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 The distribution of D-values for the humerus (four measurements, n = 147) was a mean 

of -1.5427 and a standard deviation of 3.61595, and for the radius (three measurements, n = 221), 

a mean of -.3078 and standard deviation of 1.26604, and a mean of 1.0789 with a standard 

deviation of 3.9084 for the femur (maximum length only, n = 152) (LeGarde, 2012).  These 

distributional properties of D-values suggest that expecting no difference between paired 

elements, as tested by the null hypothesis, is a flawed expectation and not supported by biology 

or empirical results.  This criticism, however, may have little practical consequence.  When 

LeGarde’s (2012) sample was applied to the paired element osteometric reassociation model of 

Byrd (2008), the Type 1 error rates (α = 0.10) were almost exactly as expected, with mean errors 

of 10% for the humerus models, 11.25% for radius models, and 6.3% for femur models, with 

9.2% overall error (Byrd and LeGarde, 2014). 

 Despite paired element models preforming close to expectations, the results of LeGarde 

(2012) suggest there is room for improvement.  For example, Byrd and LeGarde (2014:170) 

state: “Models for comparison of right- and left-paired bones were developed that emphasize 

shape.”  Shape, in this context, is not defined and it is unclear how these models emphasize 

shape information available in SOM.  Shape information available in SOM is made clear by 

Jantz and Ousley (2005).  Shape differences between bones expressed by SOM are represented 

by a combination of smaller and larger values for homologous measurements, shown by the ‘+’ 

and ‘-‘ in Table 2.1 (Jantz and Ousley, 2005). 
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Table 2.1. A comparison of cranial measurements of an unknown skull to the mean values of 

four reference samples in FORDISC 3.  Differences between the unknown skull and group 

means are highlighted by the red box and are represented by ‘+’ and ‘-‘, where the measurement 

is large r or smaller than the group means, respectively.  Measurements that deviate one to two 

standard deviations away from the group mean are shown by ‘++’ or ‘--‘.  Adapted from Jantz 

and Ousley (2005), FORDISC Help File version 1.35. 
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 The formula for calculating the D-value for paired elements subtracts left side 

measurements from the right side and sums these differences (see equation 2.4).  Shape 

differences between paired elements, where some measurements are higher and some lower, will 

at least partially cancel each other out, leading to deflated D-values and two bones appearing 

more similar than they are.  Thus, shape differences, as expressed by SOM, add noise to and 

possibly inflate Type 2 error rates of paired element models.  This issue could be eliminated by 

summing the absolute value of the difference between left and right side measurements.  The 

absolute difference between measurements would also eliminate the effect of handedness, where 

left-handed individuals should have negative and right-handed positive D-values. 

 Articulating bones are compared using a similar logic as paired elements (Byrd and 

LeGarde 2014, Byrd 2008).  This model follows the approach of Buikstra et al. (1984), where 

articular breadth measurements are subtracted from each other and this value is divided by the 

standard deviation of the reference sample and evaluated against the two-tail t-distribution to 

obtain a p-value.   

D = ci - dj (2.5) 

where measurement i  of bone c is subtracted from measurement j of bone d (Byrd, 2008).  The 

deviation of this number from the reference sample mean is divided by the reference sample 

standard deviation to arrive at a t-statistic, which is evaluated against the t-distribution with two-

tails to obtain a p-value (Byrd, 2008).  Unlike paired element comparisons, a more conservative 

alpha-level of 0.05 is suggested for articulating elements (Byrd, 2008). 

 Other elements comparisons follow the regression method described by Byrd (2008).  
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Unlike Byrd (2008), which used the 90% prediction interval as the criterion for evaluating the 

null hypothesis, a t-value is derived from the deviation of the actual bone-size value from the 

predicted value using an equation modified from the confidence interval model provided by 

Giles and Klepinger (1988) (Byrd, 2008).  Similar to other comparisons, this t-value is evaluated 

against a two-tail t-distribution to obtain a p-value.   

 As mentioned above, reassociating elements through eliminating other possibilities 

becomes more difficult and subject to Type 1 error as the number of individuals represented in 

the commingled assemblage increases.  In such circumstances, a course of action—the final 

decision on reassociation—requires many decisions based on independent statistical tests.  To 

circumvent this limitation, Byrd and LeGarde (2014) and Byrd (2008) advocate the use of an 

omnibus statistic, which sums the negative logarithm of each p-value in the domain of a course 

of action, with sign reversed. 

O = ∑ - ln(pi)  (2.6) 

where p is the p-value of the ith test (Byrd, 2008).  The p-value associated with the omibus 

statistic is an aggregate of all tests within a course of action (Byrd, 2008).  A course of action is 

chosen if it is the only one that cannot be eliminated as a possible course (Byrd, 2008). 

 Further building a statistical framework for osteometric reassociation, Byrd (2008) 

introduces the severity principle.  Severity, as a concept, focuses on identifying and mitigating 

error in decision making (Mayo and Spanos, 2009).  The researcher makes a decision concerning 

the null hypothesis based on observing the output of a statistical test.  A researcher feels 

confident in his or her decision concerning a hypothesis if the test used has a high chance of 
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detecting the falsity of the hypothesis (Mayo and Spanos, 2010).  Tests of the hypothesis are 

based on statistical models.  Statistical models are mathematical representations of experimental 

data, generalized from probability distributions.  Thus, the concept of severity encompasses the 

hypothesis, the test used to assess the hypothesis, and the data used to generate the model on 

which the test is based (Mayo and Spanos, 2010).  Severity is formalized as 1-p, where p is the p-

value for a particular test (Byrd, 2008).  Formalized severity offers nothing novel to analysis; it is 

simply a clever work-around for interpreting a p-value as a measure of belief in a course of 

action. 

 The introduction of the omnibus statistic and the severity principle into the statistical 

framework of osteometric reassociation by Byrd and LeGarde (2014) and Byrd (2008) represents 

a significant change in interpretation from Byrd and Adams (2003). 

 “Byrd and Adams (2003) originally proposed the use of the 

prediction interval of a regression model as a basis for the test, 

where all case values falling outside the prediction interval were 

rejected.  This Neyman-Pearson-type approach to hypothesis 

testing requires one to choose the prediction interval value (90% or 

95%) in advance and then react only to whether the case values fell 

within or outside the interval.  This approach has some notable 

limitations.  First, it ignores important information, such as how far 

outside the interval a set of case specimens fall.  If their test value 

was within the prediction interval, was it close to the boundary or 

near the value expected under the statistical model? Second, the 

original approach provides no objective method of assessing the 

family of result that are obtained when more than two bones are 

included in a test or when results of multiple tests must be 

evaluated.  The method of hypothesis testing is redirected here to a 

form more in line with Fisher’s (1958, 1959) significance testing 

(Byrd, 2008:208).”  

 

This interpretative shift blends two distinct forms of testing statistical hypotheses—Neyman-
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Pearson hypothesis testing and Fisherian significance testing (Lew, 2013; Royall, 1997).  These 

approaches have two different purposes: the former sets an a priori criterion (alpha-level) for 

decided between two competing hypotheses, the latter attempts to interpret the strength of 

evidence against the null hypothesis.  In short, a hypothesis test is not a significance test (Lew, 

2013; Royall, 1997).  A significance test results in a p-value, where a hypothesis test results in a 

decision.  Most contemporary frequentists, however, blend these two forms of hypothesis testing 

into a third formulation called rejection trials (Royall, 1997).  Rejection trials use an a priori 

alpha-level as a decision making criterion, similar to the Neyman-Pearson approach.  The p-

value, however, is subjectively interpreted by the researcher as a measure of the strength of 

evidence against the null hypothesis (Royall, 1997).  

 While this shift towards including additional information into the decision making 

process increases subjectivity, it also increases rationality.  As stated above, the decision to 

reassociate a set of remains should be based on multiple lines of evidence, of which osteometric 

reassociation is just one.  Incorporating multiple lines of evidence into a decision is a subjective 

process, based, in part, on the experience of the researcher.  Thus, to a researcher tasked with 

making a decision to reassociate remains, it matters if a p-value from an osteometric 

reassociation test is 0.049 or 0.000001—the latter is much stronger evidence against the null 

hypothesis than the former.  A p-value, however, is just one metric for quantifying evidence from 

osteometric reassociation models.  

Konigsberg and Frankenberg (2013) criticize the use of p-values and the frequentist 

approach in general, because it violates the likelihood principle.  The likelihood principle asserts 
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that inferences from an experiment should be based on the actual observations; other possible 

outcomes are irrelevant.  In the commingling context, the researcher makes decisions based on 

observed bone relationships. Hypothetical, more extreme versions of bone relationships do not 

matter.  Because a p-value represents the frequency of computing a test statistic as extreme or 

more extreme given that the bones are from the same individual, it is inappropriate for the 

assessment of commingled remains from closed-population contexts (Konigsberg and 

Frankenberg, 2013.  Konigsberg and Frankenberg (2013) suggest a Bayesian framework for 

osteometric reassociation, which compares competing hypotheses (possible matches) directly to 

one another. 

One way to operationalize the Bayesian approach is to assign relative probabilities to 

competing hypotheses, based on either prior information or assigning each hypothesis an equal 

probability (Byrd and LeGarde, 2014; Konigsberg and Frankenberg, 2013).  Prior probabilities 

are multiplied by the likelihood based on the data to obtain a posterior probability (Byrd and 

LeGarde, 2014; Konigsberg and Frankenberg, 2013).  This approach has the advantage of 

comparing all possibilities in one model, unlike a frequentist approach that requires a test for 

each hypothesis and another test to compute an overall p-value.  A major limitation to a Bayesian 

approach is the inappropriate or subjective use of prior information to inform prior probabilities 

of possible matches.   

Beyond possible matches, prior probability distributions can also be assigned to the 

parameters used in estimating the model, such as the slope and y-intercept in linear regression.  

Using a Bayesian approach outlined in Chapter 6, these prior distributions are used along with 
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the likelihood function based on the data to explore parameter space to arrive at a posterior 

distribution for each model parameter (Kery, 2010; Lynch, 2007).  This approach explicitly treats 

model parameters as distributions, instead of point values.  This treatment is a major difference 

between frequentist and Bayesian modeling. 

Models are required to make sense of scientific observations or systems of processes.  

Statistical models are written in the language of mathematics and they are independent from the 

mode of inference used to analyze them (Kery, 2010).  For example, the form of modeling used 

in this study, linear regression, is neither inherently Bayesian nor frequentist.  These paradigms 

differ mainly on their definition of probability, or understanding uncertainty, and learning about 

parameters in stochastic systems (Kery, 2010; Mayo and Spanos, 2009; Lynch, 2007).   

 Common to both paradigms, data are understood as the observed manifestation of 

stochastic systems (Lynch, 2007).  These paradigms differ on how they view parameters—the 

quantities used to describe these random processes.  Frequentists view parameters as fixed and 

unknown measures (Kery, 2010; Mayo and Spanos, 2010).  Bayesians, on the other hand, view 

parameters as unobserved realizations of random processes, or in other words, distributions 

(Kery, 2010). 

4. Summary 

 Commingled assemblages in a forensic context vary widely in terms of size and 

composition of element completeness and representation.  A diverse, flexible, objective, and 

reliable set of methods, used in conjunction, is needed for resolving various commingling 
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situation.  Of these methods, osteometric reassociation is generally accepted as both objective 

and reliable (SWGANTH, 2013).   

 Studies concerning osteometric reassociation have largely focused on the statistical 

interpretation of osteometric reassociation models based on SOM.  Outside of one notable 

exception (LeGarde, 2012), this focus has left the biological foundation of the accuracy in 

osteometric reassociation largely unexamined.  Additionally, the exclusive use of SOM as a 

means for quantifying limb bone morphology has left other avenues for quantifying long bone 

morphology unexamined.   
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Chapter 3   

Limb Ontogeny 

This chapter focuses on how developmental pathways of limb bones structure 

morphological relationships.  This discussion begins with the embryonic development of the 

vertebrate limb.  Various interrelated genes and molecular signals determine this development, 

with some limb elements sharing more developmental commonalities than others (Zeller et al., 

2009).  Next, a general description of long bone ossification is given, with particular focus on 

morphological change though out ontogeny.  The ontogenetic relationships between limb 

elements and surrounding tissues are important to understand how limb bones covary.  Muscle 

mechanics, for example, influence limb bone development during all stages of ontogeny, 

showing the interplay between development and function in form (Cowgill, 2007). 

1. Embryonic development of the mammalian limb 

The general body plan of a vertebrate embryo is defined early in development, around 13 

days of prenatal life in humans with the development of the primitive streak, a structure that 

establishes bilateral symmetry (Klingenberg, 2008; Scheuer and Black, 2004; Karensty, 2003; 

Mariani and Martin, 2003; Capdevila and Belmonte, 2001; Shubin et al., 1997).  The embryo 

subdivides into secondary fields through a multistep process where cells in a region are defined.  

Then, signaling centers provide positional cues that are transcribed on a cellular basis, forming a 

primordium, or the earliest recognizable stage of organ and tissue development (Johnson and 

Tabin, 1997).  Limb primordium is a consolidation of embryonic cells that bud out from the 

lateral plate mesoderm and interact with mesenchymal cells enveloped in an ectodermal jacket 
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(Capdevila and Belmonte, 2001; Rabinowitz and Vokes, 2012).  The limb is organized by 

contributions of the lateral plate, which form bone, cartilage and tendons, and somatic 

mesoderm, which form muscles, nerves and vessels, to create the limb bud (Johnson and Tabin, 

1997). 

 Pattern formation and the anatomical regions involved are highly conserved in most 

vertebrates, including mammals, and are controlled through signaling and patterning genes 

(Rabinowitz and Vokes, 2012; Capdevila and Belmonte, 2001; Johnson and Tabin, 1997).  The 

conservative nature of embryonic development is why such a wide array of mammals (and 

vertebrates in general) have a similar overall body plan (Karensty, 2003).  The large amount of 

phenotypic diversity in mature limb form is due to differential expression and molecular 

interactions mediated by realizator genes (Capdevila and Belmonte, 2001; Johnson and Tabin, 

1997).  Homologous elements have the exact same developmental programs expressed on 

opposing side of the embryo (Karensty, 2003; Capdevila and Belmonte, 2001), with early 

morphological difference between these elements the result of mechanical interactions (Cowgill, 

2007).  Thus, homologous elements should have the highest accuracy in osteometric 

reassociation.  Upper limb and lower limb developmental programs are nearly identical, 

separated by location, timing, and the expression of certain HOX and T-box genes (Karensty, 

2003; Capdevila and Belmonte, 2001).  The similarity in the developmental programs of serially 

homologous elements is second only to homologous elements, which may lead to a similar 

structure in accuracy in osteometric sorting.  Limb development, however, is complex.  The next 

sections highlight some of these important complexities for understanding accuracy in 
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osteometric sorting.  

1.1. Limb bud development 

 Limb development is characterized by the initiation of limb development, establishment 

of developmental axes and outgrowth and patterning along these axes (Rabinowitz and Vokes, 

2012).  Two anatomically distinct structures of the limb bud drive these processes: the apical 

ectodermal ridge (AER) and zone of polarizing activity (ZPA) (Figure 3.1).  These structures are 

associated with two major axes of outgrowth: the proximal/distal (P/D) and anterior/posterior 

(A/P), for the AER and ZPA, respectively (Karsenty, 2003; Capdevila and Belmonte, 2001; 

Johnson and Tabin, 1997). 

 Beginning around the fourth week of development, mesenchymal cells proliferate from 

the lateral plate mesoderm at positions along the embryonic axis coordinated by Hox gene 

expression (Zeller et al., 2009).  In humans this process begins for the upper limb at stage 12, or 

30 days of prenatal life, adjacent to the seventh to twelfth somites (Scheuer and Black, 2004).  

The lower limb begins a few days later during stage 13, or 32 days of prenatal life, adjacent to 

the 25th-29th somites (Scheuer and Black, 2004).  These cellular proliferations create a bulge 

underneath the surrounding ectodermal cells, forming an ectodermal pocket that is the limb bud 

(Zeller et al., 2009; Johnson and Tabin, 1997).  Differences between the upper limb and lower 

limb are evident at this beginning stage of limb bud development, where molecular and genetic 

factors affecting the upper limb are absent in the lower limb (Tzchori et al., 2009). 

 The AER, formed by ectodermal cells, is located at the distal tip of the limb bud (Figure 

2).  The AER is a major signaling center, producing many molecules important to limb 
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development and is the primary signaling center for P/D axis outgrowth (Rabinowitz and Vokes, 

2012; Zeller et al., 2009).  The FGF gene family, produced mainly by the AER, encodes crucial 

signals during early development in the epithelial mesenchyme and progenitor pool specification 

(Zeller et al., 2009).  The element identity of these progenitor pools are specified by the AER in 

a P/D fashion.  The opposing activities of P/D axis specification of retinoic acid in the proximal 

limb and AER-derived FGFs in the distal limb is known as the two-signal model (Mercader et 

al., 2000).  These differing signaling factors suggest a degree of autonomy between proximal and 

more distal elements within a limb.  Given that these factors are identical across limbs, this 

finding suggests that development factors may lead to higher reliability in osteometric sorting 

between homologous and serially homologous elements when compared to elements within a 

limb. 

 

 

Figure 3.1.The Limb Bud.  A.  The location of the Apical Ectodermal Ridge (AER, in blue) and 

Zone of Polarizing Activity (ZPA, yellow).  B.  The expression location of major genes in limb 

development. Modified from Zeller et al. 2009, Figure 3. 
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 The ZPA is a collection of mesenchymal cells located on the posterior portion of the limb 

bud that is responsible for establishing the A/P axis (Rabinowitz and Vokes, 2012; Zeller et al., 

2009).  The ZPA secretes the SHH morphogen, which diffuses across the posterior limb bud to 

establish a spatial and temporal gradient of SHH signaling (Rabinowitz and Vokes, 2012).  The 

formation of the A/P axis suggests a different patterning to a developmentally-driven structure of 

osteometric sorting reliability when compared to the P/D axis.  Unlike factors affecting P/D axis 

formation, which in part segregates elements into proximal and more distal domains, A/P factors 

differentially affect the ulna and tibia, with similar factors influencing the humerus and femur as 

well as the radius and fibula.  It is worth noting, however, that the cell identities are not 

determined during this stage.  Cellular identities are determined during the next stage of limb 

development: the expansion, determination and differentiation phase. 

 During the expansion, determination and differentiation phase of limb bud development, 

mesenchymal cells in the center of the limb bud condenses into a preskeletal blastema, consisting 

of cartilage precursors surrounded by precursor cells for muscles and tendons (Al-Qattan et al., 

2009).  The center of the blastema differentiates into either chondrocytes or osteoblasts (Al-

Qattan et al., 2009).  The type of differentiation depends on the form of ossification that the limb 

element ultimately will undergo.  A large majority of the limb is formed thorough endochondral 

ossification, which begins with blastema differentiation into chondrocytes, forming the cartilage 

template.  Only the blastema that form the distal phalanges differentiate into osteoblasts via 

intramembranous ossification (Al-Qattan et al., 2009).  The process of chondrification begins in 
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the upper limb at 36-38 days of prenatal growth and slightly later in the lower limb at 41-44 days 

of prenatal growth (Al-Qattan et al., 2009; Scheuer and Black, 2004). 

2. Limb bone ossification 

 The embryonic development of the limb produces a largely avascular cartilage template.  

The ossification process of this cartilaginous template is known as endochondral ossification.  

This form of ossification is distinguished from intramembranous ossification, where bone forms 

from direct transformation of a highly vascular membrane (Scheuer and Black, 2004).  Limb 

bone ossification results in an element composed of two types of structurally distinct bone: 

trabecular and cortical bone.  Trabecular bone is found in the metaphyses and epiphyses of long 

bones and has a large surface area.  Trabecular bone is highly vascular and plays a major role in 

metabolic activity.  In youth, trabecular bone begins as primary spongiosa, which are simple, 

randomly oriented cylindrical struts, roughly 0.1mm in diameter and 1 mm in length.  During 

growth, primary spongiosa are replaced by secondary spongiosa.  Secondary spongiosa are 

typically thicker than their primary counterparts, often connected by sheets of bone, and have 

differing orientations depending on the location within the bone (Curry, 2002).  Randomly 

oriented cylindrical struts are found toward the diaphysis, away from loading surfaces.  The 

number of sheet-connections and the organization of the struts increase the closer the spongiosa 

are to the joint surface.  These spongiosa appear more organized in joints where the loading 

regime is relatively constant.  Trabecular bone is more pliable than compact bone and gives bone 

its toughness, allowing joint surfaces to absorb compressive force and transfer it towards the 

diaphysis (Curry, 2002). 
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 Cortical bone forms the outer surface of joints and nearly the entire diaphysis.  Cortical 

bone is solid with only space for blood vessels and channels connecting mature bone cells.  

Cortical bone gives bone its strength, or ability to resist deformation during loading.  In humans, 

cortical bone is arranged in concentric lamellae that alternate in thickness, typically between 2-6 

µm thick (Curry, 2002). 

 Long bone ossification starts through perichondral ossification where osteoprogenitor 

cells differentiate into bone-forming cells, called osteoblasts, which surround the center of the 

diaphysis. Osteoblasts are bone-forming cells and can have two different fates.  Some osteoblasts 

flatten and become bone-lining cells.  Bone-lining cells cover the four bone envelopes: 

periosteal, endosteal, haversian, and trabecular (Frost, 2003; Curry, 2002).  Bone-lining cells also 

line the blood channels in bone that control the movement of ions between the body and bone 

(Curry, 2002).  Osteoblasts that do not become bone-lining cells deposit osteoid.  Some 

osteoblasts work together with osteoclasts, which are bone destroying cells, in a collection of 

cells called the basic multicellular unit (BMU) to turnover bone, creating harversian systems, or 

osteons (Figure 3.1 and 3.2).  Osteoblasts secrete osteoid, which is then mineralized into bone.  

The process of osteoid deposition and mineralization leads to osteoblasts becoming entombed in 

spaces called lacunae, becoming osteocytes.  The roll that osteocytes play in sensing and 

transmitting biomechanical information is discussed in Chapter 4. 

While the cartilage template is avascular in the early stages of perichondral ossification, 

the perichondrium is not.  Osteoblasts surround this vascular network and begin to secrete 

osteoid, forming the periosteal bone collar (Scheuer and Black, 2004).  Bone collar formation is 
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coupled with chondrocyte hypertrophy and matrix vesicle formation in the template underneath 

the bone collar.  These matrix vesicles release calcium hydroxyapatite crystals, leading to the 

initial calcification of the template.  Vascular invasion continues through the bony collar, 

providing blood supply to the cartilage template as well as leading to osteogenic invasion and the 

formation of the marrow cavity (Scheuer and Black, 2004).  At this stage, intramembranous and 

endochondral ossification has begun at the bone collar. 

After the primary center of ossification begins to develop, the cells at the ends of the 

template begin to hypertrophy and matrix vesicles form.  This hypertrophy is followed by 

vascular and osteogenic mesenchyme invasion (Scheuer and Black, 2004).   Bone formation at 

the epiphyses is true endochondral ossification, where bone is laid down directly on the 

cartilaginous template. 

After the formation of the primary center of ossification and the hypertrophy of the 

epiphyseal chondrocytes, the metaphysis, or growth plate, forms between these two regions 

(Scheuer and Black, 2004).  The metaphysis is primarily responsible for longitudinal growth but 

also has a role in appositional growth.  The metaphysis has four zones of cellular development: 

the germinal zone, proliferation zone, zone of cartilage transformation, and zone of ossification 

(Scheuer and Black, 2004).  While the metaphysis is positioned between the epiphysis and 

diaphysis, cellular hypertrophy and metamorphosis occurs towards the diaphysis.  In the 

germinal zone, which is positioned closest to the epiphysis, chondrocytes are small and randomly 

distributed, receiving vascular supply from the epiphyseal vessels that penetrate the region 

between the epiphysis and metaphysis called the terminal plate (Scheuer and Black, 2004).  In 
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Figure 3.2. The osteoclast (a) and osteoblast (b) lineage. From Robling et al. (2006) Figure 3. 

 

 

Figure 3.3. Diagram of the formation of a Haversian system (osteon) via bone turnover from the 

BMU.  From Curry 2002 Figure 1.2. 
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the proliferative zone, adjacent to the germinal zone, chondrocytes hypertrophy then mitotically 

divide and develop into wedge-shapes and align along their narrow edges in columns (Scheuer 

and Black, 2004).  Chondrocytes continue to hypertrophy as they progress towards the zone of 

cartilage transformation.  This phase of continued hypertrophy that began in the proliferative 

zone may be considered a separate zone, known as the zone of hypertrophy (Junqueira and 

Carneiro, 2005).  In the zone of cartilage transformation, matrix vesicles begin to deposit 

hydroxyapatite as chondrocytes begin to degenerate and the metaphyseal sinusoidal loop 

advances vascular invasion (Scheuer and Black, 2004).  In the zone of ossification, osteoblasts 

differentiate from stromal cells and begin to lay down bone on the mineralized cartilage formed 

in the zone of cartilage.  A similar set of cellular processes observed in the metaphysis also occur 

in the epiphysis.  At the epiphyses, trabecular bone is formed through chondrocyte hypertrophy, 

multiplication, organization, and ossification starting with the germinal zone towards the 

perichondrium and ending with primary spongiosa formation towards the center of the epiphysis 

(Scheuer and Black, 2004).  

While general bone form is under genetic control, bone obtains its shape, size, and 

integrity through biomechanical influence (Frost, 1996; Lee and Frost, 1992).  Primary 

spongiosa are remodeled into thicker and more organized secondary spongiosa through 

microdamage triggers (Frost, 1996).  Biomechanical influences are also responsible for the shape 

differences between the epiphysis and diaphysis.  The epiphysis of long bones is wider than the 

diaphysis for two reasons: to help disperse the large biomechanical loads encountered at the joint 

and to accommodate joint cartilage.  Cartilage is inferior to trabecular bone in terms of loading 
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potential.  The same load requires roughly four times the amount of cartilage in relation to bone 

(Frost, 1996).   

Towards the diaphysis, loads are focused on the cortical bone.  This focus is 

accomplished through trabecular bone remodeling and inwaisting from modeling, where bone is 

removed from the periosteal surface and deposited on the endosteal surface, giving the diaphysis 

its shape (Frost, 1996).  Inwaisting and appositional growth appear to be opposing mechanisms 

because each occurs from osteoblastic and osteoclastic activity on the endosteal and periosteal 

surfaces, but in opposing patterns.  These mechanisms serve different roles.  Inwaisting focuses 

biomechanical loads from the epiphysis to the diaphysis; giving long bones there shape.  

Appositional growth serves to maintain bone integrity (resist buckling) during longitudinal 

growth. 

The process of long bone ossifications demonstrates interactions between development, 

surrounding tissue, and mechanical influence in shaping long bone morphology.  The 

genetically-controlled general morphology is molded by its mechanical environment and the 

necessity to accommodate other tissue, such as cartilage and muscles.  These processes are 

necessary to maintain functional integrity of long bones, suggesting a feedback mechanism 

between mechanical regime and ontogeny in the shaping long bones (Ruff, 2000).  Thus, while 

the initial process of limb development shows various levels of autonomy between elements 

within a limb, the interplay of growth and mechanical regime influencing form and function 

suggests that within-limb covariation should increase during ontogeny as a result of these factors.  
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3. Limb bone ossification: Timing and morphological change 

 This section describes the ossification process of the limb elements included in this study, 

extending beyond embryonic development and covering post-natal ontogeny.  Included in this 

section is the timing of primary and secondary centers of ossification, location of nutrient 

foramina, and shape changes during ontogeny.  This discussion informs accuracy in osteometric 

reassociation by giving specific context to changes and relationships between elements that 

should be relevant to accuracy in osteometric sorting.  For example, some of the landmarks used 

in this study assess diaphyseal shape at the nutrient foramen (see Chapter 6).  If the placement of 

the nutrient foramen on the diaphysis between paired elements is highly variable, this will reduce 

accuracy in osteometric reassociation for homologous elements. 

 Generally speaking, females mature skeletally faster than males.  If possible, sex-specific 

times for fusion and ossification are given.  When general age ranges are given, males tend to be 

towards the upper end and females the lower-end of the age range.  Unless otherwise noted, all 

information is from Scheuer and Black (2004). 

3.1. Humerus 

 The humerus is first identifiable as a mesenchymal consolidation at 38 prenatal days.  

Chondrification begins around 38-41 days and most of the major features of the bone are 

identifiable by 53 days.  The primary center of ossification appears histologically at seven weeks.  

Roughly 88% of fetuses have an anteriorly placed primary nutrient foramen at midshaft, with 

accessory foramina usually placed posteriorly (Skawina and Wyczolkowski, 1987).  The 

positioning of the nutrient foramen appears to be dynamic, as the primary nutrient foramen is 

often anteromedial, slightly below midshaft at birth.  There is also marked humeral torsion 
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around birth, but this torsion is restricted to the junction of the diaphysis and proximal epiphysis.  

Torsion decreases throughout ontogeny, reaching adult levels around 18 years old (Cowgill, 

2007).  Adult torsion, however, is population specific, likely due to differences in activity 

patterns, further showing how mechanical influences during ontogeny shape limb bone 

morphology (Cowgill, 2007). 

 At around three years of age, the proximal metaphyseal surface begins to change to 

accommodate the shape of the proximal epiphysis.  These metaphyseal changes continue into 

puberty with the development of a process on the posterolateral diaphyseal boarder that 

articulates with the posterior notch of the compound proximal epiphysis.  Around one year, the 

radial fossa develops, followed by the development of the deltoid tuberosity around four to six 

years. 

    Table 3.1 provides the timings for the appearance and fusion of the secondary centers of 

ossification of the humerus.  By birth, roughly 80% of the humerus is ossified, with small main 

proximal and distal secondary epiphyses.  The ossification of the humeral head, however, is 

highly variable and may not begin to ossify until six months.  Similar to the appearance of the 

humeral head, the ossification of the greater tubercle is also variable, ranging from three months 

to three years after birth.  However, the most common time frame for the appearance of the 

greater tubercle is one to two years.  Additionally, there is debate whether the proximal epiphysis 

ossifies from two or three centers.  A separate ossification center for the lesser tubercle may be a 

product of convention, as many anatomy texts mention three separate centers, but most 

radiological studies show only two distinct centers.  If the lesser tubercle does appear as a 
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separate center, it fuses quickly with the humeral head and the proximal epiphysis is a single 

compound epiphysis by five to seven years of age.  Because the proximal epiphysis is the 

growing end of the bone, accounting for 80% of longitudinal growth, fusion corresponds to the 

end of growth. 

 The distal epiphysis forms from four separate centers of ossification.  The capitulum is 

the first to appear between six months and two years.  The medial epicondyle is next to appear, 

by the fourth year, followed by the trochlea by year eight.  The lateral epicondyle is the last to 

begin ossification at 10 years old.  Soon after the appearance of the lateral epicondyle, the 

capitulum, trochlea, and lateral epicondyle form a single compound epiphysis at around 10 years 

in females and 12 years in males.  Unlike the proximal epiphysis, this compound epiphysis 

quickly fuses to the distal diaphysis.  The medial epicondyle is the last to fuse to shaft and the 

timing of this fusion is variable from 11-15 years in females and 12-17 in males. 

 

Table 3.1. The appearance and fusion times for the secondary ossification centers of the 

humerus.  All timings from Scheuer and Black, 2004. 

 

Ossification Center

Female Male Female Male

Proximal Epiphysis 13-17 years 16-20 years

Head Birth-6 months Birth-6 months

Greater Tubercle 1-2 years 1-2 years

Lesser Tubercle? 4-5 years 4-5 years

Distal Epiphysis

Capitulum 1-2 years 11-15 years 12-17 years

Trochlea 8-9 years 11-15 years 12-17 years

Lateral Epipcondyle 10-12 years 11-15 years 12-17 years

Medial Epipcondyle 4-6 years 13-15 years 12-17 years

Appearance Fusion



 

50 

 

3.2. Radius 

 The mesenchymal radius is apparent by 38 days of prenatal life.  Chondrification begins 

shortly after at 41 days, with the primary center of ossification beginning at around 51 days of 

prenatal life.  Ossification reaches the neck of the radius by 18-28 weeks of prenatal life.  At 

birth the radial tuberosity is only partially ossified and remains mostly cartilaginous.  A single 

nutrient foramen, located on the anterior surface of the proximal third of the diaphysis, is present 

in 95% of individuals (Skawina and Wyczolkowski, 1987).   During the first year of life a 

pronounced lateral diaphyseal curvature develops and the medial surface of the 

diaphysis/metaphysis junction flattens as the ulnar notch develops.  

 Table 3.2 presents the appearance and fusion times for the secondary ossification centers 

of the radius.  The proximal epiphysis appears around five years of age.  This epiphysis is 

formed from a single, flat, disc-like ossification center, although rarely two adjacent ossification 

centers may form this epiphysis.  The wedge-shaped joint space is wider laterally because the 

metaphyseal surface is offset from the articular surface of the capitulum, leading to a lateral 

projection of the radial head/neck after ossification.  The fovea for the capitulum articulation is 

apparent around 10-11 years and deepens as the epiphysis develops.  The fusion of this epiphysis 

is between 11.5-14 years in females and 13.5-16 years in males. 

 The distal epiphysis is the growing end of the bone, responsible for 75-80% of the 

longitudinal growth.  This epiphysis appears as a single center between one to three years of age.  

Fusion of this epiphysis occurs in females between 15-16 years and males between 17-18 years. 
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Table 3.2. The appearance and fusion times for the secondary ossification centers of the radius.  

All timings from Scheuer and Black, 2004. 

 

3.3. Ulna 

 By 38 days of prenatal life the mesenchymal ulna is present.  Chondrification begins soon 

after at 41-44 days, with the proximal epiphysis appearing just prior to the distal epiphysis at 46 

and 49 days, respectively.  The primary center of ossification begins soon after the appearance of 

the distal epiphysis at 51 days.  Over 90% of fetuses have a single nutrient foramen located at 

midshaft (Skawina and Wyczolkowski, 1987).  Between 18 and 28 weeks of prenatal life 

ossification has reached the distal aspect of the coronoid process and radial notch.  At birth, the 

ulna is ossified to the midpoint of the trochlear notch proximally, and to the junction of the distal 

epiphysis distally.  The diaphysis is straighter than the adult form and proximally is flattened 

mediolaterally and more triangular shaped distally, with distinct posterior and interosseous crest 

boarders.  A faint groove for the extensor carpi ulnaris is also present at birth.   

 One of the first changes to the ulna after birth is the development of the supinator crest 

during the first year of life, followed by the diaphysis taking the adult sigmoid curvature.  Until 

the age of 8-10 the trochlear notch is wide to accommodate the proximal epiphysis.  The 

coronoid process and ulnar tuberosity remain under-developed until later childhood. 

 The ulna has at least two proximal and one distal secondary centers of ossification (Table 

3.3).  The proximal epiphysis forms the olecranon process portion of the trochlear notch.  The 

Ossification Center

Female Male Female Male

Proximal Epiphysis 4.5-6 years 4.5-6 years 11.5-14 years 13.5-16 years

Distal Epiphysis 1-3 years 1-3 years 14-17 years 16-20 years

Radial Tuberosity Puberty Puberty Puberty Puberty

Appearance Fusion



 

52 

 

coronoid process and the distal two-thirds of the trochlear notch are formed by the proximal 

extension of the primary center of ossification.  This epiphysis appears in females at 8 years and 

males at 10 years as a collection of at least two ossific nodules.  This epiphysis fuses between 

12-14 years in females and 13-16 years in males. 

 Because it is the growing end of the ulna, the distal epiphysis appears few years earlier 

and fuses a few year later than the proximal end.  The distal epiphysis appears between five and 

a half and seven years of age.  In females, this epiphysis fuses between 15-17 years.  In males, 

this epiphysis fuses between 17-20 years. 

Table 3.3. The appearance and fusion times for the secondary ossification centers of the ulna.  

All timings from Scheuer and Black, 2004. 

 
 

3.4. Femur 

 The mesenchymal femur appears around 41 days of prenatal life and chondrification 

begins almost immediately at 41-44 days.  Proximally, the head is visible by 48 days, with the 

neck and trochanters five days later.  Distally, the condyles also appear at 53 days of prenatal 

life.  Around the same time, between 49-56 days, ossification begins with the development of the 

boney collar at midshaft, with endochondral ossification beginning a week later.  Diaphyseal 

ossification has reached the neck proximally and the epiphysis distally by 12-13 weeks.  A 

primitive nutrient foramen appears around 10 weeks, but in many cases gives way to one to two 

nutrient foramina located on the upper two-thirds of the diaphysis near the linea aspera by 13-28 

Ossification Center

Female Male Female Male

Proximal Epiphysis 8-10 years 8-10 years 12-14 years 13-16 years

Distal Epiphysis 5.5-7 years 5.5-7 years 15-17 years 17-20 years

Appearance Fusion
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weeks (Skawina and Wyczolkowski, 1987).   By term, there may be an additional nutrient 

foramen on the anterior surface of the diaphysis just below the neck. 

 Due to muscle mechanics, the femur undergoes significant shape changes during natal 

development.  The linea aspera and gluteal tuberosity appear as thickened portions of periosteal 

bone by 12-13 weeks.  However, these muscle attachment sites, including the spiral line, do not 

become well-developed until adolescence.  By the second trimester, remodeling processes begin 

at the extremities of the diaphysis, leading to an increase in length and width of the diaphysis.  

During the seventh prenatal month, the proximal metaphysis remodels from a convex dome to 

two planes lying parallel to the cartilaginous head and greater trochanter, respectively.  A month 

later, the distal metaphysis flattens out and develops a central depression to accommodate the 

appearance of the distal epiphysis. 

 Around this time femoral torsion becomes apparent.  Unlike humeral torsion at this 

phase, which is relower limbated to the proximal end, the torsion of the femur is throughout the 

entire diaphysis; starting at -10-0 degrees during early development and reaching levels of 30-40 

degrees by birth (Watanabe, 1974).  Levels of femoral torsion decrease during growth, reaching 

adult the adult average of around 15 degrees by the late teens (Schacher et al., 2009).  While this 

change is gradual, there are two spikes in torsion development.  The first is between one and two 

years, as the child learns to walk, and another during the onset of puberty when pelvic changes 

lead to walking style changes (Fabry et al., 1973).  There is, however, considerable variation in 

the degree of adult femoral torsion.  This variation has been attributed to population differences 

(Schacher et al., 2009) and osteoarthritic changes with increased age (Tonnis et al., 1999).  
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Again, like the humerus, the ontogeny of femoral torsion is directly linked to biomechanical 

influences and the need to accommodate bone form to function.   

 Other morphological features of the femur also undergo considerable change during 

childhood.  At birth the femoral neck is vertically oriented.  This angle is decreased in response 

to hip abductor development as the child learns to walk (Morgan and Summerville, 1960).  This 

decrease in angle, coupled with angular remodeling to increase apposition on the medial surface, 

changes the loading axis of the femur and draws the distal end of the femur in medially.  This 

medial shift increases the bicondylar angle, which helps with the adoption of efficient walking 

achieved in childhood (Tardieu, 1998; Tardieu and Trinkaus, 1994).  Along with external 

morphological changes during adolescence, the trabecular architecture of the femur changes in 

response to load-bearing as a child’s gait develops.  By two years old, primary trabeculae begin 

to remodel and by five years of age secondary trabeculae are obvious, aligning along the 

principle loading axis (Osborne and Effmann, 1981).   

 Anterior curvature is another morphological change during ontogeny.  At birth, infant 

femora are relatively straight.  Slight anterior bowing begins to develop around the onset of 

walking, around 18 months.  Between the ages of 7-13 years, the femora develop the adult 

degree of anterior curvature.  

   The femur has three proximal and one distal secondary centers of ossification (Table 3.4).  

The distal epiphysis is the largest and fastest growing long bone epiphysis.  It is the first long 

bone epiphysis to form at 36-40 weeks prenatal life and appears as single ossific nodule.  This 

epiphysis expands rapidly to the condylar areas by one to three years of age, and becomes  
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Table 3.4. The appearance and fusion times for the secondary ossification centers of the femur.  

All timings from Scheuer and Black, 2004. 

 
 

 

recognizable.  By seven years and nine years in females and males, respectively, the epiphysis is 

as wide as the metaphysis and the condyles have taken on their distinctive shapes.  The distal end 

is the growing end of the femur and is responsible for 70% of longitudinal growth.  This 

epiphysis is one of the last to fuse between 14-18 years in females and 16-20 years in males.  

Fusion of this epiphysis coincides with the end of growth in height. 

 Unlike the humerus, where the proximal epiphyses form a compound epiphysis prior to 

fusion, the proximal femoral epiphyses fuse to the diaphysis independently.  At birth, however, 

there is only one metaphyseal surface, divided into medial and lateral portions for the head and 

trochanters, respectively.  By two years old this single metaphyseal surface divides into separate 

regions for each secondary center. 

 The head is the first of the secondary centers to begin ossification.  Rarely is this center 

visible at birth, but is almost always apparent by the age of one, with a median age of around six 

months.  The greater trochanter is the next proximal epiphysis to begin ossification between two 

to five years of age.  Ossification begins in females almost two years earlier than in males, with 

the median age of the former at 2 years 10 months and the latter at 4 years.  Like its counterpart 

Ossification Center

Female Male Female Male

Proximal Epiphysis

Head 0.5-1 year 0.5-1 year 12-16 years 14-19 years

Greater Trochanter 2-5 years 2-5 years 14-16 years 16-18 years

Lesser Trochanter 7-11 years 7-11 years 16-17 years 16-17 years

Distal Epiphysis

Femoral Condyles 14-18 years 16-20 years36-40 weeks (in utero)

Appearance Fusion
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on the humerus, the lesser trochanter is the last proximal epiphysis to begin ossification, with 

ossification times between 7-11 years old.  The pattern of fusion for the proximal epiphyses 

follows the same pattern as their appearance.  The head typically fuses first, although this timing 

is variable, with fusion occurring in females between 12-16 years of age and 14-19 years in 

males.  The greater trochanter is next, with females fusing between 14-16 years and males 

between 16-18 years.  The lesser trochanter is typically last, although this epiphysis may fuse 

concurrently with the greater trochanter in males.  Fusion times in females range from 16-17 

years and 16-17 years in males.  

3.5. Tibia 

 The appearance and chondrification of the tibia is very similar to the femur.  The 

mesenchymal consolidation is identifiable at 41 days of natal life, with chondrification beginning 

roughly 3 days later.  By week eight of natal development, most of the major features of the tibia 

are apparent, including the condyles and major ligaments.  This is also the time when ossification 

begins with the appearance of the boney collar at midshaft.  All proximal and distal 

morphological structures are identifiable by the 20th week.  At birth, 80% of the bone is 

represented by an ossified shaft, with a very large nutrient foramen on the posterior surface of 

the proximal third of the diaphysis in the region of the popliteal surface and soleal line (Skawina 

and Wyczolkowski, 1987). 

 Similar to the femur, the tibia undergoes several morphological changes early in life.  

However, in contrast to the femur, few of these changes have been directly attributed to the 

biomechanical influence of walking.  For example, the angle formed by the tibial plateau and the 
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diaphysis, known as the angle of retroversion, changes rapidly from a high angle at birth to a 

lower angle by two years old.  High angles have been observed in adult populations that spend a 

large amount of time in a squatting position, suggesting that biomechanics may have some 

influence on the angle of retroversion later in life (Kate and Robert, 1965).   

 Tibial torsion is another morphological feature that changes rapidly in infants.  At birth, 

most infants have slightly medially rotated tibia.  By 2 years of age, this torsion typically 

changes to an average of 25 degree lateral rotation (Ritter et al., 1976).  Despite independent 

walking by most toddlers at two years old, no correlation was found between tibial torsion and 

independent walking, nor was any correlation found for sex or ancestry (Ritter et al., 1976).  The 

ontogeny and subsequent adult form of tibial torsion, however, is quite variable.  Roughly a third 

of two year olds maintain a medial rotation of the tibia, with this percentage decreasing to 8-10% 

by seven years old (Hutter and Scott, 1949).   There appears to be no correction of medial tibial 

torsion after the age of seven, as this is the level of medial torsion observed in adults. 

 The tibia is represented by two proximal and one distal secondary centers of ossification 

(Table 3.5).  The proximal epiphysis is present in about 80% of newborns and is almost always 

present by three months of age.  By six to seven years the condyles have developed into their 

adult form.  The tibial tuberosity develops as an outgrowth of the proximal epiphysis.  This 

outgrowth begins at four months in utero, but does not begin to ossify until much later.  The 

tibial tuberosity begins to fuse slightly later than the condyles at 14 years in females and 16.5 

years in males. 



 

58 

 

 The distal epiphysis appears soon after birth and begins ossifying within the first year 

(Table 5).  The malleolus begins ossifying between 8-10 years of age.  It is not uncommon for 

the malleolus to ossify as a separate center of ossification from the rest of the epiphysis.  This 

epiphysis begins fusion at 12-13 years in females and 14-15 years in males. 

4. Summary 

 The hypothetical structure of reassociation accuracy presented in Chapter 1 from highest 

to lowest is: homologous comparisons, followed by within-limb, between-limb, and lastly, 

serially homologous comparisons.  However, homologous and serially homologous elements 

have the most and second most developmental commonalities, respectively.  Developmental 

processes should also affect accuracy of specific within limb comparisons.  The overall 

 

Table 3.5. The appearance and fusion times for the secondary ossification centers of the tibia.  

All timings from Scheuer and Black, 2004. 

 
 

 

architecture and general process is the same for each developing limb, however certain factors 

differentially affect limbs and elements within a limb.  These developmental pathways suggest 

that accuracy in osteometric reassociation should follow the relatedness of factors affecting limb 

element development.  During P/D axis growth, distal elements (radius/ulna and tibia) develop 

through the same factors, with certain factors only affecting the proximal elements 

Ossification Center

Female Male Female Male

Proximal Epiphysis

Condyles 12-16 years 14-19 years

Tuberosity 8-12 years 9-14 years 14 years 16.5 years

Distal Epiphysis 3-10 months 3-10 months 14-18 years 16-20 years

36 weeks (prenatal)-2 months (postnatal)

Appearance Fusion
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(humerus/femur).  During A/P axis growth, a different pattern emerges, with the proximal 

(humerus/femur) and lateral-distal elements (radius) sharing a pathway and the medial-distal 

element (ulna/tibia) developing through another.  Considering both axes, the lateral-distal limb 

element shares a common pathway with both the proximal element and medial-distal element, 

with the proximal and medial-distal elements developing through different pathways along both 

axes.  Given this pattern of axes development, the radius may have higher within-limb accuracy 

than other within-limb comparisons.  Additionally, accuracy of within-lower limb comparisons 

may be low because the femur and tibia show developmental autonomy across both axes. 

 As discussed throughout the chapter, function influences form.  Long bone morphology 

adapts to accommodate its loading environment throughout ontogeny.  This accommodation is 

most obvious through changes in humeral and femoral torsion throughout ontogeny.  Thus, 

functional similarities may obscure or augment developmental relationships.  If functional 

similarities obscure developmental relationships, accuracy in sorting functionally cohesive 

elements, such as the femur and tibia, may be higher than the developmental differences would 

suggest.  In a similar vein, developmentally related elements that are not functionally related, 

such as the femur and humerus may have lower accuracy than developmental similarities would 

suggest. 
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Chapter 4  

Bone Biomechanics and Functional Adaptation 

 Chapter 3 suggests that based on ontogenetic factors, the hypothetical accuracy of 

osteometric reassociation from highest to lowest are: homologous elements, serially homologous 

elements, within-limb, and between-limbs.  Homologous elements have identical developmental 

programs.  Serially homologous elements have similar programs with some factors 

distinguishing them, such as location, timing, molecular expression, or certain genes.  Within-

limb elements develop from the same limb bud, but axes patterning shows some degree of 

autonomy between these elements.  The developmental program of between-limbs elements that 

are not homologous or serially homologous have the least in common. 

 The previous chapter also described the timing and patterning of limb bone ossification.  

This description includes some morphological changes to bone occurring during ontogeny as a 

result of mechanical interactions.  Functional adaptation is the conceptual framework used to 

understand how the mechanical environment influences limb bone morphology (Ruff et al., 

2006; Pearson and Lieberman, 2004; Curry, 2002).  As a living tissue, bone has a myriad of 

ways to accommodate its mechanical environment.  Many of these important adaptations are not 

macroscopically evident (Curry, 2002).  Thus, these adaptations are not relevant to this study 

because reassociating commingled bones uses gross morphological relationships.  Instead, this 

chapter focuses on functional adaption theory and research resulting in gross morphological 

change.  Variation in this response is influenced by an individual’s genetic repertory, hormonal 

changes experienced during puberty, nutrition and health, as well as activity pattern (Frost, 2003; 
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Curry, 2002; Martin et al., 1998).  These interrelated variables influence the morphology of the 

adult skeleton and are the basis for how functional adaptation structures accuracy in osteometric 

reassociation.  First, a few important concepts for understanding bone functional adaptation must 

be understood. 

1. Bone loading regime 

 The loading regime of bone is a dynamic process, derived from either muscle force acting 

on an origin or insertion point or from external forces acting across a joint surface (Pearson and 

Lieberman, 2004).  Four general forms of loading are responsible for bone loading: axial 

compression, bending, twisting, and shear (Figure 4.1).  Bone loading leads to two important 

concepts for understanding bony response to loading: stress and strain. 

 

 

Figure 4.1.  Four typical bone loading regimes: A. Axial compression, B. Bending, C. Twisting, 

D. Shear.  Thick arrows represent direction of force and thin arrows show the resulting strain.  

From Pearson and Lieberman 2004, Figure 2. 
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 Stress is defined as the intensity of a force across a plane.  Strain is how a material 

deforms in response to an applied load (Curry, 2002).  The relationship between stress and strain 

is visualized using a stress/strain or a load-deformation curve (Figure 4.2).  When a stress is 

applied to a material, the initial strain is the elastic phase.  If the stress is removed when a 

material is in the elastic phase, the material will return to its original shape (McGowan, 1999).  

The yield point is the transition from the elastic to the plastic phase.  Once a material enters the 

plastic phase, it remains deformed after the stress is removed.  If stress increases past the plastic 

phase, the material fails and fractures (McGowan, 1999).  Limb bones adapt to their loading 

environments by differentially adding and removing bone in areas of high stress to reduce strain 

(Curry, 2002).  The osteocyte is the cellular mechanism by which bones sense this strain and 

communicate this information to elicit an osseous response. 

 

 

Figure 4.2.  Stress/strain curve depicting how an object reacts to an applied load.  From Curry 

2002, Figure 2.7. 
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1.1. Bone sensing and communication of mechanical loading: The osteocyte 

 Osteocytes are connected to each other and transmit signals via cytoplasmic extensions 

that travel through bone channels, or canaliculi (Figure 4.3).  The network of osteocytes is 

responsible for maintaining mature bone. Osteocytes have proteins, such as sclerostin, that help 

in mineral metabolism and phosphate regulation (Bonewald, 2011). 

 

 

Figure 4.3.  Example of an osteon.  Modified from Gray (1918) by Bduttabaruah. 

https://commons.wikimedia.org/wiki/File:Transverse_Section_Of_Bone.png 

 

 

 The osteocyte has long been thought to be the cell that senses and communicates loading 

information to other bone cells (Robling and Turner, 2009; Robling et al., 2006; Frost, 2003; 

Frost, 1996; Turner and Forwood, 1995).  Despite a lack of initial evidence, this cell was 

considered a good candidate for bony response to loading because of the fluid-filled network of 

https://commons.wikimedia.org/wiki/File:Transverse_Section_Of_Bone.png
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canaliculi that connected osteocytes to bone envelopes and each other (Turner and Forwood, 

1995).  While early research on the role of the osteocyte network showed that these cells did 

respond to mechanical loading by fluid flow through the network, evidence suggested little, if 

any, communication of osteocytes to surrounding tissue, including the mesnchymal cells of the 

periosteal and endosteal surfaces (Turner and Forwood, 1995).   

 More recent research, however, provides strong evidence that the osteocyte is indeed the 

cell responsible for sensing and transmitting mechanical load information to cells involved in 

boney response (Robling and Turner, 2009; Robling et al., 2006).  Mechanical loading of bone 

leads to stress, which in turn causes strain, or bone deformation.  Osteocytes sense strain, and 

along with bone-lining cells, work together in a network to transmit signals to osteoblasts and 

osteoclasts (Robling and Turner, 2009).  Intracellular calcium signals are passed by bone-lining 

cells through canaliculi.  Extracellular information is passed by paracrines, like adenosine 

triphosphate, to the mesenchymal cells lining the periosteal and endosteal bone surfaces.  These 

mesenchymal cells differentiate into osteoblasts and send RANK-L signals to recruit osteoclasts 

(Robling and Turner, 2009; Robling et al., 2006). 

2. Macroscopic osseous response to mechanical loading: Modeling 

 Modeling is the action of osteoblasts and osteoclasts working on different bone surfaces 

in concert (Frost, 2003).  As a bone grows in length, it needs to increase girth to order to 

maintain structural integrity.  The increase in girth is known as appositional growth.  Modeling 

changes a bone’s shape to accommodate its loading regime and maintain relative proportionality 

during appositional growth (Robling and Turner, 2009; Robling et al., 2006; Frost, 2003; Curry, 
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2002).  After appositional growth is complete, the modeling response of bone is dramatically 

decreased (Pearson and Lieberman, 2004).  Bone shape, however, is still affected by mechanical 

loading into adulthood, albeit to a much lesser degree than during ontogeny (Ruff et al., 2006). 

 Bones are a compromise between metabolic efficiency and strength (Curry, 2002; 

McGowan, 1999).  Optimal bone morphology should limit peak strains with the minimum 

amount of structural tissue (Frost, 2003).  For example, if the mechanical environment is 

compromised during gestation, limb bones attain only 30-50% of normal bone mass and do not 

develop their characteristic shape (Figure 4.4).  

 

 

Figure 4.4. Left is a cross section of a new born tibia from a normal mechanical environment.  

Right, a new born tibia lacking mechanical loading due to spina bifida.  From Robling and 

Turner 2009 Figure 2. Reprinted from Ralis et al. 1976. 

 

2.1. Modeling 

2.1.1. The upper limb 

 Hypervigorous mechanical usage tends to increase longitudinal bone growth slightly 

(Frost, 2003).  This trend is shown through asymmetry of long bone length with the dominant 

limb being slightly longer than its counterpart (Auerbach and Ruff, 2006).  The slight increase in 
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length is coupled with a dramatic increase in diaphyseal appositional growth over the non-

dominant limb (Jones et al., 1977).  In a survey of 84 professional tennis players, Jones et al. 

(1977) found that humeral cortical bone thickness was 34.9% and 28.4% greater in the dominant 

upper limb of males and females, respectively.   

 These results show that generally, modeling reacts to loading in a predictable way—

increased loads lead to increased bone apposition (Frost, 2003; Curry, 2002).  This increased 

apposition, however, was not uniform.  Males were more responsive to loading when compared 

to females (Jones et al., 1977).  Apposition tended to favor the periosteal over endosteal surface.  

Yet, this only held true for the professional tennis players along the transverse plane; along the 

sagittal plane, endosteal apposition was greater than periosteal apposition.  The difference in 

surface apposition between the transverse and sagittal planes led to changes in bone shape over 

the non-dominant upper limb.  The dominant upper limb became oblong compared to its 

counterpart, showing that the repetitive stress of tennis resulted in added cortical bone and 

changed cross-sectional shape to reduce humeral strain.  The results of Jones et al. (1977) show 

that asymmetry in overall use and type of motion can lead to asymmetric changes in diaphyseal 

size and shape.  These differences should decrease accuracy for between-upper limb 

comparisons. 

 Shaw and Stock (2009b) also looked at the effect of loading regime on modeling 

response on the upper limb using humeral and ulnar cross-sectional geometry of 50 college 

swimmers, cricket players, and non-athletes.  Cross-sectional geometry was used to assess 

strength and shape differences between groups.  The shape measurement used was the maximum 



 

67 

 

and minimum second moments of area (Imax/Imin).  This measure is a geometric property of a 

diaphyseal cross section that describes how cortical bone is distributed with regard to an axis 

(Lieberman et al., 2004).  The strength measurements included cortical area and total 

subperiosteal area, which measure resistance to axial compression, and the polar second moment 

of area, which is the sum of two perpendicular second moments of area, which measures 

resistance to torsion (Shaw and Stock, 2009a).  

 The swimmers, who began training around 11 years old, experienced stereotypic bilateral 

loading on their upper limbs (Shaw and Stock, 2009b).  The cricketers, who began training at a 

similar age as the swimmers, experienced unilateral loading through repeated throwing.  Non-

athletes, none of whom undertook strenuous exercise, served as a control.   

 There were no significant differences (α = 0.05) in cross-sectional measurements of upper 

limb strength between the dominant upper limbs of swimmers and cricketers.  Similarly, the non-

dominant upper limbs of cricketers and non-athletes showed no significant differences in cross-

sectional measurements of upper limb strength.  The swimmers, however, typically had 

significantly stronger non-dominant upper limbs compared to the other two groups.  Overall, the 

upper limb showed less difference in strength measurements between groups.  Shape differences 

in the upper limbs among groups were less obvious than those observed by Shaw and Stock 

(2009a).  No significant differences were found in either upper limb among groups.  The 

dominant upper limb of cricketers was significantly more circular than non-athletes, but not 

swimmers. 
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 The results of Jones et al. (1977) and Shaw and Stock (2009b) show, on average, that 

bone responds to hypervigorous activity by increasing cortical area and changing diaphyseal 

shape.  As Figure 4.5 illustrates, however, modeling response is idiosyncratic to the individual.  

Despite similar starting ages, years of experience, and loading regimes, Player A and Player B 

showed different patterns of bone apposition.  Player A shows a relatively even apposition of 

bone on the periosteal and endosteal surfaces.  Player B, in contrast, showed a dramatic increase 

periosteal apposition and slight endosteal resorption, especially in the transverse plane. 

2.1.2. The lower limb 

 By examining the tibial midshaft cross-sectional geometry of 50 male college students 

from three different cohorts: long-distance runners, field hockey players, and non-athletes, Shaw 

and Stock 2009a provide insight on how loading regime affect lower limb elements.  The long-

distance runners, who began training at around 13 years old, typically experienced lower impact, 

long-term, stereotypic loading on their tibiae (Shaw and Stock, 2009a).  In contrast, the field 

hockey players, who began training around 10 years old, experienced high impact, short-term, 

multidirectional movement (Shaw and Stock, 2009a).  Again, non-athletes served as a control.   

 As expected, long distance runners and field hockey players were significantly stronger 

(α = 0.05) in most measurements of tibial strength, compared to non-athletes.  While long 

distance runners tended to have the highest values of tibial strength measurements, only cortical 

area was significantly different when compared to field hockey players.  One other cross-

sectional property differed significantly between long distance runners and field hockey players, 

diaphyseal shape (Figure 4.6).  Higher values, as seen in long distance runners (mean = 2.604), 
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Figure 4.5.  Asymmetry in humeral diaphyseal cross sectional shape from hypervigorous activity 

favoring the dominate limb.  Player A and Player B were each professional tennis players in their 

mid-twenties with 18 years playing experience.  From Jones et al., 1977. 
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represent an anterior/posterior elongated tibial cross-section.  Lower values, as seen in field 

hockey players (mean = 2.220), represent tibial cross-sections that roughly approximate an 

equilateral triangle.  The non-athletes had cross-sectional shapes that fell in between these two 

extremes.  Again, this study shows that long bone shape and size responds predictably to the 

level and type of mechanical loading.  Unlike the upper limb, however, modeling response in the 

lower limb is closer to uniform between left and right sides (Shaw and Stock, 2009a), suggesting 

that mechanical loading should serve to increase accuracy in lower limb comparisons. 

2.1.4. Modeling and osteometric reassociation 

 As the above studies illustrate, modeling response to biomechanical loading leads to 

predictable and obvious changes to limb bone morphology.  As such, modeling should be a 

major factor in structuring accuracy in osteometric reassociation.  The patterning of modeling 

response should serve to help differentiate limb bones between people and individualize 

elements through common function and loading regime.  Repetitive, stereotypic function should 

lead to high within-limb accuracy, with coordinated function leading to high between-limb 

accuracy.  All of the above studies focused on long bone diaphyseal morphology, as this portion 

of the bone shows the most obvious response to loading (Lieberman et al., 2004; Lieberman et 

al., 2001).  Other aspects of limb bones also response to loading, although in a different manner 

than diaphyses. 

2.2. Limb bone response to loading by region: Linear measurements 

 As the studies in the modeling section show, differential limb use leads to an increased 

osseous response in the dominant limb, leading to asymmetry (Shaw and Stock, 2009b; Bass et  
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Figure 4.6.  The tibial cross-sectional shape.  From Shaw and Stock 2009a, Figure 3. 

  



 

72 

 

al., 2002; Jones et al., 1977).  These studies focused on modeling response through diaphyseal 

cross-sectional measurements.  Asymmetry in limbs has also been addressed using long bone 

measurements (Auerbach and Ruff, 2006).  As expected, regardless of limb, diaphyseal girth 

measurements showed the highest level of asymmetry and variability (Lazenby et al., 2008; 

Auerbach and Ruff, 2006; Plochocki, 2004).  Differences in diaphyseal dimensions were most 

pronounced in the upper limb, favoring the right side (Auerbach and Ruff, 2006; Plochocki, 

2004).  The lower limb showed a much lower degree of asymmetry (Auerbach and Ruff, 2006; 

Plochicki, 2004).  This finding was expected, given the coordinated and stereotypical use of the 

lower limbs, further supporting higher accuracy in osteometric reassociation for lower limb 

comparisons.  In contrast to diaphyseal measurements, articular and length measurements 

showed the lowest amount of asymmetry, with differences typically not reaching statistical 

significance (α = 0.05) (Lazenby et al., 2008; Auerbach and Ruff, 2006). 

2.3. Epiphyseal response to loading 

 At first glance, the lack of asymmetry in articular dimensions is interesting and 

unexpected because joint surfaces experience a high level of stress during mechanical loading 

(Curry, 2002; McGowan, 1999).  Yet, despite the high level of stress, articular dimensions show 

a low level of asymmetry compared to diaphyseal measurements, suggesting minimal osseous 

response to loading.  However, epiphyses are mainly trabecular bone, which is tough, deforming 

in response to stress (Curry 2002; McGowan 1999).  Gross articular dimensions do not measure 

trabecular bone response to loading.   
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 Lazenby et al. (2008) examined osseous response to loading by measuring midshaft 

cross-sectional geometry as well as distal epiphyseal trabecular bone density, connectivity, and 

thickness of 29 paired second metacarpals.  The authors found a similar degree of bilateral 

asymmetry in the connectivity and thickness of epiphyseal trabecular bone, showing that 

epiphyses respond in a similar magnitude to loading as diaphyses, but through different 

mechanisms.  Joints are constrained to maintain functional cohesiveness between articulations.  

Functional cohesiveness and adaptation to mechanical loading is maintained through keeping 

articular dimensions canalized and trabecular connectivity and thickness plastic in response to 

loading (Lazenby et al., 2008). 

2.3.1. Epiphyseal response and osteometric reassociation 

 Epiphyseal response to loading occurs below the bone surface through increasing 

trabecular connectivity and thickness, suggesting that it is not relevant for understanding 

accuracy in osteometric reassociation.  However, the trabecular response of epiphyses to loading 

serves to maintain functional cohesiveness and relationships.  If articular dimensions changed in 

response to loading throughout ontogeny, function may become compromised.  Gross dimension 

canalization compensated for by trabecular response to loading seen in epiphyses strongly 

suggests that articulating elements should have high levels of accuracy in osteometric 

reassociation.  Joint surfaces not only transmit loads, but determine limb stability and range of 

motion (Ruff, 2002).  It is reasonable to assume that bones with a limited range of motion and a 

large amount of articulating surface area should have high accuracy in osteometric reassociation.  

If this assumption holds, then within-lower limb comparisons should have higher levels of 
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accuracy compared to the upper limb due to the limited range of motion and large articulating 

surface of the knee compared to the elbow.  The elbow, however, is a complex hinge joint, with a 

larger more stable articulating surface between the ulna and humerus compared to the radius and 

humerus.  Because of these differences, humerus and ulna comparisons may have higher 

accuracy compared to humerus and radius comparisons. 

3. Summary and functional adaptation and osteometric reassociation accuracy 

 As a living material, bone adapts to its loading regime.  Mechanisms by which bone 

adapts to its mechanical environment through gross morphological changes should influence 

accuracy in osteometric reassociation.  Modeling is a major adaptive process occurring mainly 

during ontogeny that changes bone size and shape by adding and removing bone from the peri-

and endosteal surfaces.  Modeling is mediated by several factors including hormonal changes 

experienced during puberty, nutrition and health.  These processes and mediating factors lead to 

limb bone morphology that are unique to the individual, allowing for limb bones to be accurately 

reassociated.  Elements that share a similar loading environment should have a similar modeling 

response, thus increasing covariation and accuracy in osteometric reassociation.  Humans are 

bipeds that are typically one-upper limb dominant.  These characteristics lead to several nuances 

to the relationship of form and function and osteometric reassociation accuracy.  First, besides 

being functionally constrained at the knee, lower limb bones are intimately linked during 

locomotion.  The functional relationship of the lower limbs should lead to high levels of 

accuracy for between-and within-lower limb comparisons as well as homologous lower limb 

comparisons.  Upper limbs, on the other hand, have a larger range of motion and since they are 
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not directly used for locomotion, are able to function more or less independently of the opposing 

upper limb.  This patterning of human limb function should lead to lower accuracy for within-

and between-upper limb comparisons and homologous comparisons. 

 This overlap between development and function is most obvious in the canalization of 

gross dimensions of articulating portions.  Instead, articulating portions respond to mechanical 

loading by changing the underlying trabecular structure of the epiphyses.  This loading response 

highlights the importance of maintaining functional cohesiveness between articulating portions.  

Diaphyses, in contrast, show plasticity in gross dimension, suggesting that model’s effect on 

osteometric reassociation accuracy should be most obvious in those dimensions. 
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Chapter 5  

Limb Integration and Modularity 

 Chapters 3 and 4 provide the experimental framework for understanding the processes 

contributing to limb development and functional adaptation, respectively.  These two bodies of 

research have been applied to understand limb covariation structure (Young et al., 2010; Young 

and Hallgrimsson, 2005; Hallgrimsson et al., 2002; Capdevila and Belmonete, 2001).  

Integration and modularity are two theoretical concepts used, along with the above research, to 

explain the hierarchical structure of the vertebrate body.  These concepts are useful for 

understanding how the body works together as a functional unit (Wagner et al., 2007).  As such, 

integration and modularity build a portion of the theoretical foundation used in this study and 

provide a blueprint for developing a hypothetical structure of accuracy in osteometric 

reassociation. 

1. Integration and modularity 

 Different aspects of an organism are more integrated than others.  More integrated 

portions an organism are considered modules.  Modularity and integration are abstract concepts 

that capture various types, levels, and structures of variation (Wagner et al., 2007).  Modules are 

many times hierarchically structured.  For example, cell types are packaged together in organs, 

groups of organs work together to perform particular bodily functions, and all of these bodily 

functions work together in the organism.  Integration focuses on causal factors responsible for 

trait covariation (Wagner, 2007).  Within an organism there are two major kinds of integration: 

functional and developmental.  Physical elements that interact with each other to perform an 
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action are functionally integrated (Cheverud, 1996).  Aspects of the body that covary during 

ontogeny are developmentally integrated (Cheverud, 1996).  

 Like integration, modularity focuses on factors causing trait covariation.  However, 

modules are typically juxtaposed against other trait sets to describe relationships between trait 

sets (Mitteroecker and Bookstein, 2008).  Features that vary together more than they vary with 

other features of the same kind are a variational module.  Aspects of an organism that work 

together to perform a physiological function that is relatively separate from other aspects of that 

organism is a functional module (Wagner et al., 2007).  For example, human upper limbs and 

lower limbs can be considered separate functional modules since they function more or less 

independently.  Portions of the embryo that form through an autonomous signaling cascade or 

are quasi-autonomous from other portions in regards to pattern formation and differentiation are 

developmental modules (Wagner et al., 2007).  As shown in Chapter 3, differences in gene 

expression along developmental axes of the limb lead to some modularity between elements. 

2. Limb integration and modularity  

Young et al. (2010) and Young and Hallgrimsson (2005) used linear limb bone 

measurements to understand the effect of integration and modularity on limb covariance 

structure.  The species in these studies represent a range of functional locomotor types, limb 

divergence, and phylogenetic relatedness.  The results suggest an overall structural similarity in 

the covariance across broad phylogenetic and functional morphologies, showing a common 

underlying structure to limb integration.  Specifically, the highest correlations are between 

homologous elements, followed by within-limb elements, proximal serially homologous 
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elements, distal serially homologous elements, with hand and feet elements showing the lowest 

correlations (Young and Hallgrimsson, 2005).  In species with coordinated upper and lower limb 

locomotion, many times the correlations between serially homologous elements exceed within-

limb correlations (Young et al., 2010; Young and Hallgrimsson, 2005).  In species with 

disassociated upper and lower limb function, such as humans, integration is highest within and 

between functionally related limbs and lower overall levels of integration (Young et al., 2010; 

Young and Hallgrimsson, 2005).   

3.1. Limb integration and modularity and osteometric reassociation accuracy 

 The common underlying structure to limb integration identifying by Young et al. (2010) 

and Young and Hallgrimsson (2005) provide the basis for the hypothetical structure of 

osteometric reassociation accuracy.  Homologous elements share a common developmental 

program and varying degrees of functional similarity, which manifests in high integration of 

these elements.  Thus, homologous elements should have the highest accuracy in reassociation.  

Within-limb elements should have the next highest levels of accuracy, followed by serially 

homologous comparisons.  Lastly, between-limb comparisons should have the lowest 

reassociation accuracy.  The functionally divergent limb use seen in humans should lower 

accuracy of comparisons between upper and lower limbs as well as serially homologous and 

between-upper limb comparisons. 

4. Limb variation 

 Studies on the relative variation in human limb bone length measurements provide two 

important insights for accuracy in osteometric reassociation: modularity between proximal and 
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distal elements and higher variation in distal elements compared to proximal (Auerbach and 

Sylvester, 2011; Holliday and Ruff, 2001; Jantz and Jantz, 1999).  For males, Auerbach and 

Sylvester (2011) give correlation coefficients of 0.82 for the femur and tibia and 0.70 for 

humerus and radius maximum lengths.  Females have correlation coefficients of 0.77 and 0.65 

for the femur and tibia and humerus and radius, respectively (Auerbach and Sylvester, 2011).  

Rosing and Pischtschan (1995) provide a correlation coefficient of 0.96 for ulna and radius 

maximum length from a pooled sample of males and females.  The difference in correlation 

coefficients between these elements highlights the modularity of proximal elements from distal 

ones.  Allometric trends in proximal and distal elements also points to modularity between these 

elements.   

 Auerbach and Sylvester (2011) show that proximal elements tend to be near isometric, 

while distal elements have positive allometric coefficients, a trend also seen in secular height 

increase (Jantz and Jantz, 1999).  These allometric and secular trends in limb proportions support 

the findings of Holliday and Ruff (2001), who show that distal elements, especially the tibia, 

have more variation than proximal ones.  

4.1. Limb variation and osteometric reassociation accuracy 

 Studies of limb variation support a degree of modularity between proximal and distal 

elements suggested by developmental processes.  Interestingly, the tibia and femur have a degree 

of modularity across both developmental axes and the tibia shows more variability than the 

radius.  The correlations between the maximum lengths of the femur and tibia, however, are 

higher than those of the humerus and radius (Auerbach and Sylvester, 2011).  Regardless, the 
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higher correlations for the radius and ulna compared to the proximal and distal limb element 

correlations, suggest lower accuracy of proximal and distal limb comparisons compared to distal 

limb comparisons. 

 It seems reasonable that high variation in distal element measurements would lead to 

lower levels of accuracy in reassociating these bones.  This assertion may be true for non-

(serially) homologous comparisons involving distal elements.  The reverse association may be 

true for distal homologous and serially homologous comparisons.  Accuracy in osteometric 

reassociation depends not only on high covariance between an individual’s limb bones, but high 

variation between individuals.  Stated another way, limb measurements with high covariation 

may have minimal usefulness in osteometric reassociation if the range of possible values for 

those measurements is tightly constrained around the mean, because many possible elements 

may be good matches.  Conversely, measures with low covariation may be useful if the range of 

possible values of those measurements is spread out around the mean, because possible matches 

are likely to be poor matches. 

5. A biologically informed hierarchical structure of osteometric reassociation accuracy 

Chapter 2 discusses commingled remains resolution and highlighted a gap in current 

osteometric reassociation methodology from a lack of a biological foundation.  The body of 

research presented in Chapters 3-5 addresses this limitation by presenting relevant concepts and 

research in limb ontogeny, functional adaptation, and integration and modularity. 

 Chapter 3 shows that embryonic limb development does show some degree of 

modularity, both within-limb and between upper and lower limbs.  As limb bones develop, they 
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are also influenced by mechanical loading by muscles, showing the interplay between 

development and function in form.  These factors logically lead to the proposal that some types 

of osteometric comparisons should be more accurate than others.   

 Chapter 4 further delves into the relationship between ontogeny, function and form by 

examining bone functional adaptation to mechanical loading.  Of the processes of bone 

mechanical adaptation, modeling and functional constraint should have the most obvious effects 

on reassociation accuracy.  Modeling serves to mainly change diaphyseal morphology to 

accommodate loading.  Functional constraint keeps gross dimensions of articulating portions 

canalized against biomechanical loading, instead allowing trabecular architecture to adapt to 

loading.  The alternate form of functional adaptation in epiphyses highlights the importance of 

cohesiveness in articulating portions of bones, suggesting that elements forming a joint should 

have high reassociation accuracy.  This assertion may be especially true for elements that 

articulate across a large surface area and are restricted in movement to a single or a few planes of 

motion (Ruff, 2002). 

 This chapter contextualizes the previous two by showing how developmental and 

mechanical influences are used to understand limb covariation structure.  The observed patterns 

of vertebrate limb covariation are explained using the concepts of modularity and integration.  

Development and function structure limb covariance (Young et al., 2010; Young and 

Hallgrimsson, 2005; Hallgrimsson et al., 2002).  Thus, there is a common underlying structure of 

limb integration across a broad sampling of species due to shared developmental processes, with 

functional differences leading, in part, to species-specific integration structure. 
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 From this research, a structure to accuracy in osteometric reassociation was hypothesized 

(Figure 5.1).  Homologous elements will have the highest accuracy of all comparison types. 

Within homologous elements, lower limb comparisons should have higher accuracy than upper 

limb comparisons.  Next, within-limb comparisons will follow homologous comparisons.  Again, 

lower limb comparisons will have higher accuracy than upper limb comparisons.  Serially 

homologous comparisons will follow within-limb comparisons.  Lastly, between-limb 

comparisons will have the lowest accuracy.  However, between-lower limb comparisons should 

have accuracy near those of serially homologous comparisons, because of functional integration 

during locomotion.  Comparisons between upper limbs and lower limbs will have the lowest 

accuracy of all comparisons because of comparatively low functional and developmental 

integration. 

   

 

Figure 5.1.  The proposed hypothetical structure of accuracy in osteometric reassociation. 
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Chapter 6  

Materials and Methods 

1.  Materials 

 As discussed in Chapters 1 and 5, osteometric reassociation models lack a biological 

foundation and have relied solely on SOM’s to quantify limb bone morphology.  This study 

addresses those limitations through assessing a biologically-informed structure of accuracy in 

osteometric reassociation by applying Bayesian regression to geometric morphometric landmark 

data.  These data consist of landmark coordinates collected on five paired long bones (humerus, 

radius, ulna, femur, tibia) from 208 individuals curated at the William M. Bass Donated Skeletal 

Collection at the University of Tennessee, Knoxville (Table 6.1 and 6.2).  All individuals are 

adults, ranging in age from 19 to 62 years at death (Figure 6.1).  Individuals in this study were 

chosen based on completeness of elements (i.e. no-to-slight damage to limb bones) and ease of 

landmark assessment (i.e. individuals with surgical limb bone intervention or moderate-to-

extreme osteoarthritis were excluded).  Information on the sex and ancestry composition of the 

sample is provided in Tables 6.3 and 6.4, respectively.  

1.1. Geometric morphometric landmark data collection  

 Before discussing the benefits of three-dimensional coordinate data over traditional 

SOM, it is useful to discuss four concepts for understanding the geometric properties of bone 

structure: shape, size, form, and proportion (Figure 6.2).  Size is a relative comparison of objects 

across a measurement, such as maximum length.   When shapes are the same, size is 
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Table 6.1.  Number of Landmarks by Bone. 

 
 

Table 6.2. Landmark Descriptions. 

Number Bone Landmark Description 

1 Humerus Superior-most point humeral head 

2 Humerus Superior point greater tubercle 

3 Humerus Anterior point of lesser tubercle 

4 Humerus Anterior point of head/neck intersection 

5 Humerus Medial point of head/neck intersection 

6 Humerus Posterior point of head/neck intersection 

7 Humerus Lateral point of head/neck intersection 

8 Humerus Anterior midshaft 

9 Humerus Medial midshaft 

10 Humerus Posterior midshaft 

11 Humerus Lateral midshaft 

12 Humerus Anterior nutrient foramen 

13 Humerus Medial nutrient foramen 

14 Humerus Posterior nutrient foramen 

15 Humerus Lateral nutrient foramen 

16 Humerus Medial point of medial epicondyle 

17 Humerus Lateral point of lateral epicondyle 

18 Humerus Superior point of olecranon fossa 

19 Humerus Medial point of olecranon fossa 

20 Humerus Lateral point of olecranon fossa 

21 Humerus Anterior point of the capitulum 

22 Humerus Inferior point of capitulum 

23 Humerus Distal-lateral point of trochlea 

24 Humerus Apex of trochlear groove 

 

Bone Landmarks

Humerus 25

Ulna 25

Radius 17

Femur 29

Tibia 21

Total 117
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Table 6.2. Continued. 

Number Bone Landmark Description 

25 Humerus Distal-medial point of trochlea 

26 Ulna Anterior point of olecranon process 

27 Ulna Superior point of olecranon process 

28 Ulna Posterior point of olecranon process 

29 Ulna Medial point of olecranon process 

30 Ulna Lateral point of olecranon process 

31 Ulna Medial point of midtrochlear notch 

32 Ulna Lateral point of midtrochlear notch 

33 Ulna Medial point of coronoid process 

34 Ulna Anterior-medial point of coronoid process 

35 Ulna Anterior point of coronoid process 

36 Ulna Medial intersection of coronoid and radial notch 

37 Ulna Inferior point of radial notch 

38 Ulna Lateral point of radial notch 

39 Ulna Anterior midshaft 

40 Ulna Medial midshaft 

41 Ulna Posterior midshaft 

42 Ulna Lateral midshaft 

43 Ulna Anterior nutrient foramen 

44 Ulna Medial nutrient foramen 

45 Ulna Posterior nutrient foramen 

46 Ulna Lateral nutrient foramen 

47 Ulna Anterior point of ulnar head 

48 Ulna Inferior point of styloid process 

49 Ulna Posterior point of ulnar head 

50 Ulna Lateral point of ulnar head 

51 Radius Superior point of radial head above radial tuberosity 

52 Radius Inferior point of radial head above rad tuberosity 

53 Radius Superior point of lateral radial head 

54 Radius Center of radial tuberosity 

55 Radius Anterior midshaft 

56 Radius Medial midshaft 

57 Radius Posterior midshaft 
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Table 6.2. Continued. 

Number Bone Landmark Description 

58 Radius Lateral midshaft 

59 Radius Anterior nutrient foramen 

60 Radius Medial nutrient foramen 

61 Radius Posterior nutrient foramen 

62 Radius Lateral nutrient foramen 

63 Radius Superior point of ulnar notch 

64 Radius Inferior-anterior point of ulnar notch 

65 Radius Inferior-posterior point of ulnar notch 

66 Radius Posterior point of dorsal tubercle 

67 Radius Inferior point of styloid process 

68 Femur Superior most point of femoral head 

69 Femur Anterior point of head/neck intersection 

70 Femur Medial point of head/neck intersection 

71 Femur Posterior point of head/neck intersection 

72 Femur Lateral point of head/neck intersection 

73 Femur Apex of greater trochanter above trochanteric fossa 

74 Femur Lateral point of greater trochanter 

75 Femur Posterior-proximal point of lesser trochanter 

76 Femur Anterior midshaft 

77 Femur Medial midshaft 

78 Femur Posterior midshaft 

79 Femur Lateral midshaft 

80 Femur Anterior nutrient foramen 

81 Femur Medial nutrient foramen 

82 Femur Posterior nutrient foramen 

83 Femur Lateral nutrient foramen 

84 Femur Center of adductor tubercle 

85 Femur Medial intersection of anterior patella surface/shaft 

86 Femur Lateral intersection of anterior patella surface/shaft 

87 Femur Lateral point of lateral epicondyle 

88 Femur Lateral point of lateral femoral condyle 

89 Femur Posterior point of lateral femoral condyle 

90 Femur Medial point of lateral femoral condyle 
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Table 6.2. Continued. 

Number Bone Landmark Description 

91 Femur Inferior point of lateral femoral condyle 

92 Femur Central/deepest point of intercondylar fossa 

93 Femur Medial point of medial femoral condyle 

94 Femur Posterior point of medial femoral condyle 

95 Femur Lateral point of medial femoral condyle 

96 Femur Inferior point of medial femoral condyle 

97 Tibia Medial intercondylar tubercle 

98 Tibia Anterior point of medial condyle 

99 Tibia Medial point of medial condyle 

100 Tibia Posterior point of medial condyle 

101 Tibia Lateral intercondylar tubercle 

102 Tibia Anterior point of lateral condyle 

103 Tibia Lateral point of lateral condyle 

104 Tibia Posterior point of lateral condyle 

105 Tibia Anterior point of tibial tuberosity 

106 Tibia Anterior midshaft 

107 Tibia Medial midshaft 

108 Tibia Posterior midshaft 

109 Tibia Lateral midshaft 

110 Tibia Anterior nutrient foramen 

111 Tibia Medial nutrient foramen 

112 Tibia Posterior nutrient foramen 

113 Tibia Lateral nutrient foramen 

114 Tibia Inferior-anterior point of fibular notch 

115 Tibia Inferior-posterior point of fibular notch 

116 Tibia Inferior point of anterior colliculus 

117 Tibia Inferior point of posterior colliculus 
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Figure 6.1. Age at Death Distribution of the Sample (n = 208). 

 

Table 6.3. Number of Individuals by Sex. 

 

Table 6.4. Number of Individuals by Ancestry. 

 

Sex # of Individuals

Female 105

Male 103

Total 208

Ancestry # of Individuals

White 195

Black 10

Hispanic 3

Total 208
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differ, size is an ambiguous concept without a unique quantification (Mitteroecker et al., 2013).  

Unlike size, shape has a unique definition.  Shape is the geometric properties of an object that are 

invariant to translation, rotation, and scaling (Mitteroecker et al., 2013).  Form is the geometric 

properties of an object that are invariant to only translation and rotation (Mitteroecker et al., 

2013).  Thus, two objects have the same form if they are both the same shape and size.  

Proportion is the comparison of size measures of an object without (or minimal) reference to the 

spatial relationship between the measures, such as the ratio of maximum length and width 

(Figure 6.2b).  

 

 

Figure 6.2. Graphical representation of size and shape and their relation to form and proportion. 
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 Because the spatial context of landmarks is not maintained through data collection, SOM 

rarely have relationships with other dimensions (Ousley and McKeown, 2001).  As such, these 

measurements mainly inform on size relationships, while providing only general information on 

shape through the use of proportions or comparisons of homologous measurements with 

generally similar spatial contexts, such as maximum breadth at midshaft.  This type of shape 

information, however, can be misleading.  As Figure 6.2b shows, these different shapes have the 

same maximum length and width measurements, but different shapes.  The object forms 

presented in Figure 6.2c are identical to the diamond in Figure 6.2b, but using the information 

provided by SOM, these objects are indistinguishable from the pentagram in Figure 6.2b.  This 

limitation is an example of the “harsh reduction of available information” available from SOM 

(Rosing and Pischtschan 1995:40).  Geometric morphometric landmark data provide a way of 

addressing this limitation in information loss by retaining the relative geometric properties of 

bone form. 

 Landmark data were collected using a Microscribe G2X Digitizer (Year of manufacture: 

2002, Manufacturers: Solution Technologies, Oella, Maryland) (Figure 6.3).  This model of 

digitizer consists of base that rests on a fixed space, an upper limb with multiple joints 

terminating into a stylus, which designates the point in space to be collected, to a positional 

accuracy of 0.23 mm (Immersion, 2002).  The instrument is connected to a foot pedal or a hand-

held button and to a computer via a USB port.  When the stylus is positioned on the appropriate 

landmark, the foot pedal or button is pressed and the position of the landmark is communicated 
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to the computer and stored in an Advantage Data Architect database via a custom version of 

3Skull (Ousley, 2004).  

 

 

Figure 6.3.  The Microscribe G2X Digitizer used in the current study. 

 

2. Methods 

 Prior to digitizing, each landmark is assessed and marked with an erasable pencil.  These 

landmarks fall into one of three broadly defined categories (Bookstein, 1991): 

 Type 1: intersection of biological structures.  e.g., medial intersection of coronoid and 

radial notch; 

 Type 2: maximum or minimum curvatures or projections, e.g., anterior point of coronoid 

process; 
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 Type 3: composite landmarks based on estimates, e.g., anterior diaphysis at nutrient 

foramen. 

A majority of the landmarks in this study are Type 2, and to a lesser extent, Type 3.  Type 1 

landmarks are typically discrete points in space are highly repeatable and regarded as providing 

the strongest evidence for homology between specimens (Bookstein, 1991).  Type 2, and 

especially Type 3 landmarks, are subject to assessment error and homology is supported by 

geometric, not histological evidence (Bookstein, 1991).  Because the current study examines one 

species, only error in landmark assessment is relevant.   

 Uncertainty in landmark placement represents methodological error in morphometric data 

(Arnqvist and Martensson, 1998).  Methodological error is minimized in this study by 

standardizing element placement and observer viewpoint during landmark assessment and the 

use of calipers to determine the position of composite measurements.  To maintain the same 

relational space during data collection, both the base of the digitizer, which acts as the datum, 

and the specimen being digitized must remain stationary—only the digitizer upper limb and 

stylus can move.  This requirement leads to another form of error in morphometric data, personal 

error, or uncertainty in the placement of the stylus on the landmark (Arnqvist and Martensson, 

1998).  Instrument error is the last form of error in morphometric data.  As stated above, the 

digitizer used in this study has a positional accuracy of 0.23 mm, making the effect of instrument 

error minimal (Immersion, 2002). 
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2.1. Data Analysis 

2.1.1. Generalized Procrustes Analysis (GPA) 

 Raw landmark data are subjected to a GPA using the program MorphoJ (Klingenberg, 

2011) to extract Procrustes coordinates and centroid size.  This analysis superimposes landmarks 

in a sample by translating, scaling, and rotating coordinates to a common shape space (Figure 

6.4).  This superimposition starts by calculating the centroid for each specimen.  The centroid is 

the average of all landmarks (Mitteroecker et al., 2013).  A specimen’s centroid acts as a 

“gravitational center”, allowing for its configuration of landmarks to be represented by a single 

point (Mitteroecker and Gunz, 2009; Zelditch et al., 2004; Rosas and Bastir, 2002).  Centroid 

size is a composite measurement of size that is equal to the summed squared distances between 

all landmarks and their centroid (Mitteroecker et al., 2013).  Compared to SOM, centroid size is 

a better representation of size because it incorporates information from all coordinates, instead of 

only along an axis, such as maximum length (Mitteroecker et al., 2013).  As such, centroid size is 

less affected by shape differences when compared to other size measures, making comparisons 

of size between different shaped objects relatable (Mitteroecker et al., 2013).   

 To remove the effect of isometric size, each specimen is translated according to their 

centroid position and scaled to the mean centroid size (Mitteroecker and Gunz, 2009).  For 

mathematical simplicity, mean centroid size is scaled to 1 and its position is centered on the 

origin, so each centroid is a single point on the surface of a unit sphere (Mitteroecker and Gunz, 

2009; Zelditch et al., 2004).   
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Figure 6.4. Schematic representation of Generalized Procrustes analysis.  From Mitteroecker et 

al. (2013), Figure 2. 

 

 

 After isometric size is removed, each specimen is iteratively rotated on its centroid to 

minimize the overall distance of the specimen’s landmarks to other specimens (Rohlf, 1999).  

This overall distance is known as the Procrustes distance, which is the square root of the sum of 

squared differences between a specimen’s landmarks and the average position of those 

landmarks (Rohlf, 1999).  Thus, an element’s Procrustes distance is a measure of its overall 

shape difference from the mean shape of the reference sample (Rohlf, 1999; Bookstein, 1991).  

Through scaling, translation and rotation, the result of GPA is a common space, known as 

Kendall’s shape space (Mitteroecker et al., 2013).  Shape space is non-Euclidean (non-linear) in 

nature; taking the form of the surface of a sphere (Rohlf, 1999).  This space is reflected along its 

equator (Mitteroecker and Gunz, 2009).  Thus, only the northern hemisphere of this space, where 
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the centroids are translated to its pole (origin), is relevant (Mitteroecker and Gunz, 2009). The 

position of landmarks in this space are Procrustes shape coordinates, which are directly 

comparable aspects of shape across elements of the same configuration.  Shape space can be 

extended into form space by incorporating the natural logarithm of centroid size as a variable 

(Mitteroecker et al., 2013).  Form space relates the overall form of objects while maintaining the 

isotropic properties of shape space (Mitteroecker et al., 2013).  Because of this relational 

property, the natural log of centroid size is used as the size metric during analysis.  All 

subsequent analyses were performed in R (R Core Team, 2015).  

2.1.2. Partial least squares (PLS) 

 Because of the large number of coordinates and non-homologous landmarks between 

different elements, partial least squares analysis is applied to the Procrustes shape coordinates.  

This process allows selection of a small number of relevant composite variables and direct 

comparability between different elements.  Partial least squares analysis is a class of techniques 

for data reduction and latent variable analysis (Chen and Hoo, 2011; Boulestiex and Strimmer, 

2006; Rosipal and Kramer, 2005; Haenlein and Kaplan, 2004; Wegelin, 2000).  This class of 

techniques shares a common method of extracting components—via ordinary least squares 

regression.  Partial least squares is similar to Principal Components Analysis (PCA) and 

Canonical Correlation Analysis (CCA), which extract orthogonal score vectors that are weighted 

composites of the original dataset (Rosipal and Kramer, 2006).  Typically, the goal with any type 

of predictive data reduction analysis is two-fold: 1) to find linear combinations that well-

represent the original variables; and 2) to find highly correlated linear combinations.  Because 
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PCA captures a maximum amount of variation from the original variables, it is an optimal 

solution to the first goal.  In a predictive framework, where one block of variables is used to 

predict another block, PCA fails to achieve the second goal.  This failure is due to the fact that 

PCA components between blocks of variables are not related to each other.  On the other hand, 

CCA optimally achieves the second goal by creating linear combinations of each block that are 

maximally correlated with one another.  However, CCA fails at the first goal because these linear 

combinations are not designed to capture information or variance within a block and are based 

on the correlation matrix of raw variables, obscuring the biological meaning of components and 

making the interpretation of components difficult (Wegelin, 2000; Bookstein, 1996).  

Furthermore, CCA components are unstable in instances of multicollinearity and solutions are 

not uniquely defined when the number of variables is large compared the sample size (Wegelin, 

2000).  While not optimal, PLS achieves both goals of predictive data reduction by finding linear 

combinations of variables through the covariance of raw variables that both capture variability 

and are highly correlated (Wegelin, 2000; Bookstein, 1996).  Components of the X-block (T, see 

equation 7 below) are orthogonal, good representations of X, and are good at explaining Y.  

Components of the Y-block (U, see equation 7 below) are orthogonal, good representations of Y, 

and are highly correlated with T.  Stated another way, PLS models create components that 

predict a set, or sets, of dependent variables from a set of independent variables that have the 

best predictive power on the dependent variables (Chen and Hoo, 2011).  Partial least squares 

components are constructed from the following procedure (Maitra and Yan, 2008; Wegelin, 

2000): 
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Let X and Y be two blocks of variables, where X is a n*p matrix and Y is a n*q matrix.  Find a 

linear decomposition of X and Y such that X = TPT+E and Y = UQT+F, where 

 X-scores = Tn*r; Y-scores = Un*r 

 X-loadings = Pp*r; Y-loadings = Q 1*r 

 X-residuals = E n*p; Y-residuals = F n*1 (6.1) 

 

Components are extracted iteratively and the number of components (r) depends on the rank of X 

and Y (Maitra and Yan, 2008).  Decomposition is finalized when the covariance of T and U is 

maximized and convergence is reached (Chen and Hoo, 2011). 

 Solution of first eigenvector  = Xt YYt X; Yt XXt Y (6.2) 

Once the first components have been extracted, the original values of X and Y are deflated as 

(Maitra and Yan, 2008),  

 X1 = X – ttTX and Y1 = Y -ttTY  (6.3) 

The process is repeated until all possible components T and U are extracted, when X is reduced 

to a null matrix (Chen and Hoo, 2011).  Decisions on the number of components to retain for 

further analysis are typically done through cross-validation resampling procedures (Sanchez, 

2015; Garthwaite, 1994).  The cross-validation procedure used in this analysis is a form of 

jackknife resampling (Sanchez, 2015): 

1. The dataset is divided into 10 groups of approximately equal size. 

2. One segment is the test set and the other nine are used to estimate the model and predict 

the observations in the test set. 

The formula for assessing component acceptance is: 
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 Q2
h = 1- (PRESSh / RSSh-1), where 

 h = component  

 PRESS = Predicted Error Sum of Squares 

 RSS = Residual Sum of Squares  (6.4) 

3. This process is repeated using all 10 groups as a test set. 

Component Th is considered to be significant and is included in the analysis if Q2
h is greater than 

or equal to 0.0975 (Sanchez, 2015).  The package “plsdepot” (Sanchez, 2015) was used in R to 

extract significant PLS components.  

2.1.3 Simulated Commingling 

 After the limb bone morphology of each individual is represented as a log centroid size 

and PLS components, 10 individuals are randomly removed from the total data set.  These 10 

individuals act as a simulated commingled population.  One element is chosen as the 

independent (x) variable, with the 10 possible matching elements acting as the dependent (y) 

variable.  For example, if we are interested in reassociating a left femur with 10 possible right 

femora, then the left femur is predicting the right femur.  In this situation, the left femur is the 

independent variable and the right femur is the dependent variable.  A left femur is selected from 

the commingled assemblage and compared to the 10 possible right femur matches.  These 

comparisons are made using the osteometric reassociation model described below, with the 

remaining sample (total sample excluding the commingled individuals) acting as training data.  
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2.1.4 Bayesian regression 

 Because PLS components are orthogonal (Rosipal and Kramer, 2006) and log centroid 

size is uncorrelated with shape (Mitteroecker et al., 2013), each predictive variable can be treated 

as an independent line of evidence for reassociation.  The model used for assessing each 

predictive variable is simple linear regression, which takes the form of: 

𝑦𝑖 =  𝛼 +  𝛽𝑥𝑖 +  𝜀𝑖  (6.5) 

Where 𝑦𝑖 and 𝑥𝑖 are the ith case of the dependent and independent variables, respectively.  The 

y-intercept is represented by 𝛼; and 𝛽 represents the the slope, or coefficient by which the 

independent variable changes in relation to the dependent variable.  The error term is 𝜀𝑖 and 

represents the stochastic part of the model that accounts for all other factors that influence the 

value of the dependent variable.  The y-intercept and slope are the deterministic portions of the 

model. 

 Typically, the regression line is fit by finding the line that minimizes the squared vertical 

distance between all data points.  While point estimates for the y-intercept and slope are 

calculated, uncertainty is not incorporated into those estimates.  Confidence intervals attempt to 

deal with this limitation by defining a range of possible values for these parameters within an 

estimated level of certainty.  Linear regression of this type is associated with frequentist 

inference and does not provide an intuitive or easily interpretable way for comparing multiple 

possible values of 𝑦𝑖.  Bayesians specify regression models in terms of probability distributions, 

eliminating these inferential limitations.  Bayes theorem is used to specify probability 

distributions, taking the form of: 

𝜌(𝜃|𝑦, 𝑥) ∝ 𝜌(𝑦|𝜃, 𝑥)𝜌(𝜃, 𝑥)  (6.6) 
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In this unnormalized form, the posterior probability 𝜌(𝜃|𝑦, 𝑥) of parameters 𝜃 given data 𝑦 and 

constants 𝑥 is proportional (for fixed 𝑦 and 𝑥) to the product of the likelihood function 𝜌(𝑦|𝜃, 𝑥) 

and prior 𝜌(𝜃, 𝑥)(Stan Development Team, 2015).   

 The Bayesian regression model used in this study assigns a normal distribution to the y-

variable, with improper prior distributions for regression parameters. Prior distributions for the 

regression parameters are improper in the sense that they are modeled as random draws from a 

uniform distribution.  Unbounded (-∞ to +∞) uniform priors are assigned to the alpha and beta 

regression parameters, with a positive uniform (0< to +∞) assigned to sigma.  This model is 

needed because of its flexibility.  Variable values will change based on the type of comparison 

and to a lesser degree, the variable values of the individuals in the training set.  Thus, an 

abstracted regression model is needed to help ensure predictions are realistic for all variables.  

These uniform priors are essentially non-informative, leading the posterior distribution of the 

regression parameters to be driven by the likelihood of the training data.  

2.1.5. Markov Chain Monte Carlo (MCMC) 

 Bayesians view parameters as observed realizations of random variables drawn from a 

probability distribution.  As such, parameters are modeled as distributions, not point estimates 

with uncertainty around that estimate, which is the case in frequentist modeling.  Markov Chain 

Monte Carlo methods provide a means for exploring the parameter space utilizing equation 6.6.  

Given a model, a likelihood, and data, MCMC simulate draws from the posterior distribution 

using quasi-dependent sequences of random variables (Kery, 2010; Lynch, 2007).  This process 
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is repeated a large number of times to approximate the parameter’s posterior distribution, or 

parameter space. 

 There are many algorithms available for searching this parameter space.  All of these 

algorithms require an initial burn-in or wupper limb-up period (Stan Development Team, 2015; 

Kery, 2010; Lynch, 2007).  This period is the initial sequence of random draws that are strongly 

influenced by initial starting values and are not representative of the posterior distribution of the 

parameter (Lynch, 2007).  The Markov Chain is considered representative of the posterior 

parameter space once the chain has converged to equilibrium (Stan Development Team, 2015). 

 The effectiveness of a MCMC algorithm is measured by its ability to quickly reach 

convergence and exhaustively explore the parameter space.  Many algorithms are inefficient in 

these respects because they can rely heavily on initial starting values and incoherently search 

parameter space (Stan Development Team, 2015).  Hamiltonian Monte Carlo sampling, 

however, is both coherent and efficient (Stan Development Team, 2015).  This method is based 

on modeling the behavior of particles using the properties of physical system (Hamiltonian) 

dynamics (Stan Development Team, 2015; Neal, 2011).  This system state consists of the 

position of the particle, q, and the momentum of the particle, p (Neal, 2011).  The position and 

momentum of the particle are described by its potential and kinetic energy, respectively (Neal, 

2011).  These energy forms are inversely related.  As this particle moves across a surface, its 

potential and kinetic energy change with the slope of the surface.   

 Hamiltonian dynamics are extended to searching parameter space by interpreting the 

parameter 𝜃 as the position of a fictional particle at a point in time, with a potential energy 
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defined by the negative log of the probability density of 𝜃 and a stochastic momentum variable 

(Stan Development Team, 2015; Neal, 2011).  Several properties of Hamiltonian dynamics make 

it ideal for searching parameter space (Neal, 2011).  The first property is reversibility, allowing 

for reversals of the Markov chain, which promotes thorough exploration of parameter space.  

Second, is conservation, which along with reversibility, helps insure the target distribution is 

approximately invariant (Neal, 2011).  The last property is volume preservation of the parameter 

space.  This property simplifies the calculation of the acceptance probability for Metropolis 

updates (Neal, 2011). 

 Stated simply, Hamiltonian MCMC is an efficient and effective way of exploring 

parameter space.  This method allows for the explicit modeling of uncertainty in parameter 

estimates, including the dependent variable.  Thus, instead of a point estimate for the expected 

bone value, Hamiltonian MCMC provides a range of values for estimated bone value.  These 

values are weighted by their relative simulated frequency. 

 The Hamiltonian MCMC sampler STAN implemented with the package “rstan” (Stan 

Development Team, 2015) in R was used to simulate y-values.  Specifically, each variable was 

modeled using 1000 iterations across four chains with three simulated y-values per iteration.  

The package “shinyStan” (Stan Development Team, 2015) was used in R to periodically assess 

model diagnostics to confirm proper mixing and Markov chain convergence.  The default in 

STAN is to treat the first half of iterations as the wupper limb up period (Stan Development 

Team, 2015).  Thus, for each commingled assemblage 6000 y-values were simulated for each 
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predictive variable.  Further treatment is required to transform these values into a probability 

density function to assess the relative probabilities of each possible match. 

2.1.6. Model diagnostics 

 Convergence of the MCMC simulations is required for the simulated y-values to be a 

good predictive representation (Stan Development Team, 2015).  Visual inspection of 

autocorrelation and chain mixture and metrics, including r-hat and effective sample size values, 

are methods for assessing model convergence.  Autocorrelation plots should look like an inverse 

exponential curve in histogram form, where autocorrelation is high initially and drops off 

quickly.  Chain mixture plots should show no discernable pattern, where each chain moves 

around parameter space without getting “stuck” in a particular area.  An r-hat value is an 

estimate of convergence based on mean and standard deviation estimated from each chain (Stan 

Development Team, 2015).  Chains have properly converged with r-hat values between 1.0-1.2; 

the closer to 1.0, the better the convergence.  Effective sample size (effective n) is an estimate of 

the information available from each simulation; the closer the effective sample size is to the 

number of simulations, the better the chain convergence. 

 Given the number of commingled assemblages simulated in this study (n=40,000) and at 

least six variables for each simulation, assessment of model diagnostics for each variable in each 

simulation would be impractical.  Instead, model diagnostics are assessed periodically and over 

all accuracy is used as a means for identifying unwieldly models.  The example presented in the 

Chapter 7 provides a step-by-step analysis of a commingled simulation, including all model 

diagnostics. 
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2.1.7. Kernel density estimation 

 Kernel density estimation is a means of estimating a probability density function based 

on the frequency of sample values (Duong, 2007; Simonoff, 1996).  This family of techniques 

fits a continuous line to the shape of the data with a kernel and bandwidth (Simonoff, 1996).  The 

kernel is a non-negative function centered on zero that integrates to one (Duong, 2007).  The 

bandwidth is a free parameter that determines the width of the data range on which the kernel 

function is fit (Park and Marron, 1990).  A small bandwidth for the data results in an under-

smoothed density estimate, containing spurious data artifacts and is essentially “connecting the 

dots” between data points.  An overly wide bandwidth results in an over-smoothed density and 

obscures the underlying structure of these data.  The function density( ) in the package “stats” (R 

Core Team, 2015) was used in R to fit a kernel density to the simulated y-values.  The bandwidth 

used in this study is approaches an optimal solution for the density estimate by selecting a 

bandwidth that is the standard deviation of the kernel function (R Core Team, 2015). 

2.1.8. Estimating best matches 

 The result of this analysis is a probability density function of y-values for a given x-value 

for each predictive variable on which the values for the 10 possible matches can be evaluated.  

The function approx( ) in the package “stats” (R Core Team, 2015) was used in R to evaluate 

densities for each possible match.  These densities are used in four different ways to estimate the 

best match for each commingled assemblage; two overall best match estimates, one only 

considering size information, and one only considering shape information.  In the first overall 

best match estimate, each possibility is weighted by its density estimate for each variable.  This 

calculation takes the form of: 
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𝑃𝑟𝑖 =
Σ(𝑑𝑖1…𝑛)

Σ(𝑑𝑡𝑜𝑡1…𝑛)
 (6.7) 

where  𝑃𝑟𝑖 is the match probability for the ith possible match, 𝑑𝑖𝑛 is the density estimate of the ith 

possible match for the nth predictive variable and 𝑑𝑡𝑜𝑡𝑛 is the density estimate of all possible 

matches for the nth predictive variable.  Calculating match probability in this way does not weigh 

each predictive variable equally.  Predictive variables that have high correlations between x-and 

y-values will result in tightly dispersed simulated y-values, because uncertainty in its prediction 

is low (Figure 6.5).  Conversely, predictive variable that have low correlations also have high 

uncertainty in y-value predictions, leading to widely dispersed y-values (Figure 6.5). This 

relationship between predictive ability of a variable and the standard error of simulated y-values 

affects the resulting density estimates (Figure 6.6).  With this calculation of match probability, 

predictive variables with higher correlations will lead to higher density estimates and larger 

relative contributions to the overall match probability.  However, these larger relative 

contributions may swamp the contribution of other, lower correlated variables, leading to 

spurious classifications if the best match from predictive variables with high correlations is not 

the correct match. 

 The second calculation of overall match probability weights all predictive variables 

equally.  This calculation takes the form of: 

𝑃𝑟𝑖 = (
𝑑𝑖1

𝑑𝑡𝑜𝑡1
+

𝑑𝑖2

𝑑𝑡𝑜𝑡2
+ ⋯

𝑑𝑖𝑛

𝑑𝑡𝑜𝑡𝑛
)/𝑛   (6.8) 

where the notation is the same as formula 13.  Here, densities are normalized into probabilities 
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Figure 6.5.  Relationship between predictive ability of a variable and the distribution of 

simulated y-values, or the standard error around the mean estimate.  Each sample is 100,000 

random draws from a normal distribution with a mean of 0 and different standard d eviations.  

The blue sample (low) has a standard deviation of 1 and the pink sample (high) has a standard 

deviation of 3. 

  



 

107 

 

 

Figure 6.6.  The density distributions of the samples in Figure 19.  A high standard error in the 

estimation of y results in low density estimates, especially for the mean predicted y-value.  

Conversely, a low standard error results in high density estimates for values around the mean. 
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for each variable.  The overall match probability is the sum of these probabilities divided by the 

number of variables. 

 The match probability considering size information is based on centroid size.  This size 

match probability takes the form of: 

𝑃𝑟𝑖 =
𝑑𝑖𝑠𝑖𝑧𝑒

𝑑𝑡𝑜𝑡𝑠𝑖𝑧𝑒
  (6.9) 

where  𝑃𝑟𝑖 is the size match probability for the ith possible match, 𝑑𝑖𝑠𝑖𝑧𝑒 is the density estimate of 

the ith possible match for centroid size and 𝑑𝑡𝑜𝑡𝑠𝑖𝑧𝑒 is the density estimate of all possible matches 

for centroid size. 

 The match probability considering shape information is based on the PLS components.  

This shape match probability takes the form of: 

𝑃𝑟𝑖 =
(

𝑑𝑖𝑝𝑙𝑠.1

𝑑𝑡𝑜𝑡𝑝𝑙𝑠.1
+

𝑑𝑖𝑝𝑙𝑠.2

𝑑𝑡𝑜𝑡𝑝𝑙𝑠.2
+⋯

𝑑𝑖𝑝𝑙𝑠.𝑛

𝑑𝑡𝑜𝑡𝑝𝑙𝑠.𝑛
)

𝑝𝑙𝑠.𝑛
 (6.10) 

where  𝑃𝑟𝑖 is the shape match probability for the ith possible match, 𝑑𝑖𝑝𝑙𝑠.𝑛 is the density estimate 

of the ith possible match for the nth PLS component and 𝑑𝑡𝑜𝑡𝑝𝑙𝑠.𝑛 is the density estimate of all 

possible matches for the nth PLS component.  

2.1.9. Accuracy 

 Accuracy is defined as the number of times the best match is the correct match divided by 

the number of simulations.  For each comparison, commingled assemblages are simulated and 

the best match is predicted 1000 times.  This number of simulations should adequately account 

for sampling error in assessing osteometric reassociation accuracy. 


