8-1976

A Zooarchaeological Analysis of Vertebrate Remains From Chota-Tanasi, A Historic Cherokee Village in East Tennessee

Arthur E. Bogan
University of Tennessee - Knoxville

Recommended Citation

https://trace.tennessee.edu/utk_gradthes/3536
To the Graduate Council:

I am submitting herewith a thesis written by Arthur E. Bogan entitled "A Zooarchaeological Analysis of Vertebrate Remains From Chota-Tanasi, A Historic Cherokee Village in East Tennessee." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology.

Paul W. Parmalee, Major Professor

We have read this thesis and recommend its acceptance:

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)
To the Graduate Council:

I am submitting herewith a thesis written by Arthur E. Bogan entitled "A Zooarchaeological Analysis of Vertebrate Remains from Chota-Tanasi, a Historic Cherokee Village in East Tennessee." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Arts, with a major in Anthropology.

Paul W. Parmalee, Major Professor

We have read this thesis and recommend its acceptance:

[Signatures]

Accepted for the Council:

[Signature]

Vice Chancellor
Graduate Studies and Research
A ZOOARCHAEOLOGICAL ANALYSIS
OF VERTEBRATE REMAINS FROM CHOTA-TANASI,
A HISTORIC CHEROKEE VILLAGE IN EAST TENNESSEE

A Thesis
Presented for the
Master of Arts
Degree
The University of Tennessee, Knoxville

Arthur E. Bogan
August 1976
ACKNOWLEDGMENTS

I would like to acknowledge the assistance and encouragement from many people. Dr. Alfred Guthe, Director, McClung Museum, University of Tennessee, made faunal materials and excavation records from Chota-Tanasi available to me for study. The National Park Service, Tennessee Valley Authority and the Cherokee Historical Association financed the Chota excavations from 1969 to 1974. I wish to express my gratitude for the continuing assistance, guidance, and encouragement of Drs. Paul W. Parmalee, Gerald Schroedl, and David A. Etnier, and especially to Dr. Parmalee for assistance with bone identification problems. I would like to express my appreciation to Dr. John Rehder, Department of Geography, University of Tennessee, for his contribution of the ERTS-1 Band 7 negative print of the East Tennessee Association. Thanks are also due to Dr. William M. Bass, Head, Department of Anthropology, University of Tennessee, for assistance with identification of human skeletal fragments. I want to express appreciation to Victor Hood for the photography and George Fielder, Jr., for ideas and encouragement. The U.S. Department of Agriculture, Soil Survey Office, Madisonville, Tennessee, is thanked for allowing me access to the unpublished soil survey of Monroe County. I would like to thank Mrs. Laura King for her informative comments on the role of animals in Cherokee culture. Mrs. Dottie Fielder is acknowledged for typing the manuscript and continued patience during the editing of the paper. Mrs. Terry Faulkner is sincerely thanked for drafting the figures. Special appreciation is extended to Cindy Busse for editorial assistance.
ABSTRACT

This study involves the examination and analysis of a faunal sample from the historic Overhill Cherokee village of Chota-Tanasi (40MR2-40MR62), Monroe County, Tennessee. A total of 33,385 pieces of bone was examined in an effort to determine which animals were utilized by the Cherokee and the probable importance of each species in the Cherokee diet. Analyses of this material showed that deer, bear, and turkey were the most important animals contributing to the meat diet. Ethnographic and historic sources suggest that the introduction of trade guns may have led to increased exploitation of the bear. Available data indicate that bison and elk were rarely included in the Cherokee diet. Although larger mammals provided the bulk of the meat utilized, fish, amphibians, reptiles, and birds were important supplemental sources.

The introduction of European domestic stock and how it may have altered or replaced the use of native species were also investigated. Domestic animal bones from the site include horse, pig, chicken, and probably cow. Since very few bones of these animals were found, domestic species may have only been infrequently used by the Cherokee. The Chota faunal sample thus failed to show extensive use of domestic animals in the middle and late eighteenth century; this is in contrast to historically documented evidence. Animals represented in the faunal sample also were evaluated in terms of their cultural role in the Cherokee belief system, which includes myths, sacred formulas, magic, remedies, and cures.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. GENERAL SETTING</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Physiography of East Tennessee</td>
<td>5</td>
</tr>
<tr>
<td>Pleistocene History of East Tennessee and the Blue Ridge Province</td>
<td>8</td>
</tr>
<tr>
<td>General Ecology</td>
<td>9</td>
</tr>
<tr>
<td>II. BACKGROUND AND HISTORY</td>
<td>17</td>
</tr>
<tr>
<td>History of Chota-Tanasi</td>
<td>17</td>
</tr>
<tr>
<td>History of Archaeological Excavations at Chota-Tanasi</td>
<td>18</td>
</tr>
<tr>
<td>Previous Faunal Studies in the Area</td>
<td>24</td>
</tr>
<tr>
<td>Methodology</td>
<td>25</td>
</tr>
<tr>
<td>Minimum Number of Individuals</td>
<td>29</td>
</tr>
<tr>
<td>III. THE ROLE OF ANIMALS IN CHEROKEE CULTURE</td>
<td>32</td>
</tr>
<tr>
<td>Yearly Schedule of Activities</td>
<td>40</td>
</tr>
<tr>
<td>Hunting</td>
<td>43</td>
</tr>
<tr>
<td>Fishing</td>
<td>45</td>
</tr>
<tr>
<td>IV. ANIMALS IDENTIFIED FROM THE FAUNAL SAMPLE: ACCOUNTS OF SPECIES</td>
<td>48</td>
</tr>
<tr>
<td>Fish</td>
<td>66</td>
</tr>
<tr>
<td>Amphibians</td>
<td>71</td>
</tr>
<tr>
<td>Reptiles</td>
<td>72</td>
</tr>
<tr>
<td>Birds</td>
<td>75</td>
</tr>
<tr>
<td>Mammals</td>
<td>77</td>
</tr>
<tr>
<td>V. DISCUSSION</td>
<td>98</td>
</tr>
<tr>
<td>Butchering Patterns</td>
<td>93</td>
</tr>
<tr>
<td>Pathology and Anomaly</td>
<td>105</td>
</tr>
<tr>
<td>Bone Tools and Artifacts</td>
<td>109</td>
</tr>
<tr>
<td>Acculturation</td>
<td>116</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>123</td>
</tr>
<tr>
<td>Recommendations for Future Research</td>
<td>124</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>REFERENCES CITED</td>
<td>127</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>138</td>
</tr>
<tr>
<td>VITA</td>
<td>156</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Excavations at Chota-Tanasi</td>
<td>23</td>
</tr>
<tr>
<td>II. Tabulation of Animals Utilized in Cherokee Diet, Subsistence, and Decoration</td>
<td>35</td>
</tr>
<tr>
<td>III. Animals Mentioned in Relation to Cherokee Dances</td>
<td>37</td>
</tr>
<tr>
<td>IV. Animals Recorded in Cherokee Myths and Legends</td>
<td>38</td>
</tr>
<tr>
<td>V. Animals Associated with Cherokee Disease and Medicine</td>
<td>41</td>
</tr>
<tr>
<td>VI. Total Bone Pieces Arranged by Class of Vertebrates</td>
<td>49</td>
</tr>
<tr>
<td>VII. Tabulation of Data Based on Vertebrate Remains from Chota-Tanasi</td>
<td>50</td>
</tr>
<tr>
<td>VIII. Archaeological Distribution of Bones from 40MR2</td>
<td>58</td>
</tr>
<tr>
<td>IX. Distribution of Bone from 40MR62 by Excavation Unit</td>
<td>67</td>
</tr>
<tr>
<td>X. Age Distribution of Deer Based on Mandibles from Chota-Tanasi</td>
<td>84</td>
</tr>
<tr>
<td>XI. Measurements of Elements of Two Chota Dogs Compared with Those of Mississippian Dogs Presented by Haag (1946)</td>
<td>91</td>
</tr>
<tr>
<td>XII. Position of Butchering Cuts on Deer Astragali from Chota</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ERTS-I Band 7 negative print (No. 1354-15431-7) of East Tennessee Association showing the location of Chota and the major physiographic provinces</td>
<td>2</td>
</tr>
<tr>
<td>2. Location of historic Cherokee villages and Euro-American military posts, Little Tennessee River Valley</td>
<td>3</td>
</tr>
<tr>
<td>3. Topographic map of the river terrace on which Chota is located</td>
<td>7</td>
</tr>
<tr>
<td>4. Location of archaeological excavations at Chota-Tanasi</td>
<td>20</td>
</tr>
<tr>
<td>5. Dog burial 1, Feature 112, Chota (4OMR2)</td>
<td>90</td>
</tr>
<tr>
<td>6. Dog burial 2, Feature 170, Chota (4OMR2)</td>
<td>90</td>
</tr>
<tr>
<td>7. Butchering cuts (white-tailed deer). A. Left calcaneum with butchering cuts across the proximal lateral edge. B. Frontal illustrating the removal of antlers by cutting with a steel tool. C. First phalanges with several deep cut marks (skinning cuts?). D. Proximal left ulna with the head removed by a steel tool, with a cut across the shaft. E. Atlas vertebra showing butchering cuts across the anterior ventral margin</td>
<td>101</td>
</tr>
<tr>
<td>8. A. Distal right bear humerus exhibiting an entepicondylar foramen. B. Right mandible of white-tailed deer showing a missing second premolar with reabsorbed alveolus. C. Mandible of white-tailed deer with a missing first premolar</td>
<td>107</td>
</tr>
<tr>
<td>9. A. Burned bear metapodial showing excess bone growth possibly resulting from an old trauma, as well as tooth marks. B. Cow/bison lower left tooth exhibiting hypercementosis. C. Proximal right chicken tibiotarsus, broken and fused in altered position. D. Right chicken tibiotarsus with extra bone spur and bowing of the shaft</td>
<td>108</td>
</tr>
<tr>
<td>10. A-C. Small antler "drifts" or pins. D. Antler beam cut and modified as handle for iron tool. E. Modified antler tine. F. Modified antler tine with portion of the beam still attached</td>
<td>110</td>
</tr>
</tbody>
</table>
11. A section of white-tailed deer antler which had been sectioned in half in a curving manner 112

13. A. Bone tube fragment with notched decoration (40MR62). B. Bone tube fragment with two types of notching (1939 excavations). C. Bone tube fragment (left humerus shaft, cf. white-tailed deer, 40MR62). D. Bone tube fragment (1939 excavations) burned and highly polished. E. Awl manufactured from right ulna of white-tailed deer 114
CHAPTER I

GENERAL SETTING

Introduction

The importance of Chota-Tanasi in the development and influence of the Overhill Cherokee culture in East Tennessee is well known and amply documented (Cockran 1962). The former town of Chota-Tanasi, now recorded as archaeological site 4OMR2-4OMR62, is located in the bottoms along the east bank of the Little Tennessee River, Monroe County, Tennessee (Figure 1). Available historical evidence indicates that Tanasi was established prior to 1725 and that sometime around 1740 it was replaced by Chota, which was occupied until approximately 1799 (Lewis and Kneberg 1946:17; Williams 1928:473, 497). In 1760, Chota consisted of at least 52 houses and was the center for Cherokee political and diplomatic relations in East Tennessee. However, by 1799 the influence of the Cherokee in East Tennessee had diminished considerably, and Chota had dwindled to a small settlement of about five houses (Williams 1928:473, 497). While Chota was occupied, the Overhill Cherokee established extensive economic and political relationships with the British, Americans, and to a lesser degree the Spanish and French; all competed for political and military favors from the Cherokee.

The British established Colonial Fort Loudoun in 1756, barely 10 miles from Chota-Tanasi, and the Americans built the Tellico Blockhouse in the same vicinity in 1794 (Figure 2). Both forts were
Figure 1. ERTS-I Band 7 negative print (No. 1354-15431-7) of East Tennessee Association showing the location of Chota and the major physiographic provinces.
Figure 2. Location of historic Cherokee villages and Euro-American military posts, Little Tennessee River Valley.
established in direct response to the political and military influence which the Cherokee exercised in East Tennessee, particularly in the Little Tennessee River Valley. In addition, the Cherokee maintained communication and trade networks throughout present-day North and South Carolina. Consequently, both the British and Americans played important influencing roles in Cherokee culture change. Due to intensive interaction with the Europeans and Americans, numerous articles of Euro-american manufacture as well as domestic animals became available to the Cherokees. The abundance of these items recovered from archaeological excavations conducted at the site suggests that Euroamerican culture must have had a considerable influence on the Cherokee.

Chota-Tanasi is not only important because of the former size of the town, its political influence, and short period of occupation, but also because of its geographic location in the Ridge and Valley Province between two major physiographic provinces--the Appalachian Plateau and the Blue Ridge Province. This prime position made the exploitation of three major physiographic provinces and their ecosystems possible (Figure 1). These provinces are the Cumberland Plateau, Ridge and Valley, and the Blue Ridge.

One of the primary goals of the Tellico Archaeological Project has been the investigation of the Cherokee acculturation in East Tennessee. The introduction of firearms, agricultural implements, and domestic animals unquestionably influenced Cherokee subsistence patterns. Cherokee subsistence was based largely on corn agriculture supplemented with wild plant foods, while locally available animals formed the meat portion of the diet. Despite six years of excavations
at Chota-Tanasi, no studies of Cherokee subsistence had been initiated. These excavations have produced ample faunal materials for examination which could provide evidence for the contribution the various animals made to Cherokee diet.

This study presents a detailed analysis of the faunal remains recovered from the archaeological excavations conducted at Chota-Tanasi from 1969 to 1973. The analysis is intended to examine the following aspects of Cherokee subsistence at Chota-Tanasi:

1. Identify and evaluate the fauna utilized by the Overhill Cherokee at Chota-Tanasi (40MR2-40MR62).
2. Determine the frequency of species occurrence and possibly the time of year when different species were utilized.
3. Investigate Overhill Cherokee butchering techniques and the influence of Euroamerican technology on these activities.
4. Define the role that domestic animals played in Overhill Cherokee subsistence and how their introduction might have changed the degree to which native species were utilized.
5. Develop a comparative base for subsequent investigations of Overhill Cherokee subsistence activities in the Little Tennessee River Valley.
6. Provide data furthering the understanding of the history and distribution of native fauna in East Tennessee.

Physiography of East Tennessee

The center of activities for the Overhill Cherokee was the Southern Appalachians, mainly east of the Appalachian Plateau.
Chota-Tanasi is located in East Tennessee near the eastern margin of the geomorphological Ridge and Valley Province, or in what is known as the folded and thrust-faulted Appalachian Mountain Province (Eardley 1962: 93-95). The elevation of Chota-Tanasi ranges between 800 and 840 feet above sea level and the site is located on the first and second river terrace, along the east bank of Bacon Bend in the Little Tennessee River Valley, Monroe County (Figure 3). The site location permitted the Cherokee to exploit the fauna and flora of the Great Valley, the Cumberland Plateau, and the closely associated southern Blue Ridge Province (Figure 1).

The Ridge and Valley Province is an area of alternating parallel ridges and valleys with 1000 to 2500 feet of local relief. This is an assemblage of valley floors surmounted by long, narrow, even-topped mountain ridges, with either the valley floors or the ridges predominating (Eardley 1962:93-95; Fenneman 1938:195-197). The physical character of the area is intimately related to the activities of the local streams (Eardley 1962:91-100; Fenneman 1938:195-275). The Ridge and Valley Province is composed of folded, faulted, and metamorphosed Paleozoic sediments and is approximately 40 miles wide at Knoxville, Tennessee (Thornbury 1965:109-127). The Province is bounded on the west by the Cumberland Plateau and Cumberland Mountains and on the east by the southern Blue Ridge Province (Figure 2).

The Blue Ridge Province is composed of folded and faulted Cambrian and Precambrian metamorphic and igneous rocks (Eardley 1962: 91-95; Thornbury 1965:100-105). The Blue Ridge Province reaches its widest point in the southern sector, a maximum of 70 miles. Two
Figure 3. Topographic map of the river terrace on which Chota is located.
distinguishing characteristics of this area are balds and coves. Coves are "rather smooth-floored, somewhat oval shaped valleys, that rarely exceed ten square miles in area" (Thornbury 1965:103-104). Fenneman (1938:175) notes that the floors of the coves range from 1200 to 1800 feet above sea level. Balds are domelike mountain tops which have grassy summits rather than a tree cover (Fenneman 1938:175; Thornbury 1965:104). It is in the area of greatest width that the Blue Ridge Province also reaches its maximum height. "There are said to be 46 peaks and 41 miles of divide above the level of 6000 feet; also 288 more peaks and 300 more miles of divide above 5000 feet" (Fenneman 1938:171-173).

Dunning silt loam is the main soil type on which Chota is located (Soil Conservation Service, unpublished field records). This soil type is highly acidic due to poor local drainage and the locally acidic ground and river waters. High soil acidity has directly affected the archaeological faunal sample, causing in part the general poor state of bone preservation at the site.

Pleistocene History of East Tennessee and the Blue Ridge Province

The early developmental and structural geology of the Southern Appalachian Region is well known (cf. Fenneman 1938; Thornbury 1965). In contrast, the Pleistocene geology and geomorphology of the Southern Appalachian Region is virtually unknown. Ross (1971:13) comments

The Pleistocene must have been a time of considerable drainage changes in the Appalachians where precipitation in the north caused ice advances, there doubtless were very heavy rainfalls in the southern Appalachians . . . which caused much of the excavation in width and depth of river valleys in this region at this time. It is probable that many of the drainage modifications . . . may have taken place during the Pleistocene.
There is much conjecture about what pluvial conditions might have been like in the Southeast. Most studies of Pleistocene geology done in the Appalachians involve the southern terminus of glacial advance and the adjacent areas affected by periglacial activities (Richards and Judson 1965). If it is permissible to extrapolate from the more northern section of the Appalachians, the southern area probably received increased precipitation with a possible extension of the boreal forest and boreal fauna into the southern areas. Increased precipitation would result, as Ross (1971) noted, in increased erosion, deposition, and, in areas of stable landscape, increased leaching and soil development.

Considering elevation and degree of soil development on the second river terrace in the Little Tennessee River Valley, the age of the terrace is probably greater than 20,000 years, approximating the last glacial advance. However, there is no firm evidence for dating the development of the terrace system in the valley.

The Pleistocene ecology of the Southern Appalachians is also only poorly known. There are some data on the origin of the fauna and its distribution (cf. Auffenber and Milstead 1965; Blair 1965; Frey 1965; Guilday 1971a; Handley 1971; Hibbard et al. 1965; Hubbard 1971; Jopson 1971; Miller 1965; Ross 1965; Selander 1965; Smith 1965), but the paleoecology of the area has only been sporadically investigated. Much research regarding the faunal and floral changes which have taken place in the Southeast over the last 100,000 years remains to be done.

General Ecology

Lt. Timberlake commented on the general nature of the land of the Cherokee when he visited among them in 1760:
The country being situated between thirty-two and thirty-four degrees north latitude, and eighty-seven degrees thirty minutes west longitude from London, as near as can be calculated, is temperate, inclining to heat during the summer-season, and so remarkably fertile, that the women alone do all the laborious tasks of agriculture, the soil requiring only a little stirring with a hoe, to produce whatever is required of it; yielding vast quantities of pease [sic.], beans, potatoes, cabbages, Indian corn, pumpions [sic.], melons, and tobacco, not to mention a number of other vegetables imported from Europe. . . .

The meadows or savannahs produce excellent grass; being watered by abundance of fine rivers, and brooks well stored with fish, otters and beavers. . . .

North America, being one continual forest, admits of no scarcity of timber for every use: there are oaks of several sorts, birch, ash, pines, and a number of other trees. . . . The woods likewise abound with fruits and flowers, to which the Indians pay little regard. Of the fruits there are some of an excellent flavor, particularly several sorts of grapes. . . . There are likewise plumbs [sic.], cherries, and berries of several kinds . . . but their peaches and pears grow only by culture: add to these several kinds of roots, and medicinal plants. . . . There are likewise an incredible number of buffaloes, bears, deer, panthers, wolves, foxes, racoons [sic.], and opossums. . . . There are a vast number of lesser sort of game, such as rabbits, squirrels of several sorts, and many other animals, beside turkeys, geese, ducks of several kinds, partridges, pheasants, and an infinity of other birds, pursued only by the children. . . .

There are likewise a great number of reptiles, particularly the copper-snake . . . and the rattle-snake. . . .

Of insects, the flying stag is almost the only one worthy of notice . . . (Williams 1948:68-72).

The lush environment described by Lt. Timberlake (Williams 1948:68-72) and others during the early part of the eighteenth century cannot be compared with the reduced biota of the same area today. Therefore, the reduced modern regional ecology cannot be used to reconstruct the past ecology of the Little Tennessee River Valley. Lumbering, agricultural activities, and the construction of dams on the river have created an entirely different ecosystem.

The climate of the Little Tennessee River Valley is temperate: average January temperature, 39.9°F; average July temperature, 78.9°F;
maximum recorded temperature, 108°F; minimum recorded temperature, -5°F (TVA 1972:11-1-3). Precipitation varies throughout the region but averages about 59 inches per year (TVA 1972:11-1-7).

The general area of East Tennessee was placed in the Carolinian Biotic Province by Dice (1943:map, 16-18). Although this work provides a means of examining the fauna/flora/climate relations of different areas of North America, it is, because of its intended general scope, insufficiently detailed to cover adequately the small area under consideration here. The local plant distribution must be known in order to understand the total ecology of the area. The ideal situation would be to consider the plant associations and plant communities; such studies, however, are unavailable. Another source considered was Kuchler's (1964) study of the potential natural vegetation of the U.S.; however, this study is also too general and deals only with the potential vegetation. Kuchler characterizes East Tennessee as an oak forest, resulting from the loss of the American chestnut due to the chestnut blight. This makes his floral complex inadequate for the purposes of this study, because the chestnut was extant when Chota was occupied in the eighteenth century. The work of Shelford (1963) and Braun (1950) both treat forest types or plant communities on a smaller geographic scale than either Dice or Kuchler. Therefore, it was felt that the classifications of Braun (1950) and Shelford (1963) were the most applicable for this area.

The area of East Tennessee has been divided into three physiographic areas--the Cumberland Plateau, the Ridge and Valley Province, and the Southern Blue Ridge Province. The Cumberland Plateau
aboriginally supported a forest described either as a mixed mesophytic forest (Braun 1950:35) or an oak-chestnut locale in a mixed mesic forest (Shelford 1963:18). The Ridge and Valley and the Southern Blue Ridge provinces can be generally grouped within the oak-chestnut forest (Braun 1950:35-36) or the oak-deer-chestnut faciation (Shelford 1963:18-19).

The two areas within which the early historic Cherokee lived were the Blue Ridge and the Ridge and Valley provinces. A more detailed picture of the plant community distributions in these areas will be attempted since these plant communities are directly related to Cherokee subsistence activities. The locations of plant resources dictated various activities such as root gathering, nut collecting, other plant-resource utilization, and some hunting.

The Ridge and Valley and the Blue Ridge provinces were originally covered by the oak-chestnut community. The chestnut formed a significant portion of the plant community, followed by the tulip tree which gave way to oak at higher elevations. On optimal sites (northerly aspect or moist areas), these trees formed a dense forest (Braun 1950:197-198). This forest was only interrupted by the cove-hardwood communities. Cove-hardwood communities are mixed mesophytic forests limited to coves, lower north slopes, stream bottoms, and ravines, grading into surrounding communities laterally and vertically. The species composition of this forest varies with elevation and topography; it is composed of 25 to 30 species of trees with some of the dominants being basswood, sweet buckeye, and sugar maple.
The oak-chestnut forest ranged from approximately 1300 feet above sea level to about 5000 feet on south facing slopes, while on northerly slopes it gave way to the northern hardwood forest at about 4500 feet. This forest in turn graded into a spruce-fir forest at higher elevations. The transition in cove areas was more gradual, with spruce appearing as low as 4500 feet (Braun 1950:206).

The northern hardwood forest is characterized by sugar maple, yellow birch, beech, and buckeye. At higher elevations trees show dwarfing and the forest becomes more open, although this varies in relation to the physiographic position and available moisture (Braun 1950:206-209). The northern hardwood forest gives way to the spruce-fir forest at higher elevations. Spruce may appear as low as 4500 feet, much lower than the entrance of the Fraser fir. The red spruce forest occurs on the higher summits and northerly slopes generally above 6000 feet (Braun 1950:210-212). Another feature of the higher elevations and mountain summits are the "balds." These are treeless areas and may be either grassy or heath balds. The grassy balds are covered mostly by grasses, herbaceous plants, and ferns, while the heath balds are often covered with dense stands of shrubs such as various species of rhododendron. The forest edges surrounding these balds are more or less dwarfed and twisted (Braun 1950:212-213).

Deer and elk were the largest herbivores of the oak-chestnut forest and were more abundant at the higher elevations. The woodland bison was a late arrival, migrating eastward across the Mississippi River sometime after A.D. 1500 (Rostlund 1960:405). The animal communities vary with elevation, and the species intergrade from the valley
floors to the highest regions. The vertebrates having a generalized
distribution are listed in Appendix. Some of the animals such as the
five-lined skink and the green anole reach their elevational limits in
the oak-chestnut forest. The birds commonly recorded in the former oak-
chestnut forest are still present, but in somewhat diminished numbers
(Shelford 1963:40-42).

There are approximately 480 species of vertebrates found in
East Tennessee and the Great Smoky Mountains National Park (see Appen-
dix). Of this total, eighteen species have been introduced while at
least seven have been extirpated; two species have become extinct. The
mammals are represented by 72 species. The introduced species, became
established soon after initial European settlement of North America and
include such animals as the horse, cow, pig, and dog. The domestic
dog was, however, here when the Europeans arrived, having been intro-
duced from Asia at a much earlier date by the Indian. Among the mammals,
the cougar, wolf, fisher, river otter, elk, bison, and porcupine have
been extirpated in East Tennessee. The porcupine appears to have been
extirpated sometime before European contact, since there are no historic
references to it and no remains of porcupine have been encountered in
archaeological sites in East Tennessee.

The native bird population is least altered in terms of number
of introduced species. There are only three species which have been
introduced--the English sparrow, domestic pigeon, and starling. Three
species have been extirpated and two of the species, the passenger
pigeon and the Carolina parakeet, are now extinct. The total number
of species of birds present in the area is estimated at 247. However,
this figure does not remain constant due to the fact that many birds occur as only rare or accidental visitors.

There are 39 species of reptiles represented in East Tennessee—10 species of turtles, 7 lizards, and 22 species of snakes (two of which are poisonous). Two species of snakes have two subspecies each which occur in the area, thus making a total of 24 forms. At the present time none of these have been extirpated or are known to be extinct.

Thirty-nine species of amphibians are also recorded for East Tennessee. These include 25 species of salamanders, 7 frogs, and 3 species of toads. There are no known introduced amphibians.

There are 122 different species of fish in the Little Tennessee River drainage. There are seven introduced species, four of which are considered game fish, one as an insect control (Gambusia), one originally as a food fish (carp), and one as an ornamental fish (goldfish). The current status of the fish fauna is uncertain due to extensive damming operations, agricultural clearing, and present cultivation practices.

The list of animals found in the area has not substantially changed from the time of initial white contact. However, their relative numbers have been drastically altered with at least ten species now extirpated. The distribution of the animals also has changed due to urban growth, road construction, lumbering, farming, and clearing for both pasture and agriculture. These practices often limit or destroy the habitat of many vertebrates, or at least alter the habitat unfavorably. Various pollutants, including toxic chemicals, have also affected the ecological balance. Therefore, the animal ecology of
East Tennessee and the Blue Ridge provinces today is not truly indicative of animal assemblages, populations, and distribution at the time of European contact. The present distribution and species compositions should be used only as a guide in the reconstruction of the prehistoric biota of this area.

This overview of the general ecology of the Ridge and Valley Province and the Blue Ridge Province will serve to partially reconstruct the wildlife and ecology of the area and to present some idea of what the early explorers saw and with which they were so impressed. This will also provide the necessary background for discussing Cherokee subsistence activities and the role of animals in their society. The Appendix is a list of the numerous species which would have been available for use by the Cherokee in their social and economic way of life.
CHAPTER II

BACKGROUND AND HISTORY

History of Chota-Tanasi

The historic towns of Chota and Tanasi are both shown on early maps as being situated close to one another on the same bottomland. However, they are not considered the same town. Colonel Chicken's map of 1725 records Tanasi, and Hunter's map of 1730 also illustrates Tanasi but not Chota (Lewis and Kneberg 1946:17). Chota first appears on a map drawn by Mitchell and Thomas Kitchen in 1755 and on John Stuart's map of about 1756. Lt. Timberlake notes both Chota and Tanasi, with Tanasi being located south of the creek bisecting the site shown in Figure 3 (p. 7). Thus Chota apparently was established sometime between 1730 and 1755. Gleeson (1971:99) notes that demographic information gleaned from Stuart's map of 1756 and Lt. Timberlake's map of 1760 indicates that, during these four years, Chota showed a marked population increase while Tanasi showed a similar decrease in population. He further notes that when Chota and Tanasi were combined, they became comparable in population to other Cherokee towns. Gleeson (1971:99) postulated that, if the difference between Chota and Tanasi was political rather than geographic or cultural, any difference would be hard to demonstrate in the archaeological record. Gleeson (1971:99) further suggests that the difference between the two towns may have been "a shift in political allegiance, rather than a geographic difference," and that Chota developed from a hamlet, later to eclipse its mother town in size.
and influence. Following this line of thought, Schroedl (1975:12) points out that the two town-house structures excavated in Area C in 1969 were built roughly 25 years apart, based on archaeomagnetic dates. If the difference in the two towns was political, then the possibility exists that the earlier and smaller town-house represents Tanasi, while the larger town-house is that of Chota. Schroedl suggests the name change from Tanasi to Chota may have been coincident with, or was a cultural prerequisite to, the rebuilding of the town-house (1975:12). Thus the site appears to have been occupied by the same group of people but simply underwent a name change from Tanasi to Chota. Regardless, the site, located on the bottoms along the east side of Bacon Bend, was the location of a major Cherokee occupation from some period prior to 1725 until shortly after 1800.

History of Archaeological Excavations at Chota-Tanasi

The first recorded archaeological reconnaissance and excavation at Chota are those of Cyrus Thomas (1894):

As there are evidences about McGee Mound on the south side of the river, of a somewhat extensive ancient village, and the locality corresponds exactly to the site of Chote, the "metropolis" and sacred town of the Overhill Cherokees, there can be scarcely a doubt that the remains found here pertain to that town (Thomas 1894:397).

The precise location of these excavations is unknown. Gleeson (1970:50) indicates, however, that they were in the downriver area of the site, corresponding to the section which was designated as Tanasi. Nothing was noted concerning any faunal remains encountered in this excavation. Since the recovered materials were never described and due to the small
scale of the excavations, it can be stated that this excavation has contributed little to understanding the site and to the study of Cherokee subsistence.

Staff from the Department of Anthropology, University of Tennessee, Knoxville, funded and assisted by laborers from the Works Progress Administration, conducted an extensive excavation at Chota in 1939 (Figure 4). Some of the materials recovered from these excavations were analyzed by T. M. Lewis and Madeline Kneberg, but as yet their data have not been published (Gleeson 1970:50). The total faunal sample remaining from these excavations consists of seven bone and antler artifacts—not much considering the size of the excavations.

In 1967, the Department of Anthropology, University of Tennessee, Knoxville, began salvage archaeology in the proposed TVA Tellico Reservoir. This program involved a survey of the reservoir and excavation of the larger important archaeological sites. This provided an opportunity for conducting further excavations at Chota-Tanasi; work at the site was initiated in 1969.

The excavations at Chota-Tanasi began in June 1969 under the field supervision of J. W. Greene. Excavations were carried out until December in areas designated A, B, and C (Figure 4). Area A was a 100 x 100 foot square located on the first terrace; Area B was a 150-foot trench along the crest of the second terrace; and Area C was a 100 x 130 foot excavation on the highest point of the second terrace (Gleeson 1970:50). Six structures were encountered in these excavations, including two superimposed town-houses in Area C. The total area excavated during this field season was 24,000 square feet (Gleeson 1970:50-51).
Figure 4. Location of archaeological excavations at Chota-Tanasi.
Excavations at Chota-Tanasi were resumed in May 1970 and con-tinued until October of the same year. Area C was enlarged and six additional, but smaller, excavations were initiated. These included Areas D, E, F, G (an enlargement of Area B), H, J, and K (a test exca-vation of the first terrace to determine the extent of the Woodland component). These excavations uncovered five structures. The total area excavated during this field season was 21,000 square feet (Gleeson 1971:15-17).

A small excavation was carried out during the summer of 1971 under the direction of Dr. Duane King. The excavation involved a 1900-square-foot extension of the 1970 Area F. Only thirteen features were recorded and no structures were encountered.

J. W. Greene resumed excavations at the site in May 1972. However, the area of emphasis and excavation was directed south of a fence row and south of Area H; this portion of the site was assigned the name Tanasi and the site number 40MR62. This designation was purely arbitrary, and the site will hereafter be referred to as Chota. The work continued from May to October and was confined to three areas, designated A, B, and C. These areas were distinct from the areas on the portion of the site designated as Chota (40MR2). Area A was of irregular shape and covered 4700 square feet. Area B was 50 x 10 feet and was essentially barren; no features were encountered and only a small amount of material was recovered from the excavation. The third area, Area C, was 350 x 50 feet in size. At least four structures were encountered in this area. The materials recovered in the excavations at Tanasi received different catalog numbers than the materials recovered
from Chota (Table I). The total area exposed during the field season was approximately 22,300 square feet.

During the following field season, 1973, J. W. Greene returned to Chota for the fourth summer of excavations. Excavations ran from May through July and consisted of another extension of Area C (50 x 100 feet) and three test pits to the north of the main excavation. Unfortunately, the grid used for this work does not correspond to that previously used at the site, making it difficult to coordinate the spatial relationships of the different excavations. At least one structure was recorded in this excavation. This work added another 5500 square feet to the extensive area of Chota already excavated.

Finally, Dr. Gerald Schroedl undertook an extensive archaeological excavation program during the summer and early fall of 1974. This work involved mechanical stripping or removal of the plow zone from approximately 140,000 square feet surrounding the former excavations of Area C and running approximately 700 feet south of this area. The intent was to recover settlement pattern information in the neighborhood of the town-house and to view the areal relationships of features and structures. This excavation produced another large faunal sample. This present study involves only the faunal materials recovered through the 1973 excavations and the animal remains from the 1974 work are not included.

Thus, in six field seasons approximately 214,000 square feet of Chota-Tanasi have been excavated, producing a large quantity of faunal remains. Considering the probable extent of the site, however, this is indeed only a small sample of the total occupation.
TABLE I
Excavations at Chota-Tanasi

<table>
<thead>
<tr>
<th>Field Season</th>
<th>Area</th>
<th>Feature No.</th>
<th>Accession No.</th>
<th>Postholes</th>
<th>Burial No.</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1969</td>
<td>4OMR2</td>
<td>A</td>
<td>1-94</td>
<td>1-16</td>
<td>1-443</td>
<td>1-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>95-118</td>
<td>incomplete</td>
<td>444-613</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>119-190</td>
<td>incomplete</td>
<td>614-2402</td>
<td>10-17</td>
</tr>
<tr>
<td>1970</td>
<td>C</td>
<td>195a-250</td>
<td>400-470</td>
<td>2403-2523</td>
<td>18-23</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>251-285</td>
<td>472-506</td>
<td>3001-3236</td>
<td>none</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>286-287</td>
<td>507-518</td>
<td>3901-3916</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>288-319</td>
<td>519-610</td>
<td>4001-4100</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>320-344</td>
<td>611-656</td>
<td>5001-5100</td>
<td>24-26,28</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>345-378</td>
<td>657-684</td>
<td>6001-6093</td>
<td>29-31</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>379-390</td>
<td>685-711</td>
<td>none</td>
<td>32-34</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>391-398</td>
<td>712-726</td>
<td>6194-6250</td>
<td>none</td>
<td>Woodland Occupation</td>
</tr>
<tr>
<td>1971</td>
<td>F</td>
<td>399-412</td>
<td>732-788</td>
<td>6251-6252</td>
<td>35</td>
<td>none</td>
</tr>
<tr>
<td>1972</td>
<td>4OMR62</td>
<td>A</td>
<td>1-32</td>
<td>1-65</td>
<td>1-175</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>none</td>
<td>66-70</td>
<td>none</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>33-220</td>
<td>71-302</td>
<td>190-1042</td>
<td>1-20</td>
</tr>
<tr>
<td>1973</td>
<td>4OMR2</td>
<td>C</td>
<td>413-478</td>
<td>789-844</td>
<td>6253-6445</td>
<td>36-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Previous Faunal Studies in the Area

Although the University of Tennessee has had an extensive archaeological program involving the excavation and recovery of historic Cherokee cultural remains, there have been no previous studies of Cherokee subsistence. Considering the importance of the historic Cherokee and their influence in the southeastern United States, it is surprising that virtually nothing is known about the subsistence pattern of this important group. The lack of work on the subsistence base of the early historic and aboriginal peoples is not restricted to Tennessee, but is true of the Southeast in general. This is unfortunate since any study of a culture is incomplete without a detailed description of the subsistence base of that culture. Cherokee material culture and the interaction of the Cherokee with Euroamerican culture have received considerable attention, but analysis and documentation of the food habits of the Cherokee have been neglected.

Faunal studies of archaeologically derived materials from the Cherokee settlements in the Little Tennessee River Valley do not exist. The only analysis of faunal remains yet conducted in the Little Tennessee River Valley is the work done by Paul W. Parmalee on historical materials from excavations at Fort Loudoun (Parmalee 1960). Currently work is being undertaken on the faunal remains recovered from the Tellico Blockhouse, but the results of this work are not yet available.

Other examples of faunal analysis outside the Little Tennessee River Valley are limited, but are more numerous than those from the valley. Elizabeth Wing (1970) analyzed materials from sites in the Pisgah National Forest, North Carolina, which included some historic
Cherokee materials. Paul W. Parmalee (1966a, 1966b, 1968a, 1968b, 1968c, 1973) analyzed faunal remains from prehistoric sites along the Tennessee River. John Guilday (n.d.) analyzed the faunal remains from five prehistoric sites along the Cumberland River, thus providing some data from Middle Tennessee. Neil Robison (n.d.) has analyzed the animal remains from Fort Southwest Point near Kingston, Tennessee, providing additional faunal data for an early military outpost. Another recent study involves the analysis of surface collections from two Mississippian sites on Long Island on the Tennessee River in East Tennessee by Robison and Bogan (n.d.). All of the faunal studies, with the exception of Wing (1970), are either on prehistoric materials or outside East Tennessee. Wing's work dealt with a prehistoric Cherokee faunal sample, and the faunal report appears only as a short appendix. Faunal studies have been limited because, until recently, there have been few zooarchaeologists seriously working with southeastern archaeological faunas. This is not criticism of the above-cited papers, but merely illustrates the paucity of faunal studies in East Tennessee and adjacent areas which might provide comparative data usable in this study.

Methodology

An archaeological faunal sample constitutes the physical remains of animals utilized in various aspects of the culture, such as food, curing, decoration, and ceremony. Numerous physical and cultural factors affect a faunal sample before the bone refuse is considered in the archaeological sense. Bones undergo numerous changes and modifications from the time an animal is killed until its remains are excavated and
become part of an archaeological faunal sample. Numerous biases may enter into the picture: (1) culture bias, (2) preservation or environmental bias, and (3) archaeological bias. Initially, culture dictates which animals are utilized and those to be avoided—a cultural filter. Other factors including scavengers, butchering techniques, "Schlepp" effect (Daly 1969:149), age of the site, and soil acidity can affect the condition and quantity of the faunal sample which is recovered. It is at this point that another series of biases may enter the complex scene. The methods of excavation, recovery techniques, and general research strategy may further affect the sample of animal remains recovered. The final pile of whole and fragmented bones presented to the specialist for identification reflects all of the above factors. These biases need to be considered so that any potential sources of error in the data can be recognized.

The sample from Chota-Tanasi reflects many of the above-noted problems. First, comparable recovery techniques were not used throughout the excavations at the site. Archaeological recovery techniques at Chota ranged from saving only the bone artifacts to water screening all feature fill through graduated screens. Thus the available faunal sample forms a gradient from only the artifacts saved at one end to nearly total recovery at the other end. This poses obvious interpretive problems, making internal comparisons difficult and possibly skewing the sample in favor of larger species. Medium to large mammals such as deer, bear, and raccoon are well represented. Smaller mammals and representatives of the other four vertebrate classes are biased toward the larger species of the classes, while the smaller
representatives of each class are either underrepresented or not represented at all.

The physical factors influencing the faunal sample vary with each site. Some of these factors are soil conditions, the length of time bone lies exposed on the surface before burial, and boiling or burning of the bone. These all affect bone preservation. Of particular importance to bone preservation is the acidity or alkalinity of the soils in which it is deposited; high acidity is detrimental. Soils of the river terrace upon which Chota is located are highly acidic, a condition leading to the destruction of any bone deposited in the soil. Differential cooking also affects bone preservation. Bone will preserve differently, depending on whether it is burned, calcined, or boiled. This source of bias is not fully understood.

Beside these environmental and cultural biases, excavation strategy and recovery techniques also may alter the potential interpretive value of a faunal sample. Only when the archaeologist goes beyond the analysis of lithic and ceramic artifacts and views all archaeological remains of a culture as a cultural system do the faunal and botanical remains receive adequate attention. It is usually only under these conditions that any object which passed through the "cultural filter" would be considered an artifact and important. The logical end point is that the faunal sample is an artifact of human behavior, involving data concerning human behavioral patterns, former areas of activity, and dietary preferences.

However, to reach the end point of interpretation and, hopefully, insight into dietary and cultural patterns, and assuming a good
research and excavation strategy has been followed, the work on a faunal sample begins with the initial identification of the animals contained in the faunal sample. There can be no accurate interpretation or synthesis without this basic information; no grand pictures can be conjured up, and interpretations and cultural abstractions are only as good as the initial correct identifications of the faunal sample.

Among the first activities associated with the identification of faunal remains is the need to become familiar with animals which occur within the geographical area being studied (see Appendix). Listing the local vertebrate fauna facilitates exclusion of certain animals from preliminary consideration and allows a more rapid identification of the materials.

The following steps assume a ready access to a comprehensive regional comparative skeleton collection. The Chota faunal material was received from the field bagged by feature, burial fill, or plow zone. Faunal remains from each provenience were examined together. The Chota faunal materials were laid out on a table, sorted into the five vertebrate classes, and then identified. The following step was rather vague. Some feel that the element should be identified first, then the class, genus, and the species if possible. However, there are occasions when it is possible to identify the animal, but at the same time be unable to identify the bone represented. Lastly, preliminary identification may be aided with any of several illustrated osteology guides, but for checking and confirmation of the identification, there is absolutely no substitute for the comparative skeletal collection.

The method of recording the data used was to place all identifications
from a feature or accession number on one or more 5 x 8 inch file cards. The technique is a combination and modification of the methods of Parmalee and Olsen (1975, personal communication). The computation of data was done using the conventional method of minimum number of individuals, contributed meat weight by species, and the relative percentages of meat contributed by each species.

Minimum Number of Individuals

Methods for quantifying faunal remains to determine the relative importance of each species represented in a faunal sample have varied throughout the short history of zooarchaeology. Early faunal reports used only the number of fragments per species. This was later complemented by two other methods: total weight of the bones and the minimum number of individuals (MNI) (cf. Chaplin 1971:63-75). The bone weight method was never a popular technique for quantifying the faunal remains. However, calculating the minimum number of individuals, coupled with a method of determining a relative percentage of meat weight, has been widely used to quantify faunal remains (White 1952, 1953a, 1953b, 1954, 1955, 1956). This method, described and illustrated by White in 1953, became the standard technique for quantifying faunal data. Later, attempts were made to correct problems inherent in the MNI method. For example, Bokonyi (1970), Chaplin (1971), and Krantz (1968) suggest subdividing the sample (remains of each individual) into age groups and by sex to determine the minimum number of individuals. This modified method is now the most commonly used technique for quantifying faunal data. More recently, however, Dexter Perkins (1973) has proposed
another method that attempts to take into account the problem of a variable number of elements identifiable in a skeleton in each of the five vertebrate classes. His method is based on the relative frequency of all represented elements of a given species. The number of identified elements is divided by the expected value for that element in a complete skeleton, which results in a relative value for that particular species in the faunal sample. Perkins feels that this method gives "a far more accurate picture of the relative frequency of a species than the conventional methods" (Perkins 1973:369). John McArdle (1975, personal communication) also points out that Perkins' method is better than other methods of quantification, because it accounts for such things as the "Schlepp effect," experience in identification of faunal remains, and several other possible sources of bias.

Proponents of the MNI are aware of potential biases in faunal collections and have proposed additional refinements. Ziegler (1973) points out the problem of comparability of samples from different cultural horizons and different sized samples. He tries to correct this by making the quantity of soil per excavation unit equal. Patricia Lyon (1970) discusses the possible effect of domestic dogs on the faunal sample. She feels that dogs eating bones probably destroyed a large portion of smaller animal remains in a sample (Lyon 1970:214). Richard Casteel (1971) discusses the importance of this potential source of bias, but also points out the need for further research to adequately understand the problems of differential destruction.

Several people working in zooarchaeology have only lately begun to discuss the biases and assumptions involved with the use of MNI
(e.g. McArdle 1974; 1975, personal communication). Any biases which might affect a faunal sample and any measures taken to correct them should be included in a faunal report. Grayson (1973) points out the problem of overestimation of individuals in a small sample using the MNI. Using this point as a base, he examines the relationship of MNI to the sample size and tries to control the exaggerating effect of the MNI. This control would make different-sized faunal samples more comparable. Munson (1974) is also interested in the problems of sample size and its effects on interpretation of the data. He discusses the problem of the different amounts of meat per animal contributed by various taxa and the possible scavenging effects of dogs on the faunal sample. The idea is good; however, in the discussion of the amount of meat contributed, he disregards the so-called "Schlepp effect." Munson proposes the use of a correction factor which is to be applied to make samples comparable.

The method of quantification used on the Chota faunal sample is the minimum number of individuals described by Theodore White (1952, 1953a, 1953b, 1954, 1955, 1956), with some refinements suggested by Bokonyi (1970) and Chaplin (1971). Consideration of potential biases is made, but no quantification is attempted.
CHAPTER III

THE ROLE OF ANIMALS IN CHEROKEE CULTURE

Studies of the faunal remains from archaeological sites concentrate almost wholly upon the reconstruction of the role of various animals in the aboriginal diet. However, animals played a more important role in Cherokee culture than just subsistence and economy; animals permeated almost all aspects of Cherokee culture and were very important to the personal well-being of the individual. The recognition of what may constitute a diet reconstructed from a faunal sample is one thing, but this represents only one part of the cultural role in which an animal might have participated. The faunal remains from Chota-Tanasi offer a unique opportunity to compare a diet constructed from the faunal record with the ethnographic Cherokee diet. Also, these data provide an opportunity to investigate other uses to which an animal may have been put. Animals provided not only meat, blood, skin, and other basic raw materials, but also contributed their essence, spirit, or ghost to Cherokee culture. An animal such as the white-tailed deer is not simply a food resource, but it is also important in legends, sacred formulas, dreams, medicine, tools, ornaments, fetishes, rituals, and myths. The part of an animal present in different areas of Cherokee culture might not be the same; e.g., the animal could be present in dreams, while the skin and meat provided clothing and food. This serves to illustrate the holistic view which the Cherokee had of an animal. Even animals such as the vulture, which was considered unclean to eat, were used in medicine and fetishes. The ethnohistorical
literature, although limited, gives an indication of the varied roles of animals in Cherokee culture. Possibly by reviewing this data, the Chota faunal remains may be better interpreted.

The main role of animals is usually thought to be their contribution to diet. This topic is the most obvious and forms a good place to introduce the role of animals in Cherokee culture. DeBrahm noted the Cherokee habit of eating:

The Indians never eat without Inclination, and then only very little and that with much Regularity and Temperature; therefore they keep no regular time for Meal . . . (DeVorsey 1971: 106).

Timberlake also comments about the methods used to prepare meat. He notes that the Cherokee dried venison (Williams 1948:43), and also comments on their method of cooking of food: "I cannot much commend their cookery, every thing being greatly overdone." Other accounts of the Cherokee serve to illustrate the diversity enjoyed in their diet. William Bartram (Squire 1853:47) commented on the foods of the Cherokee when he visited them:

Their animal food consists chiefly of venison, bear's flesh, turkeys, hares, wild fowl and domestic poultry; and also of domestic kine as beeves, goats and swine--never horses flesh. Though they have horses in great plenty; neither do they eat the flesh of dogs, cats, or any such creatures as are usually rejected by white people.

Crane (1956:18) noted the varied diet which the Cherokee enjoyed:

Because of the bounties of nature and their own interest in Agriculture the Cherokee enjoy a fairly varied diet. Fish, wild fowl, deer, bison buffalo and hogs were barbecued, roasted, boiled or fried.

The description which Lewis and Kneberg (1955:88) present draws upon the ethnographic literature, adding several invertebrates to the menu:
Besides the cultivated plant foods and game, the Cherokee made great use of nuts, wild fruits, roots, mushrooms, fish, crawfish, bird's eggs and even yellow jacket grubs and cicadas.

The above quotations thus illustrate the variety of different vertebrate and invertebrate resources which the Cherokee used for food. This economy by definition would be a diffuse one considering the variety of animals considered as food items. However, this contrasts with the ideas of Cleland (1966:63-145), who characterizes all agriculturalists as having a focal economy which relegates hunting to only an occasional activity. The variety of animals used by the Cherokee is presented in Table II. The major food items were venison and turkey, while bison, bear, and elk were less important; most other animals only supplemented the diet. However, it should be realized that the meat or some other part of the body of a particular species might be taboo under certain conditions, varying throughout the year with the individual's station in life. Also, such animals as bats and the flying squirrel were most likely used as talismans of speed and agility, rather than food. Birds of prey probably were not eaten, but their feathers and skins served important roles in politics and rituals; for example, vulture feathers were used to ward off witches and disease. Other birds were eaten as well as being utilized for their feathers and some of their bones. Due to the respect and fear afforded snakes, it seems they were seldom eaten except possibly during particularly hard times. Box turtles may have been used as food, but their carapace and plastron were known to have been used to manufacture turtle shell rattles. Various frogs including the bullfrog appear to have been eaten, as suggested by the nickname "frog eaters" given to the Overhill Cherokee by the Lower Cherokee.
<table>
<thead>
<tr>
<th>Mammals</th>
<th>Birds</th>
<th>Reptiles</th>
<th>Amphibians</th>
<th>Fish</th>
<th>Invertebrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deer</td>
<td>Pheasant</td>
<td>Turtle</td>
<td>Frog</td>
<td>Eel</td>
<td>Mollusks</td>
</tr>
<tr>
<td>Bison</td>
<td>Eagle</td>
<td>Box turtle</td>
<td>Bullfrog</td>
<td>Hogsucker</td>
<td>Crawfish</td>
</tr>
<tr>
<td>Bear</td>
<td>Quail</td>
<td>Snakes</td>
<td>Stoneroller</td>
<td>Speckled trout</td>
<td>Cricket</td>
</tr>
<tr>
<td>Elk</td>
<td>Turkey</td>
<td>Rattlesnakes</td>
<td>Catfish</td>
<td></td>
<td>Grubs</td>
</tr>
<tr>
<td>Rabbit</td>
<td>Crane</td>
<td></td>
<td></td>
<td></td>
<td>Cicadas</td>
</tr>
<tr>
<td>Raccoon</td>
<td>Ducks</td>
<td></td>
<td></td>
<td></td>
<td>Corn worms</td>
</tr>
<tr>
<td>Squirrel</td>
<td>Geese</td>
<td></td>
<td></td>
<td></td>
<td>Yellow jacket larva</td>
</tr>
<tr>
<td>Bats</td>
<td>Passenger pigeon</td>
<td></td>
<td></td>
<td></td>
<td>Mole-cricket</td>
</tr>
<tr>
<td>Flying squirrel</td>
<td>Swan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolf</td>
<td>Vulture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otter</td>
<td>American egret</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skunk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground hog</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcupine*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Only note the use of quills (Williams 1948:65).

However, many derogatory names have nothing to do with food preferences. Eel skins are mentioned as being used by women for tying their hair (Mooney 1900:308), but the meat was not eaten (Gilbert 1943:317). According to the ethnographic literature, gar and catfish never were eaten. Various invertebrates were used but did not form a major part of the diet and at best they formed only a seasonal treat or supplement. Some animals such as the wolf, although considered unclean or taboo, might have been eaten in a ritual setting. This synopsis illustrates the variety of animals which were either eaten or the use of some portion of their body for decoration or personal adornment.

The names of most Cherokee clans, dances, medicine, disease, myths, and legends incorporate the essence, spirit, or ghost of animals. Basically the Cherokee town was divided into seven matrilineal clans. Three of these clans bear the name of an animal (wolf, deer, bird), and it is believed that the bear formerly comprised an eighth clan. Cherokee social life also reflects animal influence. Many dances (Table III) either imitated the actions of an animal or imitated the hunting or processing of the animals which were killed. The beaver and raccoon dances are examples. Many animals are directly or indirectly associated with the legends, myths, and sacred formulas of the Cherokee (Table IV). Myths offer explanations ranging from the origin of man and the earth to the methods by which animals acquired their personal traits and characteristics. The animals in myths and legends have the same characteristics as the Cherokee people—they speak, walk, and have the same social organization. The Cherokees thus viewed the organization of the animals as a mirror image of their own society. Animal actions, spirits, and ghosts
TABLE III

Animals Mentioned in Relation to Cherokee Dances

<table>
<thead>
<tr>
<th>Mammals</th>
<th>Birds</th>
<th>Reptiles</th>
<th>Invertebrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffalo</td>
<td>Chicken</td>
<td>Snake</td>
<td>Ant</td>
</tr>
<tr>
<td>Raccoon</td>
<td>Swamp gallinule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beaver</td>
<td>Eagle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bear</td>
<td>Partridge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td>Pheasant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground hog</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV

Animals Recorded in Cherokee Myths and Legends

<table>
<thead>
<tr>
<th>Mammals</th>
<th>Birds</th>
<th>Reptiles</th>
<th>Amphibians</th>
<th>Invertebrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bat</td>
<td>Robin</td>
<td>Rattlesnake</td>
<td>Green frog</td>
<td>Grubworm</td>
</tr>
<tr>
<td>Bison</td>
<td>Sparrow</td>
<td>Blacksnake</td>
<td>Bullfrog</td>
<td>Cricket</td>
</tr>
<tr>
<td>Bear</td>
<td>Screech owl</td>
<td>Green snake</td>
<td>Waterdog</td>
<td>Katydid</td>
</tr>
<tr>
<td>Deer</td>
<td>Whippoorwill</td>
<td>Box turtle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td>Turtledove</td>
<td>Softshell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elk</td>
<td>Nuthatch</td>
<td>Fence lizard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox</td>
<td>Crow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flying squirrel</td>
<td>Raven</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground hog</td>
<td>Quail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray squirrel</td>
<td>Mockingbird</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink</td>
<td>Tufted titmouse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mole</td>
<td>Chickadee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opossum</td>
<td>Goose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otter</td>
<td>Meadowlark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Eagle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raccoon</td>
<td>Buzzard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wildcat</td>
<td>Hawk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolf</td>
<td>Kingfisher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redbird</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hummingbird</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barred owl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peacock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bobwhite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow-bellied sapsucker</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE IV--(Continued)

not only play an important role in the mythology of the Cherokee, but were basic to their concept of disease and medicine (Table V). The animal spirits all have various colors which are connected with the cause and cure of disease. The different-colored spirits of each animal can either cause particular ailments or can be used to cure them. These images of different-colored animals also are important in dreams and their interpretations.

This short overview illustrates the varied and complex roles which the anatomical parts of animals and their essence played in Cherokee culture. Animals were not merely a food source, but an integral part of the functioning of Cherokee society. Thus the animal residue comprising a faunal sample is not just the result of a series of meals, but may represent a very complex interaction of a cultural group with the environment. Interpretation of a faunal sample is then charged with a series of cultural implications and meanings that involve more than subsistence resources and the patterns of their utilization. These cultural implications must be considered when interpreting the species identified from Chota-Tanasi.

Yearly Schedule of Activities

The subsistence pattern of the Cherokee was one of mixed hunting, fishing, gathering, and agriculture, with agriculture forming the main pillar of the economy (Fogelson and Kutsch 1961:93-94). The supplementary role of hunting and fishing was intimately associated with the yearly cycle and six major feasts. Hunting and fishing activities also were scheduled to take advantage of seasonal species abundance.
TABLE V
Animals Associated with Cherokee Disease and Medicine

<table>
<thead>
<tr>
<th>Mammals</th>
<th>Birds</th>
<th>Reptiles</th>
<th>Amphibians</th>
<th>Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaver</td>
<td>Eagle</td>
<td>Water snake</td>
<td>Frog</td>
<td>Catfish</td>
</tr>
<tr>
<td>Deer</td>
<td>Bittern</td>
<td>Lizard</td>
<td></td>
<td>Fish</td>
</tr>
<tr>
<td>Dog</td>
<td>Buzzard</td>
<td>Snake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse</td>
<td>Chat</td>
<td>Terrapin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox</td>
<td>Fishhawk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opossum</td>
<td>Goldfinch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otter</td>
<td>Kingfisher</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mink</td>
<td>Raven</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolf</td>
<td>Pigeon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit</td>
<td>Goose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raccoon</td>
<td>Swan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squirrel</td>
<td>Sandpiper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weasel</td>
<td>Mud snipe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountain lion</td>
<td>Owl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The annual scheduling of hunting, fishing, gathering, planting, harvesting, and the ceremonial cycle are all interconnected with the ecological cycle and to some extent the lunar cycle. The Cherokee year was considered to begin in the fall and consisted of two seasons, winter and summer (Gilbert 1943:325).

The New Moon Ceremony of April heralded the beginning of summer and the time to plant crops (Gilbert 1943:325-336). Men helped with the heavy work of cultivation and planting while the women did the light work such as weeding. Following the spring planting, men resumed their hunting activities. The summer hunts were of short duration and usually conducted near the village. Although the summer hunting groups were generally small, the size and membership of the groups varied (Gearing 1958:1150). Short hunting excursions stopped in August with the ripening of the corn and the Preliminary Green Corn Feast. This feast took place when the corn was first mature enough to eat. The Green Corn Feast then followed in mid-to-late September. This feast was held when the corn was hard and ripe for picking. Quickly following the harvest was the Great New Moon Feast at the first new moon of autumn. This signaled the beginning of winter. Following a lapse of ten days, or about the end of October, the Cementation Feast, a time to relight the sacred fire, was held. This was followed by the Exalting Feast in December. Very little is now known about this feast. Most of these feasts require large supplies of meat, but the main hunting activities were curtailed until October or November (Gilbert 1943:325).

Supplementing the six major feasts were various minor local feasts and various dances. The feasts required meat and hunting was
done specifically for each one, although some local hunting had to be done periodically for family food. With the completion of the corn harvest and Cementation Feast, small groups of men, sometimes accompanied by women, set off for the winter hunts. The length of these hunts varied, sometimes lasting up to six months and covering an extensive area; the hunting groups returned before the spring feast and the spring planting (Gearing 1958:1150; Gilbert 1943:325-336). The principal game of the winter hunt was the white-tailed deer. Supplementing the deer were such animals as the elk, bison, bear, and turkey. Young children and men too old to take part in the extended hunts supplied small mammals and birds from the area immediately surrounding the village.

Fishing was an intermittent activity with the best results obtained in the spring when various species of suckers and some of the sunfish and bass spawned (see Appendix).

Hunting

Cherokee hunting was an art and the practice of a specialist. The hunter carefully studied the habits of different animals and compounded this knowledge with the aid of myths, magical formulas, and formulas to appease the clan of the dead animal (Mooney and Olbrecht 1932). The formulas and the lore of the animals have been almost completely lost, and only a small portion of the total picture of Cherokee hunting practices has been recorded (Gilbert 1943:188).

The bow and arrow, and later the gun, were used to hunt the larger game such as deer, elk, bison, bear, and turkey. Arrows used by the Cherokee were tipped with bone, brass, fish scales, and probably stone. Timberlake noted:
Their method of pointing arrow is as follows: cutting off a bit of thin brass, copper, bone or scales of a particular fish into a point with two beards, or some into an acute triangle, they split a little of their arrow, which is generally of reeds; into this they put the point, winding some deer sinew round the arrow, and through a little hole they made in the head, then they moisten the sinew with their spittle, which when dry remains fast glewed, nor ever untwists (Williams 1948:85).

It is interesting that fish scales were used to tip arrows. Only two fish have scales which might be used in the manufacture of projectile points, the sturgeon and gar. Gar scales would require the least modification, and gar were present in the Little Tennessee River; sturgeon were not locally available.

Several techniques were used to hunt small mammals and birds. For example, Timberlake notes "taking the pigeons at roost" (Williams 1948:107). This suggests taking squabs from the nest, clubbing adults, or both. Dodge (1945:343) notes that the Cayuga of central New York took passenger pigeons at night by climbing into the roost and removing the squabs, never taking the adults. Although this method was recorded for a northern group, it appears to be similar to that which Timberlake described for the Cherokee. Small mammals and birds were taken with the blowgun, an 8-to-10 foot cane through which a short hickory dart was blown by the hunter. Timberlake (Williams 1948:72) notes that the Cherokee shot many animals through the eye and seldom missed the small mark. The blowgun was supplemented by the use of various types of traps and snares (Fogelson and Kutsche 1961:94). Hunting small animals seems to have been left to young children and men too old to take an active part in the deer hunt.
Fishing

Fish formed an important supplement to the Cherokee diet. The species of fish utilized are seldom referred to in the ethnographic reports, however, and there is some question as to the fishing techniques used by the Cherokee. The common methods employed include hook and line, drives into shallow water, spears, poison, and fish weirs (Malone 1956:23; Fogelson and Kutsche 1961:94; Williams 1930:432-433). These techniques may have been supplemented by the dip net, "grabbing," and shooting (Rostlund 1952:84; Swanton 1946:332-344; Williams 1930:433-434).

The aboriginal use of the fish hook in the New World is substantiated by the archaeological record, although it is not recorded by the European writers. The distribution of fish hooks shown by Rostlund (1952:296) includes most of the Southeast, and he also notes that the Cherokee use of fish hooks is implied by several of the sacred formulas recorded by Mooney (Rostlund 1952:122).

Fish drives or scaring fish into shallows where they can be caught is similar to the technique used in conjunction with a fish weir. The stone fish weirs of the Cherokee are best described by Timberlake (Williams 1948:69):

Building two walls obliquely down the river from either shore, just as they are near joining, a passage is left to a deep well or reservoir; the indians then scaring the fish down the river, close to the mouth of the reservoir with a large bush, or bundle made on purpose, and it is no difficult matter to take them with baskets, when inclosed within so small a compass.

Adair (Williams 1930:432) also noted the use of weirs, but in conjunction with a basket made of cane and hickory splints.
The use of the hand-held dip net is described by Adair (Williams 1930:434), and its distribution is plotted by Rostlund (1952:87). Timberlake (Williams 1948:336) states, however, that the Indians did not have nets before contact with Europeans. This conflicts with Adair's comments and Rostlund (1952:122) discounts Timberlake's statement, suggesting that Adair's evidence supports the antiquity of fish nets in this part of aboriginal North America.

Another fishing method described by Adair (Williams 1930:433) is that of "grabbing" catfish as they lay on the river bottom or under a ledge in the water. This requires no tools and is a simple technique often yielding good results. It seems this method would be restricted to the warmer part of the year due to lower water levels and increased fish activity.

The use of poison to obtain fish is noted by Adair (Williams 1930:432), Swanton (1946:33-333), and Rostlund (1952:131). Adair indicates that the poison was derived from a series of roots and nuts which were ground together and put in a medium-sized pond or pool; fish soon floated to the surface, and the larger ones were collected while the smaller ones floated off (Williams 1930:432). Rostlund cautions about the generalized distribution of aboriginal use of fish poison in the Southeast. He feels that most statements concerning fish poisons are misleading and often lack firm supporting evidence, but that there is evidence for its use among the Cherokee (Rostlund 1952:293).

The simple cane spear and its effective use in obtaining large fish by the Cherokee is mentioned by Adair (Williams 1930:433). Rostlund illustrates the distribution of the simple spear as being
widespread throughout the eastern part of North America (1952:293). Fish were usually consumed immediately after being caught (Williams 1930:434). Rostlund comments on the curing and preservation of fish in the Southeast:

Whether fish was regularly dried and stored by the interior tribes in the Southeast is uncertain; at any rate, there are no definite reports of it from the Choctaw, Chickasaw, Creek and Cherokee (Rostlund 1952:139).

Thus fish were eaten, but their contribution to the stored food resources is still uncertain. As an example, suckers were available in the spring in considerable numbers during their spawning run up the small rivers, and at this time large numbers of individuals could be easily captured. These fish were then carried up on shore and a large feast prepared with the majority of the catch consumed on the spot (Williams 1930:432-433). Fishing appears to have been an activity restricted to spring and summer when most fish spawn, migrating into small streams and shallow areas to lay their eggs. This would make larger fish easier to capture in greater numbers. Another important fact coincident with spring fishing is that fish are at their highest nutritional value just before spawning, thus providing a maximum amount of protein, oil, and minerals, all of which are important in the diet. It is of interest that fish roe, considered by some aboriginal groups a delicacy, is also often as much as five times as rich in iodine as the fish from which it came (Rostlund 1952:3-6). Thus, the Cherokee utilization of fish when they were concentrated in the greatest numbers and most readily available coincides with the time of highest nutritional value and would not conflict with the exploitation of other resources.
CHAPTER IV

ANIMALS IDENTIFIED FROM THE FAUNAL SAMPLE:
ACCOUNTS OF SPECIES

The total faunal assemblage recovered from the excavations at Chota-Tanasi totaled 33,385 pieces. This figure represents bone from postmolds, features, and areas referred to as "plow zone" or "general excavation." Table VI lists the five classes of vertebrates and shows the total number of identifiable and unidentifiable pieces and percent for each class. Mammal remains comprised the bulk of the sample (85.52 percent), followed in decreasing order by those of fish (7.87 percent), birds (3.52 percent), reptiles (2.65 percent), and amphibians (0.40 percent). This reflects the major importance of mammals in the diet of the Cherokee. Table VII lists the species identified in the sample, number of fragments, and the percentage of the total which each species' bone count represents. This percentage is based only on the gross number of bones and may represent a skewed picture of the relative importance of the animals within the sample (c.f. Chaplin 1971:63-75). Table VII presents a tabulation of the minimum number of individuals (MNI) of each species, estimated pounds of meat derived from each species, and the percentage of the total meat weight contributed by each species. This last percentage may give a more realistic estimate of the contribution of each species to the diet as suggested by White (1953a) and Chaplin (1971:63-75).

The data from Table VII are divided according to the remains recovered from Chota--40MR2 (Table VIII) and the remains recovered from
TABLE VI

Total Bone Pieces Arranged by Class of Vertebrates

<table>
<thead>
<tr>
<th>Class</th>
<th>Number of Pieces</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifiable</td>
<td>4,802</td>
<td>14.38</td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>23,753</td>
<td>71.14</td>
</tr>
<tr>
<td>Total</td>
<td>28,555</td>
<td>85.52</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifiable</td>
<td>221</td>
<td>0.66</td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>956</td>
<td>2.86</td>
</tr>
<tr>
<td>Total</td>
<td>1,177</td>
<td>3.52</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifiable</td>
<td>887</td>
<td>2.65</td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>887</td>
<td>2.65</td>
</tr>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifiable</td>
<td>135</td>
<td>0.40</td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>135</td>
<td>0.40</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifiable</td>
<td>299</td>
<td>0.89</td>
</tr>
<tr>
<td>Unidentifiable</td>
<td>2,332</td>
<td>6.98</td>
</tr>
<tr>
<td>Total</td>
<td>2,631</td>
<td>7.87</td>
</tr>
<tr>
<td>Total Pieces</td>
<td>33,385</td>
<td>99.96</td>
</tr>
<tr>
<td>Species</td>
<td>40MR2</td>
<td>40MR62</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Longnose Gar,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepisosteus osseus</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Gar,</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Lepisosteus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Redhorse,</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>Moxostoma carinatum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Golden Redhorse,</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Moxostoma erythrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redhorse,</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Moxostoma sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffalo,</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>Ictiobus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucker,</td>
<td>92</td>
<td>-</td>
</tr>
<tr>
<td>Catostomidae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel/Blue Catfish,</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Ictalurus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catfish/Bullhead,</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>Ictalurus sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Bluegill,</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>Lepomis macrochirus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunfish,</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>Lepomis sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bass,</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Micropterus sp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE VII

Tabulation of Data Based on Vertebrate Remains from Chota-Tanasi
<table>
<thead>
<tr>
<th>Species</th>
<th>4OMR2</th>
<th>4OMR62</th>
<th>Total Pieces</th>
<th>Percent of Total</th>
<th>MNI</th>
<th>Contributed Meat Weight (lbs)</th>
<th>Contributed Meat Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunfish/Bass, Centrarchidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshwater Drum, Aplodinotus grunniens</td>
<td>77</td>
<td></td>
<td>77</td>
<td>0.23</td>
<td>11</td>
<td>11.00</td>
<td>0.07</td>
</tr>
<tr>
<td>Unidentifiable Fish Bone</td>
<td>2,313</td>
<td>19</td>
<td>2,332</td>
<td>6.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Fish</td>
<td>2,611</td>
<td>20</td>
<td>2,631</td>
<td>7.85</td>
<td>29</td>
<td>34.00</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Amphibians

<table>
<thead>
<tr>
<th>Species</th>
<th>4OMR2</th>
<th>4OMR62</th>
<th>Total Pieces</th>
<th>Percent of Total</th>
<th>MNI</th>
<th>Contributed Meat Weight (lbs)</th>
<th>Contributed Meat Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hellbender, Cryptobranchus alleganiensis</td>
<td>16</td>
<td></td>
<td>16</td>
<td>0.05</td>
<td>1</td>
<td>T?</td>
<td>-</td>
</tr>
<tr>
<td>Toad, Bufo sp.</td>
<td>20</td>
<td>2</td>
<td>22</td>
<td>0.06</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Frog, Rana sp.</td>
<td>48</td>
<td>3</td>
<td>51</td>
<td>0.15</td>
<td>3</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>Bullfrog, Rana catesbiana</td>
<td>2</td>
<td></td>
<td>2</td>
<td>T</td>
<td>1</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>Frog/Toad, Rana/Bufo</td>
<td>41</td>
<td>3</td>
<td>44</td>
<td>0.13</td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Total Amphibians</td>
<td>127</td>
<td>8</td>
<td>135</td>
<td>0.39</td>
<td>5</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Reptiles

<table>
<thead>
<tr>
<th>Species</th>
<th>4OMR2</th>
<th>4OMR62</th>
<th>Total Pieces</th>
<th>Percent of Total</th>
<th>MNI</th>
<th>Contributed Meat Weight (lbs)</th>
<th>Contributed Meat Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapping Turtle, Chelydra serpentina</td>
<td>6</td>
<td></td>
<td>6</td>
<td>0.02</td>
<td>2</td>
<td>4.00</td>
<td>0.02</td>
</tr>
<tr>
<td>cf. Snapping Turtle, Chelydra serpentina</td>
<td>2</td>
<td></td>
<td>2</td>
<td>T</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Species</td>
<td>4OMR2</td>
<td>4OMR62</td>
<td>Total Pieces</td>
<td>Percent of Total</td>
<td>MNI</td>
<td>Contributed Meat Weight (lbs)</td>
<td>Contributed Meat Weight (%)</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----</td>
<td>------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Musk Turtle, Sternotherus sp.</td>
<td>43</td>
<td>-</td>
<td>43</td>
<td>0.13</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eastern Box Turtle, Terrapene carolina</td>
<td>505</td>
<td>23</td>
<td>528</td>
<td>1.58</td>
<td>13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Turtle, Graptomys/Chrysemys/Pseudemys group</td>
<td>96</td>
<td>3</td>
<td>99</td>
<td>0.30</td>
<td>-</td>
<td>T</td>
<td>-</td>
</tr>
<tr>
<td>Softshell Turtle, Trionyx sp.</td>
<td>70</td>
<td>8</td>
<td>78</td>
<td>0.23</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Turtle sp.</td>
<td>108</td>
<td>16</td>
<td>124</td>
<td>0.37</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nonpoisonous Snakes, Colubridae</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>0.01</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Poisonous Snakes, Crotalidae</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Reptiles</td>
<td>837</td>
<td>50</td>
<td>887</td>
<td>2.64</td>
<td>23</td>
<td>4.00</td>
<td>0.02</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Loon, Gavia immer</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>2</td>
<td>6.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Pied-billed Grebe, Podilymbus podiceps</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Great Blue Heron, Ardea herodias</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Goose sp.</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Blue-winged/Green-winged Teal, Anas sp.</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Duck, Anas sp.</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Species</td>
<td>40MR2</td>
<td>40MR2</td>
<td>Total Pieces</td>
<td>Percent of Total</td>
<td>MNI</td>
<td>Contributed Meat Weight (lbs)</td>
<td>Contributed Meat Weight (%)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----</td>
<td>------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Lesser Scaup/Ringneck Duck,</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Aythya sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duck,</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Aythya sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duck sp.</td>
<td>11</td>
<td>-</td>
<td>11</td>
<td>0.03</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cf. Red-tailed Hawk,</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Buteo jamaicensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawk,</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Buteo sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawk sp.</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>T</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Domestic Chicken,</td>
<td>94</td>
<td>3</td>
<td>97</td>
<td>0.29</td>
<td>8</td>
<td>20.00</td>
<td>0.13</td>
</tr>
<tr>
<td>Gallus gallus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Chicken,</td>
<td>7</td>
<td>-</td>
<td>7</td>
<td>0.02</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gallus gallus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey,</td>
<td>52</td>
<td>4</td>
<td>56</td>
<td>0.17</td>
<td>8</td>
<td>68.00</td>
<td>0.44</td>
</tr>
<tr>
<td>Meleagris gallopavo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Turkey,</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>0.02</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Meleagris gallopavo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Sora,</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Porzana carolina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Ruddy Turnstone,</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arenaria interpres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger Pigeon,</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Ectopistes migratorius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Horned Owl,</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bubo virginianus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barred Owl,</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Strix varia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>40MR2</td>
<td>40MR62</td>
<td>Total Pieces</td>
<td>Percent of Total</td>
<td>MNI</td>
<td>Contributed Meat Weight (lbs)</td>
<td>Contributed Meat Weight (%)</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----</td>
<td>-------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>cf. Barred Owl,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strix varia</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Passerine sp.</td>
<td>13</td>
<td>-</td>
<td>13</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purple Martin,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progne subis</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cf. Common Grackle,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiscalus quiscula</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Unidentifiable Bird Bones</td>
<td>868</td>
<td>88</td>
<td>956</td>
<td>2.86</td>
<td>36</td>
<td>94.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Total Birds</td>
<td>1,032</td>
<td>95</td>
<td>1,177</td>
<td>3.43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mammals

<table>
<thead>
<tr>
<th>Species</th>
<th>40MR2</th>
<th>40MR62</th>
<th>Total Pieces</th>
<th>Percent of Total</th>
<th>MNI</th>
<th>Contributed Meat Weight (lbs)</th>
<th>Contributed Meat Weight (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opossum, Didelphis marsupialis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>25.50</td>
<td>0.16</td>
</tr>
<tr>
<td>Least Shrew, Cryptotis parva</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eastern Mole, Scalopus aquaticus</td>
<td>28</td>
<td>-</td>
<td>28</td>
<td>0.08</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bat, Myotis sp.</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Big Brown Bat, Eptesicus fuscus</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bat sp.</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eastern Cottontail, Sylvilagus floridanus</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>0.01</td>
<td>1</td>
<td>8.75</td>
<td>0.05</td>
</tr>
<tr>
<td>Woodchuck, Marmota monax</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0.01</td>
<td>2</td>
<td>11.20</td>
<td>0.07</td>
</tr>
<tr>
<td>Species</td>
<td>40MR2</td>
<td>40MR62</td>
<td>Total Pieces</td>
<td>Percent of Total</td>
<td>MNI</td>
<td>Contributed Meat Weight (lbs)</td>
<td>Contributed Meat Weight (%)</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Gray Squirrel, Sciurus carolinensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squirrel, Sciurus sp.</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>0.05</td>
<td>2</td>
<td>2.00</td>
<td>0.01</td>
</tr>
<tr>
<td>Beaver, Castor canadensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marsh Rice Rat, Oryzomys palustris</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>0.04</td>
<td>1</td>
<td>38.50</td>
<td>0.25</td>
</tr>
<tr>
<td>Deer/White-footed Mouse, Peromyscus sp.</td>
<td>1</td>
<td>1</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse, cf. Peromyscus sp.</td>
<td>1</td>
<td>1</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse sp.</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>0.05</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Wood Rat, Neotoma floridana</td>
<td></td>
<td>3</td>
<td>3</td>
<td>0.01</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canid, Canis sp.</td>
<td>23</td>
<td>3</td>
<td>26</td>
<td>0.08</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canid, cf. Canis sp.</td>
<td>2</td>
<td>2</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic Dog, Canis familiaris</td>
<td>343</td>
<td>343</td>
<td>343</td>
<td>1.02</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gray Fox, Urocyon cinereorargenteus</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0.02</td>
<td>3</td>
<td>13.50</td>
<td>0.08</td>
</tr>
<tr>
<td>Black Bear, Ursus americanus</td>
<td>593</td>
<td>109</td>
<td>702</td>
<td>2.10</td>
<td>21</td>
<td>4,410.00</td>
<td>28.71</td>
</tr>
<tr>
<td>cf. Black Bear, Ursus americanus</td>
<td>1</td>
<td>1</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raccoon, Procyon lotor</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>0.06</td>
<td>3</td>
<td>52.50</td>
<td>0.34</td>
</tr>
<tr>
<td>Species</td>
<td>4OMR2</td>
<td>4OMR62</td>
<td>Total Pieces</td>
<td>Percent of Total</td>
<td>MNI</td>
<td>Contributed Meat Weight (lbs)</td>
<td>Contributed Meat Weight (%)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----</td>
<td>------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>cf. Long-tailed Weasel, Mustela frenata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Striped Skunk, Mephitis mephitis</td>
<td>1</td>
<td></td>
<td>1</td>
<td>T</td>
<td>1</td>
<td>5.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Cougar, Felinus concolor</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0.01</td>
<td>1</td>
<td>60.00</td>
<td>0.39</td>
</tr>
<tr>
<td>Pig, Sus scrofa</td>
<td>155</td>
<td>7</td>
<td>162</td>
<td>0.48</td>
<td>8</td>
<td>600.00</td>
<td>3.90</td>
</tr>
<tr>
<td>cf. Pig, Sus scrofa</td>
<td>2</td>
<td></td>
<td>2</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elk, Cervus canadensis</td>
<td>10</td>
<td></td>
<td>10</td>
<td>0.03</td>
<td>2</td>
<td>700.00</td>
<td>4.55</td>
</tr>
<tr>
<td>cf. Elk, Cervus canadensis</td>
<td>15</td>
<td></td>
<td>15</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-tailed Deer, Odocoileus virginianus</td>
<td>2,703</td>
<td>350</td>
<td>3,053</td>
<td>9.14</td>
<td>70</td>
<td>7,000.00</td>
<td>45.57</td>
</tr>
<tr>
<td>Cervidae</td>
<td>32</td>
<td>4</td>
<td>36</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Bison, Bison bison</td>
<td>2</td>
<td></td>
<td>2</td>
<td>T</td>
<td>2</td>
<td>800.00</td>
<td>5.20</td>
</tr>
<tr>
<td>Cow/Elk/Bison, Bos/Cervus/Bison</td>
<td>83</td>
<td>25</td>
<td>108</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cow/Bison, Bos/Bison</td>
<td>74</td>
<td>29</td>
<td>103</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horse, Equus caballus</td>
<td>25</td>
<td></td>
<td>25</td>
<td>0.07</td>
<td>3</td>
<td>1,500.00</td>
<td>9.76</td>
</tr>
<tr>
<td>Species</td>
<td>40MR2</td>
<td>40MR62</td>
<td>Total Pieces</td>
<td>Percent of Total</td>
<td>MNI</td>
<td>Contributed Meat Weight (lbs)</td>
<td>Contributed Meat Weight (%)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>------------------</td>
<td>-----</td>
<td>-------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Unidentifiable Mammal Bone</td>
<td>19,712</td>
<td>4,041</td>
<td>23,753</td>
<td>71.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Mammals</td>
<td>23,981</td>
<td>4,574</td>
<td>28,555</td>
<td>85.45</td>
<td>135</td>
<td>15,226.95</td>
<td>99.07</td>
</tr>
<tr>
<td>Grand Total</td>
<td>28,638</td>
<td>4,747</td>
<td>33,385</td>
<td>99.76</td>
<td>228</td>
<td>15,358.95</td>
<td>99.88</td>
</tr>
</tbody>
</table>
TABLE VIII

Archaeological Distribution of Bones from 40MR2

<table>
<thead>
<tr>
<th>Species</th>
<th>Burial Assoc.</th>
<th>Feature Indet.</th>
<th>Post-molds</th>
<th>Plow Zone</th>
<th>1-99</th>
<th>100-199</th>
<th>200-299</th>
<th>300-399</th>
<th>400-500</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td></td>
</tr>
<tr>
<td>cf. Longnose Gar, Lepisosteus osseus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Gar, Lepisosteus sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Catostomidae</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>74</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>River Redhorse, Moxostoma carinatum</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>cf. Golden Redhorse, Moxostoma erythrum</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Redhorse, Moxostoma sp.</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Buffalo, Ictiobus sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Channel/Blue Catfish, Ictalurus sp.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Catfish/Bullhead, Ictalurus sp.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>cf. Bluegill, Lepomis macrochirus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Sunfish, Lepomis sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Bass, Micropterus sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Species</td>
<td>Burial Assoc</td>
<td>Feature Indet</td>
<td>Post-molds</td>
<td>Plow Zone</td>
<td>1-99</td>
<td>100-199</td>
<td>200-299</td>
<td>300-399</td>
<td>400-500</td>
<td>Total</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Sunfish/Bass, Centrarchidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>Drum, Aplodinotus grunniens</td>
<td>-</td>
<td>23</td>
<td>1</td>
<td>1</td>
<td>27</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>77</td>
</tr>
<tr>
<td>Unidentifiable Fish Bone</td>
<td>-</td>
<td>34</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>2,007</td>
<td>89</td>
<td>70</td>
<td>16</td>
<td>86</td>
</tr>
<tr>
<td>Total Fish</td>
<td>-</td>
<td>70</td>
<td>11</td>
<td>-</td>
<td>2</td>
<td>2,178</td>
<td>125</td>
<td>85</td>
<td>23</td>
<td>117</td>
</tr>
<tr>
<td>Amphibians</td>
<td>-</td>
<td>7</td>
<td>4</td>
<td>56</td>
<td>48</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Hellbender, Cryptobranchus alleganiensis</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Frog/Toad, Rana/Bufo</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>29</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Toad, Bufo sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Frog, Rana sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>11</td>
<td>34</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>Bullfrog, Rana catesbiana</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total Amphibians</td>
<td>-</td>
<td>7</td>
<td>4</td>
<td>56</td>
<td>48</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Snapping Turtle, Chelydra serpentina</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>
TABLE VIII—(Continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Burial Assoc.</th>
<th>Feature Indet.</th>
<th>Post-molds</th>
<th>Plow Zone</th>
<th>1-99</th>
<th>100-199</th>
<th>Features 200-299</th>
<th>Features 300-399</th>
<th>Features 400-500</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>cf. Snapping Turtle, Chelydra serpentina</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Musk Turtle, Sternotherus sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>39</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Eastern Box Turtle, Terrapene carolina</td>
<td>2</td>
<td>16</td>
<td>4</td>
<td>45</td>
<td>39</td>
<td>134</td>
<td>73</td>
<td>59</td>
<td>133</td>
<td>505</td>
</tr>
<tr>
<td>Turtle, Graptomys/Chrysemys/Pseudemys</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>55</td>
<td>8</td>
<td>7</td>
<td>11</td>
<td>8</td>
<td>96</td>
</tr>
<tr>
<td>Softshell Turtle, Trionyx sp.</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>27</td>
<td>9</td>
<td>18</td>
<td>70</td>
</tr>
<tr>
<td>Turtle sp.</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>21</td>
<td>32</td>
<td>24</td>
<td>8</td>
<td>13</td>
<td>108</td>
</tr>
<tr>
<td>Nonpoisonous Snakes, Colubridae</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Poisonous Snakes, Crotalidae</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total Reptiles</td>
<td>2</td>
<td>24</td>
<td>6</td>
<td>60</td>
<td>126</td>
<td>219</td>
<td>133</td>
<td>90</td>
<td>177</td>
<td>837</td>
</tr>
</tbody>
</table>

Birds

<table>
<thead>
<tr>
<th>Species</th>
<th>Burial Assoc.</th>
<th>Feature Indet.</th>
<th>Post-molds</th>
<th>Plow Zone</th>
<th>1-99</th>
<th>100-199</th>
<th>Features 200-299</th>
<th>Features 300-399</th>
<th>Features 400-500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Loon, Gavia immer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Pied-billed Grebe, Podilymbus podiceps</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Great Blue Heron, Ardea herodias</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Goose sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Species</td>
<td>Burial Assoc.</td>
<td>Feature Indet.</td>
<td>Post-molds</td>
<td>Plow Zone</td>
<td>1-99</td>
<td>100-199</td>
<td>Features 200-299</td>
<td>300-399</td>
<td>400-500</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>-----------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Blue-winged/Green-winged Teal, Anas sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Duck, Anas sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Lesser Scaup/Ringneck, Aythya sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Duck, Aythya sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Duck sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>cf. Red-tailed Hawk, Buteo jamaicensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Hawk, Buteo sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Hawk sp.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Chicken, Gallus gallus</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>5</td>
<td>18</td>
<td>17</td>
<td>7</td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>cf. Chicken, Gallus gallus</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Turkey, Meleagris gallopavo</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>cf. Turkey, Meleagris gallopavo</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>cf. Sora, Porzana carolina</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>cf. Ruddy Turnstone, Arenaria interpres</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Passenger Pigeon, Ectopistes migratorius</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Small Mammal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TABLE VIII--(Continued)
<table>
<thead>
<tr>
<th>Species</th>
<th>Burial Assoc.</th>
<th>Feature Indet.</th>
<th>Post-molds</th>
<th>Plow Zone 1-99</th>
<th>100-199 Features</th>
<th>200-299</th>
<th>300-399</th>
<th>400-500</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great Horned Owl,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubo virginianus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Barred Owl,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strix varia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>cf. Barred Owl,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strix varia</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Passerine sp.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Purple Martin,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Progne subis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>cf. Common Grackle,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiscalus quiscula</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Unidentifiable Bird Bone</td>
<td>-</td>
<td>40</td>
<td>10</td>
<td>24</td>
<td>342</td>
<td>138</td>
<td>163</td>
<td>79</td>
<td>72</td>
</tr>
<tr>
<td>Total Birds</td>
<td>1</td>
<td>48</td>
<td>14</td>
<td>33</td>
<td>389</td>
<td>173</td>
<td>190</td>
<td>121</td>
<td>113</td>
</tr>
</tbody>
</table>

Mammals

<table>
<thead>
<tr>
<th>Species</th>
<th>Burial Assoc.</th>
<th>Feature Indet.</th>
<th>Post-molds</th>
<th>Plow Zone 1-99</th>
<th>100-199 Features</th>
<th>200-299</th>
<th>300-399</th>
<th>400-500</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opossum,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Didelphis marsupialis</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Least Shrew,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptotis parva</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Eastern Mole,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaphopus aquaticus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>Bat,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myotis sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Big Brown Bat,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eptesicus fuscus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Species</td>
<td>Burial Assoc.</td>
<td>Feature Indet.</td>
<td>Post-molds</td>
<td>Plow Zone</td>
<td>1-99</td>
<td>100-199</td>
<td>200-299</td>
<td>300-399</td>
<td>400-500</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Bat. sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eastern Cottontail,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sylvilagus floridanus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Woodchuck,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Marmota monax</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gray Squirrel,</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sciurus carolinensis</td>
<td>-</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Squirrel,</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sciurus sp.</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Beaver,</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Castor canadensis</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Marsh Rice Rat,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oryzomys palustris</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deer/White-footed Mouse,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peromyscus sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mouse,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cf. Peromyscus sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mouse sp.</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Canid,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Canis sp.</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Canid,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cf. Canis sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Domestic Dog,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Canis familiaris</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>343</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gray Fox,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Urocyon cinereoargenteus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Black Bear,</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Ursus americanus</td>
<td>4</td>
<td>23</td>
<td>4</td>
<td>53</td>
<td>133</td>
<td>78</td>
<td>106</td>
<td>43</td>
<td>149</td>
</tr>
<tr>
<td>Species</td>
<td>Burial Assoc.</td>
<td>Feature Indet.</td>
<td>Post-molds</td>
<td>Plow Zone 1-99</td>
<td>100-199</td>
<td>200-299</td>
<td>300-399</td>
<td>400-500</td>
<td>Total</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>cf. Black Bear, Ursus americanus</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Raccoon, Procyon lotor</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>cf. Long-tailed Weasel, Mustela frenata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td>Striped Skunk, Mephitis mephitis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Cougar, Felis concolor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Pig, Sus scrofa</td>
<td>1</td>
<td>16</td>
<td>2</td>
<td>9</td>
<td>11</td>
<td>16</td>
<td>69</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>cf. Pig, Sus scrofa</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Elk, Cervus canadensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>cf. Elk, Cervus canadensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>White-tailed Deer, Odocoileus virginianus</td>
<td>18</td>
<td>99</td>
<td>26</td>
<td>224</td>
<td>460</td>
<td>356</td>
<td>647</td>
<td>338</td>
<td>535</td>
</tr>
<tr>
<td>Cervidae</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>cf. Bison, Bison bison</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Cow/Elk/Bison, Bos/Cervus/Bison</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>17</td>
<td>4</td>
<td>1</td>
<td>27</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Cow/Bison, Bos/Bison</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>19</td>
</tr>
<tr>
<td>Species</td>
<td>Burial Assoc.</td>
<td>Feature Indet.</td>
<td>Post-molds</td>
<td>Plow Zone 1-99</td>
<td>100-199</td>
<td>200-299</td>
<td>300-399</td>
<td>400-500</td>
<td>Total</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Horse, Equus caballus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidentifiable Mammal Bone</td>
<td>113</td>
<td>1,008</td>
<td>184</td>
<td>2,012</td>
<td>4,791</td>
<td>3,383</td>
<td>4,820</td>
<td>2,371</td>
<td>1,030</td>
</tr>
<tr>
<td>Total Mammals</td>
<td>139</td>
<td>1,172</td>
<td>221</td>
<td>2,342</td>
<td>5,439</td>
<td>4,280</td>
<td>5,741</td>
<td>2,812</td>
<td>1,835</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tanasi--40MR62 (Table IX). These two tables present the data by burial
association or fill, plow zone, postmold, and feature. These listings
serve to illustrate associations, areal distribution, and the location
of the majority of the faunal materials (40MR2 features).

Fish

Fish bones formed only a small part of the total faunal assem­
blage from Chota (7.87 percent), and the identifiable materials comprised
only 0.89 percent of the total.

Fish identification involves several problems which have not
been completely resolved; the separation of species within the genera
Moxostoma, Ictiobus, Lepomis, and Micropterus is especially difficult
because of the lack of specifically diagnostic elements. Among the
castostomids, river redhorse is easily identified on the basis of the
distinct pharangeal arches and molar teeth. However, other species were
only tentatively identified on the basis of the urohyal (e.g., black and
golden redhorse), since a larger sample of comparative skeletons is
required before, and if, a satisfactory identification can be made. The
genus Lepomis (sunfishes) contains several closely related species;
several are known to hybridize in nature and this creates many diffi­
culties in identifying archaeologically derived material. In the genus
Micropterus there appear to be distinct differences in the articular
bone, which would aid in separating the several species. Based on the
articular, both the largemouth and the smallmouth bass appear to be
represented in the Chota archaeological sample. If the species included
within these genera can be separated, it may be possible to determine
TABLE IX

Distribution of Bone from 40MR62 by Excavation Unit

<table>
<thead>
<tr>
<th>Species</th>
<th>Postmolds</th>
<th>Features</th>
<th>General Cuts</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opossum, Didelphis marsupialis</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Woodchuck, Marmota monax</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Eastern Woodrat, Neotoma floridana</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Canid, Canis sp.</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Black Bear, Ursus americanus</td>
<td>2</td>
<td>104</td>
<td>3</td>
<td>109</td>
</tr>
<tr>
<td>Cougar, Felis concolor</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Pig, Sus scrofa</td>
<td>2</td>
<td>5</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>White-tailed Deer, Odocoileus virginianus</td>
<td>3</td>
<td>342</td>
<td>5</td>
<td>350</td>
</tr>
<tr>
<td>Cow/Elk/Bison, Bos/Cervus/Bison</td>
<td>-</td>
<td>24</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Cow/Bison, Bos/Bison</td>
<td>-</td>
<td>28</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Cervidae</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Unidentifiable Mammal Bone</td>
<td>71</td>
<td>3,506</td>
<td>464</td>
<td>4,041</td>
</tr>
<tr>
<td>Total Mammals</td>
<td>78</td>
<td>4,020</td>
<td>476</td>
<td>4,574</td>
</tr>
</tbody>
</table>
TABLE IX—(Continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Postmolds</th>
<th>Features</th>
<th>General Cuts</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken, Gallus gallus</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Turkey, Meleagris gallopavo</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Unidentifiable Bird Bone</td>
<td>1</td>
<td>85</td>
<td>2</td>
<td>88</td>
</tr>
<tr>
<td>Total Birds</td>
<td>1</td>
<td>91</td>
<td>3</td>
<td>95</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Box Turtle, Terrapene carolina</td>
<td>2</td>
<td>21</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td>Turtle, Graptemys/Chrysemys/Pseudemys group</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Softshell Turtle, Trionyx sp.</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Turtle sp.</td>
<td>-</td>
<td>14</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Total Reptiles</td>
<td>2</td>
<td>45</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>Amphibians</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toad, Bufo sp.</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Frog, Rana sp.</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Species</td>
<td>Postmolds</td>
<td>Features</td>
<td>General Cuts</td>
<td>Total</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>Frog/Toad, Rana/Bufo</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Total Amphibians</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redhorse, Moxostoma sp.</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Unidentifiable Fish Bone</td>
<td>-</td>
<td>19</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>Total Fish</td>
<td>1</td>
<td>19</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Grand Total</td>
<td>82</td>
<td>4,183</td>
<td>482</td>
<td>4,747</td>
</tr>
</tbody>
</table>
more about Indian fish preferences, dietary contributions of each species and possibly something about seasonality of fish procurement.

The longnose gar is represented in the sample by two dentary fragments, one of which has the distal end cut off. Perhaps these dentaries were used to scrape the skin for purification or scarification, as was the case with thorns, snake teeth, and other sharp objects (Swanton 1946:564). Although these gar may have been eaten, Gilbert (1943:346) notes:

Anciently the Cherokees would not eat foxes, dogs, wolves, snakes, moles, pole cats, opossums, buzzards, crows, cranes, fish hawks, eagles, owls, hoot owl, wood cocks, eels, catfish or garfish.

This statement is especially interesting since the Cherokee have a sacred formula for catching channel catfish (Mooney 1891:375); not eating catfish yet having a sacred formula for catching catfish is curiously conflicting. The archaeological record suggests that at least at Chota catfish were eaten, although not in large quantities. Sunfish and bass would have been available in pools in local streams, ponds, backwaters of the rivers, and small numbers of their bones were found at the site. Freshwater drum was probably captured along with other fish in nets or weirs in the Little Tennessee River. Drum probably contributed the largest amount of fish to the diet of any single fish group and its elements were the most numerous of the species represented.

Fish present a special problem in relation to assessing their contribution to the subsistence in terms of meat and in determining the total size of the animals involved. It is suggested that, by recording all size and weight data for comparative specimens, the approximate size
of fish represented by an archaeological specimen can be calculated. Remains can then be used to determine the approximate size of the fish from which it came. This will facilitate more complete interpretation of fish in the food economy of the Indian of East Tennessee. The figures for minimum number of individuals and their contributed meat weights (Table VII, p. 50) are probably quite conservative for the present sample.

Fish contribute a unique complement of nutrients to a diet. They are a good source of protein, minerals, and vitamins, as well as providing iodine which is important in the maintenance of a balanced diet. It is suggested that, on the basis of ethnographic data (Williams 1930:432-433) and the known nutritional value of the fish (Rostlund 1952:3-6), fish played only a seasonal role in the Cherokee economy as a supplement to the diet.

Amphibians

The amphibians represent only a very small portion of the total faunal assemblage (0.40 percent). Salamanders and frogs are often considered as probably intrusive in a site and therefore of no consequence to the human inhabitants. There is no ethnohistoric evidence that the Cherokee consumed hellbenders, a large aquatic salamander commonly found in the Little Tennessee River, but it has been noted that they did use other salamanders. There were sixteen hellbender elements found in the faunal sample, suggesting only an occasional use. Bullfrogs and smaller frogs also may have been part of the diet, as suggested by ethnographic data. The Moravians noted:
The nicknames "Pipemakers" and "Frogeaters" were given by the Lower Cherokee to the Upper Cherokee because the Upper Cherokee made long clay pipes and were said not to be adverse to eating frogs (Schwarze 1923:55).

At least one of the frogs identified in the sample is probably intrusive, since it occurred as an almost complete articulated skeleton. There is no ethnohistoric evidence for the use of toads. Toad remains identified in the archaeological sample are probably from intrusive individuals.

Amphibians would have been at best only an occasional and probably minor seasonal dietary supplement. Frogs and salamanders would have been available during the spring, summer, and early fall. The hellbender, if actually a food source, would have been available at all seasons of the year when the water was low enough to catch them. The trapping or catching of this potential food species would not require any special equipment as the animal could be caught by hand. Hellbenders could also be caught in fish traps, fish weirs, or on hooks.

Reptiles

Reptile remains constitute only a small portion of the total sample (2.65 percent); two groups, the snakes and turtles, are represented. The majority of snakes found in eastern United States are divided into two families: the Colubridae, nonpoisonous species, and Crotalidae, the poisonous snakes. Snakes are represented in the sample by only seven identified elements (vertebrae). These individuals were probably intrusive and were not a part of the diet. The Cherokee had a fear of snakes and would go to great lengths to avoid them if possible,
although snakes are important in Cherokee mythology. Even with the fear of snakes, there are sacred formulas for developing strong teeth which suggest that, by biting down on a "green snake" (cf. *Opheodrys aestivus*), an individual will develop strong teeth (Mooney and Olbrecht 1932:76).

On the other hand, turtles were eaten and their shells used for rattles by the Cherokee. The ethnographic literature mentions only the box turtle and then its only use was for shell rattles. Laura King (1975, personal communication) notes, however, that today the Cherokee eat only the "mud" turtle (common snapping turtle). The box turtle appears in Cherokee myths and legends in situations similar to the recent bedtime tales of Uncle Remus. The box turtle played an important role in the social aspect of Cherokee life because its shell was used for rattles; it is not known if the meat was consumed. Evidence for the use of turtle shell rattles at Chota is suggested by the recovery of 21 drilled, cut or polished carapace fragments. The marginals of the carapace were cut off in nine examples, and ten plastron fragments were polished. Holes were drilled at the posterior portion of the plastron or along the neural margins of twelve specimens. The shell of the turtle would have been held together by a cord threaded through these holes, thus forming a good rattle which could be hand held or tied to the legs or back of a dancer (Gilbert 1943:257).

Other species represented in the sample include the snapping turtle, stinkpot, softshell, and the slider, map or painted turtle. These different turtles are not specifically mentioned in the ethnographic literature on the Cherokee, but at Chota they appear to have played a supplementary role in the diet. These turtles were represented
almost exclusively by shell fragments which makes the determination of
the minimum number of individuals less accurate, so the figures listed
in Table VII (p. 50) are probably conservative. All of these turtles
except the softshell may be found in a pond or slough habitat and,
during periods of low water, can be easily collected. Because of their
small size and the offensive smell emitted by the musk turtles, they
probably were seldom eaten. However, individuals of the other five
genera of turtles (Graptemys, Chrysemys, Pseudemys, Chelydra, Trionyx)
grow to a size large enough to have provided sufficient meat per indi-
vidual to form a useful supplement in the diet. The softshell is almost
totally aquatic and not easily captured. It was taken, but the methods
of capture are not known. There are two possibilities: (1) they were
accidentally caught in fish traps or fish weirs, or (2) possibly were
taken by a method used by the Indians along the Ohio River:

The river tortoise of these parts is a species different from
that found in Penslyvanien [sic.], which has a hard shell.
The shell of this is quite soft and its head small and
pointed, like that of a sea tortoise. The indians shoot
them for they are not easily caught in any other way, as
they seldom venture out of the water upon the banks of the
river. The Indians are very fond of the flesh and of the
eggs, which the animals lay in the sand on islands (Hulbert
and Schwarze 1910:311).

It appears that turtles were an important supplement to the Cherokee
diet and utilized whenever available. These animals may have been most
often captured during the spring along with spawning suckers, in late
summer in drying ponds, or in the late fall-early winter period when
they could be found burrowed in mud, soft soil, or sand.
Birds

Bird remains formed only 3.52 percent of all recovered bone; of the total number of bird bone pieces, 221 were specifically identifiable and constituted only 0.66 percent of all elements. Based on the relative percentage of meat weights derived from all species, birds only contributed about 1 percent. Considering the contribution of birds to the subsistence of the Chota inhabitants, they were on the same low level as amphibians and the identifiable fish species.

Aquatic and semiaquatic species such as ducks, geese, loons, and grebes probably were eaten when available, and small numbers of these species were identified in the archaeological sample. Since East Tennessee is not on a major waterfowl flyway, however, the various species of ducks and geese in the immediate area were probably never overly abundant. The raptorial birds may all be grouped together for consideration of their role in Cherokee culture. Adair notes that "They reckon all birds of prey, and birds of night, to be unclean" (Williams 1930:137). Gilbert (1943:346) also mentions the Cherokee aversion to eating meat of predatory and nocturnal creatures because they were subject to the blood revenge of their victims. Owls were also avoided because they were supposed to be ghosts or spirits (Witthoft 1946a:180; Mooney 1900:495). The raptorial birds identified in the faunal sample were the red-shouldered hawk, great horned owl, and barred owl. These animals were killed but probably never eaten. Perhaps hawk and owl body parts were used in shamanistic activities at Chota.

The turkey contributed the bulk of the meat derived from birds. Feathers of this bird were also used for decoration and its flesh,
along with that derived from the deer and the raccoon, provided the basic meat staples in the diet of most prehistoric groups in eastern North America (Guilday, Parmalee, and Tanner 1962). Witthoft has recorded several techniques used by the Cherokee to capture wild turkeys (1946b: 377-378). One of these required a mask made to look like the face of a bobcat. Witthoft (1946b:377) maintains that a hunter using such a mask would be able to get a better shot at the animal, since it was believed that the turkey would not be startled by the face of a bobcat. Turkeys also were trapped, but the precise details of this technique are unknown (Witthoft 1946b). Associated with the turkey hunting was the use of turkey "calls": a bird bone tube was used to make a sound similar to a turkey call, or a slip of cane was inserted in a corncob and pulled across a piece of slate to imitate the turkey call (Witthoft 1946b:378). Considering the role of the turkey in the diet, medicine, and myths of the Cherokee, it was the most important native bird to Cherokee culture.

The only other bird which was as important as the turkey in the meat diet of the Cherokee was the domestic chicken. This introduced bird was accepted by the Cherokee sometime after 1740 (Gilbert 1943:360) and appears to have functioned in the same role as the turkey by providing an occasional but important supplement in the diet. Chickens would have required little care, being allowed to run loose and fend for themselves, and yet provide a constant food supplement. It is also interesting to note that the same butchering procedure was followed for both the chicken and turkey, indicating the application of aboriginal butchering techniques to a new animal. This in turn suggests that the introduction of the chicken caused no outwardly observable cultural
change. Chickens eventually replaced the turkey in Cherokee subsistence, due to the increased Euroamerican populations and excessive hunting pressures on the native species. Waterfowl, turkeys, and chickens comprised the bulk of the avian meat in the diet but were supplemented by the use of small passerines, which were hunted with a blowgun and made into stews; the most favored was the "snow bird" or junco (Laura King, 1975, personal communication).

Only one passenger pigeon bone was recovered at Chota, and this represents the only animal in the sample which is now extinct. This is unusual since the passenger pigeon was very abundant at the time of European contact, and Timberlake mentions the enjoyment of going out to collect pigeons at their night roost (Williams 1948:107). Taking squabs instead of the adults might explain the lack of bones: the immature bones would have softened with cooking and quite possibly they were eaten. A second possibility is that pigeons had little importance in the Cherokee food economy. All factors considered, it is very unusual that the seasonally numerous and easily captured passenger pigeon represents such a miniscule portion of the faunal sample.

Mammals

The archaeologically derived faunal sample includes several mammals which probably made little contribution to the diet; these are the bats, shrews, moles, and mice. In the case of most faunal studies, consideration would end with a note that these animals were probably intrusive in the site matrix. Bats may have roosted in Cherokee houses, but there is another factor to consider: the bat was an important
figure in the myth, "The Ball Game of the Birds and Animals" (Mooney 1900:286-287). According to this myth, parts of the bat were used as amulets on ball game rackets (Swanton 1946:675). This presents a possible explanation for the occurrence of bat remains at Chota. The Cherokee apparently did not distinguish different species of bats, but lumped them together using only one word for bats, with all species possessing similar powers.

Remains of insectivores (shrews, moles) are probably intrusive in the sample. Adair (Williams 1930:139) notes that the Indians "abhor moles so exceedingly, that they will not allow their children even to touch them, for fear of hurting their eyesight; reckoning it contagious." This must have been a common Indian reaction to the sightless mole, although the mole does appear in the mythology of the Cherokee, "How They Brought Back the Tobacco" (Mooney 1900:254) and "Why the Mole Lives Underground" (Mooney 1900:277-278). However, the possibility exists that moles may have been used sporadically in the Southeast for shamanistic activities or actually as food animals (Parmalee 1975). No mention is made of the shrew in Cherokee mythology.

The small rodent remains (mouse sp., deer/white-footed mouse sp., marsh rice rat, and eastern wood rat) identified in the faunal sample may also be considered intrusive in the archaeological sample. These small animals are not mentioned in the mythology of the Cherokee and, considering the natural abundance of deer-mice and the association of rice rats with human settlements (Guilday 1971b:12), the inclusion of their remains in the faunal sample is considered only incidental and should not be counted as a part of the projected Cherokee diet.
Opossums today are regarded as scavengers and are considered by many as unfit for consumption. However, among the Cherokee there appears to have been no social stigma attached to the animal as evidenced by the role of the animal in their mythology ("Why the Possum's Tail is Bare" [Mooney 1900:269-270], "The Rabbit and the Possum After a Wife" [Mooney 1900:273]) and in medicine to prevent frostbite (Mooney 1900:263). Opossum skins were dyed various colors and used as a hat (Grant 1925:156). Adair notes that some of the old Indians said that the opossum was unclean and unfit to eat, as was the hog, but indicates that it was eaten anyway. It is interesting that the name for the opossum was applied to the hog before a name was devised for the hog (Williams 1930:17). The ethnographic literature and the faunal sample (Table VII, p. 50) indicate that the opossum was only a minor part of the diet; however, it did function in the mythology, medicine, and to some extent the social attire of the historic Cherokee.

The rabbit, woodchuck, gray squirrel, and beaver can be considered not only as food sources, but also as contributing to other subsystems of Cherokee culture (see Chapter III). These animals would have provided supplemental food, skins, and bone for tools. The blowgun was apparently used in hunting rabbits and probably the gray squirrel (Williams 1948:71-72).

The raccoon represented an important food resource of many prehistoric peoples (Parmalee 1965; Guilday and Tanner 1962), but in the archaeological faunal sample from Chota it is, for some reason, underrepresented (three individuals) or else the raccoon provided only a very minor supplement to the diet. This animal is represented in
Che'rokee mythology (Mooney 1900) and was of significance in many other ways. It is suggested that the minor supplemental role played by the raccoon at Chota, as opposed to other sites in the prehistoric record, may be the result of historic culture change. The introduction of the gun and the fur trade led to increased hunting pressure on deer populations and possibly acquisition of firearms brought about increased bear hunting. The increased significance of the bear in the economy may have overshadowed the importance of raccoon in the diet, and perhaps less effort was expended in hunting or trapping it.

The gray fox, striped skunk, long-tailed weasel, and cougar may be grouped together for the purpose of discussion. Adair states:

They reckon all those animals to be unclean, that are either carnivorous, or live on nasty food; hogs, wolves, panthers, foxes, cats, mice, rats. And if we except the bear, they deem all beasts of prey unhallowed, and polluted food (Williams 1930:139).

The panther or cougar is only referred to in passing in mythology, but is discussed in relation to disease and medicine (Mooney 1900:246; Mooney and Olbrecht 1932:44-50). The gray fox "spirit" was invoked as a precaution for frostbite, but it is not mentioned in Cherokee folklore (Mooney 1900:263-264). It is considered as a supernatural animal and was feared (Laura King, 1975, personal communication). The striped skunk was important to the Cherokee in a unique manner:

The odor of the skunk is believed to keep off contagious diseases, and the scent bag is therefore taken out and hung over the doorway, a small hole being pierced in it in order that the contents may ooze out upon the timbers. At times, as in the smallpox epidemic of 1866, the entire body of the animal was thus hung up, and in some cases, as an additional safeguard, the meat was cooked and eaten and the oil rubbed over the skin of the person (Mooney 1900:265-266).
Thus the skunk would have contributed to the Cherokee "diet" only in a special medicinal capacity and would not have been a regular food item. The weasel is not mentioned in Cherokee mythology but its close relative, the mink, is discussed in relation to disease, medicine, and briefly in mythology. A partial skeleton, tentatively identified as weasel, was identified in the sample. The gray fox, striped skunk, long-tailed weasel, and cougar may also be removed from the list of animals utilized strictly as food, since they are known to have been used primarily in connection with disease prevention, medicine, and mythology, as well as in the realm of the supernatural.

Bears contributed a significant amount of meat to the total Cherokee diet (Table VII, p. 50), as well as providing fat and skins. The hides were used in the fur trade and personally for bed covering (DeVorsey 1971:110). Among many American Indian tribes, the bear was afforded great respect and reverence. It was ceremonially treated when killed, and after the animal was skinned and butchered, the remaining bones and skull were often carefully disposed of and none of the remains were given to the dogs (Hallowell 1926). Fragmented skulls and most of the bones of the bear skeleton were represented in the 702 bear bones identified in the Chota archaeological faunal sample. This follows a pattern observed in other historic site faunal samples. Guilday, Parmalee, and Tanner (1962:66) noted the trend toward more bear remains in historic site faunal samples than those in prehistoric sites. The cultural implications of this increase in bear remains at Chota is discussed in Chapter V. The bear was an important figure in the culture of the Cherokee, and it frequently occurred in their mythology (Mooney
1900). The bear plays an important role in the Cherokee myth dealing with the origin of disease and medicine in which an explanation is given as to why the bear is not asked for forgiveness after being killed (Mooney 1900:250). This myth may ultimately explain why there is no evidence for the ritual disposal of bear remains among the Cherokee: there was no fear of blood revenge from the bear. The story of the bear origin varies in Cherokee mythology (Mooney 1900:325-329, 472), but the usual version refers to a group of people leaving the tribe and going off into the forest to assume the form of the bear who helps provide food for the rest of the tribe in times of need.

Bones of the white-tailed deer were the most numerous elements identified in the faunal sample, and most of the unidentifiable mammal bones in the sample are also probably those of the white-tailed deer. Combining the unidentifiable bones with those identified as white-tailed deer indicates the importance of this animal in the Cherokee economy; there is little doubt that this animal accounted for the bulk of the meat in the diet (Table VII, p. 50). During the eighteenth century, deer skins became even more in demand because of the fur trade industry. For the Cherokee, the white-tailed deer provided a wide array of materials—meat, blood, brains, skin, marrow, bone, antler, sinew, and hooves. Deer skins were used for clothing, blankets, and a variety of other leather goods. Deer bones and antler were used for making tools, handles, and gaming pieces. The brains and marrow were eaten or used in processing hides, while sinew was used for bow strings and possibly sewing. Blood was cooked along with the meat. These practical uses of the deer are coupled with Cherokee mythology because the hunter
asked for forgiveness for killing the deer or said a "prayer" for the dead animal so he would not be struck with rheumatism. This ties the deer in with the Cherokee myth on the origin of disease, the deer's role in the origin of disease (Mooney 1900:250-252; Mooney and Olbrecht 1932:44-50).

There were 52 deer mandibles in the faunal sample which were complete enough to be aged, plus another 21 jaw fragments for which an estimated age was obtained. Table X shows the frequency of jaws per age category. The jaws were aged by using a set of mandibles of known age and aided by the criteria outlined by C. W. Servinghaus (1949). Age criteria are based on tooth eruption, replacement, and wear. Servinghaus' study, however, was done in New York and the archaeological sample is from East Tennessee. The type of vegetation eaten and the amount of grit and abrasives in the diet of the white-tailed deer differ from area to area, and thus the rate of tooth wear may differ. For the purposes of this study, however, it was assumed that the New York and East Tennessee areas are similar enough so that differences in vegetation would not create any major discrepancies in tooth wear. Chota deer ranged in age from about 2-1/2 to 4 months to 10 years, with the largest number of deer jaws falling within the 3-1/2-year age category (Table X). This suggests an exploitation of all age groups of deer which might be found in a wild population, without emphasizing the hunting of young or old individuals. Guilday (1971b:Figure 3) assumed, in aging his deer jaws, deer were born in May. Thus the deer aged 1, 2, and 3 years would have been summer kills and those aged 1-1/2 and 2-1/2 years would have been winter kills. Guilday (1971b:Figure 3)
TABLE X

Age Distribution of Deer Based on Mandibles from Chota-Tanasi

<table>
<thead>
<tr>
<th>Age Categories</th>
<th>Right Mandibles</th>
<th>Right Mandible Fragments</th>
<th>Left Mandibles</th>
<th>Left Mandible Fragments</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2½-4 mo.</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>6-7 mo.</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>7-9 mo.</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>16 mo.</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>17 mo.</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>17-18 mo.</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>18-19 mo.</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>19 mo.</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>19½-30 mo.</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2½ yr.</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>2½-3½ yr.</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>3½ yr.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>3½-4½ yr.</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>4½ yr.</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>4½-5½ yr.</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5½ yr.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>6½ yr.</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>7½ yr.</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8-10 yr.</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>10 yr.</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>11</td>
<td>30</td>
<td>10</td>
<td>73</td>
</tr>
</tbody>
</table>
determined by plotting winter and summer kills a higher frequency of winter kills of adult deer than summer kills for both adult and immature deer (less than 17 months). Using these criteria, the Chota adult deer (17 months old or older) sample represents 15 summer kills and 50 winter kills. The "winter"-killed deer represent 76.9 percent of the adult deer mandibles. Although the immature deer (less than 17 months old) sample is quite small (8), its pattern follows that of the adult deer—five "winter" kills (62.5 percent of immature deer). This trend appears to correlate with ethnographic accounts. Winter was the time of extended and frequent deer hunts by small groups, with hunting trips sometimes lasting for several months. The Chota data tend to bear this out, since 75 percent of the deer were probably killed during the winter months.

Elk were described as being plentiful when the first European arrived in East Tennessee, but their numbers steadily decreased until they were extirpated about the beginning of the nineteenth century (Kellog 1939:295-297). The Cherokee do not mention them in myths or folklore, but only refer to elk as "Great Deer" (Mooney 1900:263). This comment is in disagreement with the earlier listing of elk among those animals present in myths and legends (Table IV, p. 38). It is assumed, however, that the elk played only a minor or occasional part in the mythology of the Cherokee. The Chota data suggest that elk were seldom available, since only two individuals were represented in the sample (Tables VII and VIII, pp. 50 and 58). Despite the possible "Schlepp effect" in butchering and transportation of the meat as suggested by Daly (1969:149), the elk probably provided only an occasional supplement
to the Cherokee diet. Both deer and elk antler were used for implements by the Cherokee. Antler is readily recognized, but separating deer from elk is seldom possible when only small fragments and isolated tines are found. For this reason the archaeological antler has been listed as Cervidae in Tables VII (50-57) and VIII (58-65). The elk probably had much the same use in Cherokee culture as the bison, since Mooney (1900:469) says that the skins of both were used in the same manner.

The bison was once common in the Appalachian area, according to the accounts of early travelers in East Tennessee. James Needham remarked, upon visiting a Cherokee village, that "many hornes like bulls hornes lye upon theire dunghills" (Williams 1928:28). Timberlake noted while traveling on the Little Tennessee River that "there are likewise an incredible number of buffaloes" (Williams 1948:71). These sources show that bison were in the immediate area and that the early Cherokee were indeed hunting them. However, Kellog (1939:298) feels that "the number of buffalo in eastern Tennessee, judged from the records, was never very large." This suggests that bison never played more than an incidental or supplemental role in the Cherokee diet (Table VII). As mentioned previously, the bison occurred in Cherokee myths and was represented by a Cherokee dance, suggesting that the animal was more important in other cultural subsystems than as a significant food resource. Two proximal scapula fragments were the only remains from Chota which could be tentatively identified as bison. It must be emphasized that this is a conservative interpretation. Since it is extremely difficult to separate fragmentary bison remains from those of elk and particularly those of cow, bison may be underrepresented in the Chota sample.
Domestic animals were introduced among the Cherokee at different times. The horse was the first, arriving about 1740 but not becoming numerous until about 1760 (Gilbert 1943:360). This animal was used principally for transportation and was considered unclean and unfit for human consumption (Williams 1948:72). However, the Cherokee ate the horse during times of great distress (Williams 1948:66-67), and the few horse remains in the faunal sample may be from such animals. One feature (Feature 221, 40MR2) contained twelve horse elements from a right forelimb which appears to have been removed at the "elbow." The radius is cut on the lateral distal end, suggesting the animal may have been butchered and eaten.

The next domestic animal to arrive among the Cherokee was the hog, being introduced sometime between 1736 and 1743. Although the hog may have been considered unfit to eat (Williams 1930:137), Bartram suggests they were eaten (Squire 1853:47), while Adair notes that they were raised for the whites (Williams 1930:242). The faunal sample illustrates that the Cherokee, if not eating the hog, were at least butchering it. Although no elements showed evidence of butchering cuts, dismembering the hog is suggested by 162 scattered elements in the archaeological sample. If the hog was eaten, it was only eaten occasionally and then on a supplemental basis. Another explanation for the small number of hog bones at Chota is that hogs were butchered outside the village and the meat was salted down for winter use. This would significantly reduce the number of bones introduced into the faunal sample. It may be hypothesized that the butchering technique which the Cherokee used on hogs was the same pattern used for deer and larger game such as bison and elk.
When domestic cattle were introduced among the Cherokee is not firmly dated. The Cherokee probably knew about cattle as early as 1730 (Williams 1930:242) but did not acquire them until sometime after the horse was introduced in the 1740's (Gilbert 1943:360). Malone (1956:22) feels that the cattle were not kept by the Cherokee before about 1750 and were relatively uncommon in the following half-century. Perhaps the Cherokee did not keep cattle because cattle required regular attention and meant that crops had to be fenced. The cow is listed with bison in Table VII (p. 50) because of the difficulty in separating the two genera on the basis of incomplete or fragmentary remains. Cow may be present in the sample, but using the characters listed by Olsen (1960) for separating the postcranial remains of *Bos* and *Bison*, no element could be conclusively identified as cow. Much of the archaeological cow/bison material more closely approaches the shape and dimensions of bison than cow. It is also possible that some domestic cow elements might have entered the faunal sample from animals obtained by the Cherokee during raids on white settler farms in the immediate area.

The apparent relative scarcity of cattle remains in the faunal sample substantiates historic writings that indicate domestic stock, except for the horse, was uncommon or irregularly used during the first three-quarters of the eighteenth century. When they were used, it was probably to supplement wild game. As acculturation occurred and wild game gradually disappeared, domestic animals became more important in the diet, but were never very common.

There were two dog burials (articulated dog skeletons) recovered during the 1969 excavations at Chota (40MR2). Both were located in the
bottoms of pits, one in Feature 112 and the other in Feature 170 (Figures 5 and 6).

Dog Burial 1 from Feature 112 was stretched out along the wall of the pit. The skeleton was complete, articulated, and well preserved. However, examination of this specimen was difficult because the skeleton was removed "en bloc" for museum display. Thus, only elements of the left side and a few bones of the right were available for detailed examination (Figure 5); consequently, not all the measurements used in Table XI could be made. This dog was an old adult male. The costal cartilage was ossified and there was an area of exostosis along the point of contact between the radius and the ulna. The upper left canine was either broken and worn or considerably worn, since only a stub remained. The right dentition was not available for examination. The left mandibular first and second premolars were both missing and the alveoli completely reabsorbed. The right metatarsals were fused with excess bone growth, suggesting a broken and healed foot. The two tibia were bowed or posteriorly curved, suggesting either a possible dietary problem or a pathology associated with old age.

Dog Burial 2 (Figure 6) was completely removed from Feature 170 and was also a well preserved adult. The skull was laterally compressed in the region of the rostrum, apparently as a result of postdepositional compression rather than an injury sustained in life. The only pathology or anomaly noted was the absence of the lower right third molar; no alveolus was noted. All measurements except those affected by the compression of the rostrum were taken (Table XI).
Figure 5. Dog burial 1, Feature 112, Chota (40MR2).

Figure 6. Dog burial 2, Feature 170, Chota (40MR2).
Table XI

Measurements of Elements of Two Chota Dogs Compared with Those of Mississippian Dogs Presented by Haag (1946)

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Dog Burial 1</th>
<th>Dog Burial 2</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cranial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Occipital length</td>
<td>185.0</td>
<td>-</td>
<td>162.7</td>
<td>158.0-170.0</td>
</tr>
<tr>
<td>2. Basal length</td>
<td>-</td>
<td>-</td>
<td>145.5</td>
<td>138.0-153.0</td>
</tr>
<tr>
<td>3. Condylo-basal length</td>
<td>-</td>
<td>-</td>
<td>153.2</td>
<td>145.0-161.8</td>
</tr>
<tr>
<td>4. Palatal length</td>
<td>-</td>
<td>-</td>
<td>30.3</td>
<td>77.0- 83.7</td>
</tr>
<tr>
<td>5. Width of palate at M¹</td>
<td>-</td>
<td>-</td>
<td>56.5</td>
<td>53.0- 60.0</td>
</tr>
<tr>
<td>6. Width at canines</td>
<td>-</td>
<td>-</td>
<td>32.2</td>
<td>28.7- 34.5</td>
</tr>
<tr>
<td>7. Width at mastoids</td>
<td>-</td>
<td>66.5</td>
<td>61.4</td>
<td>54.3- 66.0</td>
</tr>
<tr>
<td>8. Width at occipital condyles</td>
<td>-</td>
<td>39.6</td>
<td>35.1</td>
<td>32.0- 39.0</td>
</tr>
<tr>
<td>9. Width of zygomatic arch</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10. Nasal length</td>
<td>40.9</td>
<td>-</td>
<td>59.2</td>
<td>53.8- 70.7</td>
</tr>
<tr>
<td>11. Occiput to nasion</td>
<td>122.5</td>
<td>-</td>
<td>92.8</td>
<td>84.8-100.5</td>
</tr>
<tr>
<td>12. Orbit to I¹ alveolus</td>
<td>79.3</td>
<td>-</td>
<td>67.1</td>
<td>52.0- 73.0</td>
</tr>
<tr>
<td>13. Supraorbital width</td>
<td>49.1</td>
<td>-</td>
<td>44.5</td>
<td>40.2- 49.0</td>
</tr>
<tr>
<td>14. Interorbital width</td>
<td>39.6</td>
<td>-</td>
<td>33.2</td>
<td>29.8- 36.3</td>
</tr>
<tr>
<td>15. Cranial height</td>
<td>-</td>
<td>-</td>
<td>55.9</td>
<td>53.0- 61.0</td>
</tr>
<tr>
<td>16. Least cranial width</td>
<td>39.3</td>
<td>38.8</td>
<td>34.3</td>
<td>31.7- 40.0</td>
</tr>
<tr>
<td>17. Maximum cranial width</td>
<td>-</td>
<td>62.6</td>
<td>57.0</td>
<td>52.5- 60.5</td>
</tr>
<tr>
<td>18. Meatus to alveolus I¹</td>
<td>138.4</td>
<td>-</td>
<td>131.5</td>
<td>126.0-138.0</td>
</tr>
<tr>
<td>19. Alveolus I¹ to M²</td>
<td>92.4</td>
<td>-</td>
<td>83.9</td>
<td>79.0- 87.0</td>
</tr>
<tr>
<td>20. Alveolus canine to M²</td>
<td>74.0</td>
<td>76.8</td>
<td>70.4</td>
<td>65.5- 76.0</td>
</tr>
<tr>
<td>21. Alveolus P¹ to M²</td>
<td>62.3</td>
<td>61.6</td>
<td>58.0</td>
<td>54.0- 63.0</td>
</tr>
<tr>
<td>22. Alveolus P² to M²</td>
<td>56.0</td>
<td>54.6</td>
<td>52.2</td>
<td>47.8- 56.1</td>
</tr>
<tr>
<td>23. Alveolus M¹ to M²</td>
<td>18.4</td>
<td>17.5</td>
<td>16.2</td>
<td>14.0- 17.9</td>
</tr>
<tr>
<td>24. Length of carnassial, P⁴</td>
<td>19.8</td>
<td>18.0</td>
<td>17.2</td>
<td>15.0- 18.5</td>
</tr>
<tr>
<td>Measurements</td>
<td>Dog Burial 1</td>
<td>Dog Burial 2</td>
<td>Mean Dogs</td>
<td>Range</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>25. C1 tip to alveolus</td>
<td></td>
<td>17.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. C1 height</td>
<td></td>
<td>38.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. C1 length at cingulum</td>
<td></td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. Length M1 at cingulum</td>
<td>13.8</td>
<td>13.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29. Width of M1 at cingulum</td>
<td></td>
<td>14.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Length M2 at cingulum</td>
<td>7.4</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Width of M2 at cingulum</td>
<td></td>
<td>9.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mandible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Alveolus I1 to M3</td>
<td>90.8</td>
<td>96.0</td>
<td>87.0</td>
<td>79.0-94.0</td>
</tr>
<tr>
<td>33. Alveolus canine to M3</td>
<td>88.0</td>
<td>89.4</td>
<td>81.4</td>
<td>74.5-88.2</td>
</tr>
<tr>
<td>34. Alveolus P1 to M3</td>
<td></td>
<td>70.8</td>
<td>67.6</td>
<td>61.9-74.7</td>
</tr>
<tr>
<td>35. Alveolus P2 to M3</td>
<td></td>
<td>65.8</td>
<td>63.8</td>
<td>56.7-71.5</td>
</tr>
<tr>
<td>36. Alveolus P3 to M3</td>
<td>56.3</td>
<td>57.2</td>
<td>54.1</td>
<td>48.5-61.0</td>
</tr>
<tr>
<td>37. Alveolus P4 to M3</td>
<td>44.6</td>
<td>46.0</td>
<td>43.8</td>
<td>39.2-48.8</td>
</tr>
<tr>
<td>38. Alveolus M1 to M3</td>
<td>33.6</td>
<td>35.3</td>
<td>32.6</td>
<td>29.0-37.0</td>
</tr>
<tr>
<td>39. C1 tip to alveolus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40. C1 height</td>
<td></td>
<td>36.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41. C1 length at cingulum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42. Length carniasal, M1</td>
<td>20.5</td>
<td>19.6</td>
<td>19.8</td>
<td>18.1-22.2</td>
</tr>
<tr>
<td>43. Width M1 at right angle to length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44. Length of M2</td>
<td>8.6</td>
<td>8.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45. Width M2 at right angle to length</td>
<td>8.7</td>
<td>6.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46. Length P4 (crown)</td>
<td>12.8</td>
<td>12.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47. Width P4 (crown)</td>
<td>6.1</td>
<td>5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48. Depth of jaw from alveolus of M1 to ventral margin</td>
<td>21.2</td>
<td>22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49. Thickness of jaw, ventral fo M1</td>
<td>10.95</td>
<td>11.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurements</td>
<td>Dog Burial 1</td>
<td>Dog Burial 2</td>
<td>Mean</td>
<td>Range</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>50. Condylo-symphysis length</td>
<td>-</td>
<td>-</td>
<td>117.7</td>
<td>109.0-133.0</td>
</tr>
<tr>
<td>51. Bicondylar width</td>
<td>-</td>
<td>-</td>
<td>79.6</td>
<td>72.0-89.0</td>
</tr>
<tr>
<td>52. Coronoid process-symphysis length</td>
<td>-</td>
<td>139.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>53. Angular process-symphysis length</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Humerus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54. Humerus, length</td>
<td>105.0</td>
<td>155.6</td>
<td>129.6</td>
<td>115.0-147.0</td>
</tr>
<tr>
<td>55. Diameter of head</td>
<td>-</td>
<td>40.8</td>
<td>35.4</td>
<td>31.7-39.9</td>
</tr>
<tr>
<td>56. Transverse diameter of head</td>
<td>-</td>
<td>25.7</td>
<td>26.8</td>
<td>24.0-31.5</td>
</tr>
<tr>
<td>57. Width of distal end</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>58. Length of medial condyle</td>
<td>-</td>
<td>24.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>59. Length of lateral condyle</td>
<td>-</td>
<td>20.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60. Height of trochlea</td>
<td>-</td>
<td>12.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61. Width of condyle</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62. Transverse diameter of head #2</td>
<td>-</td>
<td>27.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Radius</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63. Length of radius</td>
<td>95.9</td>
<td>169.5</td>
<td>133.0</td>
<td>120.0-147.0</td>
</tr>
<tr>
<td>Ulna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64. Ulnar length</td>
<td>126.7</td>
<td>206.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>65. Ulnar notch</td>
<td>-</td>
<td>178.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>66. Length of semilunar notch</td>
<td>-</td>
<td>20.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>67. Width of semilunar notch</td>
<td>-</td>
<td>18.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Femur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68. Femoral length</td>
<td>121.0</td>
<td>181.3</td>
<td>137.8</td>
<td>128.0-157.0</td>
</tr>
<tr>
<td>Measurements</td>
<td>Dog Burial 1</td>
<td>Dog Burial 2</td>
<td>Mississippian Dogs Mean</td>
<td>Range</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>69. Width of proximal end</td>
<td>-</td>
<td>37.9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70. Width of head</td>
<td>-</td>
<td>18.7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>71. Bicondylar width</td>
<td>-</td>
<td>33.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tibia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72. Tibial length</td>
<td>110.2</td>
<td>188.1</td>
<td>139.1</td>
<td>125.0-156.0</td>
</tr>
<tr>
<td>73. Length of proximal end</td>
<td>-</td>
<td>36.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>74. Width of proximal end</td>
<td>33.4</td>
<td>32.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>75. Length of distal end</td>
<td>-</td>
<td>17.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>76. Width of distal end</td>
<td>-</td>
<td>23.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Scapula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77. Height of glenoid fossa</td>
<td>-</td>
<td>18.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>78. Width of glenoid fossa (articular surface)</td>
<td>-</td>
<td>25.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>79. Head width</td>
<td>-</td>
<td>29.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Baculum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80. Baculum length</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>81. Baculum width</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Beginning with the work of Loomis (1912), various combinations of measurements have been used to quantify the size and shape of the dog skeleton. The largest set of measurements applied to a sample of skeletons was used by Opal Skaggs (1946); other authors have used some of her measurements while adding new ones as needed. The 44 measurements used by Haag (1948) have become an accepted and possibly standardized set for the metric description of the dog skeleton. However, Lawrence (1968) and Lawrence and Bossert (1967) added several other measurements and reintroduced indices for computing discriminate analysis of fragmentary canid materials. Gleeson (1970) supplemented Haag's set of measurements with 24 of his own, thus adding to the description of the postcranial skeleton. The additional measurements provided by Gleeson (1970) on the postcranial skeleton attempt to incorporate information which was formerly disregarded in most canid studies.

Haag's measurements are the basis for describing the Chota dog remains (Measurements 1-24, 32-38, 42, 50-51, 54-56, 63-65, 68, 72, 80-81). These are supplemented by Gleeson (1970) (Measurements 25-27, 39-41, 52-53, 57-62, 66-67, 69-70, 73-76). The measurements describing the lower fourth premolar and the first and second molar were adopted from Lawrence (1967) (Measurements 43-47). The measurement recording the depth of the jaw at the first molar was taken from Lawrence (1968); McMillan (1970); and Parmalee, Paloumpis, and Wilson (1972:42) (Measurement 48). Thickness of the jaw (Measurement 49) is borrowed from Lawrence (1967) and McMillan (1970). These measurements (48 and 49) are combined to give an indication of the massiveness of the lower jaw. Eight additional measurements, four dental and four postcranial, have been devised
to describe areas not covered by other regularly used measurements (Measurements 28-31, 71, 77-79).

Measurements of the two Chota dog skeletons are listed with the mean data for the sample of Mississippian dogs recorded by Haege (1948: 200-204). The skull measurements of the two Chota dogs compare closely with the means listed for the Mississippian dogs (Table XI). The limb measurements of Dog No. 2 are slightly longer than the Mississippian dogs. The length of the lower first molar of both Chota dogs was compared with the mean values Guilday (1971b:13) lists for two historic samples from Virginia and one historic sample from Pennsylvania. Again both dogs from Chota compared favorably, falling within the ranges for all three samples. Thus the two Chota dogs are similar osteologically to other dog skeletons found in the eastern United States from Mississippian times to the historic period.

Swanton (1946:251) makes a general statement concerning the position of the dog in southeastern aboriginal society:

The dog was utilized in hunting to a very limited extent. The flesh does not seem to have been a regular article of diet anywhere, but it was consumed at certain feasts of a social or ceremonial character.

The diet, social position, and general treatment of the dog in Indian society is aptly described by Guilday (1971b:12):

The dog, like the rice rat at the site, was dependent upon man for its existence. It would not have been able to survive as an independent carnivore. But because of its usefulness as a garbage scavenger, an "air raid siren," and food, it was preserved by the protection and the steady food supply of the Indian village and garbage dump.

Thus the lot of the dog was considerably different from the plush comfort it currently enjoys. Dogs appear to have been half-starved and
only about half-tame--a camp follower. The presence of dogs at Chota and the Chota dog's probable diet could introduce a bias into the faunal sample of the site (cf. Lyon 1970). The bone-devouring habit of dogs can be recognized and partially compensated for when interpreting a faunal sample. Some of the animal bones from Chota show tooth marks attributable to dogs. Contrary to some opinions, the bones ingested by dogs are not completely destroyed. The ingested bones and bone fragments sustain damage due to the digestive juices in the dog's stomach, but when ejected from the system they contribute something to the faunal sample, although certainly not identifiable bones. However, at this time it is impossible to quantify the effect of dog scavenging on the Chota faunal sample.
Butchering Patterns

Animals utilized for food are typically processed in a specific manner, forming a pattern. This processing pattern is divided into several subcategories—skinning; dismemberment, breaking or cutting bones at particular points; removal of meat; marrow and brain extraction; and skin processing. The part of this process most often preserved in the archaeological sample is limb dismemberment and bone-breaking patterns. Evidence for skinning processes also is occasionally preserved. These patterns show up in the faunal sample as the regular occurrence of specific bone fragments, regular positioning of butchering cuts on the bone, and certain cuts indicative of the skinning process.

The significance of different bone fragments and the position of butchering cuts or marks on bones was first emphasized by Theodore White (1952, 1953a, 1953b, 1954, 1955, 1956). He illustrated the quantity of information reflecting cultural behavior which could be gleaned from the patterns of the butchering cuts. This work began an important trend in the analysis of archaeological faunal remains. The equally important work on butchering patterns at the Eschelman site in Pennsylvania (Guilday, Parmalee, and Tanner 1962:63) defines butchering marks using two criteria:

1. repetition in specimen after specimen at precisely the same location on the bone; (2) there was some anatomically dictated reason why a particular mark should occur at any given spot.
It is important to realize the significance of repetitive butchering marks. If butchering behavior follows a regular pattern, then the faunal sample should show consistently repeated evidence reflecting the butchering process. Skinning cuts also are repeatedly made at the same location, differing from butchering cuts mainly in their anatomical position (Guilday, Parmalee, and Tanner 1962:63).

Mammals

Cut marks, interpreted as butchering evidence, were observed on the bones of nine different animals from Chota--deer, bear, cow/bison, woodchuck, horse, squirrel, raccoon, chicken, and turkey. However, deer bone formed the only sample large enough to show repetitive butchering cuts. The other animals were represented by only a few cut elements per species. Deer bone, supplemented by evidence from elements of other animals, suggests the same basic butchering pattern was followed for the deer, elk, bison, bear, and the raccoon. Elk, bison, and horse are probably underrepresented in the sample due to the possible method of handling large carcasses. These animals may have been butchered at the kill site and portions of the carcass, including most of the skeleton, the intestines, and any unusable portions, would have been discarded. Bones and fragments contained in the sample are those which were brought back to the village with the meat and skins--tarsals, carpals, metacarpals, metatarsals, phalanges, and limb bone fragments such as the distal humerus. This would bias the sample to a low frequency of large mammals.

The pattern for butchering deer at Chota is almost identical to that illustrated and described by Guilday, Parmalee, and Tanner (1962:}
72-79) at the Eschelman site. At Chota, deer butchering may be described as beginning at the head and progressing posteriorly. In this manner, each cut mark and its effect on the total butchering pattern can be considered.

Only one skull fragment, a frontal, shows removal of the antlers by chopping (Figure 7B). Two hyoid fragments and a ventral portion of the sphenoid show butchering cuts. One ascending ramus has butchering marks below the condyle on the posterior margin of the ramus. Cut marks on the sphenoid, hyoid, and ramus probably were made when the lower jaw and the tongue were removed. One atlas and one axis vertebra show cuts on the anterior ventral margin (Figure 7E), which would have served to disarticulate the skull from the rest of the carcass.

The front leg was partitioned into at least three pieces. Two scapula bear cuts across the neck, indicating that the scapula was cut away from the humerus. It is possible, however, to remove the scapula and front leg complex together without leaving butchering cuts on the bones. Cuts on the distal humerus at the lateral, posterior, and medial sides, facilitated separating the humerus from the radius/ulna and lower leg. Complementing the cuts on the distal humerus are two ulnae cut on the medial side of the semilunar notch. Two other ulnae bear cut marks across the head (Figure 7D), and one radius was cut on the proximal, lateral side. This series of cuts suggests that tendons at this joint were severed to separate the bones. There is no evidence to suggest that the front foot was separated from the radius/ulna. Cuts might have been made on the central and distal shaft of the metacarpal, however, during skinning or in the process of severing the foot from the meta-carpal; metapodials were occasionally left in the skin.
Figure 7. Butchering cuts (white-tailed deer). A. Left calcaneum with butchering cuts across the proximal lateral edge. B. Frontal illustrating the removal of antlers by cutting with a steel tool. C. First phalanges with several deep cut marks (skinning cuts?). D. Proximal left ulna with the head removed by a steel tool, with a cut across the shaft. E. Atlas vertebra showing butchering cuts across the anterior ventral margin.
The hind leg was partitioned in a manner similar to the foreleg. The pelvis was broken or chopped at various locations. One ischium fragment was chopped, one ilium cut, and numerous fragments of the acetabulum were recovered. Breaking the innominates from the vertebral column would free the whole hind limb from the carcass. An alternative to breaking the pelvis is to cut the head of the femur free from the socket, but only one femur fragment had butchering marks on the neck under the head. No evidence was found to indicate the separation of the distal end of the femur from the tibia, although this was probably an important point of disarticulation. The preliminary point of disarticulation of the hind limb probably was the "ankle joint." The disarticulation was accomplished by cutting between the distal end of the astragalus and the tarsal central plus four. Seven calcanea show cut marks at their proximal ends which probably resulted from severing the surrounding tendon and muscle (Figure 7A).

Of 131 astragali examined from Chota, 47 showed evidence of butchering marks (Table XII). Butchering cuts occurring on the lateral and posterior sides of the astragalus seem to be random cuts made during removal of the foot. Cuts across the medial side were made to sever the longitudinal ligament, the two short branches of the medial ligament, and the muscle tissue overlying the joint. Cutting these ligaments would serve to partially disarticulate the metatarsals and the foot. By bending the partially severed joint laterally, the medial tissues and ligaments, the lateral tissue, longitudinal ligament, and plantar ligament can be cut without leaving butchering cuts and thus freeing the lower section of the leg. A single metatarsal cut down the shaft, two
proximal first phalanges (Figure 7) cut across the dorsal surface, and
one second phalange cut across the dorsal surface form a complement of
skinning cuts, made during removal of the skin from the lower leg.

The thoracic portion of the animal, the rib cage and a section
of the vertebral column, were probably butchered in the following manner.
Several rib fragments have the head cut off or are cut just behind the
head on the dorsal surface. These cuts would have facilitated removing
the ribs as a segment. Cuts on the ventral margin of a lumbar vertebra
suggest that the vertebral column was divided into at least two sections.
Scored marks on this specimen also suggest that the whole hind section
of the animal was removed by disarticulating the vertebral column
between two lumbar vertebrae.

One bone in the sample is a butchering anomaly and is probably
a distal femur of an animal the size of an immature deer. The distal
epiphyseal has been sawed off. The sawed surface is flat and bears
parallel striations. This cut resulted from the use of European
butchering tools or is intrusive from a later time.

TABLE XII
Position of Butchering Cuts on
Deer Astragalii from Chota

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Cut</th>
<th>Medial</th>
<th>Lateral</th>
<th>Position of Cut</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>67</td>
<td>22</td>
<td>12</td>
<td>3</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Left</td>
<td>64</td>
<td>25</td>
<td>17</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>131</td>
<td>47</td>
<td>29</td>
<td>3</td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>
The butchering pattern of bear is similar to that used for deer. Only nine bear elements show cut marks. In one example the ascending ramus was cut to remove the lower jaw, while a distal humerus was recovered that had been cut anteriorly and posteriorly just above the condyles, either to sever the elbow or to remove the meat from the bone. One innominate was chopped on the interior surface between the acetabulum and the sacroiliac joint. The only cut hind leg element is a distal left tibia which exhibits butchering marks on the anterior and medial surfaces. One metapodial was chopped across the dorsal side and another was cut on the plantar surface, probably while skinning out the paw. Skull fragments indicate probable removal of the brains. These seven cut bones and the scattered skull fragments, although meager evidence, correspond to the butchering pattern described by Guilday, Parmalee, and Tanner (1962:65-68).

The cow/bison butchering pattern is represented by only two cut fragments, the proximal end of a first phalanges cut across the dorsal surface and a proximal femur fragment cut on the posterior side. These suggest butchering practices similar to those used for deer.

The sample contained only one horse element with a butchering cut; an ulna had been scored on the distal lateral side. This ulna was associated with other horse bones which formed an almost complete right lower front leg.

The woodchuck, squirrel, and raccoon are represented by only one element per species which exhibit cut marks. A woodchuck mandible is cut across the lateral side of the ascending ramus; the proximal humerus of a raccoon has been cut across the head; and a gray squirrel femur is cut around the neck.
The variety of elements from these five different mammals indicates that a similar butchering and skinning technique was followed. This pattern or technique was applied to each animal regardless of the size, and the method previously described in detail for disarticulating and butchering the deer best represents this pattern.

Birds

Elements of only two birds show butchering cuts, those of the turkey and chicken. One chicken radius is cut across the proximal end and one tibiotarsus is cut just above the condyles on the anterior distal side. These two cuts suggest removal of the feet and outer wing, elements which would have had little nutritional value.

Turkey bones show cuts similar to those of the chicken. Two carpometacarpals are cut at the proximal end on the ventral side. These cuts removed the outer wings which contain little meat. One sternum fragment shows cutting for the purpose of removing the breast muscles. The anterior side, distal end, or a tibiotarsus exhibits evidence of having been cut, probably to sever the tarsometatarsus and the foot. These cuts, except for those on the sternum, were necessary to prepare the bird for roasting, boiling, or baking.

Pathology and Anomaly

A faunal sample often contains elements that may be classified as pathologies or anomalies. A pathology is any condition expressed in the bone which is a result, either direct or indirect, of a particular disease or trauma. This limits anomalies to any departure from the regular morphology or arrangement of the skeletal element; e.g., the
occurrence of an entipicondylar foramen in bear. Seven elements, repre-
senting four species, were either pathological or anomalous (Figures 8
and 9). These include two bear bones, two chicken bones, two deer bones,
and one cow/bison bone.

The anomalous elements are a bear humerus (Figure 8A) and a deer
mandible (Figure 8C). The distal right humerus exhibits a partial enti-
condylar foramen which is not characteristic of bears in general. A
right mandible of the white-tailed deer is missing the first premolar.
There is no evidence of an alveolus or evidence for the reabsorption of
the alveolus, which suggests a congenital anomaly.

The pathological elements represent all four of the species
listed above. A right deer mandible (Figure 8B) is missing the second
premolar and shows possible reabsorption of the alveolus. The specimen
also is missing the first premolar but this is a post-mortem loss. A
bear metapodial (Figure 9A) is partially burned and shows possible dog
tooth marks; its dorsal surface shows slight bone restructuring and the
plantar surface exhibits extensive remodeling and bone growth. This
may be a result of trauma or remodeling due to advanced age. The lower
left, second? molar of a cow/bison shows additional bony growth on the
roots (Figure 9B). This growth may be hypercementosis related to strong
masticatory efforts, which resulted in increased stress on the tooth.
Compensatory mechanisms in this case appear to have been extra cementum
deposition.

Two chicken tibiotarsi show pathologies. One right tibiotarsus
(Figure 9C) was broken and then fused without the bone being set in a
correct anatomical position. This resulted in the formation of a crooked
Figure 8. A. Distal right bear humerus exhibiting an entepicondylar foramen. B. Right mandible of white-tailed deer showing a missing second premolar with reabsorbed alveolus. C. Mandible of white-tailed deer with a missing first premolar.
Figure 9. A. Burned bear metapodial showing excess bone growth possibly resulting from an old trauma, as well as tooth marks. B. Cow/bison lower left tooth exhibiting hypercementosis. C. Proximal right chicken tibiotarsus, broken and fused in altered position. D. Right chicken tibiotarsus with extra bone spur and bowing of the shaft.
tibiotarsus with a large spur or projection on the anterior edge. The second tibiotarsus (Figure 9D) is deformed and has a bone spur on the lateral distal margin. The shaft is bowed and shorter than normal, suggesting either dietary deficiency or some problem relating to the trauma.

Notation of pathologies in birds is quite rare in the literature. However, Tiemeier (1941) points out that pathologies among wild birds may be more common than formerly realized. He found 4.5 percent of the bird skeletons examined showed repaired bone injuries (Tiemeier 1941: 351). Thus, it should not be implied that the occurrence of repaired bird bone injuries would be uncommon in archaeological faunal samples. The occurrence of such injuries might be expected to be more common in domestic fowl which are tended and protected than in wild birds.

Bone Tools and Artifacts

Most bone artifacts recovered at Chota are either those fashioned from mammal bones or those consisting of drilled, cut, and polished fragments of box turtle carapace and plastron. Gleeson (1970: 100-101, 1971:77-78) describes some of the bone artifacts illustrated here. The deer skeleton provided much raw material for the manufacture of tools and artifacts. Specifically, the antlers (Figure 10) provided material for the manufacture of "drifts" or pins (Figure 10A-C) and especially handles for assorted tools. After historic contact, the tools consisted of iron objects (Figure 10D). Antler tines were also used for other undefined tasks which produced a smoothing of the distal ends (Figure 10E, F). One antler section is split in half along its
Figure 10. A-C. Small antler "drifts" or pins. D. Antler beam cut and modified as handle for iron tool. E. Modified antler tine. F. Modified antler tine with portion of the beam still attached.
entire length and the inner portion (cancellous portion) has been removed (Figure 11). The right tine is split in half at the base; it is tapered and ends just short of the point. The rest of the beam is split almost in half along its entire length. The function for this artifact is unknown; possibly it is unfinished. A similar fragment of elk antler was recovered from a Late Woodland period burial at the McDonald site (Burial 12, Mound A, 4ORH7) (Schroedl 1975, personal communication).

Additional bone artifacts include a European trade comb (Figure 12A), a possible Cherokee comb fragment (Figure 12B), an undecorated "bangle" (Figure 12C), and an incised "bangle fragment" (Figure 12E). These bone combs were probably used to hold the hair. Although the function of "bangles" is conjectural, they may have served a decorative function. Deer ulna awls like those found at Chota are a common artifact type occurring from the Archaic to historic times (Figure 13E). Four bone tube fragments were found at Chota (Figure 13A-D). Two of these have a series of short, finely incised marks covering the length of the outside (Figure 13A, B). The specimen illustrated in Figure 13B also has a series of larger notches near the smooth cut end (top). A third tube is nearly complete and is probably cut from a left deer humerus shaft (Figure 13C). This tube is cut and smoothed at the ends and both have small smoothed areas on the interior surfaces. This artifact also bears some irregular fine cuts on the exterior surface. The fourth bone tube is burned on one end, and one-fourth is missing, but it is polished and does not have the cuts running perpendicular to the shaft (Figure 13D). There is one cut circling the bone
Figure 11. A section of white-tailed deer antler which had been sectioned in half in a curving manner.
Figure 12. A. Fragment of a European bone trade comb. B. Fragment of a possible Cherokee comb. C. "Bangle" made from a mammal long bone fragment, undecorated. D. Antler "peach pit." E. "Bangle" fragment with incised decoration. F. Posterior portion of the plastron of a box turtle, drilled for possible use as a turtle shell rattle.
Figure 13. A. Bone tube fragment with notched decoration (40MR62). B. Bone tube fragment with two types of notching (1939 excavations). C. Bone tube fragment (left humerus shaft, cf. white-tailed deer, 40MR62). D. Bone tube fragment (1939 excavations) burned and highly polished. E. Awl manufactured from right ulna of white-tailed deer.
at each end and a few fine lines running the entire length of the bone, but not the regular series found on the first two tubes (Figure 13A, B). Both ends and the interior of this specimen are smoothed. The function of bone tubes is conjectural. Some ethnographic tribes used tubes in shamanistic activities such as sucking foreign objects out of the body. Witthoft (1946b:378) mentions a thick turkey bone tube used by Cherokee doctors to "blow certain medicines on the body and into the throat of a patient." The mammal bone tubes from Chota may have served a similar function.

Numerous drilled, cut, or polished box turtle carapace and plastron fragments were recovered (Figure 12F). Drilled specimens are perforated through the posterior half of the plastron or through the carapace at the neurals or the suture between the pleurals and the neurals. A thong probably was laced through the holes to close the rattle and attach it to the legs. The manufacture of a turtle rattle began by cleaning out the shell, drilling the required holes in the carapace and plastron, and replacing the plastron after pebbles were placed inside. Box turtle rattles were used in Cherokee dances by both men and women.

One small peach-pit-shaped antler object was found in the sample and is unlike any other bone artifact recovered from the site (Figure 12D). This small, flattened oval is tentatively identified as a piece of cervid antler. Ethnographic evidence suggests that this is indeed an imitation peach pit. The artifact closely resembles those illustrated by Culin for the Seneca (1907:113). Citing Lewis Morgan's *The League of the Iroquois* (1851), Culin indicates that the Seneca play a dice game
using peach stones (1907:114, Figure 118). Culin (1907:113) also notes that the Seneca played a game called "deer buttons," using elk horn disks about an inch in diameter that were rounded, polished, and slightly burned on one side to blacken them. The Cherokee played a similar game using a flat split-cane basket and colored butter beans (Culin 1907:105). This suggests the antler "peach pit" object from Chota may well represent a dice which the Cherokees used instead of butter beans or for another separate game.

Acculturation

Although acculturation has been defined in numerous ways, the definition offered by the Social Science Research Council will be used here:

Acculturation comprehends those phenomena which result when groups of individuals having different cultures come into continuous firsthand contact, with subsequent changes in the original culture patterns of either or both groups (Redfield, Linton, and Herskovits 1936:149).

Herskovits (1941:6) points out several problems which must be considered when using this definition. Initial contact is seldom made by a "group of individuals" but rather by a single individual or one made indirectly through trade and interaction with groups with "first-hand contact." Furthermore, the initial stages of culture contact are usually sporadic rather than continuous.

Linton (1940:501) suggests two types of culture contact, directed and nondirected. These two concepts were expanded and more clearly defined by Spicer (1961). Nondirected culture contact is described as:

Interaction between members of the different societies... but there is not control of one society's members by the
other. Hence the effective influence of the interests, sanctions, and values of each culture is confined to a single society (Spicer 1961:520).

Spicer defines directed contact as:

Interaction in specific roles between members of two different societies and effective control of some type and degree by members of one society over the members of the other (1961:520).

Associated with acculturation and culture contact is the concept of force. Beals represents force as including:

Not only overt naked force but pressures resulting from deprivations, introduction of compelling new goals, or psychological pressures arising from sentiments of inferiority and superiority (1953:627).

The above definitions set the stage for examining acculturation in an archaeological setting; the faunal data recovered from archaeological excavations at Chota-Tanasi provide an excellent opportunity for examining culture contact from a period of nondirected contact to a period of directed contact. The Cherokee occupation at Chota spans this transition and the faunal data might possibly reflect the culture change which occurred. However, due to the inability to closely date any of the features to a given time, the faunal data only reflect the total range of animals utilized during the occupation of Chota.

Acculturation has been defined as a cultural process, and it is a generally accepted theory that cultural processes are reflected in the archaeological record (Binford 1968:14-16). It follows that evidence of acculturation and its effects should appear in the faunal data of any native American group which came in contact with Europeans. Culture contact and the effects of this contact should be reflected by the relative percentages of animals present in the faunal assemblage, the
species present, butchering patterns, and indirectly by the tools adopted by the group such as metal kettles and utensils, steel knives, axes, and guns.

Contact between Europeans and the Cherokees began in the late seventeenth and early eighteenth centuries. This first contact was with traders and trappers and was nondirected. With the formation of the Carolina colonies, contact increased but remained sporadic. Increased interaction began in 1730 when Sir Alexander Cummings visited the Cherokee and took seven Cherokees back with him to England. Contact steadily increased and for the most part remained friendly until 1759. At this time relations between the Europeans and the Cherokees broke and by 1760 they were at war. After 1760, contact became more directed and increased force was used to influence Cherokee culture change until, by the 1820's, the transformation and degree of acculturation was very advanced (Swanton 1952:221-222).

During early European contact, iron tools were traded to the Cherokees. Closely following the introduction of such iron tools as the ax and the knife came the rifle; this probably occurred between 1700 and 1710 (Gilbert 1943:360). Closely associated with the introduction of iron tools was the acquisition of domestic animals such as the pig, chicken, and the horse, and eventually domestic cattle. Iron tools quickly replaced stone tools. Iron knives were undoubtedly more efficient in meat processing and butchering animals than stone tools, but their use apparently made no difference in the butchering patterns followed. The butchering pattern at Chota shows no deviation from the basic patterns found in prehistoric samples (Guilday and Tanner 1962;
Parmalee 1965). The gun was readily accepted and quickly replaced the bow and arrow. The gun had a dramatic effect on several areas of Cherokee culture including those of warfare, hunting, and trade. During prehistoric times the bear was not considered an important food resource. However, by the historic period there was:

... a relative increase in the number of bear remains in historic as opposed to prehistoric sites in Illinois and Wisconsin. The same situation appears to hold in Pennsylvania sites as well (Guilday, Parmalee, and Tanner 1962:66).

Table VII (p. 50) illustrates the relative position of the bear in the Cherokee economy at Chota. The bear was second only to white-tailed deer in relative importance. This increased importance of bear in historic sites as opposed to prehistoric sites may be attributed to the increased killing power of the gun and the demands of the fur trade. The gun also would have facilitated more efficient killing of elk and bison. Introduction of the horse also provided a more efficient means of transporting large amounts of meat and hides to camp and permitted hunting parties to exploit larger and more distant areas.

Although the first introductions of domestic stock included the pig, chicken, and the horse, with the cow coming in at a later date, there is no mention of sheep or goats being introduced during the first half of the eighteenth century. The chicken appears to have been well received and almost immediately assimilated. Adair noted chicken coops among the Indians of eastern North America in the mid-1700's (Williams 1930:443). This suggests that the Cherokee may have created a new type of structure or modified an existing structure (e.g. a corncrib) for the purpose of housing chickens. The butchering evidence for the chicken, although meager, corresponds to that found for the turkey,
suggesting that traditional butchering patterns were applied to new animals. The chicken also provided a source of eggs, and they were probably utilized as were native bird eggs. Although ranking second to the turkey in number of remains (Table VII, p. 50), chicken meat formed only a very small part of the diet. Despite this, the chicken may have been more important than the available faunal material indicates. The Cherokee eventually assimilated this bird in a "chicken dance" (Table III, p. 37).

Gilbert feels that hogs probably were brought to the Cherokee around 1740 or shortly thereafter (1943:360). Adair (1930:137) notes that the Indians considered hogs unfit to eat and that:

Their women and children are now above taking the trouble to raise hogs for the ugly white people If any do--they are forced to feed them in small pens or enclosures, through all the crop season, and chiefly on long pursly, and other wholesome weeds . . . (Williams 1930:242).

This quote illustrates the fact that hogs were sold or traded to the Europeans and that special care was given the animals. In contrast to Adair, Bartram notes:

Their animal food consists chiefly of venison, bear's flesh, turkeys, hares, wild fowl, and domestic poultry; and also domestic kine as beeves goats and swine--never horses flesh (Squire 1853:47).

By the time Bartram wrote this (1789), goats and cattle had been introduced and hogs were being eaten. Although traded to Europeans and kept in pens or fences, hogs apparently were not an important food resource among the Cherokee of Chota. The few hog bones recovered show no evidence of butchering, although it is likely that hogs were butchered in a similar manner to that used for larger game animals.
There is no exact date known when cattle were accepted by the Cherokee. Although the Cherokee were aware of cattle through contact with white settlers, they seem to have been reluctant to adopt the animal. Adair comments: "Some of the natives are grown fond of horned cattle...but most decline them, because the fields are not regularly fenced" (Williams 1930:242). The Cherokee also felt that salt preservation was more effective with pork than with beef (Malone 1956:22). Thus the cow was not important during the nondirected period of culture contact, and it was accepted only after directed contact and considerable force had been exerted on the Cherokee. The only reference to sheep having been given to the Cherokee is in the Virginia treaty of Long Island, July 10, 1777:

Article 5th...the said Commissioners agree in behalf of the Commonwealth, to give the said Cherokees two hundred Cows and One hundred Sheep... (Lacy 1969:28-29).

The horse, the major means of transport at the time, was probably introduced sometime around 1740 but it only became numerous after 1760 (Malone 1956:22). The Cherokee generally had an aversion to eating horse's flesh (Williams 1948:66). However, Timberlake noted:

...the lower towns had been greatly distressed when attacked by Colonel Montgomery [June 1760] being obliged to live many months upon horse-flesh, and roots out of the woods... (Williams 1948:66-67).

Their horses had been well cared for and provided a good source of meat (Williams 1930:242). Considering increased number of horses among the Cherokee after ca. 1760, it is interesting that Bloom (1942:332) suggests: "Probably the horse and the cow played only an incidental role in Cherokee economy for more than a century." The horse was only sparsely represented in the faunal sample at Chota and, as mentioned
before, only one element exhibited a butchering cut. This tends to confirm the distaste for horse meat but the willingness to eat one in times of need. The introduction of the horse would have brought about changes in modes of transportation and would have required the Cherokee to learn how to care for the animal. The horse also would have improved Cherokee mobility and increased potential contact with both Europeans and other Indian groups. Bloom (1942:332) notes that the horse never was included in mythology.

Because of increasing conflict with white settlers, increasing pressure from the demands of the fur trade, and population decreases from war, pestilence, and inbreeding with Europeans, the structure of the Cherokee society began to falter. After 1760, many treaties, wars, and white settlers forced the Cherokee to abandon much of their former land. Fogelson and Kutsche (1961:98) note that after the war in 1792 the Cherokee embarked on a path of conscious acculturation. During the later part of the eighteenth century many Cherokee rituals, belief systems, and older cultural ways fell into disuse and were forgotten and lost. It was at this time that settlement patterns changed, domestic stock replaced much of the wild food, and the Cherokee became sedentary farmers (Fogelson and Kutsche 1961:98-99).

The study of acculturation from archaeologically derived faunal material promises to be an important source of information on culture process. By close dating of archaeological features, it may be possible to recover information about the role of animals in native American cultures and the associated patterns of cultural behavior. Application of acculturation studies need not be restricted to the context of
Indian-European contact, but can be applicable to any culture contact situation for which there is a preserved archaeological record.

Summary and Conclusions

This study involved the identification and analysis of the faunal sample recovered from excavations at Chota-Tanasi (40MR2-40MR62), Monroe County, in East Tennessee, during the years 1969-1973. A total of 33,385 pieces of bone was recovered and examined; the bulk of the bone was mammal, most of which is referable to white-tailed deer. A total of 57 species was identified from the sample; specifically identifiable bone constituted 18.97 percent of the total. Using ethno-graphic data for the Cherokee, the animals were viewed in terms of their cultural roles and their potential contribution, if any, to the diet. A reconstruction of the total diet was impossible because the botanical materials from the site have not yet been analyzed.

Another goal of this study was to examine the possible influence European trade items such as guns and iron tools had on Cherokee hunting and butchering patterns. The large number of bear remains in the site, as opposed to most prehistoric sites in the area, may have been due to the introduction of the rifle and more efficient hunting. Associated with the study of acculturation was the influence domestic animals had on the Cherokee economy. Steel knives probably increased butchering efficiency, but apparently had no effect on butchering techniques. The minor role of the domestic animals is evident in the Chota faunal sample but their gradual replacement of the wild animals is only documented in the ethnohistorical literature. This study illustrates the fact that
deer and bear were the basic meat staples in the Cherokee diet at Chota, with all other species being supplementary.

The Chota faunal analysis is impossible to relate to other Cherokee subsistence studies because similar data are unavailable from sites in East Tennessee. Hopefully, however, this study will serve to illustrate the importance of faunal analyses in helping solve problems involving Cherokee subsistence.

Recommendations for Future Research

Lawrence (1973) has suggested that the methodology of zooarchaeology needs to be refined and standardized to facilitate the comparison of results. Data sorting and retrieval could be facilitated by recording standardized attributes on IBM computer cards. Not only would this aid in standardizing recording techniques, but also save enormous time quantifying data. Computerization of faunal samples would permit multiple statistical manipulations, mapping, and other transformations of the data which are time consuming and tedious by conventional means. Rapid comparison of faunal samples from different sites could be easily made. Also, computerization would help eliminate possible human error in calculations. This is not a recommendation to computerize because it is the "thing" to do, but merely a suggestion that computer use can be a valuable technique for quantifying data and saving time. The Chota faunal data from the 1969-1973 excavations are currently being computerized and will be combined with the computer-coded faunal material from the 1974 Chota excavations.

Zooarchaeologists need to closely evaluate the methods used to determine minimum number of individuals, relative frequency of species,
and the relative importance of a species based on contributed meat weights. Are these techniques really the most effective means by which to illustrate the data and to derive the maximum information from faunal remains? What do the numbers mean in the end and what are the cultural implications of these data? Reevaluating the concepts of diet and animal utilization might help resolve these problems.

Several other studies need to be included along with faunal analysis to round out the reconstruction of the diet; among these are mollusk (gastropods and pelyceps) and paleobotanical analysis. The reconstruction of any diet will not be complete without these analyses. When domestic animals are included in a faunal sample, a closer estimation of age and sex should be attempted if the preservation of the materials warrants study. This might provide a possible insight into the use to which the stock was put; economic factors such as wool, milk, breeding (older individuals), or subsistence (higher percentage of younger individuals) could be investigated.

Ideally, additional excavation and faunal analysis from sites preferably in the Little Tennessee River Valley should be done to isolate specific periods of Cherokee culture. This would allow a more precise examination of Cherokee subsistence prior to European contact and provide an opportunity to study the effects of European trade goods and domestic stock on the economy of the Cherokee through time. Additional material and data would better illustrate the effects of acculturation on diet, economy, and social values than is thus far possible using only the Chota faunal remains. Such a study would require a long-term project and the cooperation of several institutions
to bring together different archaeological samples and provide ancillary studies of mollusks and botanical remains. In conjunction with such a project, an ethnozoological study of the Cherokee should be undertaken. An ethnozoological study would fill a large gap in the ethnographic literature and at the same time provide useful ethnographic analogies for faunal analysis. These two studies would serve to complement each other and would be a unique project uniting archaeological and cultural evidence for examining Cherokee acculturation.
REFERENCES CITED
REFERENCES CITED

Auffenberg, W. and W. W. Milstead

Beals, R.

Binford, L. R.

Blair, W. F.

Bloom, L.

Bökönyi, S.

Braun, E. Lucy

Casteel, R. W.

Chaplin, R. E.

Cleland, C. E.

Cockran, D. H.
Crane, V. W.

Culin, S.

Daly, P.

DeVorsey, L., Jr.

Dice, L. R.

Dodge, W. S.

Eardley, A. J.

Fenneman, N. M.

Fogelson, R. D. and P. Kutsche

Frey, D. G.

Gearing, F.
Gilbert, W. H., Jr.

Gleeson, P.

Grant, L.

Grayson, D. K.

Guilday, J. E.

n.d. Animal remains from various late prehistoric Indian sites along the Cumberland River, Stewart County, Tennessee. Ms. submitted to A. K. Guthe, University of Tennessee, Knoxville, 1962.

Guilday, J. E., P. W. Parmalee, and D. P. Tanner

Guilday, J. E. and D. P. Tanner

Haag, W. G.
Hallowell, A. I.

Handley, C. O., Jr.

Herskovits, M. J.

Hubbard, J. P.

Hulbert, A. B. and W. N. Schwarze

Jopson, H. G. M.

Kellog, R.

Krantz, G. S.

Küchler, A. W.
Lacy, E. R. (ed.)
1969 Antebellum Tennessee: a documentary history. The Over-
mountain Press, Johnson City, Tennessee.

Lawrence, B.
1967 Early domestic dogs. Sonderdruck aus Zeitschrift fur
1968 Antiquity of large dogs in North America. Tebiwa 11(2):
43-49.
1973 Problems in the inter-site comparison of faunal remains.
In Domestikationsforschung und Geschichte der Haustiere,
edited by Janos Matolcsi, pp. 397-402.

Lawrence, B. and W. H. Bossert
1967 Multiple character analysis of Canis lupus, latrans, and
familiaris, with a discussion of the relationships of Canis

Lewis, T. M. N. and M. Kneberg
1946 Hiwassee Island: an archaeological account of four Tennessee
Indian peoples. University of Tennessee Press, Knoxville.
1955 The first Tennesseeeans. University of Tennessee Department
of Anthropology, Knoxville.

Linton, R.
1940 Acculturation in seven American Indian tribes. D. Appleton-

Loomis, F. B.
1912 On the shell heaps of Maine. The American Journal of Science,
Fourth Series 34:17-42.

Lyon, P. J.

Malone, H. T.
1956 Cherokee of the Old South. University of Georgia Press,
Athens.

McArdle, J. E.
1974 A numerical (computerized) method for quantifying zooarchaeo-
logical comparisons. M.S. thesis, Department of Geology,
University of Illinois, Chicago.

McMillan, R. B.
1970 Early canid burial from the Western Ozark Highland. Science
167:1246-1247.
Miller, R. R.

Mooney, J.

Mooney, J. and F. Olbrecht

Munson, P. J.

Olsen, S. J.

Parmalee, P. W.

1965 The food economy of Archaic and Woodland peoples at the Tick Creek Cave site, Missouri. Missouri Archaeologist 27(1): 1-34.

Parmalee, P. W., A. A. Paloumpis, and N. Wilson

Perkins, D., Jr.

Redfield, R., R. Linton, and M. J. Herskovits

Richards, H. G. and S. Judson

Robison, N. D.
n.d. A preliminary report on the vertebrate remains from Fort Southwest Point, Roane County, Tennessee. Unpublished ms. on file at University of Tennessee Department of Anthropology, Knoxville.
Robison, N. D. and A. E. Bogan

Ross, H. H.

Ross, R. D.

Rostlund, E.

Schroedl, G. F.

Schwarze, Rev. E.

Selander, R. K.

Severinhaus, C. W.

Shelford, V. E.
Skaggs, Opal

Smith, P. W.

Spicer, E. H.

Squire, E. G.

Swanton, J. R.

Tennessee Valley Authority

Thomas, C.

Thornbury, W. D.

Tiemeier, O. W.

White, T. E.

Williams, S. C.

Wing, E. S.

Withoft, J.

Ziegler, A. C.
1973 Inference from prehistoric faunal remains. *Addison-Wesley Module in Anthropology* 43. Reading, Massachusetts.
APPENDIX
APPENDIX

VERTEBRATES OF EAST TENNESSEE AND THE GREAT SMOKY MOUNTAINS NATIONAL PARK

Mammals

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Didelphidae</td>
<td>Didelphis marsupialis</td>
<td>Opossum</td>
</tr>
<tr>
<td>Soricidae</td>
<td>Sorex cinereus</td>
<td>Masked shrew</td>
</tr>
<tr>
<td></td>
<td>Sorex longirostris</td>
<td>Southeastern shrew</td>
</tr>
<tr>
<td></td>
<td>Sorex palustris</td>
<td>Water shrew</td>
</tr>
<tr>
<td></td>
<td>Sorex fumeus</td>
<td>Smoky shrew</td>
</tr>
<tr>
<td></td>
<td>Sorex dierar</td>
<td>Long-tailed shrew</td>
</tr>
<tr>
<td></td>
<td>Microsorex hoyi</td>
<td>Pygmy shrew</td>
</tr>
<tr>
<td></td>
<td>Blarina brevicauda</td>
<td>Short-tailed shrew</td>
</tr>
<tr>
<td></td>
<td>Cryptotis parva</td>
<td>Least shrew</td>
</tr>
<tr>
<td>Talpidae</td>
<td>Parascalops breweri</td>
<td>Hairy-tailed mole</td>
</tr>
<tr>
<td></td>
<td>Scalopus aquaticus</td>
<td>Eastern mole</td>
</tr>
<tr>
<td></td>
<td>Condylura cristata</td>
<td>Star-nosed mole</td>
</tr>
<tr>
<td>Vespertilionidae</td>
<td>Myotis lucifugus</td>
<td>Little brown bat</td>
</tr>
<tr>
<td></td>
<td>Myotis keenii</td>
<td>Keen's myotis</td>
</tr>
<tr>
<td></td>
<td>Myotis sodalis</td>
<td>Indiana myotis</td>
</tr>
<tr>
<td></td>
<td>Lasionycteris noctivagans</td>
<td>Silver-haired bat</td>
</tr>
<tr>
<td></td>
<td>Pipistrellus subflavus</td>
<td>Eastern pipistrelle</td>
</tr>
<tr>
<td></td>
<td>Eptesicus fuscus</td>
<td>Big brown bat</td>
</tr>
<tr>
<td></td>
<td>Lasiurus borealis</td>
<td>Red bat</td>
</tr>
<tr>
<td>Leporidae</td>
<td>Sylvilagus floridanus</td>
<td>Eastern cottontail</td>
</tr>
<tr>
<td></td>
<td>Sylvilagus transitionalis</td>
<td>New England cottontail</td>
</tr>
<tr>
<td>Sciuridae</td>
<td>Tamias striatus</td>
<td>Eastern chipmunk</td>
</tr>
<tr>
<td></td>
<td>Marmota monax</td>
<td>Woodchuck</td>
</tr>
<tr>
<td></td>
<td>Sciurus carolinensis</td>
<td>Gray squirrel</td>
</tr>
<tr>
<td></td>
<td>Sciurus niger</td>
<td>Fox squirrel</td>
</tr>
<tr>
<td></td>
<td>Tamiasciurus hudsonicus</td>
<td>Red squirrel</td>
</tr>
<tr>
<td></td>
<td>Glaucomys volans</td>
<td>Southern flying squirrel</td>
</tr>
<tr>
<td></td>
<td>Glaucomys sabrinus</td>
<td>Northern flying squirrel</td>
</tr>
</tbody>
</table>

139
<table>
<thead>
<tr>
<th>Order</th>
<th>Species</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Castoridae</td>
<td>Castor canadensis</td>
<td>Beaver</td>
</tr>
<tr>
<td>Cricetidae</td>
<td>Oryzomys palustris</td>
<td>Marsh rice rat</td>
</tr>
<tr>
<td></td>
<td>Reithrodontomys humulis</td>
<td>Eastern harvest mouse</td>
</tr>
<tr>
<td></td>
<td>Peromyscus maniculatus</td>
<td>Deer mouse</td>
</tr>
<tr>
<td></td>
<td>Peromyscus leucopus</td>
<td>White-footed mouse</td>
</tr>
<tr>
<td></td>
<td>Peromyscus gossypinus</td>
<td>Cotton mouse</td>
</tr>
<tr>
<td></td>
<td>Peromyscus nuttalli</td>
<td>Golden mouse</td>
</tr>
<tr>
<td></td>
<td>Sigmodon hispidus</td>
<td>Hispid cotton rat</td>
</tr>
<tr>
<td></td>
<td>Neotoma floridana</td>
<td>Eastern wood rat</td>
</tr>
<tr>
<td></td>
<td>Clethrionomyomys gapperi</td>
<td>Red-backed vole</td>
</tr>
<tr>
<td></td>
<td>Microtus pennsylvanicus</td>
<td>Meadow vole</td>
</tr>
<tr>
<td></td>
<td>Microtus ochrogaster</td>
<td>Prairie vole</td>
</tr>
<tr>
<td></td>
<td>Microtus pinetorum</td>
<td>Pine vole</td>
</tr>
<tr>
<td></td>
<td>Microtus chrotorrhinus carolinensis</td>
<td>Yellow-nosed vole</td>
</tr>
<tr>
<td></td>
<td>Ondatra zibethica</td>
<td>Moukrat</td>
</tr>
<tr>
<td></td>
<td>Synaptomyos cooperi</td>
<td>Southern bog lemming</td>
</tr>
<tr>
<td>Muridae</td>
<td>Rattus norvegicus</td>
<td>Brown rat (introduced)</td>
</tr>
<tr>
<td></td>
<td>Rattus rattus</td>
<td>Black rat (introduced)</td>
</tr>
<tr>
<td></td>
<td>Mus musculus</td>
<td>House mouse (introduced)</td>
</tr>
<tr>
<td>Zapodidae</td>
<td>Zapus hudsonicus</td>
<td>Meadow jumping mouse</td>
</tr>
<tr>
<td></td>
<td>Napaeozapus insignis</td>
<td>Woodland jumping mouse</td>
</tr>
<tr>
<td>Erethizontidae</td>
<td>Erethizon dorsatum</td>
<td>Porcupine (extirpated)</td>
</tr>
<tr>
<td>Canidae</td>
<td>Canis lupus</td>
<td>Gray wolf (extirpated)</td>
</tr>
<tr>
<td></td>
<td>Canis familiaris</td>
<td>Dog</td>
</tr>
<tr>
<td></td>
<td>Vulpes fulva</td>
<td>Red fox</td>
</tr>
<tr>
<td></td>
<td>Urocyon cinereogargenteus</td>
<td>Gray fox</td>
</tr>
<tr>
<td>Ursidae</td>
<td>Ursus americanus</td>
<td>Black bear</td>
</tr>
<tr>
<td>Procyonidae</td>
<td>Procyon lotor</td>
<td>Raccoon</td>
</tr>
<tr>
<td>Mustelidae</td>
<td>Martes pennanti</td>
<td>Fisher (extirpated)</td>
</tr>
<tr>
<td></td>
<td>Mustela frenata</td>
<td>Long-tailed weasel</td>
</tr>
<tr>
<td></td>
<td>Mustela vison</td>
<td>Mink</td>
</tr>
<tr>
<td></td>
<td>Spilogale putorius</td>
<td>Spotted skunk</td>
</tr>
<tr>
<td></td>
<td>Mephitis mephitis</td>
<td>Striped skunk</td>
</tr>
<tr>
<td></td>
<td>Lutra canadensis</td>
<td>River otter (extirpated)</td>
</tr>
</tbody>
</table>
Felidae
Felis concolor
Lynx rufus
Cougar (mountain lion) (extirpated)
Bobcat

Suidae
Sus scrofa
Domestic pig/wild boar (introduced)

Cervidae
Cervus canadensis
Odocoileus virginianus
Elk (wapiti) (extirpated)
White-tailed deer

Bovidae
Bison bison
Bos taurus
Capra hircus
Ovis aries
Bison (extirpated)
Domestic cow (introduced)
Domestic goat (introduced)
Domestic sheep (introduced)

Equidae
Equus caballus
Horse (introduced)

Birds

Gaviidae
Gavia immer
Common loon

Podicipedidae
Podiceps auritus
Podilymbus podiceps
Horned grebe
Pied-billed grebe

Phalacrocoracidae
Phalacrocorax auritus
Double-crested cormorant

Ardeidae
Ardea herodias
Butopteryx virescens
Florida caerulea
Casmerodius albus
Nycticorax nycticorax
Nyctanassa violacea
Ixobrychus exilis
Botaurus lentiginosus
Great blue heron
Green heron
Little blue heron
Common egret
Black-crowned night heron
Yellow-crowned night heron
Least bittern
American bittern
Anatidae

Olor columbianus Whistling swan
Branta canadensis Canada goose
Anas platyrhynchos Mallard
Anas rubripes Black duck
Anas strepera Gadwall
Anas acuta Pintail
Anas crecca Green-winged teal
Anas discores Blue-winged teal
Anas americana American wigeon
Anas clypeata Shoveler
Aix sponsa Wood duck
Aythya americana Redhead
Aythya collaris Ring-necked duck
Aythya valisineria Canvasback
Aythya marila Greater scaup
Aythya affinis Lesser scaup
Bucephala clangula Common goldeneye
Bucephala albeola Bufflehead
Clangula hyemalis Oldsquaw
Melanitta deglandi White-winged scoter
Oxyura jamaicensis Ruddy duck
Lophodytes cucullatus Hooded merganser
Mergus merganser Common merganser
Mergus serrator Red-breasted merganser

Cathatidae

Cathartes aura Turkey vulture
Coragyps atratus Black vulture

Accipiteridae

Accipiter striatus Sharp-shinned hawk
Accipiter cooperi Cooper’s hawk
Buteo jamaicensis Red-tailed hawk
Buteo lineatus Red-shouldered hawk
Buteo platypterus Broad-winged hawk
Buteo lagopus Rough-legged hawk
Aquila chrysaetos Golden eagle
Haliaeetus leucocephalus Bald eagle
Circus cyaneus Marsh hawk

Pandionidae

Pandion haliaetus Osprey

Falconidae

Falco peregrinus Peregrine falcon
Falco columbarius Pigeon hawk
Falco sparverius Sparrow hawk

Tetraonidae

Bonasa umbellus Ruffed grouse
<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phasianidae</td>
<td>Colinus virginianus</td>
<td>Bobwhite</td>
</tr>
<tr>
<td>Meleagrididae</td>
<td>Meleagris gallopavo</td>
<td>Turkey</td>
</tr>
<tr>
<td>Rallidae</td>
<td>Rallus elegans</td>
<td>King rail</td>
</tr>
<tr>
<td></td>
<td>Rallus limicola</td>
<td>Virginia rail</td>
</tr>
<tr>
<td></td>
<td>Porzana carolina</td>
<td>Sora rail</td>
</tr>
<tr>
<td></td>
<td>Coturnicops noveboracensis</td>
<td>Yellow rail</td>
</tr>
<tr>
<td></td>
<td>Laterallus jamaicensis</td>
<td>Black rail</td>
</tr>
<tr>
<td></td>
<td>Porphyrylula martinica</td>
<td>Purple gallinule</td>
</tr>
<tr>
<td></td>
<td>Gallinula chloropus</td>
<td>Common gallinule</td>
</tr>
<tr>
<td></td>
<td>Fulica americana</td>
<td>American coot</td>
</tr>
<tr>
<td>Charadicidae</td>
<td>Charadrius semipalmatus</td>
<td>Semipalmated plover</td>
</tr>
<tr>
<td></td>
<td>Charadrius vociferus</td>
<td>Killdeer</td>
</tr>
<tr>
<td></td>
<td>Squatarola squatarola</td>
<td>Black-bellied plover</td>
</tr>
<tr>
<td></td>
<td>Arenaria interpres</td>
<td>Ruddy turnstone</td>
</tr>
<tr>
<td>Scolopacidae</td>
<td>Philohela minor</td>
<td>American woodcock</td>
</tr>
<tr>
<td></td>
<td>Capella gallinago</td>
<td>Common snipe</td>
</tr>
<tr>
<td></td>
<td>Bartramia longicauda</td>
<td>Upland plover</td>
</tr>
<tr>
<td></td>
<td>Actitis macularia</td>
<td>Spotted sandpiper</td>
</tr>
<tr>
<td></td>
<td>Tringa solitaria</td>
<td>Solitary sandpiper</td>
</tr>
<tr>
<td></td>
<td>Totanus melanoleucus</td>
<td>Greater yellowlegs</td>
</tr>
<tr>
<td></td>
<td>Totanus flavipes</td>
<td>Lesser yellowlegs</td>
</tr>
<tr>
<td></td>
<td>Erolia melanotos</td>
<td>Pectoral sandpiper</td>
</tr>
<tr>
<td></td>
<td>Erolia bairdii</td>
<td>Baird's sandpiper</td>
</tr>
<tr>
<td></td>
<td>Limnodromus scolopaceus</td>
<td>Long-billed dowitcher</td>
</tr>
<tr>
<td></td>
<td>Ereunetes pusillus</td>
<td>Semipalmated sandpiper</td>
</tr>
<tr>
<td>Laridae</td>
<td>Larus argentatus</td>
<td>Herring gull</td>
</tr>
<tr>
<td></td>
<td>Larus delawarensis</td>
<td>Ring-billed gull</td>
</tr>
<tr>
<td></td>
<td>Larus atrieilla</td>
<td>Laughing gull</td>
</tr>
<tr>
<td></td>
<td>Larus pipixcan</td>
<td>Franklin's gull</td>
</tr>
<tr>
<td></td>
<td>Larus philadelphia</td>
<td>Bonaparte's gull</td>
</tr>
<tr>
<td></td>
<td>Sterna forsteri</td>
<td>Forster's tern</td>
</tr>
<tr>
<td></td>
<td>Sterna hirundo</td>
<td>Common tern</td>
</tr>
<tr>
<td></td>
<td>Sterna fuscata</td>
<td>Sooty tern</td>
</tr>
<tr>
<td></td>
<td>Chlidonias niger</td>
<td>Black tern</td>
</tr>
<tr>
<td>Columbidae</td>
<td>Zenaidura macroura</td>
<td>Mourning dove</td>
</tr>
<tr>
<td></td>
<td>Columba livia</td>
<td>Rock dove</td>
</tr>
<tr>
<td></td>
<td>Columbigallina passerina</td>
<td>Ground dove</td>
</tr>
</tbody>
</table>
Cuculidae
Coccyzus americanus
Coccyzus erythropthalmus
Yellow-billed cuckoo
Black-billed cuckoo

Tytonidae
Tyto alba
Barn owl

Strigidae
Otus asio
Bubo virginianus
Nyctea scandiaca
Strix varia
Asio otus
Asio flammeus
Aegolius acadicus
Screech owl
Great horned owl
Snowy owl
Barred owl
Long-eared owl
Short-eared owl
Saw-whet owl

Caprimulgidae
Caprimulgus carolinensis
Caprimulgus vociferus
Chordeiles minor
Chuck-will's-widow
Whip-poor-will
Common night hawk

Apodidae
Chaetura pelagica
Chimney swift

Trochilidae
Archilochus colubris
Ruby-throated hummingbird

Alcedinidae
Megaceryle alcyon
Belted kingfisher

Picidae
Colaptes auratus
Dryocopus pileatus
Centurus carolinus
Melanerpes erythrocephalus
Sphyrapicus varius
Dendrocopos villosus
Dendrocopos pubescens
Dendrocopos borealis
Yellow-shafted flicker
Pileated woodpecker
Red-bellied woodpecker
Red-headed woodpecker
Yellow-bellied sapsucker
Hairy woodpecker
Downy woodpecker
Red-cockaded woodpecker

Tyrannidae
Tyrannus tyrannus
Myiarchus crinitus
Sayornis phoebe
Empidonax flaviventris
Empidonax virescens
Empidonax traillii
Empidonax minimus
Contopus virens
Nuttallornis borealis
Eastern kingbird
Great crested flycatcher
Eastern phoebe
Yellow-bellied flycatcher
Acadian flycatcher
Trawil's flycatcher
Least flycatcher
Eastern wood pewee
Oliver-sided flycatcher
Alaudidae
 Eremophila aipesiens Horned lark

Hirundinidae
 Iridoprocne bicolor Tree swallow
 Riparia riparia Bank swallow
 Stelgidopteryx ruficollis Rough-winged swallow
 Hirundo rustica Barn swallow
 Petrochelidon pyrhonta Cliff swallow
 Progne subis Purple martin

Corvidae
 Cyanocitta cristata Blue jay
 Corvus corax Common jay
 Corvus brachyrhynchos Common crow

Paridae
 Parus atricapillus Black-capped chickadee
 Parus carolinensis Carolina chickadee
 Parus bicolor Carolina crow

Sittidae
 Sitta carolinensis White-breasted nuthatch
 Sitta canadensis Red-breasted nuthatch

Certhiidae
 Certhia familiaris Brown creeper

Troglodytidae
 Troglodytes aedon House wren
 Troglodytes troglodytes Winter wren
 Thryomanes bewickii Bewick's wren
 Thryothorus ludovicianus Carolina wren
 Telmatodytes palustris Long-billed marsh wren
 Cistothorus platensis Short-billed marsh wren

Mimidae
 Mimus polyglottos Mockingbird
 Dumetella carolinensis Catbird
 Toxostoma rufum Brown thrasher

Turdidae
 Turdus migratorius Robin
 Hylocichla mustelina Wood thrush
 Hylocichla guttata Hermit thrush
 Hylocichla ustulata Swainson's thrush
 Hylocichla minima Gray-cheeked thrush
 Hylocichla fuscenscens Veery
 Sialia sialis Eastern bluebird
Sylviidae
 Poioptila caerulea Blue-gray gnatcatcher
 Regulus satrapa Golden-crowned kinglet
 Regulus calendula Ruby-crowned kinglet

Motacillidae
 Anthus spinolaetta Water pipit

Bombycillidae
 Bombycilla cedrow Cedar waxwing

Laniidae
 Lanius ludovicianus Loggerhead shrike

Sturnidae
 Sturnus vulgaris Starling

Vireonidae
 Vireo gryceus White-eyed vireo
 Vireo flavifrons Yellow-throated vireo
 Vireo solitarius Solitary vireo
 Vireo olivareus Red-eyed vireo
 Vireo philadelphicus Philadelphia vireo
 Vireo gilvus Warbling vireo

Parulidae
 Mnioti varia Black-and-white warbler
 Prothonotaria citrea Prothonotary warbler
 Limothlypis swainsini Swainson's warbler
 Helmitheros vermivorus Worm-eating warbler
 Vermivora chrysoptera Golden-winged warbler
 Vermivora pinus Blue-winged warbler
 Vermivora peregrina Tennessee warbler
 Vermivora celata Orange-crowned warbler
 Vermivora ruficapilla Nashville warbler
 Parula americana Parula warbler
 Dendroica petechia Yellow warbler
 Dendroica magnolia Magnolia warbler
 Dendroica tigrina Cape May warbler
 Dendroica caeruleascens Black-throated blue warbler
 Dendroica soroata Myrtle warbler
 Dendroica virens Black-throated green warbler
 Dendroica cerulea Cerulean warbler
 Dendroica fusca Blackburnian warbler
 Dendroica dominica Yellow-throated warbler
 Dendroica peninsularis Chestnut-sided warbler
 Dendroica castanea Bay-breasted warbler
 Dendroica striata Blackpoll warbler
 Dendroica pinus Pine warbler
 Dendroica discolor Prairie warbler
 Dendroica plumatum Palm warbler
 Seiurus aurocapillus Ovenbird
Parulidae (continued)

Setiparus noveboracensis
Setiparus motacilla
Oporonis formosa
Oporonis agilis
Geothlypis trichas
Icteria virens
Wilsonia citrina
Wilsonia pusilla
Wilsonia canadensis
Setophaga ruticilla

Ploceidae

Passer domesticus

Icteridae

Dolichonyx oryzivorus
Sturnella magna
Agelaius phoeniceus
Icterus spurius
Icterus galbulus
Euphagus carolinus
Quiscalus quiscula
Molothrus ater

Thraupidae

Piranga olivacea
Piranga rubra

Fringillidae

Richmondena cardinalis
Pheucticus ludovicianus
Passerina cyanea
Spiza americana
Carpodacus purpureus
Acanthis flammea
Aprinus p inhibus
Spinus tristis
Loxia curvirostra
Pipilo erithrophthalmus
Passerculus sandwichensis
Ammodramus savannarum
Passerherbula caudacuta
Passerherbula henlowii
Ammodramus caudacuta
Poecetes gramineus
Chondestes grammacus
Atimphila aestivalis
Junco hyemalis
Spizella arborea
Aptilula passerina
Aptilula pusilla

Northern waterthrush
Louisiana waterthrush
Kentucky warbler
Connecticut warbler
Yellow throat
Yellow-breasted chat
Hood warbler
Wilson's warbler
Canada warbler
American redstart

House sparrow

Bobolink
Eastern meadowlark
Red-winged blackbird
Orchard oriole
Baltimore oriole
Rusty blackbird
Common grackle
Brown-headed cowbird

Scarlet tanager
Summer tanager

Cardinal
Rose-breasted grosbeak
Indigo bunting
Dickcissil
Purple finch
Common redpoll
Pine siskin
American goldfinch
Red crossbill
Rufous-sided towhee
Savannah sparrow
Grasshopper sparrow
Le Conte's sparrow
Henslow's sparrow
Sharp-tailed sparrow
Vesper sparrow
Lark sparrow
Bachman's sparrow
Slate-colored junco
Tree sparrow
Chipping sparrow
Field sparrow
Fringillidae (continued)
Zonotrichia laeothophrys
Zonotrichia albicollis
Passerella iliaca
Melospiza lincolnii
Melospiza gerogiana
Melospiza meoldia
Calcarius lapponicus
White-crowned sparrow
White-throated sparrow
Fox sparrow
Lincoln's sparrow
Swamp sparrow
Song sparrow
Lapland sparrow

Extirpated
Tymanuchus cupido americanus
Ectopistes migratorius
Conuropsis aarolinensis
Greater prairie chicken
Passenger pigeon
Carolina parakeet

Reptiles

Chelydridae
Chelydra serpentina
Common snapping turtle

Kinosternidae
Sternothaerus minor peltifer
Sternothaerus odoratus
Stripe-necked musk turtle
Stinkpot

Testudinidae
Terrapene carolina carolina
Trachemys scripta
Tremys picta
Pseudemys scripta
Pseudemys concina
Eastern box turtle
Map turtle
False map turtle
Painted turtle
Red-eared turtle
Slider

Trionychidae
Trionyx spinifer
Spiny softshell

Iguanidae
Anolis carolinensis carolinensis
Sceloporus undulatus
Green anole
Fence lizard

Teiidae
Cnemidophorus sexlineatus
Six-lined racerunner
sexlineatus
<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scincidae</td>
<td>Lygosoma laterale</td>
<td>Ground skink</td>
</tr>
<tr>
<td></td>
<td>Eumeces fasciatus</td>
<td>Five-lined skink</td>
</tr>
<tr>
<td></td>
<td>Eumeces laticeps</td>
<td>Broad-headed skink</td>
</tr>
<tr>
<td></td>
<td>Eumeces inexpectatus</td>
<td>Southeastern five-lined skink</td>
</tr>
<tr>
<td>Anguidae</td>
<td>Ophisaurus attenuatus</td>
<td>Eastern slender glass snake</td>
</tr>
<tr>
<td></td>
<td>longicaudus</td>
<td></td>
</tr>
<tr>
<td>Colubridae</td>
<td>Natrix sipedon sipedon</td>
<td>Northern water snake</td>
</tr>
<tr>
<td></td>
<td>Natrix septemvittata septemvittata</td>
<td>Queen snake</td>
</tr>
<tr>
<td></td>
<td>Storeria dekayi</td>
<td>Brown snake</td>
</tr>
<tr>
<td></td>
<td>Storeria o. occipitomaculata</td>
<td>Northern red-bellied snake</td>
</tr>
<tr>
<td></td>
<td>Thamnophis sirtalis sirtalis</td>
<td>Eastern garter snake</td>
</tr>
<tr>
<td></td>
<td>Halsa valeriae varleriex</td>
<td>Eastern earth snake</td>
</tr>
<tr>
<td></td>
<td>Heterodon platyrhinos</td>
<td>Eastern hognose snake</td>
</tr>
<tr>
<td></td>
<td>Diadophis punctatus edwardsi</td>
<td>Ringneck snake</td>
</tr>
<tr>
<td></td>
<td>Carphophis amoeneus amoeneus</td>
<td>Eastern worm snake</td>
</tr>
<tr>
<td></td>
<td>Coluber constrictor constrictor</td>
<td>Northern black racer</td>
</tr>
<tr>
<td></td>
<td>Ophedrys aestivus</td>
<td>Rough green snake</td>
</tr>
<tr>
<td></td>
<td>Elaphe guttata guttata</td>
<td>Corn snake</td>
</tr>
<tr>
<td></td>
<td>Elaphe obsoleta obsoleta</td>
<td>Black rat snake</td>
</tr>
<tr>
<td></td>
<td>Pituophis m. melanoleucus</td>
<td>Northern pine snake</td>
</tr>
<tr>
<td></td>
<td>Lampropeltis getulus getulus</td>
<td>Eastern king snake</td>
</tr>
<tr>
<td></td>
<td>Lampropeltis getulus niger</td>
<td>Black king snake</td>
</tr>
<tr>
<td></td>
<td>Lampropeltis doliata doliata</td>
<td>Scarlet king snake</td>
</tr>
<tr>
<td></td>
<td>Lampropeltis doliata triangulum</td>
<td>Eastern milk snake</td>
</tr>
<tr>
<td></td>
<td>Lampropeltis calligaster rhombomaculata</td>
<td>Mole snake</td>
</tr>
<tr>
<td></td>
<td>Cemophora coccinea</td>
<td>Scarlet snake</td>
</tr>
<tr>
<td></td>
<td>Tantilla coronata mitrifer</td>
<td>Appalachian crowned snake</td>
</tr>
<tr>
<td>Viperidae</td>
<td>Agkistrodon contortrix mokason</td>
<td>Northern copperhead</td>
</tr>
<tr>
<td>Crotalinae</td>
<td>Crotalus horridus horridus</td>
<td>Timber rattlesnake</td>
</tr>
</tbody>
</table>

Amphibians

Cryptobranchidae

Cryptobranchus alleganiensis alleganiensis
Cryptobranchus alle`ganiensis
Hellbender

Proteidae

Necturus maculosus maculosus
Necturus maculosus
Mudpuppy

Ambystomidae

Ambystoma opacum
Ambystoma maculatum
Marbled salamander
Spotted salamander

Salamandridae

Notophthalmus v. viridescens
Red spotted newt

Plethodontidae

Desmognathus fuscus fuscus
Desmognathus monticola monticola
Blue Ridge Mountain salamander

Desmognathus ochrophaeus carolinensis
Desmognathus quadramaculatus
Black-bellied salamander
Pigmy salamander

Leurognathus marmoratus
Plethodon cinereus cinereus
Shovel-nosed salamander
Red-backed salamander

Plethodon dorsalis dorsalis
Plethodon glutinosus glutinosus
Zigzag salamander
Slimy salamander

Plethodon jordani jordani
Plethodon jordani metcalfi
Red-cheeked salamander
Metcalf's salamander

Hemidactylium scutatum
Plethodon glutinosus
Four-toed salamander
Blue Ridge Spring salamander

Gyrinophilus porphyriticus danielsi
Gyrinophilus danielsi danielsi
Mountain purple salamander
Midland mud salamander

Pseudotriton montanus diasticus
Pseudotriton ruber schenoki
Black-chinned red salamander
Green salamander

Aeides aeneus
Eurycea bislineata wilderae
Blue Ridge two-lined salamander
Long-tailed salamander

Eurycea longicauda longicauda
Eurycea longicauda guttulineata
Three-lined salamander
Cave salamander

Eurycea lucifuga
Pelobatidae
Eastern spade foot
Bufonidae
- Bufo americanus americanus: American toad
- Bufo woodhousei fowleri: Fowler's toad

Hylidae
- Acris crepitans crepitans: Northern cricket frog
- Hyla crucifer crucifer: Northern spring peeper
- Hyla versicolor versicolor: Eastern gray treefrog
- Pseudacris triseriata feriarum: Upland chorus frog
- Pseudacris brachyphona: Mountain chorus frog

Microphylidae
- Gastrophyryne carolinensis: Eastern narrow-mouthed toad

Ranidae
- Rana catesbeiana: Bullfrog
- Rana clamitans melanota: Green frog
- Rana vircularia: Leopard frog
- Rana palustris palustris: Pickerel frog
- Rana sylvatica: Wood frog

Fishes

Petromyzontidae
- Ichthyomyzon bdellium: Ohio lamprey
- Ichthyomyzon castaneus: Chestnut lamprey
- Ichthyomyzon greelyi (P): Allegheny brook lamprey
- Lampetra lamottei: American brook lamprey

Acipenseridae
- Acipenser fulvescens: Lake sturgeon
Polyodontidae
Polyodon spathula Paddlefish

Lepisosteidae
Lepisosteus oculatus (?) Spotted gar
Lepisosteus osseus Longnose gar

Clupeidae
Alosa alabamensis (?) Alabama shad
Alosa chrysochloris Skipjack herring
Dorosoma cepedianum Gizzard shad
Dorosoma petenense (?) Threadfin shad

Hiodontidae
Hiodon tergisus Mooneye

Salmonidae
Salmo gairdneri (I) Rainbow trout
Salmo trutta (I) Brown trout
Salvelinus fontinalis Brook trout

Esocidae
Esox masquinongy Muskellunge

Cyprinidae
Campostoma anomalum Stoneroller
Carassius auratus (I) Goldfish
Clinostomus funduloides subsp. Rosyside dace
Cyprinus carpio (I) Carp
Hybopsis aestivalis Speckled chub
Hybopsis amblops Bigeye chub
Hybopsis insignis Blotched chub
Hybopsis monacha Spotfin chub
Hybopsis storeriana Silver chub
Noemis micropogon River chub
Notemigonus crysoleucas Golden shiner
Notropis ariormus (P) Popeye shiner
Notropis atherinoides Emerald shiner
Notropis cornutus Common shiner
Notropis c. chrysacephalus Southern common shiner
Notropis coccogenus Warpaint shiner
Notropis galacturus Whitetail shiner
Notropis leuciodus Tennessee shiner
Notropis limus Mountain shiner
Notropis photogenis Silver shiner
Notropis rubellus Rosyface shiner
Notropis rubricrassus Saffron shiner
Notropis sp. "Sawfin shiner"
 cf. Notropis spectrunculus Mirror shiner
Notropis spilopterus Spotfin shiner
Notropis teleosteus Telescope shiner
Notropis volucellus Mimic shiner
Cyprinidae (continued)

Notropis whipplei (?) Steelcolor shiner
Phoxinus sp. "Silverspot dace"
Phenacoides crassilabrum Fatlips minnow
Phenacoides uranops Stargazing minnow
Pimephales notatus Bluntnose minnow
Pimephales vigilax Bullhead minnow
Rhinichthys atratulus Blacknose dace
Rhinichthys cataractae Longnose dace
Semotilus atromaculatus Creek chub

Catostomidae

Carpiodes carpio (P) River carpsucker
Carpiodes cyprinus Quillback
Catostomus commersoni White sucker
Cyclopterus elongatus Blue sucker
Hypentelium nigroocellatum Northern hogsucker
Ictiobus bubalis Smallmouth buffalo
Ictiobus niger (P) Black buffalo
Minytrema melanops Spotted sucker
Moxostoma anisurum Silver redhorse
Moxostoma carinatum River redhorse
Moxostoma duquesnii Black redhorse
Moxostoma erythrum Golden redhorse
Moxostoma macrolepidotum breviceps Shorthead redhorse

Ictaluridae

Ictalurus furcatus Blue catfish
Ictalurus melas Black bullhead
Ictalurus natalis Yellow bullhead
Ictalurus nebulosus (?) Brown bullhead
Ictalurus punctatus Channel catfish
Noturus baileyi Smoky madtom
Noturus eleutherus Mountain madtom
Noturus flavipinnis Yellowfin madtom
Pylodictis olivaris Flathead catfish

Anguillidae

Anguilla rostrata American eel

Cyprinodontidae

Fundulus heteroclitus Northern studfish
Fundulus notatus Blackstripe topminnow

Poeckilliidae

Gambusia affinis (I) Mosquito fish

Percichthyidae

Morone chrysops White bass
Atherinidae

Labibdesthes sicculus

Brook silverside

Centrarchidae

Ambloplites rupestris
Centrarchus macropterus
Elassoma zonatum
Lepomis auritus (I)
Lepomis cyanellus
Lepomis gulosus
Lepomis macrochirus
Lepomis megalotis
Lepomis microlophus
Micropterus dolomieui
Micropterus punctulatus
Micropterus salmoides
Pomoxis annularis
Pomoxis nigromaculatus

Rockbass
Flier
Banded pygmy sunfish
Redbreast sunfish
Green sunfish
Warmouth
Bluegill
Longear sunfish
Redear sunfish
Smallmouth bass
Spotted bass
Largemouth bass
White crappie
Black crappie

Percidae

Etheostoma blennioides

Etheostoma blennioides newmani
Etheostoma blennioides guteselli
Etheostoma camunum
Etheostoma chlorobranchium
Etheostoma cinereum (P)
Etheostoma flabellare
Etheostoma kennicotti (P)
Etheostoma maculatum vulneratum
Etheostoma (catonotus) sp.
cf. Etheostoma flabellare
Etheostoma rufilatium
Etheostoma simoternum
Etheostoma stigmaeum
Etheostoma stigmaeum jessiae
Etheostoma swannanoa
Etheostoma zonale
Etheostoma zonale zonale
Perca flavescentis (I)
Percina aurantiaca
Percina burtoni
Percina caprodes
Percina caprodes caprodes
Percina evides
Percina evides evides
Percina macrocephala (P)
Percina sciera
Percina shumardi
Percina squamata (P)
Percina tanasi
Stizostedion canadense
Stizostedion vitreum

Greenside darter
Bluebreast darter
Greenfin darter
Ashy darter
Fantail darter
Stripetail darter
Spotted darter
"Duskytail darter"
Redline darter
Tennessee snubnose darter
Speckled darter
Swannanoa darter
Banded darter
Yellow perch
Tangerine darter
Blotchside logperch
Logperch
Gilt darter
Longhead darter
Dusky darter
River darter
Olive darter
Snailed darter
Sauger
Walleye
Sciaenidae
 Aplodinotus grunniens Freshwater drum

Cottidae
 Cottus bairdi Mottled sculpin
 Cottus carolinae Banded sculpin

P--Probably present.
?--Questionable occurrence.
I--Introduced.

VITA

Arthur Eugene Bogan was born in North Kingston, Rhode Island, on August 26, 1950. He attended elementary school in Enumclaw, Washington, and was graduated from Enumclaw High School in June 1968. In September 1968, he entered Washington State University. While attending the University, he served as assistant in research to Dr. Henry T. Irwin for two-and-one-half years. He was graduated with a Bachelor of Arts in June 1972. In the fall of 1972, he entered the Master's program at Florida State University, Tallahassee. In January 1973, he accepted a research assistantship with the Southeastern Archaeological Center for the National Park Service which lasted until April 1973. The next fall, September 1973, he transferred to the Master's program in Anthropology at the University of Tennessee, Knoxville. He accepted a teaching assistantship with Dr. Paul W. Parmalee in March 1974, which was retained until June 1976. He was graduated with a Master's degree in Anthropology in August 1976. He is enrolled in the doctoral program in Anthropology at the University of Tennessee, Knoxville, and will be Dr. Parmalee's teaching assistant for the academic year 1976-1977.