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Abstract

This dissertation consists of two chapters. Chapter 1 examines the effect of

transportation costs of shipping ethanol on retail gasoline prices over space. The

Renewable Fuel Standard (RFS) of 2007 legislated a new market into existence in the

U.S. by mandating that ethanol be blended with petroleum in retail gasoline markets.

Using a quantile difference-in-differences econometric approach to analyze weekly

retail gasoline price data for over 200 cities from 2007 to 2014, we find evidence that

the mandate differentially impacted gasoline prices across the U.S. Specifically, we find

that cities farther from ethanol production centers paid higher retail gasoline prices

than cities close to ethanol production centers. We argue that the observed retail

price differences are driven by market frictions associated with transportation costs

for ethanol which, unlike petroleum, cannot be shipped via pipeline. This effect has

been exacerbated due to the run-up in ethanol RIN (renewable identification numbers)

prices starting in 2013. Importantly, the effect of this market friction on retail gasoline

prices varies with the relative prices of ethanol and petroleum blendstock. Our results

highlight the spatial incidence associated with the mandated ethanol market. While

unanticipated, we argue that these market frictions are not surprising.

In Chapter 2 we investigate the forecasting performance of a variety of individual

models found in empirical literature and their linear combinations in the context of

carbon dioxide (CO2) emissions. We conduct out-of-sample forecasting exercise by

using state-level data for CO2 emissions in the U.S. Forecast error and tests of predictive

accuracy are compared both for individual models and their linear combinations.
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Consistent with reported results on the application of forecast combinations, we show

that the forecast combination technique generally improves forecast accuracy. The

best performing combination outperforms all the individual models as the forecast

horizon increases. More importantly, forecast accuracy from the best performing

individual model is not significantly better than that of the best combination forecast.

Among the class of forecast combinations considered in this paper, bias-corrected

average forecast performs relatively well.
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Chapter 1

New Markets and New Market

Frictions: Evidence from Ethanol

and Retail Gasoline Prices

1.1 Introduction

Whenever policymakers pass a new regulation which either directly or indirectly

creates a market, there are often both intended and unintended consequences. The

unintended consequences of laws have received significant attention in the economics

literature recently (Goulder et al. (2012) and Bento et al. (2015)). However, one class

of unintended consequences due to new regulations that has received little attention

occurs when new regulation creates new market frictions.

Most generally, market frictions are transaction costs. For example, gravity models

in the trade literature show that increased distance between trade partners decrease

the volume of trade due to market frictions of increased transportation costs (Shepherd

(2012)). If new regulations create asymmetric transaction costs, then, new regulations

can create market frictions which differentially affect newly regulated agents. We

1



argue that the passage of the Renewable Fuel Standard (RFS) in 2007 in the United

States is one example.

RFS created a mandate that makes blenders of retail gasoline mix ethanol with

refined petroleum such that total ethanol consumed in the U.S. in a given year exceeds

some minimum level. The thousands of blenders have long existed and are distributed

widely throughout the U.S. serving to blend various additives to retail gasoline. The

mandate effectively forced them to blend ethanol into gasoline as well under penalty

of fine. This together with the concentration of ethanol production in the Midwest

created a market for transportation of ethanol to demand centers across the U.S.

Pipelines provide the cost-effective way to transport refined petroleum to and from

landlocked parts of the U.S. and transportation by rail and truck generally used only

for short distances (Borenstein and Kellogg (2014)). Due to lack of ethanol pipelines,

though, ethanol must be shipped via rail and truck throughout the U.S. Relative to

pipelines used for petroleum, then, shipping ethanol via these channels is more costly

than shipping petroleum due to higher transportation costs.1

To meet the RFS mandate, an obligated party can either purchase minimum

required volume of ethanol for blending into gasoline or buy Renewable Identification

Numbers (RINs) in the market.2 The RFS was likely not binding for most of the

initial period of the mandate; more ethanol was produced than mandated. Before 2013

the price of corn ethanol RINs had been close to zero and, therefore, the RFS was

likely not binding during this period. In 2013 corn ethanol based RIN prices started

to increase, reaching about $1.00 per gallon in March 2013. Among the reasons cited

1Though we do not study them here there is evidence that railroads exercise market power in the
transportation of ethanol by price discriminating based on environmental regulations at the route
destinations (Hughes (2011)). While we focus on the direct shipping aspect of transportation cost,
we note that transportation costs can come in many forms. As a result, our study is complementary
to this earlier work.

2Once ethanol is produced, a serial number is assigned to a batch of ethanol to identify the type of
fuel and gallons of ethanol. Known as RINs, these unique numbers allow Environmental Protection
Agency to monitor compliance with the RFS. RINs are separated after they are initially sold and
can be traded in the open market. Obligated parties (refiners, blenders, and importers) fulfill the
mandate requirement by mixing at least the minimum required volume of biofuel, or, alternatively,
by purchasing enough RINs from the third parties.
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for the run-up in RIN prices for corn ethanol are rising RFS-mandated volumes and

the E10 (10% ethanol and 90% refined petroleum) ethanol blend wall.3

In this paper, we present evidence that the RFS created a market friction through

the transportation cost channel. We show that when RIN prices started to increase the

RFS mandate asymmetrically affected the retail price of gasoline throughout the U.S.

as a function of shipping distances. To do so, we constructed a comprehensive weekly

panel dataset of retail gasoline prices in over 200 U.S. cities. We combine that data

with weekly oil and ethanol price data. Importantly, the dataset includes different

measures of the distance between demand and supply centers of ethanol. We calculate

the shortest distances between cities and ethanol refineries as well as between cities

and ethanol production centers (i.e. Midwest). This allows us to explicitly control for

transportation costs associated with shipping ethanol by rail and truck to blending

stations in and around cities where retail gasoline is sold. In addition, there is a

debate whether positive ethanol RIN prices since 2013 contributed to rising gasoline

prices.4 We control for the higher RIN prices after 2013 in studying the distance effect

of ethanol shipping on retail gasoline prices.

We use quantile difference-in-differences estimator to test for the effect of the

distance market friction created by RFS on retail gasoline prices. There are three

main reasons for using a quantile regression rather than OLS technique. First, the

incentive to blend varies by wholesale petroleum price. As the relative price for

wholesale petroleum increases, the incentive for blenders to substitute ethanol for

petroleum increases. Since wholesale petroleum blendstock is the main input in

finished gasoline, the incentive to blend ethanol varies over the distribution of gasoline

prices. Specifically, blenders want to use higher ethanol blends when gasoline prices

are high. Therefore, conditional quantiles of retail gasoline price distribution can be

thought of representing the variation in blending decisions. Unlike the mean effect

3See http://www.eia.gov/todayinenergy/detail.cfm?id=11671. Last accessed: May 10,
2015.

4See http://ethanolrfa.org/page/-/rfa-association-site/studies/informa_gasoline_

price_analysis.pdf?nocdn=1. Last accessed: May 10, 2015.
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from OLS, quantile regression method accounts for this substitution effect across the

retail gasoline price distribution. Second, we are interested in how the market frictions

created by the ethanol standard differentially affect gasoline prices over space. In

our quantile regressions, we allow for these frictions to vary differentially across both

different ethanol shipping distances and different retail gasoline prices. Third, refiner

profits (often proxied by the crack spread) vary with demand for gasoline. Ethanol

can have a differential effect on gasoline prices as demand rises and falls through the

refiner profits channel as ethanol reduces the market power of refiners during high

demand periods (Knittel and Smith (2015)). Quantile techniques account for this

asymmetric effect throughout the distribution of gasoline prices explicitly, while OLS

can only identify the mean effect.

We find that when RIN prices started to increase in 2013, cities farther from

ethanol production centers paid significantly higher retail gasoline prices relative to

cities nearer to production centers when relative oil and ethanol prices made blending

more profitable. This result follows from intuition expected from the incentives to

blend under a binding mandate: the mandate binds at the year level. However, within

a year blenders can choose to blend ethanol and petroleum only when it is profitable

to do so. It is profitable to blend ethanol in place of refined petroleum when the

price of petroleum is relatively higher than ethanol. The influence of this blending

decision on retail gasoline price is exacerbated when the ethanol must be shipped at

high cost far from production centers.5 Subject to standard difference-in-differences

identification assumptions, we take our results as causal evidence that the ethanol

regulation exacerbated the effect of market friction after 2013 which asymmetrically

affected retail gasoline prices in the U.S.

There is an important policy implication of our results. Regulation that creates

new markets should also account for the market frictions which emerge from setting

up that market in order to mitigate those effects. With RFS, our evidence suggests

5When blending ethanol is expensive, blenders may purchase RINs in the open market or use their
own RINs banked in the previous year. We discuss the implications of this alternative compliance
avenue below.
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that the cost of accommodating this regulation to blenders varied over space. As a

result, the mandate’s stringency could have varied over space with the cost of the

market friction. Generally, this falls into a framework of accounting for the incidence

associated with creating a new market or regulatory framework (Bovenberg et al.

(2008)).

Our results contribute to two different areas in the economics literature. First,

there is a healthy debate in the literature about the effect of the ethanol mandate

on gasoline prices.6 These studies tend to use PADD (Petroleum Administration of

Defense Districts) level data (Du and Hayes (2009), Du and Hayes (2011) and Knittel

and Smith (2015)). Knittel and Smith (2015) makes the convincing claim that, overall,

the ethanol mandate has had little to no effect on average gasoline prices (∼ -10

cents). While we do not claim to identify the total effect of the ethanol mandate,

our quantile difference-in-differences design allows us to address the incidence of the

mandate across the U.S. at different levels of gasoline prices.7

Second, we contribute to the literature on how new regulations affect economic

activity in unintended ways (Dinardo and Lemieux (2001), Goulder et al. (2012) and

Bento et al. (2015)). We show that even in cases like RFS where there is a relatively

well-functioning market for satisfying the regulation, there can still be market frictions

created by a regulation which affect the incidence of the regulation.8 These market

frictions, in this case created by the lack of transportation infrastructure in ethanol

industry, affect the incidence of the policy. Policy makers should consider mitigating

those effects when new regulations create new markets.9

6There is an additional question as to how substitutable ethanol and gasoline are for consumers
(Anderson (2012)). We are not able to address this question whatsoever. Although there is evidence
that ethanol and petroleum are imperfect substitutes, as long as consumer preferences within a city
are fixed over time our results are robust to this issue since we use city fixed effects in our econometric
model.

7There is an additional question as to the non-market CO2 effects of the ethanol mandate due to
the interaction between land and fuel markets created by policy toward ethanol (Bento et al. (2015)).
We do not address this important policy question in this paper.

8This is distinct from regulatory rents more generally Rose (1985).
9There is new literature which discusses this in the context of spatial variation in the damages

from pollution by source (Fowlie and Muller (2013) and Carson and LaRiviere (2014)).
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The rest of the paper is organized as follows. Section 1.2 discusses the economics

of ethanol blending and gives a background on ethanol mandate and transportation.

Section 1.3 describes data and the variables used in the paper. We present the

econometric specification in section 1.4. In section 1.5 we discuss the estimation

results. Then, we conduct robustness analysis of our empirical results in section 1.6.

Section 1.7 summarizes and concludes.

1.2 Ethanol Blending Economics and Background

This section provides a background for the ethanol industry in order to develop the

design of the empirical method. We describe the industry and the law first generally.

We then introduce how distance between ethanol refineries and demand centers can

act as a market friction due to relatively large transportation costs of shipping ethanol.

Renewable Fuel Standard

Initially, used as an octane booster and to meet air quality requirements, ethanol is now

an important input in transportation fuel.10 The Energy Policy Act of 2005 required

increased use of ethanol by introducing Renewable Fuel Standard. It mandated use of

4 billion gallons of ethanol in 2006 and further increasing by 0.7 billion gallons each

year until 2012.

Energy Independence and Security Act (EISA) of 2007 supplanted the 2005 RFS

and set mandated volumes through 2022 for total renewable fuels and various biofuel

subcategories from non-corn sources, including advanced biofuels, cellulosic biofuels,

and biomass-based diesel.11 While the updated RFS does not specify corn ethanol

mandate explicitly, ethanol derived from corn starch counts toward the non-advanced

10The Clean Air Act Amendments of 1990 lead local regulators to require use of oxygenated fuels
in all areas with the worst vehicle emissions that exceed the federal carbon monoxide air quality
standard.

11EISA defines advanced biofuel as renewable fuel, other than ethanol derived from corn starch,
that would reduce lifecycle greenhouse gas emissions by 50%.
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biofuel portion of the total renewable fuel mandate. It mandates consumption of 9

billion gallons of renewable fuels in 2008, 20.5 billion gallons in 2015, and 36 billion

gallons by 2022. The implied volume of corn ethanol mandate is set at 9 billion gallons

in 2008 and is capped at 15 billion gallons in 2015 and thereafter. In this paper we

focus on corn ethanol because it makes up the vast majority of the RFS mandate and

the actual use of total renewable fuels in 2007-2014 sample period. To encourage the

use of renewable fuels, federal and state governments provide biofuel tax incentives

in addition to the mandate which penalizes lack of compliance. Federal blenders

tax credit, also known as volumetric ethanol excise tax credit (VEET), provided a

$0.51 credit ($0.45 since 2009) for every gallon of pure ethanol mixed with gasoline to

blenders of ethanol until 2012 when VEET was allowed to expire.

Figure 1.1 plots the production, consumption, and mandated levels of fuel ethanol

in the U.S. The 2005 RFS was not binding as the actual production and consumption

of ethanol was greater than the mandated quantity. This corresponds to a period

when the use of MTBE (methyl tertiary-butyl ether), an oxygen additive, was banned

nationwide, effectively leading to an increased demand for ethanol to be used as

an oxygenate. Even when more stringent RFS of 2007 replaced the 2005 RFS, the

fuel ethanol production and consumption levels have generally been above the new

RFS-target levels until 2012-2013. Coupled with a RIN price of zero, we take this as

evidence that the RFS did not bind until 2013.

The price of a RIN is a better indicator of a binding mandate and its value is

determined by the difference between the supply and demand prices for ethanol. The

RIN prices will be zero if the equilibrium quantity of ethanol exceeds the mandate

and positive if the equilibrium quantity falls below the mandate. Before 2013 corn

ethanol RIN prices did not significantly deviate from zero.12 As the Figure 1.2 shows,

the situation was much different starting in 2013 when RIN prices increased sharply

12See Figure 1 at http://farmdocdaily.illinois.edu/2013/07/rins-gone-wild.html. Last
accessed: May 10, 2015.
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Figure 1.1: Fuel Ethanol Mandate, Production, and Consumption

Source: U.S. Energy Information Administration, Monthly Energy Review, October 2014;
Energy Independence and Security Act of 2007; Energy Policy Act of 2005.

Figure 1.2: Prices of Renewable Identification Numbers

Notes: D4, D5, and D6 represent historical RIN prices for biomass-based diesel (BBD or biodiesel),
advanced biofuel, and corn ethanol, respectively.
Source: The International Council on Clean Transportation.
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and have since stayed positive. The higher the RIN prices, the more costly it is to

meet the RFS mandate.13

There are at least three reasons why RIN prices increased in 2013. First, gasoline

consumption in the U.S. decreased relative to 2007 levels. When the RFS was enacted

into law, the mandated volumes of renewable fuels were based on projected gasoline

consumption in the U.S. Actual gasoline consumption was 135.5 billion gallons in 2013,

while in 2007 it was equal to 142.4 billion gallons.14 Second, as the RFS target levels

increased each year while gasoline consumption declined, certain PADD (Petroleum

Administration for Defense Districts) regions have reached ethanol saturation point.

Because of E10 blend wall, increasing the use of ethanol may require purchasing RINs

in the open market. Third, continued increase in ethanol consumption under the

RFS coupled with lower gasoline consumption and E10 blend wall will eventually

require investment in infrastructure that can handle higher ethanol blends. As a result,

blending ethanol has become more expensive in the sense that blenders must still need

to meet their renewable obligations under the RFS. In the past obligated parties had

generally used more ethanol and banked the excess RINs when blending ethanol was

profitable.15 However, as the mandated volumes of fuel ethanol increased and more

and more blenders reached E10 blend wall, they started drawing down their stocks

of RINs.16 This together with the anticipation of continued future decline in RIN

inventories contributed to rising RIN prices in 2013.

Introduction of gasoline with greater than 10% ethanol content in the market has

generally been slow due to lack of infrastructure. Even though in 2011 EPA allowed

E15 (gasoline with up to 15% ethanol content) for use in light-duty motor vehicle

models of 2001 and later, it is not widely available and is mainly sold in some of the

13EPA announced in November, 2013 that it expected to cut the ethanol consumption obligations
to 13 billion gallons for 2014, a reduction of 1.4 billion gallons from the mandated level. The EPA’s
proposal is aimed to keep the ethanol blend share close to 10%.

14U.S. EIA Short Term Energy Outlook, November 12, 2014.
15The RFS regulations allow the obligated parties to use banked RINs toward up to 20% of the

their current year obligations.
16See http://farmdocdaily.illinois.edu/2014/04/rin-stocks-part-1-valuation.html.

Last accessed: May 10, 2015.
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Midwestern states. Similarly, market penetration of flex-fuel vehicles capable of using

E85 (gasoline with up to 85% ethanol content) has been lower than expected.17

Positive RIN prices might also be due to transaction costs and speculative

components. The anecdotal evidence suggests that some market participants in

the RIN market are purchasing RINs when the prices are low and selling RINs for a

premium when the prices are high. Given the opacity of RIN market, we are not able

to assess how much of the ethanol RIN price spikes might be due to the speculative

activity (if any) in the RIN market.

Transportation of Ethanol

Distance plays a significant role in explaining price differentials across locations where

markets are not completely integrated (Engel and Rogers (1996)). With respect to

the ethanol mandate, distance between ethanol refineries and blending terminals

could act as a market friction due to lack of infrastructure in the ethanol industry.

Infrastructure for efficient movement of ethanol from the production centers in the

Midwest to population centers on the coasts is lacking, and spatial variation in

infrastructure development and ethanol plant location will have a significant effect on

ethanol shipping costs (Das et al. (2010)).

Ethanol production is concentrated mainly in the Midwest, closer to corn growing

counties in the Corn Belt. This is not surprising given that corn is the main feedstock

in corn ethanol and hauling corn is more expensive. Nevertheless, ethanol is shipped

throughout the U.S. Figure 1.3 shows the distribution of ethanol plants, blending

terminals, and corn production by county in the United States as of 2011.18 Blending

terminals are distributed across the U.S. closer to demand centers. Consequently,

as the Figure 1.4 shows, there is a geographical variation in how quickly ethanol

17Consumption of E85 fuels was equivalent to 137.2 million gasoline gallon equivalent for 2011, which
is only 1% of total ethanol consumed in the U.S. in 2011. See http://www.eia.gov/renewable/

afv/index.cfm. Last accessed: May 10, 2015.
18Ethanol plant locations are taken from the Renewable Fuels Association, corn data - from the U.S.

Department of Agriculture 2009 yields data, and active fuel terminal locations - from the Internal
Revenue Service.
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Figure 1.3: Location of Corn Growing Counties, Biorefineries, and Gasoline
Terminals

Figure 1.4: Ethanol Blend Share for Selected Years (%)

Source: U.S. Energy Information Administration.
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penetrated different markets. Before the RFS was made into law, ethanol was the

main oxygenate additive in finished gasoline in the Midwest (panel i). However, when

the use of MTBE was phased out nationwide by 2006, ethanol emerged as a primary

fuel oxygenate component in other states as well (panel ii). With the more stringent

2007 RFS, ethanol usage increased throughout the U.S., although for the first few years

most of the additional ethanol had been absorbed in the Midwest (panel iii). This is

as expected as most ethanol refineries are located close to the Corn Belt. In addition,

Midwestern states could utilize more ethanol because they already had necessary

infrastructure in place before the federal mandate became a law. However, as the

RFS requires greater ethanol consumption in the subsequent years, additional ethanol

has to be absorbed elsewhere, specifically East and West Coasts where the gasoline

consumption is much higher than the other regions in the U.S. (panel iv). Because

more ethanol has to be shipped to other regions that are farther from the Midwest,

this likely implied greater cost to blenders there due to higher ethanol transport

costs. As ethanol consumption increased, certain PADD regions have reached the

10% ethanol blend share. For example, ethanol blend share in PADD 1 and PADD

2 regions has been around 10% since 2009 (see Figure 1.5), which likely meant that

additional ethanol had to be shipped to other PADD regions.19

In addition to the ethanol shipping distance, per gallon transportation costs are

greater for ethanol than for petroleum due to the mode of transportation (Morrow

et al. (2006)). Ethanol produced in the Midwest is transported via barges (5%),

trucks (29%), and rail (66%) to wholesale terminals near population centers (USDOE

(2010).) While barges are the cost effective way to transport ethanol, ethanol is

shipped by more expensive means, mainly by rail for longer distances and by trucks

for shorter distances. Shipping ethanol by pipelines is virtually nonexistent. A 2010

study by the U.S. Department of Energy found construction of separate ethanol

pipelines from the Midwest to the East Coast to be economically not viable at current

19The share of ethanol in total finished gasoline can be above 10% without actually reaching the
blend wall if consumption of E15 and E85 fuels is present in the market. However, the consumption
of E85 is more prevalent only in upper Midwest due to the availability of E85 infrastructure there.
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Figure 1.5: Ethanol Blend Share by PADD Regions

Notes: Ethanol blend share in PADD 1 and PADD 2 regions has been around 10% since 2009. As
the RFS mandated volumes are expected to increase further, other PADD regions are likely to see
increased ethanol consumption soon.
Source: U.S. Energy Information Administration.
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ethanol consumption projections.20 Furthermore, existing petroleum pipelines used to

transport petroleum products cannot be used in shipping ethanol because the water

found in low level pipelines causes ethanol to separate from gasoline and mix with

water. Therefore, unlike other petroleum additives, ethanol cannot be mixed into

gasoline at refineries to be shipped via existing pipelines. Consequently, because of

these factors and infrastructure bottlenecks in the ethanol industry, shipping ethanol

can be relatively more expensive. Physically transporting ethanol to the East and

West Coasts costs at least $0.13 per gallon and to regional markets it costs about

$0.07 per gallon (Coltrain (2001)). These numbers are in 2001 prices and are likely a

lower bound. Hughes (2011) found that railroads have market power in the ethanol

shipment and price discriminate based on environmental regulations at destination

points (e.g. carbon monoxide non-attainment areas). In addition, shipping via rails

sometimes proved problematic due to rail transportation constraints. In the past, cold

weather and increased crude oil shipments were blamed for causing rail traffic to back

up in the Midwest, leading to an increase in premium for ethanol in New York relative

to the price in Chicago from $0.25 (January, 2014) to $1.0 a gallon (February, 2014).21

While at blending terminals, ethanol is kept in separate tanks underground and

then splash blended with motor gasoline to the desired level before being delivered to

retail gasoline stations. The minimum quantity of ethanol required to be blended is a

yearly volume regulated by RFS.22 The maximum amount of ethanol to be blended is

10% in volume. Blenders make decisions to blend ethanol that must meet or exceed

the mandated amount. The exact amount of ethanol content depends on several

20There are a few places where ethanol is shipped by pipelines (for example, in Florida). These
are typically short pipelines and the volumes of ethanol shipments are small. See http://www.afdc.

energy.gov/pdfs/km_cfpl_ethanol_pipeline_fact_sheet.pdf. Last accessed: May 10, 2015.
21See, for example, The Wall Street Journal articles available here http://online.wsj.com/

articles/SB10001424052702303546204579439740561525518 and here http://online.wsj.com/

articles/SB10001424052702303847804579479643372241358. Last accessed: May 10, 2015.
22This is a unique feature of the regulatory structure for ethanol: the mandated level of ethanol to

be blended is an absolute yearly volume rather than a percent of total retail gasoline consumed. This
is a useful aspect of the policy for our study: a volumetric mandate permits blenders to have more
flexibility to choosing their blending strategy within a year as opposed to a percentage requirement.
A percentage requirement implies that as the quantity demanded of gasoline fluctuates within a year,
blenders would have to respond more quickly.
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factors, such as the mandate, local and state regulations, relative prices of ethanol

and petroleum blendstock, seasonal oxygenation regulations, and reid-vapor pressure

(RVP).23 Some studies found blending at 10% ethanol and 90% gasoline blendstock,

known as E10, to be more prevalent in the corn-growing locations than places far

from such feedstocks (Walls et al. (2011)). Underdeveloped ethanol infrastructure and

the cost of transporting ethanol from geographically remote ethanol refineries in the

Midwest to blending terminals across the U.S. limit the ability of blenders at far away

places to take advantage of low cost ethanol during high oil price periods. For these

reasons, we hypothesize that the cost of frictions in this newly created market (e.g.

ethanol delivery and logistics) heterogeneously affects retail gasoline prices over space.

Our primary goal in this study is to estimate how the ethanol mandate affects retail

gasoline prices across space due to market frictions (e.g. transportation costs).24 The

wholesale price of refined petroleum is in large part driven by oil prices and refiners’

ability to exercise market power. The price of ethanol is largely driven by the price of

corn and how mandated levels of ethanol interact with capacity constraints of refiners.

However, as noted below we are concerned with blenders’ decisions. As a result, our

identifying assumption is that the capacity of gasoline supply is constant over the

2007-2014 sample period considered in this paper. This implies that changes in the

gasoline price are totally driven by demand shifts and that retail gasoline blenders are

price takers.

23For example, because ethanol increases RVP, petroleum blendstock may be optimized so that
after mixing with ethanol RVP does not exceed the established standards.

24As noted before, a related question is how the ethanol mandate affected average gasoline
prices across the United States. Proponents of biofuel policy argue that ethanol blending reduces
energy prices. For example, recently Agriculture Secretary Tom Vilsack wrote that “use of ethanol
... suppresses gas costs by as much as $1.37 a gallon.” (See http://www.ethanolproducer.

com/articles/8922/vilsack-biofuels-can-continue-to-lower-consumer-gas-prices. Last
accessed: May 10, 2015). These estimates are based on a study by Du and Hayes (2009) and their
subsequent studies in 2011 and 2012. Du and Hayes estimate the relationship between ethanol
production and the profit margin for oil refiners. These studies found that ethanol production lowered
gasoline prices by 89 cents in 2010 and $1.09 in 2011. Knittel and Smith (2015) show that these
results are likely driven by spurious correlations. Knittel and Smith (2015) find that the effects of
ethanol production on gasoline prices are near zero and statistically insignificant.
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1.3 Data

Our objective in this paper is to present evidence that the RFS asymmetrically affected

the retail price of gasoline throughout the U.S. as a function of shipping distances. We

use a panel dataset of weekly prices from January, 2007 to July, 2014 that spans pre-

and post-U.S. binding ethanol mandate. All price data are converted to July, 2014

U.S. dollars using the U.S. Bureau of Labor Statistics consumer price index (CPI) for

urban consumers. We focus on contiguous U.S. by excluding observations for states

Alaska and Hawaii. The dataset includes data for 208 cities from 35 states that are

widely distributed throughout the U.S.

This paper analyzes data collected from a variety of sources. For retail gasoline

prices, we use wholesale rack prices of unbranded gasoline with up to 10% ethanol

paid by retailers. Retail gasoline prices are given by cities across the U.S. and are

taken from Bloomberg databases. Corn ethanol prices are weekly average prices at

Iowa ethanol plants and are obtained from Agricultural Marketing Resource Center

at Iowa State University. By using ethanol prices at Iowa plants we assume that the

production price of ethanol is set in the Midwest ethanol market.25

The price of crude oil is used as a proxy for petroleum blendstock. We use PADD-

level crude oil spot prices with delivery points within those PADD regions.26 We

use PADD-level prices because of substantial divergence between Brent and WTI

(West Texas Intermediate) crude oil prices beginning in 2011. For PADD 2 region, we

use WTI crude oil spot price for Cushing, Oklahoma, for PADD 3 - Light Louisiana

sweet crude oil price with delivery point in St.James, Louisiana. However, we lack

PADD-level prices for PADD 1 and PADD 5 regions. Instead, for PADD 1 region

we use weekly Brent oil prices because PADD 1 region refines oil imported mainly

25USEPA (2010) uses ethanol spot price on Chicago Board of Trade and adjusts for transportation
costs to deliver ethanol from the Midwest to end use terminals. Because Iowa is the the largest
ethanol producing state, and ethanol produced in Iowa is no different from ethanol produced in other
Midwestern states, it is reasonable to use Iowa ethanol prices.

26By using the oil price directly we assume that there is no variation in refinery profits. However,
as long as variations in oil refinery profits are uniformly distributed across the United States to all
blenders this problem amounts to measurement error in the price of oil variable.
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from abroad as well as domestically produced oil. Though, in recent years, East

Coast refiners have been reducing imported crude oil and increasing domestic crude oil

thanks to increased domestic crude oil production and its lower cost.27 As for PADD

5 region, we use Alaska North Slope crude oil spot price because the region refines oil

imported from Alaska, in addition to oil produced in California. Additional regression

results without PADD 1 and PADD 5 regions are presented as well. We matched the

PADD-level oil prices with states and cities located within those PADD regions. A

barrel of oil is equivalent to 42 gallons and we divide the oil price by 42 to get per

gallon price. Crude oil price data are taken from Bloomberg databases.

Since ethanol prices vary across regional markets due to transportation costs, we

use distance from ethanol plants to destination points to proxy for ethanol shipping

costs. Ethanol is first delivered to blending terminals, there blended with petroleum,

and then delivered to gasoline stations. Since blending terminals are located in and

around cities, we use distance from ethanol plants to cities, instead of from ethanol

plants to blending terminals to cities. Importantly, we use different measures of

distances between demand and supply centers of ethanol. This allows us to explicitly

control for transportation costs associated with shipping ethanol via rail and truck

to blending terminals in and around cities where retail gasoline is sold. We find

the shortest distances between cities and ethanol refineries as well as between cities

and ethanol production center in the Midwest. We define the ethanol production

center as the geometric center of six Midwestern states where the vast majority of

ethanol is produced. The largest ethanol producing states are Iowa, Nebraska, Illinois,

Minnesota, Indiana, and South Dakota. These states accounted for about 75 percent

of the domestic ethanol production over the sample period.28 The next largest ethanol

producing states, Ohio and Wisconsin, each expected to produce one-half the amount

of the smallest of the six largest ethanol producing states in 2014. The centroid of

these six states, which we define as the ethanol production center in the Midwest,

27See EIA article at http://www.eia.gov/todayinenergy/detail.cfm?id=21092. Last accessed:
May 10, 2015.

28Renewable Fuels Association: Ethanol Industry Outlook for 2007 through 2014.
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falls within the boundaries of the state of Iowa, the largest ethanol producing state.

We find the shortest distance (in thousands of miles) from each city to the ethanol

production center in the Midwest using great-circle distance.

For the shortest distance from each city to ethanol refineries, we use weighted

average distance from each city to the nearest ethanol refineries. Because most ethanol

plants are small-scale producers, using distance to the single nearest ethanol plant

would likely underestimate the distance effect on gasoline prices. However, since

ethanol can still come from these smaller ethanol producing plants, we experimented

with alternative measures of distance, such as the weighted average distances from

cities to the closest four to eight ethanol refineries. We discuss these measures of

distance in the robustness checks below.

Table 1.1 presents the summary statistics for the sample period that is the basis of

this study. The distance from cities to the ethanol production center in the Midwest

ranges from 26 miles up to around 1,450 miles. For the sample period, PADD-level

oil prices ranged from low $30 to a high of $162 per barrel. In per gallon terms,

PADD-level oil prices ranged from $0.72 to $3.85 with a standard deviation of $0.47.

Per gallon cost of corn ethanol at Iowa plants ranged from $1.56 to $3.15 with a

standard deviation of $0.38. The blender’s decision to mix ethanol into finished

gasoline depends on the relative prices of ethanol and petroleum blendstock. The

existence of market friction in ethanol transportation may change the competitiveness

of ethanol to blenders, especially for those that are farther away from the Midwest.

The price spike in the delivery price of ethanol in early 2014 due to back up in rail

traffic is one example of the existence of market friction in the ethanol market.

Several states have their own renewable fuel programs. Some of these programs

predate federal ethanol mandates. Table 1.2 presents a list of six states that have

statewide oxygenate mandates. For example, in Minnesota all gasoline must contain

at least 10% ethanol, but blends with at least 9.2% of pure ethanol (e.g. excluding

denaturants and other permitted components) by volume are considered to be in
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Table 1.1: Summary Statistics

Variable Unit Mean Std.Dev. Min Max

Distance 1,000 miles 0.68 0.34 0.03 1.45

Retail gasoline price U.S.$ per gal. 2.70 0.50 0.95 5.31

PADD-level oil price U.S.$ per gallon 2.35 0.47 0.72 3.85

WTI oil price U.S.$ per gallon 2.24 0.41 0.87 3.75

Ethanol price U.S.$ per gal. 2.27 0.38 1.56 3.15

Notes: The data is for 208 U.S. cities covering January, 2007-July, 2014. Distance is

the great circle distance from cities to ethanol production center in the Midwest. Retail

gasoline price is the wholesale rack price of unbranded gasoline with up to 10% ethanol

paid by retailers. All price data are deflated into July, 2014 U.S. dollars.

Table 1.2: State Ethanol Mandates

State Ethanol in Gasoline ( %) Effective Date

Florida 9 to 10 Dec 21, 2010

Hawaii 10 1994

Minnesota 9.2 to 10 2003

Missouri 10 Jan 1, 2008

Oregon 10 Nov 1, 2009

Washington 2 to 10 Dec 1, 2008

Source: Weaver et al. (2010); U.S. Department of Energy, Energy
Efficiency and Renewable Energy, Alternative Fuels Data Center.
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compliance.29 Hawaii, Minnesota, Missouri, and Oregon require that gasoline contain

at least 10% ethanol in volume. Because we are also interested in potential impacts of

blending ethanol above the required standard on gasoline prices, we experiment by

excluding the cities within those states.

1.4 Econometric Model

The geographically remote locations of biorefineries coupled with the underdeveloped

ethanol infrastructure created a market for ethanol transport. Due to the mode of

transportation and underdeveloped infrastructure, shipping ethanol is more expensive.

When the RIN prices started to increase in 2013, blending ethanol at farther away

places from the Corn Belt have likely occurred at greater costs. We investigate the

effects of higher transportation costs of ethanol on retail gasoline prices over space

after the RFS policy started binding in 2013. To do so we use a research design

which is a very specific form of difference-in-differences design. Similar to Kiel and

McClain (1995), we consider a continuous treatment, which is distance from a city

to the ethanol production center in the Midwest. Kiel and McClain (1995) used

direct distance from the house to a new garbage incinerator to study the effect an

incinerator had on housing values. In our model we consider a similar framework

where transportation costs of shipping ethanol increases with distance from a city to

ethanol sources. We control for when the policy started binding, not when the policy

was passed in 2007. If the corn ethanol RIN prices before 2013 were essentially zero,

they sharply increased starting in 2013. As the Figure 1.2 shows, the value of ethanol

RINs skyrocketed from about 5 cents at the end of 2012 to approximately $1.50 by

July of 2013. While the price of RINs since came down, it is nowhere close to pre-2013

levels. The value of RINs affects blender’s choice of compliance method. For example,

when the RIN price increases it encourage blending ethanol because purchasing RINs

29See https://www.revisor.mn.gov/statutes/?id=239.791. Last accessed: May 10, 2015.
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increase the cost of gasoline production.30 This explains why we are using 2013 as a

reference year rather than 2007.

Our identification relies on the assumption that changes in gasoline prices are

driven by demand shifts and, therefore, supply capacity is assumed to be constant

during the study period. We estimate difference-in-differences quantile regression

specification with continuous distance treatment effect discussed above. This modeling

is identical to a standard difference-in-differences strategy with the only difference

that the treatment is continuous. There is a great deal of variability in distance

measure as our dataset includes cities distributed throughout the U.S. while ethanol

production is concentrated in the Midwest. We control for when the mandate started

binding nationally. The dataset covering 2007-2014 includes period when the policy

was binding (2013-2014) and when the policy was not binding (2007-2012).

The literature on quantile regression shows that it has been applied in various

settings. For instance, the technique has been used in studying the impact of welfare

reform on earnings (Bitler and Hoynes, 2006), returns to education (Arias et al.,

2001), birthweight determinants (Abrevaya and Dahl, 2008). Our quantile difference-

in-differences method applies the difference-in-differences approach to each quantile of

the data instead of mean. There are three main reasons for using a quantile regression

rather than OLS technique. First, the incentive to blend varies by the relative prices

of wholesale petroleum and ethanol. Since finished gasoline is at least 90% petroleum,

the incentive to blend ethanol varies over the distribution of gasoline prices. Therefore,

conditional quantiles of retail gasoline price distribution can be thought of representing

the substitution effect in blending decisions. In contrast, OLS estimates the mean

effect and cannot account for this substitution effect arising from dynamic market

incentives. Second, in our quantile regressions we allow for the market frictions to

vary differentially across both different ethanol shipping distances and different retail

gasoline prices. Third, refiner profits (often proxied by the crack spread) vary with

30Reuters article reported that higher RIN prices cost refiners at least
$1.35 billion in 2013. See http://www.reuters.com/article/2014/03/31/

us-rins-spike-costs-analysis-idUSBREA2U0PT20140331. Last accessed: May 10, 2015.
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demand for gasoline. Ethanol can have a differential effect on gasoline prices as

demand rises and falls through the refiner profits channel as ethanol reduces the

market power of refiners during high demand periods (Knittel and Smith (2015)).

Quantile techniques account for this asymmetric effect throughout the distribution of

gasoline prices explicitly, while OLS can only identify the mean effect.

The main empirical specification regresses the retail gasoline price on the relative

prices of oil and corn ethanol, and distance variables:

Pgit = γ0,τ + γ1,τ1 · {Y r>2012}+ γ2,τ (Pet−Pot) + γ3,τPot + γ4,τ1 · {Y r>2012}×Disti

+ γ5,τ (Pet − Pot)×Disti + γ6,τ1 · {Y r > 2012} × (Pet − Pot)

+ γ7,τ1 · {Y r > 2012} × (Pet − Pot)×Disti + λi,τ + fmy,τ + εit,τ (1.1)

Pgit = x′itβτ + λi,τ + fmy,τ + εit,τ (1.2)

Qτ (ετ,it|xit, λi,τ , fmy,τ ) = 0 (1.3)

Qτ (Pgit|xit, λi,τ , fmy,τ ) = x′itβτ + λi,τ + fmy,τ (1.4)

where the dependent variable, Pgit , is retail gasoline price for city i in week t, x is

our vector of regressors, and βτ is the vector of parameters to be estimated. Pet is the

weekly corn ethanol price, Pot is the weekly price of a gallon of oil, Disti is the distance

from city i to the ethanol production center in the Midwest, and εit,τ is the error term

with unknown distribution function and potential heteroskedasticity.31 We estimate

the relationship of x with Pgit for different values of τ which indexes the quantiles

of the dependent variable. Thus, Qτ (Pgit|xit, λi,τ , fmy,τ ) denotes the τth conditional

quantile of Pgit with 0 < τ < 1. Estimation and inference of βτ is discussed in Galvao

(2011). It is clear that the advantage of using a panel data (rather than cross sectional)

quantile regression is that we can control for unobserved heterogeneity in the gasoline

prices.

31Quantile regression is a semiparametric method because one does not need to specify the
distribution function of the error term. The presence of heteroskedasticity is captured by the quantile
regression coefficients. See Koenker (2005) for further details.
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λi,τ control for city fixed effects. At the local level blender’s decision to operate

depends on the costs of its inputs, such as petroleum blendstock, ethanol, labor costs,

etc. City fixed effects control for local unobserved production costs, variations in local

environmental policies, and differences in local regulations. For example, Brown et al.

(2008) finds that there are significant spatial differences in regulation and that those

differences significantly affect gasoline prices.32 In addition, some states require how

the information about the ethanol content be labeled in retail outlets.

fmy,τ are month-by-year effects, where m is month (January-December) and y is

year (2007-2014). Month-by-year effects, fmy,τ , are monthly dummies for each year of

the data sample. In other words, every month in a certain year is allowed to have a

different impact from the same month in a different year.33 They control for everything

that was fixed within that time period and remove all of the fluctuations common

across states and PADDs over time. For example, month-by-year effects control for

variations driven by national level events as well as variations due to seasonality.

Note that both city fixed effects and month-by-year effects are τ -dependent. With

large number of city fixed effects, it is typical to impose the restriction λi,τ = λi for

all quantiles. These traditional city-specific effects (λi) do not vary across quantiles

and they estimate a location-shift effect that simply shifts the conditional quantile

functions by λ.

The justification for the inclusion of relative prices of ethanol and oil in the

regression is straightforward. We assume that ethanol is a substitute, though

imperfectly, for petroleum blendstock. The incentive to blend ethanol is greater

when the ethanol price and its associated transportation costs are smaller than the

petroleum blendstock. As a result, we include not only the oil price as a control

variable, but also the relative prices of corn ethanol and oil: (Pet − Pot). To make the

interpretation of coefficients easier, we normalize the (Pet−Pot) variable by subtracting

32To the extent that there is seasonal variation in these regulations, we assume that seasonal
variation in regulations are orthogonal to distance from ethanol refineries.

33Given the weekly observations, we determine the corresponding calendar month the weeks belong
to generate month-by-year effects.
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from it its post-2012 mean value. Identification for this coefficient comes from weekly

variations in ethanol and PADD-level oil prices.

Disti is distance from city i to ethanol sources and controls for ethanol

transportation costs. Ethanol produced in a particular city (state) is no different from

ethanol produced in other city (state). Because ethanol production is concentrated

in the Midwest, our distance measure is the distance from each city to the ethanol

production center in the Midwest. We find the centroid of the six largest ethanol

producing states and designate it as the ethanol production center. The centroid of

these ethanol producing states corresponds to a location in Iowa, which also happens

to be the largest ethanol producing state. However, since ethanol still comes from

other places, a blender will minimize its costs of production by purchasing ethanol

from the closest ethanol refineries provided supply of ethanol is available. As will

be discussed in the next section, we also present results using alternative measures

of distance, such as the weighted average distances from cities to closest ethanol

refineries.

We are mainly interested in the effects of distance on gasoline prices after 2012

when the ethanol policy started to bind. Hence, the coefficients of interest are those

on (Y r>2012)×Dist and (Y r>2012)×(Pe−Po)×Dist. From equation 1.1, if we take

the derivative of retail gasoline price with respect to distance we get

∂Pg
∂Dist

∣∣∣∣
Y r>2012

= γ4 + γ7(Pet − Pot) (1.5)

This is the overall impact of distance on gasoline prices, where γ4 is the direct

distance effect. The interpretation of equation 1.5 is similar to “trade cost” in gravity

models of trade. In the gravity models of trade, distance between two countries reduces

the volume of trade between them. In our model, cost of ethanol to blenders increases

with distance which is captured by γ4. As the mandate started to bind and RIN prices

started to increase in 2013, more ethanol has to be shipped to places outside the

Midwest. To see the relationship between retail gasoline price and ethanol shipping
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Figure 1.6: Relationship of Gasoline Price with Distance

Notes: Distance measure the distance from cities to ethanol production center in the Midwest. We
bin the distances into several intervals of the same size and plot the average value of the gasoline
price for each distance bin.

distance, we plot them in Figure 1.6. Note that distance is great circle distance from

cities to the centroid of the largest ethanol producing states in the Midwest. Since we

have thousands of observations, simple scatter plot would have become overcrowded

and, therefore, not very useful in studying the relationship between the two variables.

Therefore, in the Figure 1.6 we bin the distance variable into several intervals of the

same size and plot the average value of the gasoline price for each distance bin. From

the figure we can see a positive relationship between the two variables. However, as

the equation 1.5 makes clear the effect of distance on gasoline prices also depends on

the relative prices of corn ethanol and petroleum blendstock. We discuss the overall

effect of distance on gasoline prices below.
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Table 1.3: Main Regression Results

(0.10) (0.25) (0.50) (0.75) (0.90)

(Y r>2012) 1.068∗∗∗ 1.014∗∗∗ 0.981∗∗∗ 0.954∗∗∗ 1.007∗∗∗

(87.50) (88.97) (66.41) (62.76) (61.37)

(Pe−Po) 0.197∗∗∗ 0.166∗∗∗ 0.143∗∗∗ 0.0751∗∗∗ 0.0739∗∗∗

(28.57) (28.31) (19.33) (9.85) (9.02)

Po 0.393∗∗∗ 0.386∗∗∗ 0.376∗∗∗ 0.326∗∗∗ 0.296∗∗∗

(62.43) (69.73) (55.27) (45.58) (38.07)

(Y r>2012)×Dist 0.0164∗∗∗ 0.0129∗∗∗ 0.00545 -0.0137∗∗ -0.0404∗∗∗

(4.64) (3.95) (1.32) (-3.27) (-9.17)

(Pe−Po)×Dist -0.0187∗∗∗ -0.0389∗∗∗ -0.0524∗∗∗ -0.0670∗∗∗ -0.0614∗∗∗

(-4.37) (-9.82) (-10.05) (-11.95) (-9.50)

(Y r>2012)×(Pe − Po) -0.0557∗∗∗ -0.0269∗∗ 0.0165 0.171∗∗∗ 0.249∗∗∗

(-5.38) (-2.98) (1.51) (15.82) (21.73)

(Y r>2012)×(Pe−Po)×Dist -0.0430∗∗∗ -0.0508∗∗∗ -0.0830∗∗∗ -0.154∗∗∗ -0.261∗∗∗

(-3.99) (-5.37) (-7.14) (-13.01) (-20.04)

Constant 0.801∗∗∗ 0.885∗∗∗ 1.043∗∗∗ 1.275∗∗∗ 1.396∗∗∗

(31.92) (39.51) (36.37) (42.84) (43.85)

City fixed effects Yes Yes Yes Yes Yes
Month-by-year effects Yes Yes Yes Yes Yes

N 58,852 58,852 58,852 58,852 58,852

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

1.5 Results

Table 1.3 presents the regression results for different quantiles of retail gasoline price

distribution. We are mainly interested in distance effect on retail gasoline prices after

2012. The coefficient on (Y r>2012)×Dist is positive for τ <0.75. This means that

ethanol shipping distance had positive impact on retail gasoline prices after 2012 when

the RIN prices started to increase. However, this effect is statistically significant only

at the lower tails of retail gasoline price distribution (τ < 0.50). Thus, when retail

gasoline price is low, cities farther from the ethanol production centers in the Midwest
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paid significantly higher gasoline prices than cities in upper Midwest. As the mandate

became binding at the national level starting in 2013, more ethanol has to be shipped

to far away places. Therefore, blending in those places may have occurred at higher

costs due to the binding mandate and ethanol transportation costs. This result is

intuitively clear: because E10 market in the Midwest has been saturated with ethanol,

additional ethanol consumption due to the mandate must have come from places that

have not yet hit the blend wall. This is because, even though the RFS is a national

mandate, the penetration of ethanol across the U.S. has not been uniform. Figures

1.4 and 1.5 both suggest that the Gulf Coast, Rocky Mountain Region, and to some

degree the West Coast likely absorbed more ethanol when the mandate started binding.

Even if blenders choose not to blend ethanol to the required minimum level, a binding

mandate means that blenders in far away places would have to pay significantly higher

prices for RINs to meet their renewable volume obligations. RIN is a variable cost

that increases the cost of producing finished gasoline. If a blender chooses not to

blend ethanol to the required volume, then she shortfall in obligations must be met

by purchasing RINs in the open market. If more gasoline is sold, more RINs have to

be generated or purchased because the RFS mandate is proportionate to the gasoline

consumption.

Importantly, the effect of transportation costs also depends on the relative prices

of corn ethanol and petroleum blendstock used in the blending process. Note that

Po is per gallon oil price used to proxy for petroleum blendstock.34 Cost of oil makes

up about 2/3 of the cost of petroleum blendstock and the rest of the cost is made

up of refining and distribution costs. The availability of relatively cheaper ethanol is

expected to lessen the distance effect on gasoline price.35 We plot the weekly variation

34Ethanol is blended with petroleum blendstock that is either conventional blendstock for oxygenate
blending (CBOB) or reformulated blendstock for oxygenate blending (RBOB), with latter being more
expensive to refine. See http://wearethepractitioners.com/library/the-practitioner/2012/

03/15/the-gasoline-bobs-cbob-and-rbob-%28and-carbob%29. Last accessed: May 10, 2015.
35A gallon of ethanol contains 2/3 the energy of a gallon of petroleum blendstock. While relevant,

in this paper we are not concerned with the retail price differentials between E10 (gasoline with up
to 10% ethanol blend) and E0 (100% pure gasoline) sold in certain markets.
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Figure 1.7: The Cost of Ethanol and Crude Oil

Notes: Ethanol price is the spot price at Iowa ethanol plants and oil price is the WTI spot crude oil
price with delivery point in Cushing, Oklahoma.

of ethanol and crude oil spot prices in Figure 1.7. Ethanol price is the spot price of

ethanol at Iowa ethanol plants. While petroleum products are mainly transported by

cost-effective pipelines, ethanol delivery costs vary depending on shipping distances. In

the past cold weather and increased crude oil shipments by rail was blamed for delays in

ethanol shipments from the Midwest, leading to an increase in ethanol delivery prices.

In New York Harbor, this has led to an increase in per gallon shipping costs of ethanol

from usual 10 cents to about $1 in early 2014.36 As Table 1.3 shows the coefficient

estimate for (Y r>2012)×(Pe−Po)×Dist is negative and statistically significant for

all quantiles. We evaluate the post-2012 effect of distance on retail gasoline prices by

36See http://www.wsj.com/articles/SB10001424052702303546204579439740561525518. Last
accessed: May 10, 2015.
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Figure 1.8: Changes in Retail Gasoline Price per 1,000 miles (cents/gal.)

Notes: This Figure shows the effect of distance from a city to an ethanol refinery on retail gasoline
prices, as defined in equation 1.5. The overall distance impact depends on the relative costs of ethanol
and petroleum blendstock as well, which is given on the horizontal axis.

controlling for the variation in relative prices of ethanol and petroleum blendstock

below.

The overall impact of distance on retail gasoline prices, after the mandate became

binding, is given by the equation 1.5 and presented graphically in Figure 1.8. The figure

shows changes in gasoline prices per 1,000 miles against the various values of (Pe−Po).

Note that the value on the horizontal axis for (Pe−Po) are demeaned by subtracting

from it its post-2012 mean value, which is equal to (Pe − Po)
∣∣
Y r>2012

= −$0.15 for our

dataset. A movement to the left along the horizontal axis means relative ethanol to

blendstock prices got lower than their post-2012 mean value. For instance, a value

of -$0.50 on the horizontal axis means relative price of ethanol to oil decreased by

about $0.65 from its mean value (e.g. −0.65− (−0.15) = −0.50). This may occur, for
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example, when ethanol becomes cheaper than oil by $0.65, or when oil price increases

relative to ethanol by $0.65, and/or combination of both. As Figure 1.8 shows, when

the relative ethanol to oil prices move lower, the overall impact of distance on retail

gasoline prices is positive. This result is intuitively sensible: ethanol is more appealing

to blenders when the relative price of petroleum blendstock is high. If ethanol is

costly to ship far away from the Midwest, then theory would predict that only when

ethanol is very appealing to blend (e.g. the relative price of petroleum blendstock

is high) would far away places fully blend. Since ethanol transport costs increase

with distance, this means cities farther away from ethanol production centers face

higher retail gasoline prices than cities closer to ethanol sources. For example, when

(Pe−Po) = −$0.50, this translates into an additional cost of 4 to 9 cents per gallon

of gasoline for every 1,000 miles depending on the distribution of gasoline prices.

Similarly, back of the envelope calculations show that for a consumer living in Miami,

Florida, which is about 1,450 miles away from the centroid of ethanol production

center in the Midwest (i.e. Iowa), this translates into 5 to 13 cents more per gallon of

gasoline when (Pe−Po) = −$0.50. We note that an increase in gasoline prices has a

direct effect on transportation costs themselves as diesel fuel used for trains becomes

more expensive.37 Nonetheless, these point estimates seem high, therefore we focus on

the significance of the result.

We observe differential impact as we move to the right along the horizontal axis.

Positive values for (Pe − Po) imply ethanol becoming less competitive relative to

petroleum blendstock. Surprisingly, when ethanol becomes more expensive than oil,

distance effect on retail gasoline prices is negative. Though unexpected, this result is

less likely to occur because gasoline prices tend to be high (as represented by higher

quantiles in the graph), when oil prices are high. If ethanol is not competitively priced,

then blending ethanol will not be profitable to blenders. Therefore, negative distance

effect observed in the graph is unexpected and unlikely to happen.

37This is one manifestation of the market friction our paper is concerned with. The coefficient on
(Y r>2012)×(Pe−Po)×Dist will not be subject to that form of market friction, though, since it is
differenced out by (Y r>2012)×Dist for a given level of retail gasoline prices.
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Table 1.4: Overall Distance Effect on Retail Gasoline Prices

τ ≤ 0.25 τ ≥ 0.75

Pe < Po + +

Pe > Po ± −

Notes: We define τ ≤ 0.25 and τ ≥ 0.75 as corresponding to

lower and upper tails of retail gasoline prices, respectively. When

Pe < Po (top two boxes), blending ethanol becomes attractive

and distance effect is positive. In contrast, when Pe > Po and

τ ≥ 0.75 (i.e. when ethanol becomes more expensive than oil

and retail gasoline prices are already high), the distance has

a negative effect on retail gasoline prices (bottom right box).

We argue that this result is unlikely to occur because when oil

prices are high, gasoline prices tend to be high as well.

To summarize the results, we present the effects of distance on retail gasoline

prices using 2 by 2 table (see Table 1.4). We focus on the tails of retail gasoline price

distribution. We define low retail gasoline prices as corresponding to the distribution

of retail gasoline prices at and below the 25th quantile (i.e. 0 < τ ≤ 0.25) and high

retail gasoline prices − at and above the 75th quantile (i.e. τ ≥ 0.75). When Pe < Po

(top two boxes), the distance effect is positive and cities far from ethanol sources

pay higher retail gasoline prices than cities closer to ethanol sources. This effect is

more pronounced if the retail gasoline prices are already high. In contrast, when

Pe > Po, distance effect on retail gasoline price is generally negative. As explained

above, we believe this negative distance effect is unlikely to happen. For τ ≥ 0.75,

which corresponds to upper tail of gasoline prices, oil prices also tend to be higher

and, therefore, negative distance effect seems counterintuitive.

A related question is could these results be driven by the existence of market

power in the ethanol market? According to the latest analysis conducted by Federal
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Trade Commission, the U.S. ethanol production industry seems unconcentrated.38

We are not aware if there exists similar analysis about the RIN market. The sharp

increase in RIN prices in 2013 fueled discussions about speculative activity in the

RIN market. High RIN prices post-2012 could be the result of transaction costs or

speculative activity by market participants. Because of lack of information about the

RIN market, we are unable to study the factors behind a sharp spike in RIN prices

in 2013. Therefore, although our results are consistent with the existence of market

power in the ethanol market, we are unable to separate the effects of market power

from the distance effects. What is certain is the existence of market frictions in the

ethanol market due to distance between ethanol plants and blenders. Because of our

difference-in-differences design, we take our results as causal evidence that the binding

ethanol regulation exacerbated market friction that asymmetrically affected retail

gasoline prices in the U.S.

1.6 Robustness Checks

The main regression results presented in Table 1.3 and discussed in the previous

section, use distance from cities to the ethanol production center in the Midwest.

Since distance is used to proxy for transportation costs of ethanol, we consider how

robust our results are to different measures of distance.

Most ethanol plants are small-scale producers that are much smaller than oil

refineries. Typically, demand for ethanol at the city level exceeds the supply by

an individual ethanol producer. Hence, distance from a city to the single nearest

ethanol refinery does not factor the need for additional ethanol from other nearby

ethanol plants. Further, ethanol industry witnessed a number of its facilities having

ceased production either temporarily or permanently due to various factors, including

38Federal Trade Commission: “2013 Report on Ethanol Market Concentration.”

32



Table 1.5: Results Using Weighted Average Distance to the Closest Four Biorefineries

(0.10) (0.25) (0.50) (0.75) (0.90)

(Y r>2012) 1.077∗∗∗ 1.032∗∗∗ 0.995∗∗∗ 0.955∗∗∗ 0.990∗∗∗

(87.86) (90.87) (86.43) (75.10) (59.45)

(Pe−Po) 0.197∗∗∗ 0.160∗∗∗ 0.130∗∗∗ 0.0514∗∗∗ 0.0502∗∗∗

(29.49) (28.55) (23.84) (8.51) (6.42)

Po 0.408∗∗∗ 0.393∗∗∗ 0.380∗∗∗ 0.321∗∗∗ 0.294∗∗∗

(63.12) (70.14) (70.73) (53.23) (36.98)

(Y r>2012)×Dist -0.0381∗∗∗ -0.0101 -0.0166 -0.0449∗∗∗ -0.104∗∗∗

(-3.93) (-1.09) (-1.76) (-4.23) (-7.15)

(Pe−Po)×Dist 0.00928 -0.0634∗∗∗ -0.117∗∗∗ -0.149∗∗∗ -0.122∗∗∗

(0.70) (-5.06) (-9.15) (-10.43) (-6.44)

(Y r>2012)×(Pe−Po) -0.0740∗∗∗ -0.0442∗∗∗ -0.0226∗∗ 0.106∗∗∗ 0.154∗∗∗

(-8.87) (-5.95) (-3.09) (13.29) (14.13)

(Y r>2012)×(Pe−Po)×Dist -0.242∗∗∗ -0.207∗∗∗ -0.151∗∗∗ -0.266∗∗∗ -0.482∗∗∗

(-8.13) (-7.71) (-5.60) (-8.57) (-10.23)

Constant 0.766∗∗∗ 0.856∗∗∗ 1.028∗∗∗ 1.280∗∗∗ 1.386∗∗∗

(29.91) (37.68) (45.45) (51.78) (42.74)

City fixed effects Yes Yes Yes Yes Yes
Month-by-year effects Yes Yes Yes Yes Yes

N 58,852 58,852 58,852 58,852 58,852

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

drought.39 Thus, using distance to a single closest refinery will underestimate the

distance effect on gasoline prices. Instead, we opt to use a weighted average distance

to the nearest ethanol refineries. We experimented with weighted average distances

to the closest four to eight ethanol refineries. Table 1.5 presents the results from the

regression using a weighted average distance to the closest four ethanol plants.

39For example, shortage of corn idled about 20 ethanol refineries in 2012-2013. See http://www.

usatoday.com/story/news/nation/2013/02/10/corn-shortage-idles-plants-nationwide/

1906831/. Last accessed: May 10, 2015.
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The coefficients on one of the variables of interest, (Y ear>2012)×Dist, is negative

for all quantiles, but statistically not significant at 25th and 50th quantiles. Regression

estimates using a weighted average distance to closest five to eight ethanol plants

yielded similar results. A closer inspection of the data shows that using a weighted

average distance to closest four to eight ethanol plants underestimates the distance

effect. If in the main regression specification the average distance from a city to the

ethanol production center in the Midwest is 680 miles, it is only 160 miles when we use

a weighted average distance to the nearest four ethanol refineries. Also, the weighted

average distance estimates are significantly lower than the actual national average

ethanol transport distance of approximately 680 miles as found in Strogen et al. (2012).

However, if we evaluate the overall impact of distance, which also depends on the

relative prices of ethanol and petroleum, distance has a positive impact on retail

gasoline prices when (Pe − Po) falls.40

We also estimated an alternative specification where we define a dummy variable

Far and set it equal to one for all the cities that are not in PADD 2 region (i.e.

Midwest). This accounts for greater ethanol transport costs when ethanol is shipped

to major demand centers outside the Midwest. The results are presented in Table 1.6.

The coefficient estimate for post-2012 Far dummy variable, (Y ear>2012)×Far, is

positive only at 25th and 50th quantiles, though, they are not statistically significant.

On the other hand, the coefficients on (Y r>2012)×(Pe−Po)×Far, are negative and

statistically significant.

As further tests, we dropped PADD 1 and PADD 5 regions and compared the

retail gasoline prices between PADD 2 and PADD 3 regions. The results are presented

in Table 1.7. The coefficient on (Y ear > 2012)×Far is positive and statistically

significant for all quantiles, except for τ = 0.90. The other coefficient of interest,

(Y r>2012)×(Pe−Po)×Far, is negative and statistically significant, except for τ = 0.50.

These estimates are consistent with the main results of the paper.

40When we use WTI crude oil prices instead of PADD-level oil prices, the results are qualitatively
similar.
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Table 1.6: Models of Gasoline Price with Cities Near vs. Far from Biorefineries

(0.10) (0.25) (0.50) (0.75) (0.90)

(Y r>2012) 1.067∗∗∗ 1.010∗∗∗ 0.992∗∗∗ 0.956∗∗∗ 1.022∗∗∗

(96.43) (85.07) (82.19) (62.54) (57.68)

(Pe−Po) 0.193∗∗∗ 0.152∗∗∗ 0.118∗∗∗ 0.0555∗∗∗ 0.0645∗∗∗

(31.93) (26.01) (20.70) (7.64) (7.76)

Po 0.400∗∗∗ 0.388∗∗∗ 0.373∗∗∗ 0.331∗∗∗ 0.315∗∗∗

(68.04) (65.50) (65.54) (45.20) (36.87)

(Y r>2012)×Far -0.000386 0.00275 0.00282 -0.0113∗∗∗ -0.0359∗∗∗

(-0.17) (1.13) (1.12) (-3.50) (-9.47)

(Pe−Po)×Far -0.00652∗ -0.0224∗∗∗ -0.0320∗∗∗ -0.0444∗∗∗ -0.0354∗∗∗

(-2.26) (-7.52) (-10.78) (-11.61) (-7.84)

(Y r>2012)×(Pe−Po) -0.0649∗∗∗ -0.0386∗∗∗ 0.00234 0.137∗∗∗ 0.205∗∗∗

(-8.45) (-4.90) (0.30) (14.23) (18.09)

(Y r>2012)×(Pe−Po)×Far -0.0725∗∗∗ -0.0620∗∗∗ -0.0701∗∗∗ -0.126∗∗∗ -0.245∗∗∗

(-11.01) (-9.04) (-10.32) (-14.66) (-24.15)

Constant 0.885∗∗∗ 1.329∗∗∗ 1.521∗∗∗ 1.764∗∗∗ 1.835∗∗∗

(36.46) (52.75) (60.51) (55.69) (50.49)

City fixed effects Yes Yes Yes Yes Yes

Month-by-year effects Yes Yes Yes Yes Yes

N 58,852 58,852 58,852 58,852 58,852

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: We define Far dummy variable and set it equal to zero if a particular city is in PADD 2

region (Midwest). For all other cities in other PADD regions, it is set equal to one.
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Table 1.7: Models of Gasoline Price with Cities in PADD 2 vs. PADD 3 Regions

(0.10) (0.25) (0.50) (0.75) (0.90)

(Y r>2012) 0.531∗∗∗ 0.508∗∗∗ 0.472∗∗∗ 0.467∗∗∗ 0.439∗∗∗

(41.13) (31.87) (29.39) (32.10) (26.46)

(Pe−Po) 0.140∗∗∗ 0.0998∗∗∗ 0.0602∗∗∗ -0.00529 -0.0109

(20.38) (13.08) (7.83) (-0.74) (-1.27)

Po 0.404∗∗∗ 0.400∗∗∗ 0.402∗∗∗ 0.384∗∗∗ 0.351∗∗∗

(55.42) (48.85) (50.73) (52.46) (39.56)

(Y r>2012)×Far 0.0259∗∗∗ 0.0379∗∗∗ 0.0398∗∗∗ 0.0176∗∗∗ 0.00644

(10.39) (11.45) (10.82) (5.07) (1.54)

(Pe−Po)×Far -0.00597 0.00172 -0.00816 -0.00526 -0.00288

(-1.58) (0.36) (-1.65) (-1.13) (-0.52)

(Y r>2012)×(Pe−Po) -0.00279 0.0240∗ 0.0674∗∗∗ 0.204∗∗∗ 0.256∗∗∗

(-0.32) (2.35) (6.71) (22.82) (24.42)

(Y r>2012)×(Pe−Po)×Far -0.0342∗∗∗ -0.0481∗∗∗ -0.0181 -0.0884∗∗∗ -0.188∗∗∗

(-4.05) (-4.81) (-1.74) (-9.28) (-16.57)

Constant 1.260∗∗∗ 1.654∗∗∗ 1.801∗∗∗ 1.962∗∗∗ 2.117∗∗∗

(49.07) (54.58) (59.32) (71.91) (66.53)

City fixed effects Yes Yes Yes Yes Yes

Month-by-year effects Yes Yes Yes Yes Yes

N 40,886 40,886 40,886 40,886 40,886

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: PADD 2 region is assumed to be closer to the ethanol sources, while PADD 3 region is

assumed to be Far from ethanol sources in the Midwest.
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Table 1.8: Results for Cities without 10% State Ethanol Mandates

(0.10) (0.25) (0.50) (0.75) (0.90)

(Y r>2012) 0.740∗∗∗ 0.694∗∗∗ 0.714∗∗∗ 0.752∗∗∗ 0.731∗∗∗

(58.07) (42.23) (49.66) (50.02) (40.90)

(Pe−Po) 0.195∗∗∗ 0.167∗∗∗ 0.144∗∗∗ 0.0838∗∗∗ 0.0916∗∗∗

(27.76) (20.09) (20.16) (11.18) (9.96)

Po 0.400∗∗∗ 0.387∗∗∗ 0.374∗∗∗ 0.318∗∗∗ 0.297∗∗∗

(63.14) (50.24) (57.67) (46.07) (34.86)

(Y r>2012)×Dist 0.0172∗∗∗ 0.0170∗∗∗ 0.00579 -0.0130∗∗ -0.0364∗∗∗

(4.66) (3.62) (1.43) (-3.16) (-7.25)

(Pe−Po)×Dist -0.0165∗∗∗ -0.0436∗∗∗ -0.0584∗∗∗ -0.0821∗∗∗ -0.0801∗∗∗

(-3.59) (-7.44) (-11.21) (-14.60) (-11.04)

(Y r>2012)×(Pe−Po) -0.0618∗∗∗ -0.0255∗ 0.0251∗ 0.166∗∗∗ 0.247∗∗∗

(-5.77) (-1.98) (2.35) (15.53) (18.87)

(Y r>2012)×(Pe−Po)×Dist -0.0418∗∗∗ -0.0481∗∗∗ -0.0881∗∗∗ -0.147∗∗∗ -0.262∗∗∗

(-3.69) (-3.53) (-7.78) (-12.68) (-17.81)
Constant 1.110∗∗∗ 1.204∗∗∗ 1.314∗∗∗ 1.497∗∗∗ 1.678∗∗∗

(45.50) (40.02) (50.67) (55.38) (51.51)

City fixed effects Yes Yes Yes Yes Yes
Month-by-year effects Yes Yes Yes Yes Yes

N 54,302 54,302 54,302 54,302 54,302

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Regression is run by dropping cities with 10% state ethanol mandates (Minnesota, Missouri,

and Oregon).

A number of states have their own renewable fuel policies. These policies are

generally more stringent than the RFS mandate at the national level. For example,

Hawaii, Missouri, and Oregon require exactly 10% ethanol content for gasoline sold in

those states (see Table 1.2). As a result, blenders in those states might not have much

flexibility when to blend and how much to blend. Therefore, we reestimate our model

by dropping cities in states with exactly 10% ethanol mandates (Missouri, Oregon,

and Minnesota). The results presented in Table 1.8 did not change in a significant
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way and are of similar magnitude as the main results.41 Perhaps, obligated parties

(blenders and refiners) over-complied with the mandate and therefore, dropping states

with more stringent ethanol policies did not alter our results significantly.

1.7 Conclusion

The 2007 renewable fuels standard (RFS) significantly boosted the demand for ethanol.

Wholesale blending terminals, where ethanol is blended into gasoline before it is

delivered to retail gasoline stations, are in the position to choose the amount of

blending. The minimum quantity of ethanol required to be blended is regulated by

RFS and is a yearly volume rather than a percentage of finished gasoline. This is a

unique aspect of the policy for our study: a volumetric mandate permits blenders to

have more flexibility in choosing their blending strategy within a year.

In the early years, the quantity of ethanol blended into fuel exceeded the mandated

quantities each years since the RFS’s inception in 2008. Therefore, mandate was most

likely not binding during this period. Up until 2013 the price of ethanol renewable

identification numbers (RINs), which is a better indicator of a binding mandate, has

been consistently close to zero. Beginning with 2013, the situation was much different.

An anticipation of higher blending mandates in 2013 and beyond, and an impending

10% blend wall meant that meeting the mandate by obligated parties (blenders and

refiners) would be more difficult and expensive. Lack of infrastructure for blending

ethanol and the limited access to the cost effective way of shipping ethanol throughout

the U.S., had differentially affected the incidence of a policy across the country.

In this paper we look at the implication of a binding mandate on retail gasoline

prices through the ethanol transportation cost channel. The existence of bottlenecks

in ethanol infrastructure and access to ethanol blendstock across the regional markets

may lead to unintended consequences. We find evidence that the RFS created a

market friction in the ethanol industry due to transportation costs of moving ethanol

41Hawaii is not in the contiguous U.S. and, therefore, is not included in our analysis.
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throughout the U.S. Using weekly retail gasoline price data from over 200 cities in

the U.S. and a quantile difference-in-differences estimator, we find that distance from

cities to ethanol production centers has resulted in differential impacts on gasoline

prices over space. Cities farther from the ethanol sources paid higher gasoline prices

relative to the cities in upper Midwest. As the mandate became binding starting

in 2013, more ethanol has to be shipped to far away places. With yearly increases

in the amount of ethanol consumption due to the mandate, more ethanol must be

shipped and that additional blending must have come from places outside the Midwest

at greater costs. Importantly, retail gasoline price impact of transportation cost of

moving ethanol from the Corn Belt across to other states depends on the relative

prices of corn ethanol and petroleum blendstock.

Our results highlight the spatial incidence associated with the mandated ethanol

market. Ordinary least squares regression estimates the conditional mean and,

therefore, is not adequate to capture distributional impact arising from dynamic

market incentives. Because of our quantile difference-in-differences design, we take

our results as causal evidence that the ethanol regulation led to market frictions

that asymmetrically affected retail gasoline prices in the U.S. We do not attempt to

find the total effects of a mandate on average gasoline prices. Rather, our results

shed light on the incidence of the policy due to market frictions created by the

lack of infrastructure in the ethanol industry. This may be of particular interest to

policymakers in alleviating these market frictions from their market designs.
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Chapter 2

Point Forecast Accuracy of Model

Averaging in Carbon Dioxide

Emissions Using U.S. State-Level

Data

2.1 Introduction

Carbon dioxide (CO2) emitted from fossil fuel (oil, gas, and coal) combustion is

the largest contributor to global CO2 emissions. Projections of CO2 is of particular

importance in evaluating policies to address CO2 due to human activity. While

literature on forecasting emissions is copious, reported forecasts may differ significantly

due to differences in their model specifications and the estimation techniques.

Among the class of emissions forecasts, early works focused on modeling emissions

based on Environmental Kuznetz Curve (EKC) hypothesis, where emissions first

rise with income and then fall after a certain income level is reached (Holtz-Eakin

and Selden (1995), Selden and Song (1994), Grossman and Krueger (1995)). Later

work examined the EKC hypothesis using more flexible approaches (Schmalensee
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et al. (1998)). However, not all studies agree with the conclusions of the EKC

hypothesis (Perman and Stern (2003), Stern (2004), Cole (2005)). More recent studies

experimented with dynamic modeling approaches to emission projections with some

success (Auffhammer and Steinhauser (2012)). While models and methods used to

forecast CO2 emissions are continually being perfected, there may be benefits from

combining existing models.

Studies on forecast combination go back to at least Bates and Granger (1969)

and Sanders (1963). In forecasting meteorological events, Sanders (1963) noted

that averaging subjective individual forecasts did significantly better than the best

individual forecast. The results from recent empirical and theoretical literature indicate

that forecast combination typically leads to increased forecast accuracy, sometimes

dramatically (Clemen (1989), Stock and Watson (2004), Timmermann (2006), Issler

and Lima (2009)). Even simple averaging of forecasts are found to produce better

forecasts on average than the forecasts generated from the best individual models

(Timmermann, 2006). If the true data generating process is unknown, which is true in

many situations, then pooling forecasts has the advantage of making use of a wider

information set than is available to each individual model. This may lead to better

forecast performance relative to that of individual model. Not surprisingly, forecast

combinations have increasingly been used in forecasting financial and economic data.

However, despite the abundance of models and estimation methods used in

forecasting emissions, application of forecast combination to CO2 emissions is lacking.

Indeed, one of the key recommendations of Intergovernmental Panel on Climate

Change (IPCC) Expert Meeting in Boulder, Colorado, was to generate ideas for the

evaluation and combination of projections from various modeling techniques.1

In this paper we evaluate the predictive accuracy of various individual models

found in CO2 emissions literature and their linear combinations. Using state-level

data for the U.S., we show that combining multiple forecasts of CO2 emissions can be

1IPCC, 2010: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting
on Assessing and Combining Multi Model Climate Projections. IPCC Working Group I Technical
Support Unit, University of Bern, Bern, Switzerland.
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useful alternative to individual model forecasts. We test the forecast accuracy and

present evidence that the best forecast combination may outperform the forecasts

from individual model specifications. Importantly, we find that the performance of

the best individual forecast is not significantly better than that of the best performing

forecast combination.

The individuals models used in this study have been chosen to represent differences

in modeling approaches used as well as their significance in the studies on CO2

emissions forecasts. While there are many other potential models to consider, we are

constrained by their data requirements and the need to forecast their regressors. As

for forecast combination, there are many candidate combination techniques to consider.

We consider forecast combinations that have been applied in many empirical studies

as well as recent advances in this area. Although alternative combinations may lead to

better forecasting performance, our goal is to assess whether pooling multiple forecasts

will improve forecasting CO2 emissions relative to individual models. We consider

combination techniques due to Bates and Granger (1969), Granger and Ramanathan

(1984), simple equal-weights forecast averaging, and bias-corrected forecast averaging

due to Issler and Lima (2009). Briefly, Bates and Granger (1969) suggested to combine

multiple forecasts by weighting them inversely to their mean squared error (MSE),

while in Granger and Ramanathan (1984) approach combination weights are obtained

by regressing individual forecasts on their actual values. In equal-weights forecast

averaging no combination weights are estimated. It is the simple average of individual

forecasts. Bias-corrected average forecast is an extension of equal-weights forecast

that seeks to remove time-invariant bias present in individual models. Estimation of

these methods as well as individual models are discussed in more detail below.

The remainder of the paper is organized as follows. The next section presents a

discussion of forecast combination problems and approaches to forecast combination.

It also introduces individual model specifications considered in this paper. In section

2.3 we explain our empirical exercise and methodology. It also presents the dataset

that is the basis of our study and discusses the reported results. Section 2.4 concludes.

42



2.2 Forecast Combination

In a recent survey, Timmermann (2006) discusses a number of potential reasons for

forecast combination. First, mean squared forecast error (MSFE) can be minimized

by combining individual forecasts due to gains from diversification. Second, individual

forecasts may differ in how quickly they adapt to the new data if they are subjected

to structural breaks. In this case, combining of individual forecasts may result, on

average, in better forecast than forecasts obtained from individual models themselves.

Third, because the true data generating process is usually unknown, individual

model specifications are often misspecified. The diversification argument imply that

combining forecasts helps reduce the misspecification biases that may be present in

individual models.

For non-nested models, the plausibility of pooled forecasts is intuitively easy to

understand. If two forecasts derive their properties from different information sets, the

pooling forecasts allows one to use a wider information set. This, in turn, minimizes

the quadratic loss function, such as mean squared error (MSE), leading to a better

forecast performance. Surveys of empirical literature on forecast combinations agree

that forecast combinations leads to increased forecast accuracy (Clemen (1989), Stock

and Watson (2004)). As these studies show, even the simple averaging of predictors

often dominates individual predictors.

For nested models, the benefits from model forecast combination are not clear-cut.

Clark and McCracken (2009) found that forecast combination can be effective even for

the nested models, but their effectiveness hinges on the assumption that population

parameters are unknown and sample size is finite. If the decision maker knows the

true population parameters, then one of the nested models encompasses the other

model. Then, optimal forecast combination of these two models will assign either zero

or unitary weight. In practical terms, population parameters are usually not known

to the econometrician in advance.
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2.2.1 The forecast combination problem

Here we follow Timmermann (2006) and briefly describe the forecast combination

problem faced by a decision-maker. Given the set of N point forecasts, a decision-

maker would like to combine those forecasts by minimizing some loss function, such

as mean squared error (MSE) or mean absolute error (MAE):

ω∗t+h,t = argωt+h,t∈Ωtmin E[L(ect+h,t(ωt+h,t))|ŷt+h,t] (2.1)

where ωt+h,t are the estimated optimal weights for h-step ahead forecasts at time t,

L = L(ect+h) denotes some loss function as a function of forecast error from combination,

and ŷt+h,t is a vector of forecasts. Assuming quadratic loss function, optimal weights

for forecast combination are found by minimizing the MSE:

L(yt+h,, ŷt+h,t) = θ(yt+h − ŷt+h,t)2, θ > 0 (2.2)

where ŷt+h denotes h-step ahead forecast of a variable of interest. Since individual

model forecasts are likely biased themselves, estimated weights can be biased as well.

However, as noted in Timmermann (2006) information aggregation tends to reduce

the forecast variance. Under MSE loss function, these two effects are easy to see:

L(·) = E[e2
t+h,t] = E[et+h,t]

2 + V ar(et+h,t)

In other words, while the estimated weights increase the forecast bias, combining

multiple models may reduce the variance of the forecasts. In order to minimize the

squared loss function, the decision-maker should consider trading off these two effects.

2.2.2 Diversification gain from forecast combination

The gains from forecast combinations can be explained similar to diversification gains

in portfolio choice in the finance literature. Here we borrow from Timmermann (2006)

to show the value of forecast combinations. Consider a decision maker with quadratic
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loss function who has access to two forecasts, ŷ1 and ŷ2. We assume forecasts errors

are unbiased with e1 = y− ŷ1 ∼ (0, σ2
1) and e2 = y− ŷ2 ∼ (0, σ2

2), and their associated

covariance is given by σ12 = ρ12σ1σ2. ρ12 denotes the correlation between the two

forecasts errors. If we assume combination weights are constrained to equal one,

(ω, 1− ω), the forecast error from the forecast combination is equal to the weighted

average of the two individual forecasts:

ec = ωe1 + (1− ω)e2 (2.3)

The forecast error has an expected value of zero. The variance under forecast

combination takes the form

V ar(ec) = σ2
c (ω) = ω2σ2

1 + (1− ω)2σ2
2 + 2ω(1− ω)σ12 (2.4)

The decision-maker’s objective is to minimize the forecast error variance in equation

2.4 which is easily solved through differentiation. The solution to the first order

conditions yields the following weights

ω∗ =
σ2

2 − σ12

σ2
1 + σ2

2 − 2σ12

, 1− ω∗ =
σ2

1 − σ12

σ2
1 + σ2

2 − 2σ12

(2.5)

We note that the weights have the same denominator, but the forecast error

variance from the competing forecast enters their numerators. Thus, a more accurate

forecast receives a larger weight and poor performing forecast receives a smaller weight.

By substituting ω∗ into the objective function, we get the expected value of MSE from

the combination scheme:

σ2
c =

σ2
1σ

2
2(1− ρ2

12)

σ2
1 + σ2

2 − 2ρ12σ1σ2

(2.6)

We now can compare the forecast accuracy from combination of individual forecasts

using their MSE. After some algebra, we see that σ2
c ≤ min(σ2

1, σ
2
2), which means

combining two forecasts generally results in smaller MSE than that of individual
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model forecasts. Only under special cases, does the diversification gain disappear.

Specifically, when (i) σ1 = 0 or σ2 = 0, or (ii) σ1 = σ2 and ρ12 = 1, or (iii) ρ12 = σ1
σ2

,

there is no diversification gain from combination of two forecasts.

Timmermann (2006) also compares the variances of forecast error from the

optimal combination (equation 2.6) to forecast error variances from other common

combination approaches. In combination scheme proposed by Bates and Granger

(1969), combination weights are estimated inversely to their relative MSE as follows:

ωinv =
σ2

2

σ2
1 + σ2

2

, 1− ωinv =
σ2

1

σ2
1 + σ2

2

(2.7)

This produces the following forecast error variance:

σ2
inv =

σ2
1σ

2
2(σ2

1 + σ2
2 + 2ρ12σ1σ2)

(σ2
1 + σ2

2)2
(2.8)

The ratio of this forecast error variance to the value obtained using optimal weights

above is equal to

σ2
inv

σ2
c

=
1

1− ρ2
12

(
1−

(
2σ12

σ2
1 + σ2

2

)2
)

(2.9)

Two conditions are possible depending on the values of forecast error variance from

individual forecasts. For instance, if σ1 6= σ2, Timmermann (2006) show that σ2
inv > σ2

c

unless ρ12 = 0. In other words, when both models add additional information, optimal

weights forecast combination will have smaller MSE than that of combination schemes

developed by Bates and Granger (1969). If, however, σ1 = σ2, then MSE from both

combination schemes are equal, which implies ωinv = ω∗ = 1/2.

Finally, the performance of optimal weights forecast combination is compared to

that of simple average forecast combination. Simple average forecast combination

assigns equal weights to each individual model forecasts. This produces the following

MSE:
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σ2
EW =

1

4
σ2

1 +
1

4
σ2

2 +
1

2
σ1σ2ρ12 (2.10)

By comparing their respective MSE, we find that their ratio is equal to:

σ2
EW

σ2
c

=

(
(σ2

1 + σ2
2 − 4σ2

12

4σ2
1σ

2
2(1− ρ2

12)

)2

(2.11)

After some algebra, we can see that σ2
EW > σ2

c unless σ1 = σ2, in which case

σ2
EW = σ2

c . Hence, theoretically simple equal-weighted average forecast approximates

the optimal forecast in MSE sense only when the forecast error variances from the

two models are the same. Nevertheless, as discussed above, equal-weights forecast

combinations performed well in many applications and because of its simplicity it

remains as an attractive approach to forecast combination.

2.2.3 Forecast combination approaches

In this subsection we describe forecast combination approaches used in this paper.

Specifically, we consider (1) equal weights forecast averaging, (2) bias-corrected forecast

averaging suggested by Issler and Lima (2009), (3) forecast combination proposed

by Bates and Granger (1969), and (4) Granger and Ramanathan (1984) forecast

combination. As noted above, we focus on combination schemes that combines

individual predictions linearly. While there many combination approaches to consider,

even the small number of combinations considered here are sufficient to show the gains

from combination to forecasting CO2 emissions.

Equal weights forecast combination

Simple averaging of forecasts, 1
N

∑N
i=1 y

i
t+h,t is empirically shown to work well in a

variety of applications. Results from empirical works show that simple average of

forecasts works surprisingly well in many settings, often outperforming individual

predictions and some other combination schemes that try to estimate “optimal weights”
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(Stock and Watson (2004), Aiolfi et al. (2010)). One simple explanation for this equal-

weighted “forecast combination puzzle” is that it does not require estimation of weights,

while optimal weights require estimation of N weights that grow asymptotically with

the number of forecasts (Issler and Lima (2009), Smith and Wallis (2009)).2

In addition, model instability arising from structural breaks may explain why

simple pooling of forecasts may be successful than some other forms of combination

schemes. As Hendry and Clements (2004) illustrated, when unanticipated structural

breaks can occur later in period equal weights combination may fair better than both

the individual projections and other forecast combination approaches. This is because

weights based on prior performance are not affected by later breaks in the data. This

may result in poorer outcomes for forecast combinations with estimated weights.

Even when the individual models are misspecified average forecasts dominated other

approaches (Hendry and Clements (2004)).

Bias-corrected average forecast

The techniques suggested by Issler and Lima (2009) is an extension of equal weights

model averaging. They note that if forecasts from individual models are biased, then

their simple average may be biased as well. Their approach corrects for time-invariant

bias present in individual model forecasts. By construction this should result in

improved forecast performance relative to equal weights forecast averaging. First, we

need to estimate equal weights model averaging, which is then corrected by subtracting

the bias-correction term as the following equation shows:

1

N

N∑
i=1

ŷit+h,t − B̂

where B̂ represents a market bias.

2So called “curse of dimensionality,” where more weights need to be estimated as N increases,
diminishes the consistency of the estimated weights themselves. See Issler and Lima (2009) for
details.
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Before bias-correction term is estimated, we express the forecast of a target variable,

ŷit+h,t, as two-way decomposition of the forecast error as follows:

ŷit+h,t − yt = ki + ηt + εi,t

where ki is individual model time-invariant bias, ηt − unforecastable component,

and εi,t is model-specific or idiosyncratic error term. Forecast combination diversifies

the risk associated with εi,t, but cannot do the same for ηt. On the other hand, ki

can be eliminated by specifically introducing a bias-correction term into the forecast

combination. In order to compute the bias correction term B̂, the data is divided

into three sub-periods: t = 1, 2, ..., T1, ..., T2, ..., T . The first sub-period covering,

t = 1, 2, ..., T1, is called “estimation” sample and is used to fit the individual models.

The second sub-period, t = T1 + 1, ...T2, is called the “training” sample, where the

forecast combination weights and bias-correction terms are estimated. As in Issler

and Lima (2009), we first compute each model’s time-invariant bias as

k̂i =
1

T2 − T1

T2∑
t=T1+1

(ŷit+h,t − yt)

Once the individual model biases are estimated, the average bias for N models is

obtained by a simple average as

B̂ =
1

N

N∑
i=1

k̂i

Finally, in the last sub-period or “evaluation” sample, t = T2 + 1, ..., T , the

equal weights forecast is corrected for a possible bias by subtracting the average

bias: 1
N

∑N
i=1 y

i
t+h,t − B̂. Authors note that in large samples, as both N and T →∞,

bias-corrected average forecast becomes an optimal forecasting instrument.
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Bates and Granger forecast combination

In a seminal paper, Bates and Granger (1969) suggested using empirical weights based

on each model’s out of sample forecast variance. If the forecasts are unbiased and

their errors uncorrelated, the estimated weights approach optimal weights. Following

their methodology, in the first step we obtain out-of-sample forecasts and forecast

errors to compute the mean squared forecast error (MSFE). Then, the weight for each

model is inverted, 1/σ2
i , and normalized by the sum of the forecast variances across

all N models,

ωi =
1/σ2

i∑N
j=1 1/σ2

j

where σ2
i is the MSFE from model i′s individual forecast. By construction,

forecasts that performed well in the estimation sample are given greater weight in the

combination exercise.

Granger and Ramanathan forecast combination

Unlike the other combinations schemes, this method uses an econometric approach to

estimate forecast weights. Granger and Ramanathan (1984) considered three different

regression methods to forecast combinations. In the first regression method, they

regress the forecasts on actual values with no constant term. In the second case,

weights are constrained to sum to one and forecasts are regressed on actual values

with no constant term. Their third approach, which they call it their best method,

the regression is estimated with constant and no restrictions on the weights. Here we

consider only their best method that gives the smallest MSFE. Given N forecasts, the

combination weights are obtained by the usual least squares estimator by regressing

the target variable yt on the N candidate forecasts:

yt = α + β1ŷ
1
t + ...+ βN ŷ

N
t + ut
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The constant term adjusts for the bias present in individual forecasts. As with

other combination schemes, the weights are obtained in the estimation sample and

used in the evaluation period to compare the out-of-sample forecasting performances.

2.2.4 Individual models

In this subsection, we describe each individual model that enters the forecast

combinations considered above as ‘inputs.’ The individual models used in this study

have been chosen to represent differences in modeling approaches and econometric

techniques present in empirical works on CO2 emissions as well as tractability of

their data requirements. More importantly, these models have been highly influential

leading to many discussions in the subsequent literature on emissions. The first model

we use is proposed by Holtz-Eakin and Selden (1995) who employed the following

specification:

ln(cit) = δi + γt + β1ln(rgdppcit) + β2ln(rgdppct)
2 + εit

where ln(cit) are log per capita carbon emissions for country i in year t, δi is

a country fixed effect, γt is a year fixed effect, and ln(rgdppcit) are log per capita

real GDP for country i in year t. Holtz-Eakin and Selden (1995) test this general

EKC specification using both linear and log-linear specifications and report similar

results. According to the EKC hypothesis, emissions first rise with income and then

decline after a country reaches a certain income level. Selden and Song (1994) and

Grossman and Krueger (1995) both report an inverted U-shaped relationship between

levels of economic development and various air pollutants. The “Kuznets” or inverted

U-shaped relationship between economic development and emissions is by no means

uncontroversial. Perman and Stern (2003), Stern (2004), and Cole (2005) question the

existence of an inverted U-shaped relationship between income and emissions. Cole

(2005) finds an inverted U-shaped relationship for CO2 using the OECD-only sample,
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but when heterogeneity across countries is allowed, the income-emissions relationship

is found to vary widely across countries.

The second model suggested by Schmalensee et al. (1998) also forecasts carbon

emissions using the EKC relationship, but with more flexible income specification:

ln(cit) = δi + γt + F [ln(rgdppcit)] + εit

where F (·) is a spline (piecewise linear) function. Schmalensee et al. (1998) use 8-

and 10-segment splines with the same number of observations for each spline. We use

10-segment spline model following subsequent studies that try to replicate Schmalensee

et al. (1998) model.3

In a recent study Auffhammer and Steinhauser (2012) forecast U.S. CO2 emissions

using state level data. They build a model universe using a small subset of variables

found in existing reduced-form models. In addition to variables used in the previous

two models above, they also include lagged emissions, population density, and several

categorical variables in their specifications. Auffhammer and Steinhauser (2012)

note that dynamic specifications with lagged emissions are appropriate in emissions

projections because CO2 emissions originate from a durable capital stock. These

sparse set of variables lead to more than 27, 000 unique model specifications. The

search over this model universe yielded the following specification with the lowest

MSFE for aggregate CO2 emissions:

ln(cit) = α + ρiln(ci,t−1) + β1ln(pdensit) + β2oili + εit

where ln(pdensit) is log population density for state i in year t and oil is a

categorical variable equal one for oil- or gas-producing states. The selection of the best

model based on per capita MSFE resulted in a different functional form specification.

If the goal is to forecast aggregate emissions, then selection based on the aggregate

MSFE, rather than per capita MSFE, is more appropriate. It is likely that a different

3See Auffhammer and Steinhauser (2012), for instance.
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set of best performing models will be chosen, for example as the sample size or forecast

horizon is varied. Since our objective is to evaluate the performance of combining

multiple forecasts in relation to individual models, we are not overly concerned over

potential misspecification issue. In addition, combining multiple forecasts are generally

robust to potential biases of unknown form (Timmermann, 2006).

Our final benchmark model is based on Yang and Schneider (1998) specification:

carbonit = populationit ×
rgdpit

populationit
× energyit

rgdpit
× carbonit
energyit

where carbonit is the total carbon emitted in country i in year t, populationit is

population in country i in year t, energyit is the total energy consumption in country

i in year t, and rgdpit is real GDP in country i in year t. In turn, their model is based

on IPAT identity by Ehrlich et al. (1971). According to IPAT identity, I = P · A · T ,

I (impact or emissions) is decomposed into P (population), A (affluence, measured

in per capita GDP), and T (technology index). The identity implies that emissions

increase monotonically with P and A, but decrease with the level of T . Yang and

Schneider (1998) use an extension of IPAT identity to decompose the emissions into

four factors: population size, GDP per capita, energy intensity (total energy consumed

per unit of GDP), and carbon intensity (average CO2 emissions per unit of fossil fuel

consumed).

2.3 Empirical Exercise

Our main goal is to evaluate the performance of forecasts from individual model

specifications and their linear combinations. This section discusses the estimation

method used in the empirical exercise. We use state-level data from 1960 to 2012

and conduct out-of-sample forecasts of per capita and total CO2 emissions in the U.S.

We obtain forecasts of state-level emissions first, which is then aggregated to obtain

emission forecasts for the U.S. There are at least two reasons for forecasting using
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disaggregated data instead of directly forecasting the aggregate CO2 emissions for the

U.S. First, Lütkepohl (2011) and Marcellino et al. (2003) note that if the disaggregate

data are heterogeneous and intertemporally related, forecasting components first and

then aggregating the forecasts may lead to better forecasts. The dataset we have

shows variation in per capita emissions and other variables both across states and time.

Second, our objective is to compare the forecasts from reduced form specifications and

their combinations. All the models we consider use disaggregated data. As is common

in empirical literature, the empirical illustration in this paper involves short-term

forecasts. Next, we explain the methodology of our empirical exercise in more detail.

2.3.1 Methodology

First, the data is divided into three sub-periods: 1960-1989, 1990-2004, and 2005-2012.

The first sub-period, called “estimation” sample, is used for estimation of individual

models. Then fitted models are used to obtain forecasts for the second sub-period

which we call “training” sample. We use the forecasts for the period covering 1990-2004

to estimate the combination weights to be used for various combination approaches

considered in this paper. The final sub-period has 8 observations and is referred to

as “evaluation” sample. Out-of-sample forecasts for 2005-2012 are compared for each

individual model and their combinations using the weights obtained in the training

sample. We evaluate one-year ahead (h=1) through five-year ahead forecasts (h=5).

There are different approaches to forecasting depending on how the estimation

window is chosen. We employ recursive expanding window approach where the initial

estimation sample (1960-1989) is used to estimate individual models to produce h-step

ahead forecasts. Then the estimation sample is increased by one more year covering

1960-1990 and individual models are re-estimated to produce h-step ahead forecasts

for the next period. Thus, for 1990-2004 training sample we estimate 15 h-step ahead

forecasts. The training sample forecasts are, in turn, used to estimate combination

weights. The procedure to estimate those weights are discussed above in the subsection
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on forecast combination approaches. By their construction, equal-weights and its

variation of bias-corrected average forecasts by Issler and Lima (2009) do not require

estimation of forecast combination weights.

Once the weights are computed, we then conduct pseudo-out-of-sample forecasts for

2005-2012 as follows. Each individual specification is re-estimated using an expanding

window to obtain h-step ahead forecasts for 2005-2012 evaluation sub-period.4 We

combine these h-step ahead individual forecasts with the estimated weights obtained

in the training sample. Per capita emissions projections are multiplied by state

population to get state aggregate emission forecasts. Aggregate CO2 emissions for the

U.S. is found by summing the total emissions over 50 states. Then individual forecasts

and their combinations are compared to each other based on their root-mean squared

forecast error (RMSFE) computed as follows:

MSFE for Aggregate Emissions =
1

8

2012∑
T=2005

50∑
i=1

(CT+h − ĈT+h)
2

RMSFE =
√
MSFE

where CT+h are total emissions for state i in year T + h.

MSFE and RMSFE for U.S. per capita emissions are estimated in a similar fashion.

To do so, we divide the aggregate U.S. emissions by U.S. population to get per capita

emissions for the U.S. Forecasts are then tested for significance of their predictive

accuracy using formal statistical procedures. We tested the accuracy of forecasts using

two loss functions found in the forecast evaluation literature: squared error loss and

absolute value of loss. In the first approach, squared error losses from two competing

forecasts, which correspond to MSFE above, are tested for equal predictive ability. In

the absolute loss case, we test whether mean absolute errors (MAE) from competing

two forecasts are the same. MAE is obtained as follows:

4Recursive one-step ahead estimation requires estimation of 23 regressions for each individual
model for 1960-1989, 1960-1990, 1960-1991, etc. periods. With four individual models, we have
estimated a total of 92 regressions.
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MAE for Aggregate Emissions =
1

8

2012∑
T=2005

50∑
i=1

∣∣∣CT+h − ĈT+h

∣∣∣
For models with contemporaneous explanatory variables we need projections of

these variables for out-of-sample forecasts. While population projections can be

obtained from the U.S. Census Bureau or other state agencies, projections of state

personal income series are not readily available. In the following subsection, we

describe our methodology used for right-hand-side variable predictions.

2.3.2 Projections of Explanatory Variables

In a series of studies Barro et al. (1991) and Barro and Sala-i Martin (1992) have

examined the convergence across U.S. states and regional convergence within other

countries. They find evidence of convergence across U.S. states where poorer states

tend to grow faster than wealthy ones. We follow their approach and regress state

average growth rates of per capita income over some time interval on the initial level

of per capita income:

1

T
· ln
(

yit
yi,t−T

)
= β0 + β1 · ln(y,t−T ) + uit,t−T

where yit is the real per capita personal income in state i at time t, yi,t−T is the

real per capita personal income in state i at the beginning of the interval, and T is the

length of the time interval. The estimated equation for the cross-section of states using

data for 1960-2012 yields the following result with the standard errors in parentheses:

(1/52)× [ln(yi,2012)− ln(yi,1960] = 0.029
(0.002)

− 0.0001
0.0001

[ln(yi,1960)]

The coefficient on initial per capita personal income is negative and statistically

significant. This means that U.S. states display conditional β-convergence: poorer

states grow faster than rich ones. We estimate series of cross-sectional regressions

for different time intervals to predict the growth rates of per capita personal income.
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Overall, the results are consistent with the results reported in Barro and Sala-i Martin

(1992).

For population projections, we decided to make projections for both state

population and personal income in order to replicate the problem a forecaster

may encounter in making true out-of-sample forecasts. We estimate first order

autoregressive (AR(1)) model for each state separately:

populationit = β0 + β1 · populationi,t−1 + eit

Once we obtain population projections, we make population density predictions for

each state under the assumption that state land areas remain constant over the forecast

horizon. Population density projections are needed for forecasting Auffhammer and

Steinhauser (2012) model specification.

For both Holtz-Eakin and Selden (1995) and Schmalensee et al. (1998) specifications,

we need predictions for time and state fixed effects in order to conduct out-of-sample

forecasts. For the former, we follow their approach and set the year fixed effects at

last year’s estimated value. However, this assumption rules out the effects of future

technological changes on emissions. For Schmalensee et al. (1998) specification, we

follow their steps and project the time fixed effects by regressing estimated time fixed

effects on the following linear spline model:

βt = β0 + β1t+ β2(t− 1970) · 1[t ≥ 1970]

This specification for projecting time fixed effects assumes that the trend after

1970 will continue into the future.5

Finally, we need projections of state fixed effects for out-of-sample forecasts.

Alternatively, we could transform the data by demeaning the variables along the

5Schmalensee et al. (1998) also considered nonlinear trend model with βt = β0+β1+β2ln(t−1940).
This specification forecasts flattening time fixed effects into the future. While the authors report
results from both specifications, they do not offer their preference for either specification. Therefore,
we do not consider the nonlinear trend model here.
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time dimension for each panel. This eliminates the need for projections of state fixed

effects. However, the latter approach makes the computation somewhat difficult as the

forecasting exercise considers various forecast horizons. Since we have large enough

observations per panel, we estimate state fixed effects model, predict those fixed effects

for the estimation sample and extend them into the forecast horizon.

Since it becomes cumbersome to forecast explanatory variables as the number of

individual models to be used in forecast combination exercise is increased, we did not

include other alternative specifications. Nonetheless, as it becomes clear in the next

subsection, even with small number of forecasts used in this study, we are able to

show the benefit of applying forecast combination to CO2 emissions.

2.3.3 Data

Our objective is to evaluate the forecasting performance of combining multiple forecasts

against the performance of individual models. To do so, we use U.S. state-level data

from 1960 to 2012. The dataset is an annual data for 50 U.S. states from 1960 to 2012

and does not include Washington D.C. Thus, there are total of 2,650 observations

for each variable, except for energy and carbon intensity growth rates. The data on

energy and carbon intensity growth rates are given for 1990-2012 period.

We have collected the dataset from a variety of sources. Data for 1960-2010

estimates of annual fossil-fuel carbon dioxide emitted to the atmosphere (in million

metric tons of carbon) for each 50 U.S. states are obtained from Carbon Dioxide

Information Analysis Center at Oak Ridge National Laboratory.6 We then combine

this dataset with 2011 and 2012 U.S. state-level carbon dioxide emissions (in million

metric tons of carbon dioxide) which we obtained from the Environmental Protection

Agency.7

6See http://cdiac.ornl.gov/CO2_Emission/timeseries/usa. Last accessed: May 10, 2015.
7See http://www.epa.gov/statelocalclimate/state/activities/ghg-inventory.html#

four. Last accessed: May 10, 2015.
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Table 2.1: Descriptive Statistics, 1960-2012

Variable Unit Mean Std.Dev. Min Max

Total CO2 Emissions mill.metric tons 96.86 101.55 3.61 721.42

Per capita CO2 Emissions metric tons 23.13 15.66 7.83 132.71

Per capita personal income thous. US $ 30.87 8.96 9.86 61.59

Population thous. persons 4,875 5,374 229.00 38,000

Land Area sq.miles 70,637 84,969 1,034 570,641

Population Density per sq.mile 164.37 233.59 0.40 1,206

Energy Intensity % change -1.17 0.46 -1.70 -0.76

Carbon Intensity % change -0.47 0.53 -0.94 0.14

Total Observations 2,650 2,650 2,650 2,650

Note: Energy and carbon intensity growth rates are for 1990-2012 period.

We present the descriptive statistics for the variables used in our empirical exercise

in Table 2.1. Typically, to examine the EKC hypothesis per capita emissions are

regressed on real per capita GDP. Although GDP by state are preferred series, there is

a discontinuity in the state GDP data at 1997 due to changes in industry specifications.

Therefore, we use state personal income (in thousands of U.S. dollars) series instead.

We note that other researchers have also used state personal income series when

using state level data in forecasting emissions and studying income convergence across

states.8 We convert the state personal income series into 2012 U.S. dollars using

consumer price index for all consumers. Consumer price index comes from the Bureau

of Labor Statistics, while personal income and population by states are both taken

from the Bureau of Economic Analysis.9 We then divide state carbon emissions by

8See Auffhammer and Steinhauser (2012) for emissions, and Barro and Sala-i Martin (1992) for
income convergence, for instance.

9Both data series are available at http://www.bea.gov/iTable/index_regional.cfm. Last
accessed: May 10, 2015.
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state population to generate per capita emissions (in metric tons of carbon) by state

to be used in our empirical exercises.

Population density by state is obtained by dividing state population by their

respective land areas (in sq.miles). Land area is the total area of a state excluding water

areas and is taken from the U.S. Census Bureau.10 We collected information whether

a state is oil producing or not from the U.S. Energy Information Administration’s

historical crude oil production series.11 In addition, for Yang and Schneider (1998)

model we need energy and carbon intensity factors. In their paper, Yang and Schneider

(1998) provide annual rates of change for each factor. We can use these rates in

projections of CO2 emissions without needing the initial values of each factor. For

example, CO2 emission projections in subsequent years will be calculated as the

product of last period’s CO2 emissions and the sum of the growth rates of each four

factors.

As the Table 2.1 shows there is a sufficiently large variation in both total CO2

emissions and per capita CO2 emission series over the study period. We observe this

large variability both across space and over time. For example, per capita emissions

ranged from 7.83 to 132.71 metric tons of CO2 with a standard deviation of 15.66.

Aggregate state-level emissions ranged from 3.61 to 721.42 million metric tons of CO2

with a standard deviation of 101.55. Similarly, for other variables in the dataset we

observe large variation both across states and years. In terms of total state emission

levels, Vermont has been the state with the lowest total CO2 emissions, while Texas

remains to be the largest CO2 emitter. In terms of per capita emissions, Wyoming

has the highest CO2 emission levels per person for each subsequent decade since

1960. The heterogeneity in per capita CO2 emissions across the U.S. states is one

of the reasons why we prefer to use state-level, rather than aggregated data, in our

10See https://www.census.gov/geo/reference/state-area.html. Last accessed: May 10,
2015.

11See http://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm. Last accessed: May 10,
2015.
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Figure 2.1: Per Capita CO2 Emissions for Selected Years (metric tons of CO2)

Source: Carbon Dioxide Information Analysis Center of ORNL and Environmental Protection
Agency.

forecasting exercise. Figure 2.1 shows this heterogeneity in per capita emissions both

across space and time.

2.3.4 Results

Here we present the results of forecast performance for out-of-sample forecasts from

each individual model and their linear combinations. The methodology for obtaining

out-of-sample forecasts are discussed in the Methodology subsection. We evaluate

each individual model and their linear combinations based on the their RMSFE. Then,

we compare the models and their forecast combinations to the specification with the

lowest RMSFE.
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The results of our empirical exercise for per capita CO2 emissions are presented

in Table 2.2 and for aggregate emissions in Table 2.3. First, we note that

dynamic specification by Auffhammer and Steinhauser (2012) and structural identity

specification by Yang and Schneider (1998) have smaller RMSFE than that of other

individual models. These two specifications perform better, in terms of RMSFE,

throughout the various forecast horizons. Second, all forecast averaging specifications

have lower RMSFE than those of Holtz-Eakin and Selden (1995) and Schmalensee et al.

(1998) specifications. Among all forecast combinations considered here, bias-corrected

average forecast by Issler and Lima (2009) performs better in terms of RMSFE. It

is well established that estimation of weights may be subject to bias, while equal

weights forecast, which does not require estimation of weights, perform well in many

applications (Clemen (1989), Stock and Watson (2004). It is not surprising that

bias-corrected average forecast that uses equal weights forecast, coupled with bias

correction term, performs well than the other combinations. Although model averaging

by Granger and Ramanathan (1984) has a lower RMSFE than bias-corrected average

forecast for one-year ahead (h=1) and two-year ahead (h=2) forecasts, for 3-year

ahead and greater forecast horizons it does worse than the latter.

In the last five columns in Table 2.2 we present the percentage differences in RMSFE

relative to the RMSFE from bias-corrected average forecast. For h=1, specifications

by Auffhammer and Steinhauser (2012) and Yang and Schneider (1998) has 5 and

8 percentage points lower RMSFE. However, for h=2 through h=5, RMSFE for

bias-corrected average forecast is smaller by 9-19 percentage points than that for

Auffhammer and Steinhauser (2012) model. The improvement relative to Yang and

Schneider (1998) specification is modest, about 2-7 percentage points, for h=2 and

greater. Although bias-corrected average forecast was originally developed for cases

with large number of forecasts and long data, the method is shown to work well

in smaller number of models too (Issler and Lima (2009)). As noted in Issler and

Lima (2009), the use of equal-weights, while avoids estimating forecast weights, may

potentially increase bias. Bias-corrected average forecast corrects for bias present in
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Table 2.2: RMSFE for Per Capita CO2 Emissions

Forecast horizon: Difference (%):

h=1 h=2 h=3 h=4 h=5 h=1 h=2 h=3 h=4 h=5

Individual Models:

Holtz-Eakin & Selden 1.31 1.67 1.90 2.28 2.48 66 61 57 43 35

Schmalensee et al. 1.67 1.92 2.23 2.51 2.85 111 85 84 58 55

Aufhammer & Steinhauser 0.75 1.13 1.40 1.87 2.18 -5 9 16 18 19

Yang & Schneider 0.73 1.08 1.29 1.68 1.87 -8 4 7 6 2

Forecast combinations:

Equal-weighted forecast 1.04 1.40 1.66 2.06 2.32 32 35 37 30 26

Issler & Lima 0.79 1.04 1.21 1.59 1.84 0 0 0 0 0

Bates & Granger 0.83 1.28 1.77 2.11 2.30 5 23 46 33 25

Granger & Ramanathan 0.75 1.03 1.47 1.83 2.32 -5 -1 21 15 26

Note: Last 5 columns are percentage differences in RMSFE relative to that of bias-corrected average
forecast from Issler & Lima model specification.

Table 2.3: RMSFE for Aggregate CO2 Emissions

Forecast horizon: Difference (%):

h=1 h=2 h=3 h=4 h=5 h=1 h=2 h=3 h=4 h=5

Individual Models:

Holtz-Eakin & Selden 408 526 600 729 797 63 59 53 42 34

Schmalensee et al. 525 609 708 795 907 110 84 81 55 52

Aufhammer & Steinhauser 235 358 446 600 702 -6 8 14 17 18

Yang & Schneider 230 342 414 541 606 -8 3 6 5 2

Forecast combinations:

Equal-weighted forecast 327 443 530 660 745 31 34 35 28 25

Issler & Lima 250 331 392 514 595 0 0 0 0 0

Bates & Granger 261 407 565 674 740 4 23 44 31 24

Granger & Ramanathan 237 329 472 586 741 -5 -0.6 20 14 25

Note: Last 5 columns are percentage differences in RMSFE relative to that of bias-corrected average
forecast from Issler & Lima model specification.
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simple equal-weights forecast. When compared to simple average forecast, we can see

that bias-correction lowered RMSFE by 26-37 percent for h=1 through h=5.

The results for aggregate CO2 emissions in Table 2.3 are qualitatively similar to

reported results for per capita emissions. Model averaging methods considered here

all perform very well relative to specifications by Holtz-Eakin and Selden (1995) and

Schmalensee et al. (1998) throughout the various forecast horizons. Individual model

specification by Auffhammer and Steinhauser (2012) and Yang and Schneider (1998)

have lower RMSFE for h=1 among all the individual models and their combinations.

However, for h=2 and greater their competitiveness decreases in RMSFE sense. Bias-

corrected average forecast proposed by Issler and Lima (2009) has lower RMSFE than

that for Auffhammer and Steinhauser (2012) specification. The difference in RMSFE

grows from 8 percent for h=2 to 18 percent for h=5. Relative to structural identity

equation by Yang and Schneider (1998), the improvement in forecast performance is

modest 3-6 percent.

Taken together, the reported results show that when the true data-generating

process is unknown, combining multiple forecast can significantly improve out-of-

sample forecasts. Even with the small number of forecasts considered in this paper,

the advantage of combining multiple forecasts is clear. Improvement in forecast

performance from model combinations, while modest, is encouraging. There are many

different ways to combine individual forecasts and we only considered only a few of

those methods. Nonetheless, the results from combining forecasts show that forecast

combination may improve out-of-sample forecasts.

In addition to RMSFE comparisons, we also tested the out-of- sample forecast

accuracy using a method suggested by Diebold and Mariano (1995). We present

the test results in Tables 2.4 and 2.5. Diebold-Mariano test allows to compare two

models’ predictive ability and determine the best performing forecast. It tests whether

the forecast accuracy of two models based on mean-square error (MSE) or other

criteria, such as mean absolute error (MAE), are equal. Using out-of-sample forecasts
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Table 2.4: Out-of-Sample Tests for Aggregate Emissions based on MSE

MSE

h=1 h=2 h=3 h=4 h=5

Individual Models:

Holtz-Eakin & Selden 0.000 0.000 0.000 0.003 0.003

Schmalensee et al. 0.042 0.023 0.000 0.000 0.000

Aufhammer & Steinhauser 0.488 0.149 0.003 0.001 0.000

Yang & Schneider 0.351 0.574 0.101 0.045 0.191

Forecast combinations:

Equal-weighted forecast 0.000 0.000 0.000 0.000 0.000

Bates & Granger 0.249 0.000 0.000 0.000 0.000

Granger & Ramanathan 0.348 0.529 0.020 0.000 0.000

Note: The values are DM Test p-values. They test whether forecasts have the same predictive

accuracy using MSE. Small p-value means rejection of equal forecast accuracy.

Table 2.5: Out-of-Sample Tests for Aggregate Emissions based on MAE

MAE

h=1 h=2 h=3 h=4 h=5

Individual Models:

Holtz-Eakin & Selden 0.000 0.000 0.000 0.000 0.000

Schmalensee et al. 0.013 0.000 0.000 0.000 0.000

Aufhammer & Steinhauser 0.82 0.334 0.003 0.000 0.000

Yang & Schneider 0.615 0.891 0.301 0.023 0.291

Forecast combinations:

Equal-weighted forecast 0.000 0.000 0.000 0.000 0.000

Bates & Granger 0.424 0.000 0.000 0.000 0.000

Granger & Ramanathan 0.664 0.445 0.007 0.000 0.000

Note: The values are DM Test p-values. They test whether forecasts have the same predictive

accuracy using MAE. Small p-value means rejection of equal forecast accuracy.
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of aggregate emissions for 2005-2012, we compare the best combination forecast

(bias-corrected average forecast) to other forecasts. Using the MSE indicator, the

null hypothesis of equal forecast accuracy are rejected for h=3 through h=5 period

ahead forecasts, except for Yang and Schneider (1998) specification. This means

bias-corrected average forecast outperforms majority of individual model forecasts and

the combined forecasts for h=3 and greater. Although bias-corrected average forecast

is better than the forecast obtained from Yang and Schneider (1998) specification and

has generally smaller RMSFE, Diebold-Mariano test failed to reject the null hypothesis

of equal forecast accuracy. For h=1 and h=2, forecasting accuracy from Auffhammer

and Steinhauser (2012), Yang and Schneider (1998), and the forecast combination

due to Granger and Ramanathan (1984) are not statistically different from that of

bias-corrected average forecast.

In terms of MAE, we are unable to reject the null hypothesis of equal forecast

accuracy for bias-corrected average forecast and Yang and Schneider (1998) individual

model forecast. For h=1, forecasts from Auffhammer and Steinhauser (2012), Yang

and Schneider (1998), Bates and Granger (1969), and Granger and Ramanathan (1984)

have similar predictive accuracy as that for bias-corrected average forecast. However,

for h=3 through h=5 bias-corrected average forecast has significantly better forecast

accuracy than the rest of the models.

Overall, the results confirm that the best combination model significantly

outperforms the majority of individual models in terms of MSE and MAE tests.

More importantly, the forecast accuracy tests show that the predictive performance of

the best performing individual model is not statistically significant than that of the

best combination.

2.4 Conclusion

Forecasting CO2 emissions is of particular importance in evaluating policies to address

CO2 emissions. Literature on forecasting CO2 emissions report forecasts that may
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differ significantly due to differences in modeling approaches and estimation techniques.

Despite the variations in modeling techniques, to the best of our knowledge, application

of forecast combination to CO2 emissions has not be been evaluated before. As the

empirical works show there can be gains from combining multiple forecasts. In this

paper we evaluate the relative forecasting performance of various individual models

and their linear combinations.

We find that among the class of forecast combinations considered in this paper, bias-

corrected average forecast outperforms individual models in RMSFE sense. Consistent

with forecast combination literature, the predictive accuracy of the best performing

individual model is not significantly different from that of the best performing forecast

combination. In particular, as the forecast horizon is increased the performance of

the best performing individual model worsens relative to that of the best performing

forecast combination (e.g. bias-corrected average forecast). Despite the relatively

small number of models considered in this paper, the results of forecasting performance

from forecast combinations are encouraging. Consistent with many empirical findings,

forecast combination that uses a variation of equal weights forecast may result in

improved forecast performance.

Our ability to increase the number of models to be combined is constrained by

the need to produce out-of-sample projections of right-hand-side variables. As models

to forecast emissions are continually being updated and perfected, combining better

individual forecasts may result in even more improved forecasting performance. For

example, the performance of forecast combination schemes can be further improved

by including more models in the combination scheme if they expand the information

set of existing models. But even with only four models used in the combination, the

advantage of forecast combination is clear: forecast combination, on average improves

the forecasting performance relative to that of the best individual forecast.
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