt Y Y - 

S338C P9 Y Y Y 

W175F W175F Y - - 

Q123K Q - Y - 

Q123K, S338C QP - Y Y 

Q123K, W175F QW - - - 

Q123K, W175F, S338C QWP - - Y 

Q123K, R115E, R118E QRE - - - 

Q123K, R115E, R118E, S338C QREP - - Y 

Q123K, R115E, R118E, W175F QREW - - - 

Q123K, R115E, R118E, W175F, S338C QREWP - - Y 

R101A, M110A, Q123A RMQ - - - 

R101A, M110A, Q123A, S338C RMQP - - Y 

R101A, M110A, Q123A, W175F RMQW - - - 

R101A, M110A, Q123A, W175F, S338C RMQWP - - Y 
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were labeled with Biotin or NBD for use in differentiation between PAI-1 molecules in 

complexes with VN.  Further details on the labeling procedure can be found in 2.2.j.   

 

3.2.b AUC 

 Proteins samples were mixed with a small volume of 10x PBS, to prevent precipitation, 

and dialyzed overnight at 4°C in 4L of 1x PBS pH 7.4. The following day, protein samples were 

spun at 14,000xg for 15 -20 min in order to remove any particulates or precipitated protein.  

Additionally, ~10mL of the dialysis buffer was harvested and filtered with a .22µM filter for use 

in mixing samples and as the buffer blank in the AUC cells. All AUC experiments were 

performed using sapphire lenses so that absorbance and interference data could be collected.   

Samples were mixed in .6mL microfuge tubes, and immediately loaded into 

preassembled AUC cells. The cells were placed in a 50Ti rotor, and then allowed to incubate in 

the AUC chamber at 25°C for 45-60min. Sedimentation velocity experiments were performed at 

50,000rpm, 25°C for ~20hours with scans taken every 50 seconds.  Analysis of AUC data were 

performed in Sedfit using the continuous c(s) model described by the Lamm equation [150, 188, 

189]. Additional method details can be found in 2.2.o. 

 

3.2.c HPLC 

 A size exclusion column was used to separate PAI-1, VN, and PAI-1:VN complexes.  

Prior to injection onto the column protein samples were mixed and allowed to incubate at room 

temperature for 30 minutes.  Following incubation, 20µL of sample was injected onto the 
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column, followed by a .5mL/min flow of PBS buffer at pH 7.4.  A more complete description of 

this method can be found in 2.2.p 

 

 

3.2.d ELISA 

 VN was diluted into .2M Sodium Citrate at pH 9.0.  50µL of this mixture was then added 

to each well on a high-binding 96 well plate.  In some cases PAI-1 was used as the coat protein, 

and was added to the plate according to the same method as VN.  A side by side comparison of 

protein directly bound to the plate versus an antibody coat followed by protein binding showed 

no significant difference between the methods, so the direct addition of protein to the plate was 

used for further experiments.  Incubation was carried out overnight at 4°C or for 2hr at room 

temperature.  Side by side comparisons demonstrated no significant difference between these 

two methods so the overnight incubation was used for further experiments.  Tris-HCl buffered 

wash and blocking buffer were used for all further steps.  PAI-1 samples were mixed and 

50uL/well was promptly added to the plate.  Samples were incubated on the plate for 30min at 

room temperature.  Antibody and TMB substrate detection steps were carried out as described in 

2.2.q.  The TMB substrate reaction was quenched with 2M H2SO4 and absorbance at 450nM was 

detected using a plate reader.  These data were then plotted and analyzed in Excel. 

 

3.2.e SPR 

 A Biacore CM5 chip, with a matrix of carboxymethylated dextran covalently attached to 

a gold surface was used for immobilization of PAI-1and VN in order to measure PAI-1:VN 

interactions.  Use of the PAI-1 chip was soon eliminated due to the tendency toward latency, 
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even with a stable PAI-1 construct, as well as the high background from VN accumulating on the 

chip over time, and not being fully removed by a variety of regeneration protocols.  Further 

experiments all used a VN chip with PAI-1 and streptavidin as the analytes.  Following each 

injection, the chip was regenerated using a combination of 10mM glycine at pH 2.0 and .05% 

SDS.  Data were analyzed using BiaEvaluation Software.  Further detail can be found in 2.2.r.   

 

3.3 Results 

3.3.a Generation of PAI-1 Constructs 

Over the course of our study, several PAI-1 constructs were generated in order to study 

the PAI-1:VN interaction.  These variants and their hypothesized binding deficiencies are shown 

in table 3.1.  The first set of binding deficient PAI-1 constructs was designed to eliminate 

binding at the primary (Q123K) and secondary (R115E/R118E) sites of interaction between PAI-

1 and VN [137, 171].  We also generated a stable variant of these constructs containing the 

W175F mutation [76] as well as introduced a cysteine that could be used to label PAI-1 (S338C) 

(figure 3.5).   Later in this study, we also generated a PAI-1 variant with three mutations 

(R101A/M110A/Q123A) that had been shown to be unable to bind VN [190].  Each PAI-1 

variant was tested for activity via a gel and/or spectroscopic plate assay, to confirm that the 

mutation did not affect function in addition to VN binding. A representative selection of data is 

displayed in figure 3.6.  
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Figure 3.5 First Binding Deficient PAI-1 Constructs 

The first set of mutations that we introduced to PAI-1 were designed to target the primary and 

secondary VN binding sites. Q123K  has been shown to diminish VN binding at the primary site 

of interaction. R115/R118E has been shown to diminish VN binding at the secondary site of 

interaction.  W175F was introduced as a stabilizing mutation. S338C (P9 in the RCL) was 

introduced to allow labeling of the PAI-1 construct.  
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Figure 3.6 Representative Data From PAI-1 Activity Assay (Plate) 

Activity of PAI-1 constructs was assessed using a spectroscopic tPA substrate.   Following 

incubation of tPA with PAI-1, the substrate was added and color change detected.  Data were 

normalized so that tPA alone, “0Eq” on the x-axis, is set at 100% activity.  As increasing 

amounts of PAI-1 are added, the activity of tPA decreases through the inhibitory action of PAI-1.  

At 1.25 equivalents of PAI-1 to tPA there should be virtually no tPA activity remaining.  As can 

be seen from this representative data set, tPA mixed with QREP PAI-1 and RMQWP still retains 

some activity.  However, even these PAI-1 have >90% inhibitory activity. 
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3.3.b Probing the PAI-1:VN complex with AUC – The Early Studies 

In order to test the for the existence of PAI-1 dimers in the presence of VN we designed a 

series of AUC experiments.  Previous to this work, our lab published a study with the 

sedimentation coefficients for PAI-1, VN and PAI-1:VN oligomers [128].  The sedimentation 

coefficient for key PAI-1:VN species is shown in figure 3.7.   

Our studies initially utilized the VN binding deficient variant Q123K  PAI-1.  This single 

alteration had been shown to disrupt binding to VN at the primary site of interaction between the 

two proteins [171].  As can be seen in figure 3.8, this mutation was not sufficient to completely 

disrupt PAI-1:VN interactions when studied at the micromolar concentrations necessary for 

AUC experiments.  Our next course was to add mutations that had been demonstrated to 

diminish VN binding at the secondary site of interaction between PAI-1 and VN (R115E R118E 

and W175F).  Once again, these mutations were not sufficient to eliminate PAI-1:VN 

interactions at micromolar concentrations (Figure 3.8).  Interestingly, while W175F causes a 

reduction in higher order complex formation beyond 4:2 complexes, the addition of the W175F 

mutation to PAI-1 increased the overall complex formation between PAI-1 and VN (Figure 3.9).  

This increase is likely due to the enhanced stability of PAI-1 containing the W175F mutation, 

which allows it to remain in complex with VN for longer periods of time.   

These results demonstrated that we would need a more severe mutation to study the 

interaction of PAI-1 and VN at such a high concentration.  Alternatively, we would need to 

change the method used to one that would allow us to study the complex at lower protein 

concentrations.  Both of these alternative approaches were utilized in our studies.  
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Figure 3.7 Order of Assembly for PAI-1:VN Complexes and Associated Sedimentation 

Coefficients 

PAI-1 and VN are believed to assemble into higher order complexes via a stepwise mechanism 

illustrated above. These complexes are distinguishable by their sedimentation coefficients in 

AUC studies (shown in figure), as well as their molecular weights (PAI-1 monomer molecular 

weight: ~43kD, VN  monomer molecular weight: ~70kD).   
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Figure 3.8 AUC Results for Early PAI-1:VN Binding Studies 

A mixture of PAI-1 variants and VN was studied using AUC.  PAI-1 and VN were mixed at 

equimolar concentrations (4µM of each protein).  The AUC data are overlaid with cartoons 

representing the species that each peak is composed of.  The sedimentation coefficients of each 

of these species were identified previously [128].  Green circles represent PAI-1, and blue ovals 

represent VN.  In each sample there is some un-complexed PAI-1 and VN seen in the peaks 

spanning sedimentation coefficient values from 3 to ~5.  Peaks higher than 5.5S are from higher 

order complexes.  This is represented by the cartoons of PAI-1 VN complexes at their respective 

sedimentation coefficients.  Above 10S are higher order oligomers, represented by the complex 

with an asterisk.  The VN:Wt PAI-1 data set, shown in red, has the highest amount of higher 

order complex formation. QP PAI-1 and QREP PAI-1, shown in green and blue respectively, 

have diminished complex formation, but still exhibit VN binding at 4µM concentrations.  
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Figure 3.9 AUC Results – Wt PAI-1 vs W175F PAI-1 complex formation with VN 

A mixture of PAI-1 variants and VN was studied using AUC.  PAI-1 and VN were mixed at 

equimolar concentrations (2µM of each protein).  The AUC data are overlaid with cartoons 

representing the species that each peak is composed of.  The sedimentation coefficients of each 

of these species were identified previously [128].  Green circles represent PAI-1, and blue ovals 

represent VN.  In each sample there is some un-complexed PAI-1 and VN seen in the peaks 

spanning sedimentation coefficient values from 3 to ~5.  Peaks higher than 5.5S are from higher 

order complexes.  This is represented by the cartoons of PAI-1 VN complexes at their respective 

sedimentation coefficients.  Above 10S are higher order oligomers, represented by the complex 

with an asterisk.  Free PAI-1 samples are shown in green (W175F) and blue (Wt) dashed lines. 

The VN:Wt PAI-1 mixture, shown as a solid red line, has un-complexed VN and PAI-1 present 

in addition to higher order complexes. The VN:W175F PAI-1 mixture, shown as a solid purple 

line, has un-complexed PAI-1 and a greater amount of complex formation than seen in the 

VN:Wt PAI-1 sample. This difference is likely due to the increased stability afforded by the 

W1175F mutation. During the course of an AUC experiment, Wt PAI-1 will convert to the latent 

form much more rapidly than W175F PAI-1, eliminating its ability to participate in  a VN:PAI-1 

complex. 
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3.3.c Studying PAI-1:VN interactions with HPLC 

In our efforts to probe our hypothesis, we sampled several alternative experimental 

methods. We first attempted to use size exclusion High Pressure Liquid Chromatography 

(HPLC) to study the interaction between PAI-1 and VN.  Using an S2000 column we were able 

to successfully identify the retention time for the different protein species.  However, it soon 

became apparent that this method presented the same challenges as AUC.  We were unable to 

fully test the interaction, or lack thereof, between the binding deficient PAI-1 variant and VN, as 

the micromolar concentration needed for the experiments was high enough to overcome the 

binding deficiency introduced by our mutations.   

 

3.3.d Studying PAI-1:VN interactions with ELISA 

Our next experimental approach took advantage of the sensitivity of Enzyme-Linked 

Immunosorbent Assays (ELISA) to study the PAI-1:VN interaction (figure 3.10).  Following 

optimization of ELISA conditions for our system, preliminary data indicate that we could detect 

binding differences between VN and the different PAI-1 constructs.  However, once again, the 

original binding deficient PAI-1 variants still demonstrated a residual ability to bind to VN in the 

assay (figure 3.11).   

After the generation of the RMQ set of PAI-1 variants (figure 3.12) we were able to observe a 

marked decrease in the binding between the VN and the RMQW PAI-1 (figure 3.13)  With this 

promising result, we progressed to analysis of the RMQW PAI-1 construct in PAI-1:PAI-1:VN 

complexes (figure 3.14).  We observed that both Wt PAI-1 and W175F PAI-1 were able to  
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Figure 3.10 Experimental Concept for ELISA Studies 

In order to study PAI-1:VN binding with ELISAs we conducted a series of experiments based on 

the concept illustrated above.  PAI-1 was used as the coat protein.  Subsequent to the blocking 

step a mixture of PAI-1 and VN was added to the wells.  Next the primary, rabbit anti-VN, 

antibody was added, followed by a secondary, goat anti-rabbit, HRP-antibody.  The above figure 

illustrates the results we expected if our hypothesis was correct. In the first two wells, we 

expected to see that the addition of Wt PAI-1 and VN would result in a color change.  Well 1 

would serve as the positive control, while well 2 would serve as a test of our hypothesis that Wt 

PAI-1 could mediate an interaction between bd PAI-1 and VN (figure 3.3).  We expected that 

well 3 could have some color change (indicative of VN binding to the coat protein), but did not 

expect that it would have as distinct of a response.  Well 4 served as a negative control, with two 

bdPAI-1 molecules there should be no color change occurring.  
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Figure 3.11 ELISA Results for Early PAI-1 Variants  

PAI-1 was immobilized on the ELISA plate, and VN, or equimolar mixtures of PAI-1 and VN 

were added prior to detection via a polyclonal rabbit αVN antibody that was generated by our 

lab.  Binding curves were generated by creating serial dilutions of VN alone or equimolar 

mixtures of PAI-1 and VN.  Data were normalized to the highest A450 value for this experiment 

to render the data more easily comparable.  Solid lines represent data collected when Wt PAI-1 

was the coat protein. Dashed lines represent data collected when QREP PAI-1 was the coat 

protein.  The data shown in green are VN binding to each PAI-1 construct alone.  The data 

shown in red are from equimolar mixtures of Wt PAI-1 and VN added to the plate (0.5, 2, 4, 10, 

20, 50, and 100nM of each protein).  As can be seen from the red dashed line, addition of Wt 

PAI-1 alleviated some of the binding deficiency of QREP PAI-1.  However, the data shown in 

blue, from equimolar mixtures of QREP PAI-1 and VN, (0.5, 2, 4, 10, 20, 50, and 100nM of 

each protein) indicate that the residual binding between QREP PAI-1 and VN is enough to limit 

interaction with the coat protein, and also suggest that the QREP mutation may interfere with 

possible PAI-1:PAI-1 interactions when QREP PAI-1 is acting as the primary PAI-1 molecule in 

the complex. 
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Figure 3.12 Second Set of Binding Deficient PAI-1 Constructs 

The second set of mutations that we introduced to PAI-1 were based off of a set of mutants 

published by Jensen et al [190]. R101A, M110A, and Q123A  have been shown to diminish VN 

binding.  W175F was introduced as a stabilizing mutation. S338C (P9 in the RCL) was 

introduced to allow labeling of the PAI-1 construct.  
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Figure 3.13 ELISA Results for PAI-1 Variants Binding to VN 

VN was immobilized on the ELISA plate, and PAI-1 variants were added prior to detection via a 

polyclonal rabbit αPAI-1 antibody purchased from Molecular Innovations.  Binding curves were 

generated by creating serial dilutions of PAI-1.  Data were normalized to the highest A450 value 

for this experiment to render the data more easily comparable.  Data from Wt PAI-1 are shown in 

blue, data from W175F PAI-1 are shown in Red, and data shown in green is from RMQW PAI-1.  

RMQW PAI-1 display a marked reduction in binding to VN in comparison with Wt and W175F 

PAI-1.  The increased binding of W175F PAI-1 in comparison with Wt PAI-1 is likely due to the 

increased stability of the W175F PAI-1 construct.   

 

 



79 

 

 

 

Figure 3.14 ELISA Results for Later PAI-1:VN Binding Studies 

PAI-1 was immobilized on the ELISA plate, and VN, or equimolar mixtures of PAI-1 and VN 

were added prior to detection via a polyclonal rabbit  αVN antibody that was generated by our 

lab.  Binding curves were generated by creating serial dilutions of equimolar mixtures of PAI-1 

and VN.  Data were normalized to the highest A450 value for this experiment to render the data 

more easily comparable.  Solid lines represent data collected when a VN binding PAI-1 variant 

was mixed with VN just prior to plate addition.  Dashed lines represent data collected when a 

VN binding deficient PAI-1 variant was mixed with VN just prior to plate addition.  Data shown 

in red are from a Wt PAI-1 coat with Wt, or RMQW PAI-1 mixed with VN added.  Data shown 

in blue are from an RMQW PAI-1 coat with Wt, or RMQW PAI-1 mixed with VN added.  Data 

shown in green are from a W175F PAI-1 coat with a mixture of W175F, or RMQW PAI-1 and 

VN added.  Data shown in purple are from an RMQW PAI-1 coat with W175F, or RMQW PAI-

1 mixed with VN added.  There is a clearly observable difference between PAI-1:VN 

interactions when a VN binding PAI-1 is present.  While RMQW PAI-1:VN mixtures produced 

almost no complex, RMQW PAI-1 was incorporated into complexes when Wt or W175F PAI-1 

were present, indicating the existence of a PAI-1:PAI-1:VN interaction.  
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facilitate binding between binding deficient RMQW PAI-1 and VN.  These data support the 

hypothesis that a PAI-1:PAI-1:VN complex exists when PAI-1 interacts with VN.   

 

3.3.e SPR provides insight into the PAI-1:VN interaction 

 In order to study the PAI-1:VN interaction at lower concentrations we also turned to 

SPR. VN was immobilized on a CM5 chip, and PAI-1 was passed over the chip as the analyte.  

Preliminary experiments were conducted to measure the Kd of VN binding to the various PAI-1 

constructs (table 3.2).  An overlay of several PAI-1 construct’s binding curves at 100nM is 

shown in figure 3.15.  As the data demonstrate, the RMQ set of PAI-1 variants has a significantly 

reduced affinity for VN.  This not only confirmed the efficacy of these mutations in eliminating 

PAI-1:VN interactions, it also demonstrated that the RMQ PAI-1 variant was a good candidate 

for study in the AUC.   

We utilized the S338C mutation and labeled the P9 position of several PAI-1 variants 

with biotin to allow detection of labeled PAI-1 independently of a change in response units 

(figure 3.16).  However, streptavidin appeared to pull some of the P9*biotin PAI-1 off of the 

chip, particularly at higher concentrations of PAI-1.  We determined a lower concentration of 

streptavidin should be used for future experiments and this alleviated most of the PAI-1 removal.   

Further SPR experiments were conducted with RMQ PAI-1 variants with and without the 

biotin label.  Our results indicated that W175F PAI-1 may be able to facilitate incorporation of 

RMQP*biotin PAI-1 into complex with VN.  This phenomenon is more noticeable at lower 

(5nM and 20nM) concentrations of the RMQP*b PAI-1 variant (figure 3.17).  During the course 

of our SPR experiments we observed that the biotin label affects the ability of W175F PAI-1 to 
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Table 3.2 Kd for Selected PAI-1 Variants 

SPR was used to determine the dissociation constant for VN and several PAI-1 constructs. In 

several cases multiple experiments allowed for an average of the measured Kd values, however 

not all binding experiments were replicated. 

 

Measured Kd values for PAI-1 Variants 

PAI-1 Variant Kd Std. Dev. # data sets 

Wt 3 nM n/a (1) 

W175F 2 nM 1.8 nM (4) 

P9 3 nM 1.8 nM (4) 

RMQ 1,430 nM 304 nM (3) 

RMQW 719 nM n/a (1) 

RMQP*biotin 1,410 nM n/a (1) 
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Figure 3.15 SPR Binding Curves for Several PAI-1 Variants to VN at 100nM 

Several PAI-1 variants were flowed over immobilized VN at a concentration of 100nM.  As can 

be seen in the data, RMQ PAI-1 (green) and RMQW PAI-1 (cyan) have diminished affinity for 

VN in comparison to Wt PAI-1 (red), W175F PAI-1 (blue), and P9*biotin PAI-1 (purple).  

Duplicates of all conditions are shown. 

 

 

 

 

 

 

 

 

 



83 

 

 

Figure 3.16 Streptavidin Confirms the Presence of Biotin Labeled PAI-1 in PAI-1:VN 

Complex on SPR Chip 

Three concentrations of P9*biotin PAI-1 were flowed over the VN immobilized CM5 chip and 

binding was measured in response units (RU). Duplicates of each concentration are shown.  

Immediately following the P9*biotin PAI-1 injection, at ~375s, streptavidin was added at a 

concentration of .2mg/mL.  The data demonstrate that streptavidin interacts with biotin labeled 

PAI-1 on the SPR chip.  Controls were performed, not shown, which demonstrate that 

streptavidin does not interact with unlabeled PAI-1 or immobilized VN. Duplicates of all 

conditions are shown. 
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Figure 3.17 SPR Binding Data of W175F PAI-1 and RMQP*biotin PAI-1 

1nM of W175F PAI-1 was mixed with varying concentrations of RMQ PAI-1 so that it could 

facilitate the interaction of RMQ PAI-1 with the VN chip.  RMQ PAI-1 was also added to the 

chip without W715F PAI-1 present as a control.  The labeling system in the legend is 

(concentration of W175F PAI-1):(concentration of RMQ PAI-1), thus the 1:0 data shown in red 

are from 1nM W175F PAI-1 with no RMQ PAI-1.  Our results indicate that W175F PAI-1 may 

be able to facilitate incorporation of RMQP*biotin PAI-1 into complex with VN.  This 

phenomenon is more noticeable in the difference between RMQP*biotin PAI-1 alone and in the 

presence of W175F PAI0-1 at lower (5nM and 20nM) concentrations of the RMQP*b PAI-1 

variant.  Duplicates of all conditions are shown. 
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mediate an interaction between the labeled RMQ PAI-1 variant and VN (3.17, 3.18 and 3.19).   

When mixtures of unlabeled RMQ PAI-1 and W175F were injected over the VN chip, an 

increase in PAI-1 concentration resulted in an increase in RUs.  However, when biotin labeled 

RMQWP PAI-1, or RMQP PAI-1, was mixed with W175F, an increase in biotin labeled PAI-1 

resulted in a decrease in RU at concentrations above 50nM of the labeled proteins. This 

phenomenon was observed for multiple biotin labeled PAI-1 constructs.  These data suggest that 

the biotin label interferes with complex formation, and possible PAI-1 dimerization.  

It is interesting to note that the biotin label only affects the PAI-1:PAI-1 interaction as 

labeled and un-labeled bind to the VN chip equally (data not shown).  These data supports a 

mechanism of interaction wherein the RCL of the second PAI-1 molecule is involved in binding 

to the first PAI-1.  Further studies would need to be performed in order to fully confirm this 

finding.  Due to the disrupting effect that the biotin label has in the presence of W175F PAI-1, 

SPR was not utilized for further study of the complex. However, it has provided useful data 

regarding the affinity of PAI-1 variants for VN, and also suggests a possible mechanism by 

which the two PAI-1 molecules interact.  

 

3.3.f Probing the PAI-1:VN complex with AUC – Revisiting the Method 

Following the generation of the RMQ PAI-1 variants, we decided to study the complex using 

AUC again, reasoning that since the RMQ PAI-1 variants have such a low affinity for VN (table 

3.2) they would result in more meaningful AUC data than we were previously able to collect. 

Following standard AUC protocol, RMQP PAI-1, freshly labeled with NBD, was dialyzed 

overnight in PBS pH 7.4.  The next day several samples were generated, RMQP*NBD PAI-1  
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Figure 3.18 SPR Binding Data of W175F PAI-1 and RMQ PAI-1on a VN Chip 

1nM of W175F PAI-1 was mixed with varying concentrations of RMQ PAI-1 so that it could 

facilitate the interaction of RMQ PAI-1 with the VN chip.  RMQ PAI-1 was also added to the 

chip without W715F PAI-1 present as a control.  The labeling system in the legend is 

(concentration of W175F PAI-1):(concentration of RMQ PAI-1), thus the 1:0 data shown in red 

are from 1nM W175F PAI-1 with no RMQ PAI-1.  Data from samples with W175F PAI-1 

present are shown as solid lines.  Data without W175F PAI-1 are displayed with dashed lines. 

These data shows that as RMQ PAI-1 concentration increases, RU increases, both with and 

without W175F PAI-1 to facilitate the interaction. Duplicates of all conditions are shown.  
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Figure 3.19 SPR Binding Data of W175F PAI-1 and RMQ*biotin PAI-1on a VN Chip 

1nM W175F PAI-1 was mixed with varying concentrations of RMQWP*biotin PAI-1 so that it 

could facilitate the interaction of RMQQP*biotin PAI-1 with the VN chip.  RMQWP*biotin 

PAI-1 was also added to the chip without W715F PAI-1 present as a control.  The labeling 

system in the legend is (concentration of W175F PAI-1):(concentration of RMQWP*biotin PAI-

1), thus the 1:0 data shown in red is 1nM W175F PAI-1 with no RMQWP*biotin PAI-1.  Data 

from samples with W175F PAI-1 present are shown as solid lines.  Data without W175F PAI-1 

are displayed with dashed lines. The data show that as RMQWP*biotin PAI-1 concentration 

increases, RU decreases when in the presence of W175F PAI-1.  It appears that the biotin label 

has a negative effect on the ability of RMQWP*biotin PAI-1 to interact with W175F PAI-

1and/or VN.  This dampening effect is seen throughout our data.  Duplicates of all conditions are 

shown. 

 

 

 

 



88 

 

alone, RMQP*NBD PAI-1 & VN, RMQP*NBD PAI-1, Wt PAI-1, & VN, as well as controls 

without NBD labeled RMQP PAI-1. These samples were and promptly loaded into pre-

assembled AUC cells.  Data were collected at A500 in order to detect the NBD label only. 

Interference data were also collected to act as a control.  Once the AUC had equilibrated for 

~45min the centrifuge was brought up to speed and data were collected for ~20 hours overnight. 

 Data were analyzed in Sedfit and the distribution tables were used to generate data 

overlays so that the samples would be more readily comparable.  As can be seen in the AUC data 

in figures 3.20 and 3.21, NBD labeled RMQP PAI-1 was only detectable in complexes when Wt 

PAI-1 was present to mediate the interaction.  Additionally RMQP*NBD PAI-1 was only 

observed in complexes of 2:1 and higher (S = 6.5 and above).  In order to confirm these findings 

we repeated the experiment with freshly purified and NBD labeled RMQP PAI-1 at a higher 

concentration of protein and observed that RMQP*NBD PAI-1 incorporation into higher order 

complexes was increased when Wt PAI-1 was present (figures 3.22 and 3.23).  A small amount 

of RMQP*NBD PAI-1:VN appears to have formed, but no significant presence in higher order 

complexes was observed without Wt PAI-1 present. These data positively confirm our 

hypothesis that PAI-1 forms a dimer when in 2:1 complexes with VN.    

 

3.4 Discussion 

Using a multitude of experimental techniques, we sought to test the hypothesis that PAI-1 

and VN interact in a PAI-1:PAI-1:VN manner when in higher order complexes.  Our initial AUC 

experiments were unable to fully probe this hypothesis due to the residual affinity that the QRE 

PAI-1 variants retained for VN and the high concentration of protein required for AUC  
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Figure 3.20 4.3µM A500 AUC Data for RMQP*NBD PAI-1:VN complex formation 

PAI-1 and VN were dialyzed overnight in PBS pH 7.4. Following dialysis, proteins were spun to remove precipitants.  Immediately 

before loading into preassembled AUC cells, PAI-1 and VN were mixed in equimolar ratios.  These samples were then incubated at 

25°C for ~45min prior to data collection overnight.  Absorbance was measured at 500nm in order to detect signal from the NBD label. 

The inset in the top right corner is a close up view of the data from 5S to 25S.  The data demonstrate that when Wt PAI-1 is present, 

RMQP*NBD PAI-1 is incorporated into higher order PAI-1:VN complexes.  
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Figure 3.21 AUC Data: Amount of Higher Order Complex in 4µM Data Set 

We used the built in integration tool in Sedfit to determine the percentage of higher order complex found in the total AUC signal.  

Data were integrated starting at 5.45 [S], just below the sedimentation coefficient for 1:1 complexes to 28 [S].  It was determined that 

19% of the total signal was found in higher order complexes, clearly demonstrating the incorporation of RMQP*NBD into the PAI-1 

VN complex. 
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Figure 3.22 6µM A500 AUC Data for RMQP*NBD PAI-1:VN complex formation 

PAI-1 and VN were dialyzed overnight in PBS pH 7.4. Following dialysis, proteins were spun to remove precipitants.  Immediately 

before loading into preassembled AUC cells, PAI-1 and VN were mixed in equimolar ratios.  These samples were then incubated at 

25°C for ~45min prior to data collection overnight.  Absorbance was measured at 500nm in order to detect signal from the NBD label. 

The inset in the top right corner is a close up view of the data from 5S to 25S.  The data demonstrate that when Wt PAI-1 is present, 

RMQP*NBD PAI-1 is incorporated into higher order PAI-1:VN complexes.  
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Figure 3.23 AUC Data: Amount of Higher Order Complex in 6µM Data Set 

We used the built in integration tool in Sedfit to determine the percentage of higher order complex found in the total AUC signal.  

Data were integrated starting at 5.45 [S], just below the sedimentation coefficient for 1:1 complexes to 28 [S].  It was determined that 

29% of the total signal was found in higher order complexes, clearly demonstrating the incorporation of RMQP*NBD into the PAI-1 

VN complex. 
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experiments.  We sought to utilize HPLC, but again discovered that the method was not sensitive 

enough for our needs.  We also studied the complex using ELISAs however; the QRE PAI-1 

variants retained too great an affinity for VN.  We concluded that the QRE PAI-1 variant was not 

useful for these studies and turned to a new binding deficient PAI-1 for further investigation of 

the PAI-1:VN interaction. 

We began using a new PAI-1 variant, RMQ PAI-1.  This new PAI-1 construct was a 

much more effective tool for studying the PAI-1:VN complex.  Our ELISA data demonstrate that 

RMQW PAI-1 was able to participate in PAI-1:VN complexes when Wt or W175F PAI-1were 

present, but not with VN alone, or when RMQW PAI-1 was added in conjunction with VN. 

The data from our AUC experiments, performed with the RMQ PAI-1 variant also 

confirm that Wt PAI-1 is able to mediate incorporation of VN binding deficient PAI-1 into a 

PAI-1:VN complex.  These results also provided insight into the distribution of RMQ*NBD 

PAI-1, confirming that it is able to assemble into higher order complexes, when in the presence 

of Wt PAI-1: and VN.   

Together, our ELISA and AUC data support our hypothesis via two independent 

methods.  These data, combined with the SANS model, support a new model for PAI-1:VN 

interactions.  This model greatly advances the field and facilitates efforts into developing 

therapeutic agents that target the PAI-1:VN complex.  New therapies can be developed that focus 

on disrupting PAI-1:PAI-1 dimers.  Additionally, the confirmation that a single PAI-1 interacts 

at both the primary and secondary site will facilitate binding studies and development of 

inhibitors that seek to target the PAI-1:VN interface.   

Our SPR data reveal that the biotin label interferes with the ability of W175F to mediate 

an interaction between biotin labeled RMQ PAI-1 variants and VN.  These findings provide 
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insight into the mechanism by which the PAI-1 molecules interact.  An alternative labeling site 

could be used to better monitor PAI-1 interactions.  While no specific information about the 

exact interaction has been revealed, the SPR results indicate that the RCL of the second PAI-1 is 

responsible for interaction with the first PAI-1 molecule.   Future research will focus on the finer 

details of this interaction, such as how the two PAI-1 molecules interact with each other.  Zhou 

et al proposed several different methods by which PAI-1 could polymerize and these models 

would be an excellent starting point for future study (figure 3.24) [33].  It is important to note 

PAI-1 has been seen to adopt the s7A linkage under crystallization conditions [191], but whether 

this polymerization method is valid for PAI-1 under physiological conditions remains to be seen.  

The crystalized PAI-1 polymer formed a long chain, which is not seen under physiological 

conditions.  Thus, even if PAI-1 interacts via an s7a linkage there are definitive differences 

between physiological PAI-1:VN interactions and the long chain polymer seen in the literature.  

It would also be valuable to determine if both PAI-1 molecules in the 2:1 complex are 

fully active, and also if both can act simultaneously.  In their study, Zhou et al noted that PAI-1 

polymers are unique in that they can dissociate into functional monomers.  This indicates that 

both PAI-1s are active in complex, but does not address the question of whether both PAI-1 

molecules are able to function as inhibitors simultaneously.  It is improbable that both can 

simultaneously inhibit proteases, as the RCL mediated dimerization is the most likely mode of 

interaction.  More likely, one of the two PAI-1 molecules is available for PA inactivation, and 

upon cleavage and loop insertion of one PAI-1 molecule, the other becomes free to inhibit PAs.  
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Figure 3.24 Illustrated Scheme of Serpin Polymerization 

Three possible mechanisms by which PAI-1 could form dimers are shown in this figure adapted 

from Zhou et al (for more details, and three dimensional structural representation of see the 

original work) [81].  Due to the fact that PAI-1 is still able to act against PAs when in higher 

order complexes, it is unlikely that PAI-1 dimerizes via the s4A linkage model, leaving two 

possible models for interaction.  PAI-1 has been shown to form a long chain s7A linkage 

polymer under crystallization conditions [191] making this mode of interaction an ideal model to 

test in initial experiments to probe the method by which PAI-1 can dimerize.  
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Chapter 4 - Effect of PAI-1 binding on the IDD of VN 

4.1 Introduction 

4.1.a Vitronectin Overview 

Vitronectin (VN) was first identified as a serum spreading factor that enabled mammalian 

cells to adhere to culture vessels [192, 193].  Through the application of antibodies, it was found 

that VN is present at the cell surface and is a component of the ECM [194].  Additionally, it was 

found that application of antibodies against VN was sufficient to inhibit the rate of cell 

migration, thus confirming the role of VN as a serum spreading factor [195].  Over the years, 

many binding partners have been identified for VN including plasminogen [196], fibrinogen 

[197], a variety of intergrins [198-200], uPAR [201], heparin [202], and PAI-1[167]. These 

binding partners affect VN structure and function and have been the subject of many studies.  

The structure of full-length VN has not been experimentally determined. However, a 

combination of computational analysis, experimental studies, and the high resolution crystal and 

solution structures of the n-terminal SMB domain have been combined to generate three-

dimensional models [89, 92, 94, 203, 204], one of which is shown in figure 1.5.  The SMB 

domain is composed of the first 44-50 amino acids.  The only classic secondary structural 

elements in the SMB domain are a single turn alpha helix, and a partial 3-10 helix.  The 

remainder of this domain is composed of unstructured loops and coils, held in place by four 

disulfide linkages.   

The next domain of VN is composed of residues from approximately 48 through 130.  

This domain contains no secondary structure, and conforms to the requirements for classification 

as an intrinsically disordered domain (IDD) [122].  The IDD is an understudied domain of this 
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glycoprotein, likely due in part to the difficulty of studying a disordered protein region. Lastlly, 

the central domain consists of residues 131 - 342, and the C-terminal domain includes residues 

347 - 359.  These domains are rich in β secondary structure and have been computationally 

predicted to fold into a β-propeller type structure and β-blade (half a propeller) type structure 

respectively [83, 89].   

 

4.1.b Intrinsically Disordered Proteins and VN 

For decades, the concept of protein function was intimately tied to protein structure [102, 

103, 205]. Lack of protein structure was often associated with a lack of function [206].  

However, in recent years, the role of disorder has attracted new interest. Studies of intrinsically 

disordered proteins and protein domains have shown that these disordered regions have a 

functional aspect [207, 208].  In many cases, intrinsically disordered proteins, or domains, have 

been seen to adopt various structures and conformations based on their binding partners [209].  

Even when classical secondary structure is not adopted by the IDD/IDP, the disordered region 

may associate with the binding partner through “disordered” loops.  This unique ability allows 

proteins containing a disordered region to have an increased versatility in binding partners 

compared to traditional proteins due to the adaptable nature of disordered domains [107, 110].  

The second domain of VN has not been a focus of much study over the years.  However, with the 

recent interest in intrinsic disorder, there are new insights into the possible role of the IDD of VN 

in its many biological functions.  The IDD of VN could play a key role in the adaptability of VN, 

diverse binding interactions, incorporation into the ECM, and more.  
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4.1.c A Brief Review of PAI-1:VN interactions 

PAI-1 binding to VN causes a conformational change in VN that is associated with a 

permanent conformational change in VN leading to the formation of VN oligomers. Notably, this 

conformational change occurs on a much faster time scale than that of VN oligomerization, 

which indicates that the conformational change is specifically due to PAI-1 binding [21]. The 

specific nature, of this conformational change is currently unknown, and further insight into this 

change would be beneficial to the field of VN biochemistry and the study of disordered proteins.  

PAI-1 and VN interact at two separate sites. The primary site of interaction is well 

characterized [77, 136]. However, only small details are known about the secondary sites of 

interaction between these two proteins. A secondary binding site for VN has been identified on 

PAI-1 through mutagenesis and binding studies.  This site overlaps with the PAI-1 heparin 

binding region and contains a number of key, basic, residues (figure 3.2) [137].  

The secondary binding site for PAI-1 on VN is still under debate [142]. There are two 

regions that have been proposed to contain a secondary PAI-1 binding site. The first, is found in 

the heparin binding region of VN, comprising residues 348-370, found in the C-terminal domain 

[140, 144].  Another proposed binding site is found in 115 - 131, of the disordered domain of VN 

[143, 210].  Further studies are needed to conclusively localize the secondary PAI-1 binding 

domain in VN.  However, the number of positively charged residues that are crucial to the 

binding interface support the localization of the secondary binding to the acidic disordered 

domain, rather than the basic HBD in VN. 
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4.1.d Research Goals 

With this branch of the project we sought to better understand the effect of PAI-1 binding on 

VN.  More specifically, we studied the impact of PAI-1:VN interactions on the IDD of VN.  Our 

discoveries will further the field by lending insight in to an understudied domain of VN and 

potentially provide answers about how PAI-1 affects conformational changes in VN. 

Intrinsically disordered proteins have been shown to have an important role in many key 

biological processes, and we wish to better understand how the IDD affects this aspect of the role 

of VN.  We have used two primary techniques to study the IDD in this work, CD and SANS.  

The hypothesis that guided this branch of the project is the disordered domain of VN is an IDD 

and will undergo a disorder to order transition upon interaction with PAI-1.   

In addition to our study of the structural effect of PAI-1 binding on the IDD, we also 

sought to gain further understanding regarding the secondary binding site for PAI-1 on VN.  

There are two regions in VN that have been proposed to contain the secondary binding site for 

PAI-1.  The first region is located in the C-terminal domain, near the heparin binding domain 

(HBD), and the second is located in the IDD.  We hypothesize that the secondary binding site for 

PAI-1 on VN is found in the IDD of VN.  Our rationale for this hypothesis stems from the 

inherent conflict of two basic HBDs interacting [203] whereas the IDD site is acidic and is thus 

more likely to participate in an electrostatic interaction [138]. Additionally, the heparin binding 

domain of VN is cryptic until exposed due to conformational changes induced by binding to 

PAI-1 and a handful of other partners [179].  The cryptic nature of the HBD prior to PAI-1 

binding indicates that it cannot serve as the secondary binding site, since it would remain cryptic 

until after the interaction of PAI-1 at both the primary and secondary binding locations [21].  
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Finally, due to its flexible nature, the IDD site is more likely to be readily positioned in close 

proximity to the primary binding site.  

 

4.2 Methods 

4.2.a Expression and purification of a VN fragment in E. coli 

The SMB-IDD fragment of VN was expressed in E. coli, under control of a T7 promoter, 

with a thioredoxin and His tag.  The purpose of the His tag was for ease of purification, and the 

Thioredoxin was added to ensure that the small protein fragment was not degraded by the cell.  

Following expression of the SMB-IDD, the Thioredoxin tagged protein was isolated from the 

cell lysate by an IMAC affinity column.  After elution of the recombinant protein from the 

column, the SMB-IDD was isolated from the Thioredoxin and His tags via thrombin cleavage.  

Following cleavage, the SMB-IDD was isolated, and then flowed over a PAI-1 affinity column 

to isolate SMB-IDD constructs that can bind PAI-1.  This step was performed to ensure that the 

E. coli expressed SMB-IDD, was also functional and properly folded.  More detail on this 

process can be found in 2.2.n. The size of the SMB-IDD was confirmed via HPLC, Mass 

Spectrometry, and gel electrophoresis.   

 

4.2.b Expression and purification of deuterated W175F PAI-1 

We utilized two different methods for the deuteration of PAI-1.  Initially we relied on 

deuterated rich media.  E. coli expressing the W175F PAI-1 construct was then grown in this 

media as described in 2.2.h.  Briefly, we used a small volume of the deuterated media to generate 

starter culture from glycerol stocks.  This culture was then used to inoculate the remaining 1L of 



101 

 

deuterated media.  Cultures were grown at 37°C until they reached an OD600 of ~2, then cooled 

to 15°C prior to induction with 1mM IPTG.  Following an 18 hour induction, cells were spun 

down and frozen at -80°C.   

Our second method of deuterating W175F PAI-1 utilized minimal media and 

fermentation.  In order to grow the cells in deuterated minimal media, we spent several weeks 

adapting the cultures to a new media.  Once we had cell stocks that grew and expressed PAI-1 

well in minimal media, we created a glycerol stock for use with creating a starter culture when 

working at ORNL.  This stock was then used to inoculate deuterated minimal media for use as a 

starter culture.  After an overnight growth at 37°C, this culture was used to inoculate 1L of 

deuterated minimal media.  The culture was then grown in a fermenter to OD600 35.  The culture 

was then cooled and induced with 1mM IPTG.   Cells were spun down and frozen at -80°C. 

Deuterated W175F PAI-1 was purified using our standard purification protocol, 

described in 2.2.j, using a series of three columns.  All buffers were prepared with H2O, and the 

final purified protein was immediately dialyzed into PBS in D2O, and kept at 4°C until use for 

SANS.  PAI-1 yield was much higher for the fermentation method, and extra protein was frozen 

at -80°C for future experiments.  This caused some aggregation of PAI-1, so all frozen PAI-1 

was run over an s-100 column a second time prior to use.   

 

4.2.c Circular Dichroism  

Circular Dichroism experiments were performed on an Aviv Circular Dichroism 

Spectrometer, model 202. Samples were placed in 1mm path length quartz cuvettes and then 
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placed in the instrument to be scanned. Data were analyzed using the online tool, Dichroweb 

[211, 212]. 

 

 

4.2.d Small Angle Neutron Scattering  

SANS experiments were performed on the BioSANS or EQ SANS beam lines at ORNL. 

More information on data collection and analysis can be found in 2.2.t. 

Data analysis was conducted using the ATSAS and SASSIE suite of tools. These processes 

are described in detail in 2.2.v and 2.2.w. Both EOM and SASSIE rely on generating a large pool 

of structures and then comparing those structures to the experimental data. This combination of 

computational and experimental techniques allows for a robust analysis that yields high 

resolution data. 

 

4.3 Results 

4.3.a Studying the effect of osmolytes on the IDD structure with Circular Dichroism  

In our quest to explore the role of the IDD in PAI-1:VN interactions, we first studied the 

effect of osmolytes on the structure of the IDD.  In order to study this disordered domain, we 

expressed it as a part of a two domain construct that also included the SMB domain of VN.  The 

inclusion of the SMB domain provided a stable anchor for the IDD and allowed for affinity 

purification of the VN fragment.  The SMB domain is largely free of classical secondary 

structural elements, and thus would not contribute greatly to the CD spectra.   
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To begin our studies we utilized CD and examined the effect of osmotic pressure on the 

IDD.  Osmotic pressure is frequently used to simulate binding or cellular conditions on a protein 

in order to isolate structural changes that would be masked in the presence of binding partners.  

In our experiments, we used Ethelyne Glycol (EG) and Polyethylene glycol (PEG) 400 to study 

the structure of the IDD under osmotic pressure.  Our findings showed the SMB-IDD domain 

alone has an elipticity that is devoid of classical structural features (figure 4.1).   However, upon 

addition of EG and PEG 400 we observed the SMB-IDD elipticity shift towards 220nm 

indicating a reduction in disorder and a possible adoption of secondary structure.  We analyzed 

our CD data using the free online tool, Dichroweb.  The results supported our hypothesis and 

observation that the IDD underwent a disorder to order transition upon addition of osmolytes 

(figure 4.2).   

 

4.3.b Computationally examining the IDD for potential to adopt structure 

In order to determine if the IDD of VN was, like so many other IDDs, able to adopt 

secondary structure upon interaction with a binding partner, we collaborated with Dr.  Uversky 

to utilize his Molecular Recognition Feature (MoRF) prediction software [213].  MoRFs are 

small segments in intrinsically disordered proteins (IDPs) that transition from disorder, to order, 

upon ligand binding.  This ordered state can be anything from adoption of classic secondary 

structure, to an ordered loop region [214].  Dr. Uversky’s software is designed to identify these 

MoRFs within an IDP and predict the adoption of structure upon binding to a ligand.  The results 

of the MoRF prediction are shown in figure 4.3. The model predicts the presence of two regions 

in the IDD that may to adopt alpha helical structure upon interaction with a ligand (VN residues  
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Figure 4.1 CD Data 

CD spectra of the SMB-IDD fragment of VN.  Black line: SMB-IDD alone in solution.  Pink 

line: SMB-IDD in the presence of 57% ethylene glycol. Blue line: SMB-IDD in the presence of 

57% polyethylene glycol 400. Increase in osmotic pressure causes a shift in elipticity toward 

220nm, indicative of a more ordered state. 
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Figure 4.2 Dichroweb Analysis of CD data 

Dichroweb analysis of the CD spectra confirms an increase in order and a decrease in disorder in 

the IDD of VN under increasing osmotic pressure. Black: SMB-IDD alone in solution.  Pink: 

SMB-IDD in the presence of 57% ethylene glycol. Blue: SMB-IDD in the presence of 57% 

polyethylene glycol 400.  
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Figure 4.3 Analysis Of The IDD Sequence Indicates Potential To Adopt Helical Structure 

Two regions of the IDD were predicted to adopt alpha helical secondary structure upon interaction with PAI-1 using MoRF prediction 

software [213]. The sequence of the IDD is shown below the main cartoon of the VN domain structure. The two regions predicted to 

adopt structure are shown in blue. 
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52-72 and 84-95). These data are in support the hypothesis that PAI-1:VN interactions cause a 

conformational change in the IDD of VN. 

 

4.3.c Studying the effect of osmolytes on the IDD structure with SANS 

In order to further test our hypothesis we studied the SMB-IDD using SANS.  By 

working with fully deuterated osmolytes we eliminated the need to perform contrast variation 

experiments.  Instead, we measured scattering of the SMB IDD in a buffer that matched out 

signal from the osmolytes so that we only gathered data from our protein of interest (figure 4.4).   

Upon data analysis we observed that addition of osmolytes caused a reduction in the 

radius of gyration (Rg) of the SMB IDD (figure 4.5).  This reduction in Rg indicated that the IDD 

was less flexible and elongated in solution when under osmotic stress. We further analyzed the 

data by performing an ensemble optimization method (EOM).  We generated 10,000 structures 

for the SMB-IDD, and selected the top 10% based on best fit to the experimental data. Using 

these structures, we generated a heat map comparing the Rg of these 100 structures with 

osmolyte concentration. Our results demonstrate that the IDD is very flexible alone in solution, 

but samples a much smaller area when under osmotic stress (Figure 4.6).  This structural change 

could be due to secondary structure adoption, or an overall compaction of the IDD.  However, 

the low resolution of SANS is unable to differentiate between these two possibilities.  

 

4.3.d Studying the effect of PAI-1 binding on the IDD structure using cvSANS. 

Together the CD and SANS data support our hypothesis that the IDD experiences a 

structural change under osmotic pressure.  These findings generated the preliminary rationale for  
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Figure 4.4 Contrast Matching SANS Experimental Scheme 

Using deuterated osmolytes we are able to “match out” the scattering signal using buffer D2O 

percentage.  This allows us to conduct measurements with a single buffer condition, speeding 

data collection and simplifying data analysis.  
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Figure 4.5 SANS Osmolyte Data 

SANS experiments were conducted under five different osmolyte concentrations. The average 

Rg for each data set was calculated from the gunier region in the software package Igor. These 

data were plotted as a measure of Rg vs osmolytes concentration. The data demonstrate that 

increasing osmotic pressure results in a decreased Rg.  

 

 

 

 



110 

 

 

Figure 4.6 EOM Heat Map 

For each osmolyte condition, 1000 structures were selected that best fit the scattering data. The 

Rg for these structures was then used to construct a heat map that displays the relationship 

between osmotic stress and RG for the SMB-IDD. The Rg values for each of the 1,000 structures 

are plotted on the x-axis.  Five osmolal conditions (0, 2, 4, 6, and 8 osmolals of EG) were 

analyzed and are shown on the y-axis.  The data demonstrate that in the absence of osmolytes, 

the Rg peaks in the high 30’s. however, in the presence of osmolytes, this peak shifts by nearly 

10 angstroms, confirming that osmotic pressure effects the conformation of the IDD.  
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testing PAI-1 and the SMB-IDD in complex to see how a native ligand affects the structure of 

the IDD. We used deuterated W175F PAI-1 so that we could isolate scattering data from the 

complex components via contrast variation experiments (Figure 4.7). 

  Following data collection, a variety of methods were utilized to analyze the data.  First, 

we used the MONSA and SUPCOMB software packages from the ATSAS suite to generate a 

low resolution representation of the data, and then super imposed the co-crystal structure of PAI 

and SMB in order to gauge the appropriateness of the model.  This method, while able to 

generate a model that fit the data relatively well, was unable to fully model the IDD portion of 

the data due to the inherent flexibility of the protein domain (figure 4.8).  Consequently, this 

analysis method was set aside in favor of other, more refined, approaches.   

In order to accurately model the flexible IDD we again turned to two separate 

approaches. First, we used EOM to generate a pool of 10,000 unique structures. From this pool 

we selected 2000 structures that best fit each contrast condition. These structures were used to 

generate a new pool of 10,000 structures from which we ran EOM again, to select 1000 

structures that best fit the 100% D2O condition.  From this new collection of structures we 

isolated the signal from the SMB-IDD. We then compared the Rgs for bound, vs unbound SMB 

IDD.  The data show that PAI-1 binding results in a much narrower Rg range for the SMB-IDD, 

indicating that the IDD cannot move as freely in solution when bound to PAI-1 (Figure 4.9). 

 We also collaborated with Susan Kreuger and Joseph Curtis at NIST, using the SASSIE 

software suite to generate a model for the PAI-1:SMB-IDD complex.  Several starting structures 

were generated so that we could explore the possible structures adopted by the IDD of VN 

(Figures 4.10 and 4.11). Starting structure 1 was generated with no constraints on the IDD.  
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Figure 4.7 Illustration of the PAI-1:SMB-IDD cvSANS  

We used contrast variation SANS  to gather data on deuterated PAI-1 and protonated SMB-IDD. 

We studied the complex in buffer with varied D2O compositions in order to change the signal 

contribution from each of the complex components. Neither of the complex components were 

completely matched out in any buffer condition with this method, but the buffer variation 

allowed one component of the complex to dominate the signal under different conditions. 
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Figure 4.8 MONSA model of PAI-1:SMB-IDD SANS data 

A low resolution model was generated using the MONSA software package.  PAI-1 is 

represented by gray, and the SMB-IDD is represented by orange.  The left structure is a 

representative model generated using MONSA. The right structure is an overlay of the low 

resolution MONSA structure with the PAI-1:SMB co-crystal structure (green and cyan 

respectively) to demonstrate goodness of fit.  
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Figure 4.9 EOM Analysis of PAI-1:SMB-IDD and free SMB-IDD SANS data 

EOM analysis of SANS data on the SMB-IDD VN fragment demonstrates that the IDD of VN 

samples a broad range of space in solution. The above graph illustrates the change in the SMB-

IDD when unbound (black) or bound (blue). These data demonstrate that that the IDD exists 

predominantly in conformations with a smaller Rgs upon interaction with PAI-1.  
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Figure 4.10 Starting Structures for PAI-1:SMB-IDD SANS analysis 

Three starting structures were generated using the all atom calculator that is part of the SASSIE 

tool suite in order to analyze the PAI-1:SMB-IDD SANS data.  Structure 1 had no constraints 

built into the IDD.  Structure 2 was created with the IDD in a more compact starting position.  

Structure 3 was created with the IDD in a compact state and wrapping around  PAI-1.  These 

structures were used as starting points to generate large, conformationally diverse, structure 

pools for further data analysis. 
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Figure 4.11 Starting Structure for unbound SMB-IDD SANS analysis 

A single starting structure was used to analyze the unbound SMB-IDD SANS data. This 

structure was used as starting point to generate a large, conformationally diverse, structure pool 

for further data analysis. 
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Starting structure 2 was generated with the IDD in a more condensed starting position that 

agreed better with the experimental data. Starting structure 3 was generated with Rg constraints 

as well as starting partially wrapped around the PAI-1 molecule in order to better simulate the 

center of mass that was calculated from the experimental data.  Additionally, a structure for the 

SMB-IDD alone in solution was generated with no constraints on the IDD.   

From each of these starting structures, pools of 50,000 conformations were generated 

under varied simulated conditions (Figure 4.12). These pools were then analyzed in comparison 

with the experimental data and Χ
2
 values were used to determine goodness of fit. A comparison 

of the Χ
 2

 versus Rg values for each structure compared to the 85% contrast condition is shown 

in figure 4.12.  This contrast condition was favored for data analysis because the deuterated PAI-

1 is nearly matched out, allowing the SMB-IDD the greatest signal contribution at this contrast. 

As can be seen in figure 4.12, the best fit to the data came from the two pools generated using 

starting structure 1 (shown in red and black).  A similar comparison of the two pools was made 

with the global data set, taking all contrast conditions into account (Figure 4.13).   In this case 

the structure with a constrained Rg better fit the global data.  Additionally, a Χ
 2

 versus Rg 

comparison was performed for the SMB-IDD data set alone and is shown in figure 4.14.   As 

with the complex, the unbound SMB-IDD pool has a number of structures that do not fit as well 

to the experimental data, and a good selection of structures that have a reasonable Χ
2
 value. 

 Using Χ
2
 values, a best fit structure was selected for the global data set, as well as a best 

fit structure for the 85% data set (Figure 4.15). Curves were calculated for each of these two 

structures at 0%, 20%, 85%, and 100% D2O conditions and compared with the interpolated 

experimental data (Figure 4.16).  The global best fit structure correlates well with experimental 

data at 0% and 20% D2O, but not well at the 85% or 100% conditions.  Conversely, the best fit  
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Figure 4.12 Χ
2
 vs Rg Plot for 85% D2O PAI-1:SMB-IDD Contrast Condition 

The three starting structures were used to generate large, conformationally diverse structure 

pools.  In the creation of these pools, constraints could be used to affect the resulting structural 

pool. Starting structure 1 was used to generate two pools. The first pool (black) was not 

subjected to any constraints.  The second pool (red) was constrained to Rgs below 35 Å. The 

single pool generated from starting structure 2 (blue) was not subjected to any constraints. 

Starting structure 3 was also used to generate two separate pools. The first pool (pink) was not 

subjected to any constraints.  The second pool (green) was constrained to Rgs below 35Å and 

also had fixed regions introduced into the IDD forced the IDD to remain wrapped around PAI-1.   

The structures from these pools were compared with the 85% experimental condition for 

goodness of fit and are displayed here in a Χ
2
 vs Rg plot.  As can be seen from this data, both 

pools from structure 1 had the best fit to the 85% contrast data.  
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Figure 4.13 Χ
2
 vs Rg Plot for Global PAI-1:SMB-IDD Complex Data 

The pools from starting structure 1 were compared with the global SANS data set.  Under these 

conditions, the red pool, in which Rg was constrained, contained structures that best fit the 

experimental data.  
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Figure 4.14 Χ
2
 vs Rg Plot for Unbound SMB-IDD Experimental Conditions 

All structures in the pool were compared with the global SANS data set.  Overall, the structures 

fit reasonably well to the data.  
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Figure 4.15 Best fit PAI-1:SMB-IDD structures 

While no single structure can fully capture the flexible, disordered domain of VN, we selected the two best fitting structures from the 

ensemble to show as representative conformational states.  The structure on the left is the best fit to the global PAI-1:SMB-IDD data 

set. The structure on the right is the best fit to the 85% contrast condition.  
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Figure 4.16 SANS data curves 

Interpolated experimental SANS data are shown as dots for four contrast conditions. Curves for 

the global best fit structure under different contrast conditions are displayed as a dashed line in 

corresponding colors. Curves for the best fit structure to the 85% contrast condition are shown as 

solid lines in corresponding colors.  The global best fit structure only fit the 0% and 20% data, 

whereas the 85% conditions fits well to all conditions other than 100% D2O.  
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structure for 85% conditions fits well to all conditions other than 100% D2O.  No structure fit 

well to all experimental conditions. This is likely due to some aggregation that occurred in the 

100% D2O sample.   

In addition to selecting a single, best fit, structure from the selected pools, we also 

generated density plots to more accurately display the conformational space sampled by the 

flexible IDD of VN.  Figure 4.17 is a density plot of all structures with a Χ
2
 <5 to the unbound 

SMB-IDD data.  The cyan shape, fixed in the center of the plot, represents the SMB.  The gray 

cloud is a representation of all the conformational space sampled by the IDD. 

The density plot in figure 4.18 is an overlay of the unbound SMB-IDD data shown in 

figure 4.17, and the data from bound SMB-IDD.  The green and cyan shapes in the center 

represent PAI-1 and the SMB domain respectively.  The orange cloud is a representation of all 

the conformational space sampled by the IDD when the VN fragment is bound to PAI-1.  As can 

be seen from the overlay, the selected IDD conformations inhabit the region surrounding PAI-1.  

This result agrees with the EOM analysis and expands upon it by visualizing the space in which 

the IDD localizes. 

 

4.4 Discussion 

We sought to better understand the effect of PAI-1 binding on VN, specifically studying 

the IDD. We hypothesized that PAI-1 binding would have a structural effect on the IDD, causing 

a disorder to order transition in the domain.  Our CD and SANS experiments support this 

hypothesis and confirm that the IDD becomes less disordered and more compact when bound to 

PAI-1. Due to the low resolution of SANS data no firm conclusions could be reached regarding 
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Figure 4.17 Density Plot for Unbound SMB-IDD 

The SMB domain is shown at the core in cyan. The outer gray cloud represents the 

conformational space inhabited by the IDD in all structures with a Χ
2
 value of <5.  The data 

show that unbound, the IDD samples a range of conformational space around the SMB core.  

When viewed in three dimensional space (not shown) the IDD samples space around the SMB 

core relatively equally.  
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Figure 4.18 Overlay of Bound and Unbound Density Plots 

The PAI-1:SMB complex is shown at the core in green and cyan respectively. The outer gray 

cloud displays unbound IDD structures with a Χ
2
 value of <5.  The smaller orange cloud 

displays all bound IDD structures with a Χ
2
 value of <5.  The data demonstrate that when 

bound, the IDD samples a smaller range of conformational space around the PAI-1:SMB core in 

comparison to the space sampled by unbound SMB-IDD.  When viewed in three dimensional 

space (not shown) the bound IDD localizes around the front (shown) and sides of the PAI-

1:SMB core, with little density behind the PAI-1 molecule. 
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the adoption of secondary structure in the IDD from the SANS data alone.  However, in both of 

the “best-fit” structures, the IDD wraps around the PAI-1 molecule in what appears to be an 

ordered coil.  Also, in both structures, the IDD is located near the secondary binding site on PAI-

1.  This finding does not serve to independently confirm our hypothesis that the IDD houses the 

secondary PAI-1 binding site, but it does provide a possible mechanism by which the two sites 

could interact.   Further experimental efforts will be needed to determine the location of the 

secondary binding site for PAI-1 on VN.  

Future experiments could address the question of structure in the IDD through the use of 

N
15

 labeled SMB-IDD in NMR studies. However, it is entirely possible that the MoRFs that 

Uversky predicted do not adopt structure upon PAI-1 binding.  VN has many interaction 

partners, and even if PAI-1 does not induce a disorder to order transition in the IDD, that finding 

would not eliminate the possibility of such a transition occurring upon interaction with another 

binding partner of VN.  

Localization of the secondary interaction site between PAI-1 and VN is another important 

direction of study for the future.  The IDD serves as a likely location for this site due to the 

complementary binding regions and the inherent flexibility, which would allow the two binding 

sites to simultaneously interact with PAI-1.  Possible avenues of experimentation include the use 

of fluorescent probes on PAI-1 or the IDD, however this could serve to disrupt binding.  Another 

avenue of study would be limited proteolysis of the PAI-1:SMB-IDD complex.  However, the 

flexible nature of the IDD and the weaker affinity for PAI-1 at the secondary site may cause 

difficulty in performing proteolysis.  Whatever method of study is chosen, identification of the 

secondary binding site for PAI-1 on VN is an important next step in the study of this interaction.  
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Chapter 5 – Discussion 
 

5.1 Probing the Existence of a PAI-1 Dimer 

With this study we sought to further explore the interaction between PAI-1 and VN.  Our 

goal was to gain greater insight into the global interaction between these proteins, as well as take 

a closer look at a specific, understudied, domain in VN.  Through our experimental efforts we 

discovered that binding deficient PAI-1 can be incorporated into the PAI-1:VN complex when a 

Wt PAI-1 molecule is present.  This finding supports the revised model revealed through 

analysis of SANS data (figure 1.10) [147].  Future studies could expand on our experimental 

design in figure 3.3 to confirm our findings using FRET.  Previous work by our lab has 

demonstrated that the two PAI-1 molecules in the PAI-1:VN complex are 57Å apart [138].  

Performing FRET experiments using our investigational set up would serve to tie both studies 

together and would be another method to examine the hypothesis that PAI-1 forms a dimer when 

in complex with VN.    

Our discovery of a potentially functional serpin dimer is an exciting new prospect in the 

field of serpin biology.  Many serpins can form polymers under pathophysiological conditions, 

but free PAI-1 has not been seen to undergo polymerization under pathophysiological or 

physiological conditions.  However, in one study, free PAI-1 was shown to form dimers under 

certain non-physiological conditions [81].  Not only did this study demonstrate that PAI-1 can 

form dimers in certain circumstances, it also revealed that the PAI-1 dimers dissociate into 

functional PAI-1 monomers.  This unique trait suggests a physiological, rather than 

pathophysiological, role for the PAI-1 dimer that we observe in PAI-1:VN complexes.  Future 

studies will target the mechanism by which the PAI-1 molecules interact.  It is likely that PAI-1 
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interacts via and RCL mediated linkage (figure 3.22).  Peptide studies, site directed mutagenesis 

studies, and antibody blocking studies could be used to elucidate the site of interaction between 

the two PAI-1 molecules.   

 

5.2 Exploring PAI-1:VN binding sites 

Two sites have been proposed to bind to PAI-1 outside the SMB domain.  One of these 

sites is housed in the disordered domain of VN, and the other site is found in the HBD, housed in 

the C-terminal domain of VN [142-144].  Due to the flexible and versatile nature of the 

disordered domain of VN, as well as its special proximity to the SMB, it is a promising site for 

housing the second PAI-1 binding domain.  Additionally, the HBD in VN is cryptic until 

exposed by conformational changes induced by interaction with binding partners such as PAI-1.  

Together, these facts led to our hypothesis that the second binding site for PAI-1 on VN resides 

in the disordered domain of VN.  The models provided by our SASSIE analysis lend support to 

this hypothesis.  However, further studies will be required to fully probe the location of the 

second PAI-1 binding site on VN.  Such studies could include limited proteolysis of bound 

SMB-IDD to determine if regions of the IDD are protected from cleavage by interaction with 

PAI-1.   

In addition to the localization of the secondary PAI-1 binding site on VN, this work, and 

previous studies from our lab, support a change in the way we refer to the PAI-1:VN binding 

sites.  Data from this study, and previous studies [21, 137], support the reclassification of the two 

binding sites to a single extended interface on PAI-1.  Our data support a model in which a single 

PAI-1 interacts at both VN binding sites simultaneously.  Indeed, the key residues in both the 
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primary and secondary binding sites on PAI-1 have some overlap, further supporting the idea 

that there is a single, extended interface on the PAI-1 molecule.  While the two PAI-1 binding 

sites on VN are housed in separate domains, they come together in three dimensional space to 

form an extended interface for a single PAI-1 molecule. 

When taken alone, this data could support a model in which the HBD is a valid, “third” 

binding site for PAI-1.  Following the conformational change that occurs in VN upon binding of 

the first PAI-1 molecule at an extended interface, the HBD could become accessible for binding 

of the second PAI-1 molecule.  However, the proximity of the two PAI-1 molecules (57 Å) does 

not support the HBD as a binding site for the second PAI-1 molecule.  Additionally, future 

studies following the experimental model from figure 3.3, with NBD labeled bdPAI-1 and the 

SMB-IDD, will be performed to determine if the SMB IDD fragment is sufficient to promote 2:1 

PAI-1:VN complex formation.  These experiments will not only address the PAI-1 dimerization 

hypothesis, but will also probe the location outside the SMB domain that binds to the extended 

PAI-1 interface.  

 

5.3 Classifying the Disordered Domain of VN as an IDD 

The study of intrinsically disordered proteins is a field of emerging importance.  

Intrinsically disordered proteins play key roles in neural development, synaptic transmission, cell 

cycle regulation [105, 106], and are found in many signaling sequences and scaffolding proteins 

[107-111].  Intrinsic disorder is considered an important aspect to the versatility of living 

systems, providing simultaneous promiscuity and specificity in binding interactions [112].  Not 

all disorder is functional however.  In order for a protein to be classified as “intrinsically 



130 

 

disordered” there are several requirements.  IDPs have a high content of acidic residues (Asp and 

Glu), as well as Gln, and are depleted in Cys and Gly residues.  They also have an overall 

negative charge and exhibit negative charge repulsion interactions [122].  The disordered domain 

of VN shares these key features which lead to our hypothesis that the domain can be classified as 

intrinsically disordered.   

In order to fully test the classification we examined the disordered domain of VN for 

another feature of IDPs, disorder to order transition.  The inherent versatility of IDPs is in part 

due to their ability to adopt a variety of structures upon interaction with binding partners.  The 

regions of the protein that adopt these structures are referred to as molecular recognition features 

(MoRFs) [213]. We utilized MoRF prediction software to identify the presence of MoRFs in the 

disordered domain of VN.  In addition to this prediction, we experimentally confirmed that the 

disordered domain of VN undergoes a disorder to order transition upon interaction with PAI-1.  

Together these data support the classification of the disordered domain of VN as an IDD.  This 

classification provides insight into the function of this understudied domain of VN, and opens 

new research avenues for studying VN interactions with partners other than PAI-1.   

The presence of an IDD in VN also provides insight into the versatility of VN in binding 

partners and physiological functions. Future research on the IDD of VN may include efforts to 

obtain higher resolution structural data that SANS provides.  We have already generated cell 

stocks to allow N
15

 labeling of the SMB-IDD for study in the NMR when bound to PAI-1.  

Additionally, while the IDD is still flexible when in complex with VN, there may be enough 

induced order to allow for crystallization.  Even if some portions of the IDD are flexible, and 

unresolvable in a crystal structure, if the IDD houses part of the PAI-1 binding domain, we 

would be able to resolve that region with crystallization.  
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5.4 Glycosylation and the IDD of VN 

For the purposes of our break through study, we did not attempt to generate glycosylated 

SMB-IDD.  However, it is important to acknowledge the fact that VN is a glycoprotein, and one 

of the key glycosylation sites exists in the IDD [95].  The glycosylation of VN is versatile, and 

changes in the glycosylation state affect cell survival and formation of the ECM [215].  

Additionally, the conformational change induced by PAI-1 binding causes a rearrangement of 

VN that repositions carbohydrates, allowing for multimerization [216].  These data demonstrate 

that there is still more to the PAI-1 VN interaction to discover, but important strides have been 

made with this study to further our understanding of VN.   

The presence of a carbohydrate likely affects the flexibility of the IDD.  Additionally, the 

two remaining domains of VN would also affect the conformational space sampled by the IDD 

in our studies.  Likely, several of the conformational states sampled by the IDD in our SASSIE 

analysis would not be feasible with the additional bulk provided by glycosylation and additional 

domains.  This illuminates the need for future studies that incorporate glycosylation and 

additional domains.  Our lab has previously used S2 cells to recombinantly express glycosylated 

VN, and these could be used to generate glycosylated SMB-IDD for additional SANS studies.  

These studies would lend insight into the importance of glycosylation in PAI-1:VN interactions, 

and the flexibility of the IDD when bound.   

When comparing our SANS data to the full-length VN SAXS envelope generated by 

Lynn et al. we observed that the unbound IDD has an average Rg of ~39Å.  The narrowest point 

of the SAXS model, where the IDD is thought to reside, is ~35Å.  The difference of 4Å between 

our data could be a result of the truncation of VN allowing the IDD to sample a greater 
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conformational space.  It could also be due to the fact that the IDD is not fully contained in the 

narrowest portion of the SAXS model.  Due to the flexible nature of the IDD a difference of 4Å 

is not outside the margin of error when comparing data such as these.  However, it will still be 

beneficial for future studies to focus on a way to better study full length VN, and the structure of 

each of the four domains.  
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