Hybrid Rocket Design Study Utilizing Nozzle Cooling and Aft-End Vortex Oxidizer Injection

John Nicholas Quigley

University of Tennessee - Knoxville, jquigle1@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Part of the Aerodynamics and Fluid Mechanics Commons, and the Propulsion and Power Commons

Recommended Citation
https://trace.tennessee.edu/utk_gradthes/2843

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
To the Graduate Council:

I am submitting herewith a thesis written by John Nicholas Quigley entitled "Hybrid Rocket Design Study Utilizing Nozzle Cooling and Aft-End Vortex Oxidizer Injection." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Aerospace Engineering.

James E. Lyne, Major Professor

We have read this thesis and recommend its acceptance:

Kivanc Ekici, Zhili Zhang

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)
Hybrid Rocket Design Study Utilizing Nozzle Cooling and Aft-End Vortex Oxidizer Injection

A Thesis Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

John Nicholas Quigley
August 2014
ABSTRACT

The current study focused on two innovations intended to reduce the cost and enhance the performance of hybrid rockets. The majority of the emphasis was placed on the design, fabrication and testing of a 3-D printed, water cooled nozzle. This work was done as proof of concept to show that complex, high temperature components could be manufactured using these new techniques, thereby substantially bringing down fabrication costs and allowing configurations that are not feasible using traditional machining. A water-cooled calorimeter nozzle was made and used in thrust stand tests to verify analytic and numerical heating models used in the design of the nozzle. Agreement was good between the predicted and measured heating rates. This experimental work helped to validate the nozzle design approach which will now be used to devise a 3-D printed, regeneratively cooled nozzle for a hybrid engine. The secondary phase of the study was an analysis of aft-end vortex oxidizer injection as a means of enhancing fuel regression rates. Components are currently being fabricated as part of an ongoing study to compare engine performance results for traditional head end and aft-end vortex injection.
TABLE OF CONTENTS

Chapter I Introduction ... 1
A. Background .. 1
 a. General ... 1
 b. Motivation ... 1
 c. A Sensible, Economical Rocket ... 1
 d. Performance benefits .. 2
B. Proposed innovations ... 2
 a. AEVI ... 2
 b. 3-D Printed, Regeneratively Cooled Nozzle .. 3
C. 3-D Printing via Selective Laser Melting, SLM .. 5
D. Objectives .. 5
 a. 3-D printed, regeneratively cooled nozzle ... 5
 b. Aft-End Vortex Injection, AEVI ... 6

Chapter II. Rocket Model and Aft-End Vortex Performance Enhancement .. 7
A. Preliminary Analysis ... 7
 a. Performance coefficients .. 7
 b. Solid Fuel Regression Rate Model .. 7
 c. Initial Performance Evaluation ... 10
B. AEVI Optimization .. 13
 a. Setup ... 13
 b. Results .. 14
C. Current AEVI Regression Rate Analytical Tools and Outlook ... 15
 a. Status .. 15
 b. Outlook ... 16

Chapter III Nozzle Heat Flux Investigation ... 18
A. Heat Flux Predictions .. 18
 a. Closed Form approximation of heat transfer coefficient, Bartz’s Method 18
B. Nozzle Wall Temperature .. 20
 a. Setting up a Finite Element Analysis ... 20
 b. FEA Results ... 23
C. Experimental Setup... 26
 a. Experimental modifications.. 26
 b. Experimental Model... 29

Chapter IV Experiment ... 33
 A. Setup/Procedure... 33
 B. Results/Analysis ... 38
 D. Conclusions, Experimental and Design Methods Evaluation ... 44

Chapter V Final Remarks ... 45
 A. Summary ... 45
 B. Future work ... 45

References ... 46

Appendices .. 49
 Appendix A Calibrations/Instruments.. 50
 Appendix B Thrust Stand Setup/Experimental Notes.. 52
 Appendix C In-House Codes/ Hand Calculations... 55
 Hybrid Rocket Performance Code.. 55
 Heat Flux function used in performance code... 69
 MATLAB DAQ Code .. 71

VITA ... 74
List of Tables

TABLE 1: ROCKET NOZZLE AND FUEL GRAIN GEOMETRIES, $\dot{m}_{\text{OX}}=0.5$ LBM/S.................................11
TABLE 2: RESULTS FOR THE TRADITIONAL AND AFT-END VORTEX OXIDIZER INJECTION COMPARISONS ..13
TABLE 3: ROCKET NOZZLE AND FUEL GRAIN GEOMETRIES, $\dot{m}_{\text{OX}}=0.45$ LBM/S13
TABLE 4: GEOMETRY AND MASS COMPARISONS TRADITIONAL VS AEVI ..14
TABLE 5: INPUTS FOR THE FINITE ELEMENT STUDY ON WALL TEMPERATURE21
TABLE 6: CALORIMETER NOZZLE PARAMETERS ...27
TABLE 7: INNER WALL COOLING AREA PER COOLING INLET/OUTLET AND COOLANT MASS FLOW DISTRIBUTION ..28
TABLE 8: ADJUSTED MODEL OPERATIONAL AND GEOMETRICAL SPECIFICATIONS29
TABLE 9: EXPERIMENTAL OPERATIONAL CONDITIONS ..29
TABLE 10 SHOWING PREDICTED CONDITIONS $\dot{m}_{\text{AIR}}=0.125$LBM/S, RAD$_{\text{FG, INITIAL}}=1.075$ IN, RAD$_{\text{FG, FINAL}}=1.115$ IN ..39
TABLE 11 THERMOCOUPLE CALIBRATIONS REFERENCED TO TC-0, ALL VALUES IN DEG F...........50
TABLE 12 PRESSURE CALIBRATION ..51
TABLE 13 INSTRUMENTS ..50
List of Figures

FIGURE 1: A DIAGRAM OF A TRADITIONAL HYBRID ROCKET1
FIGURE 2 THE AFT-END VORTEX OXIDIZER INJECTION SCHEME3
FIGURE 3A,B THE REGEN COOLED NOZZLE SCHEME TO BE PAIRED WITH AEVI4
FIGURE 4 THE BOUNDARY LAYER ALONG THE SOLID FUEL GRAIN IN A HYBRID ROCKET COMBUSTION CHAMBER ...10
FIGURE 5. THRUST PROFILES FOR THE TRADITIONAL INJECTION SCHEME11
FIGURE 6. COMPARISON OF COMBUSTION PRESSURE ..12
FIGURE 7 SPECIFIC IMPULSE COMPARISON ..12
FIGURE 8 O/F RATIOS DURING OPERATION ...12
FIGURE 9 C° COMPARISON ..12
FIGURE 10 A-E AEVI VS HEAD-END PERFORMANCE PLOTS15
FIGURE 11. ANALYTICAL HEAT FLUX PROFILE RESULTING FROM EQUATION 2019
FIGURE 12 NOZZLE CROSS SECTION USED FOR THE COMSOL STUDY21
FIGURE 13. WALL TEMPERATURE PROFILE FOR THE CONDITIONS SPECIFIED IN TABLE 5 ..23
FIGURE 14 TEMPERATURE PROFILE FOR AN IDENTICAL NOZZLE WITH W1 = 0.011 IN24
FIGURE 15 TEMPERATURE PROFILE FOR W1 = 0.011 INCH AND q=9 BTU/IN2-S25
FIGURE 16 A SEMI-TRANSIENT MODEL OF THE PRINTED ..27
FIGURE 17 CUTAWAY VIEW OF THE NOZZLE SHOWING AREAS COOLED BY EACH STATION ..28
FIGURE 18 HEAT FLUXES ASSOCIATED WITH WATER TEMPERATURE INCREASE FOR EACH STATION ...29
FIGURE 19 A,B THEORETICAL THRUST, PRESSURE CURVE FOR THE THRUST STAND ROCKET AS SPECIFIED IN TABLES 5 AND 6 ...30
FIGURE 20 A,B O/F, ISP CURVE. NOTE: STOICHIOMETRIC FOR AIR AND ABS =10.530
FIGURE 21 ANALYTICAL C° CURVES ...31
FIGURE 22. HEAT FLUXES FROM BARTZ’S RELATION. THROAT @ 0.6075 IN31
FIGURE 23. TEMPERATURE PROFILE IN THE COOLED NOZZLE WALL WITH A SPECIFIED32
FIGURE 24 SCHEMATIC OF THE PHYSICAL LAYOUT AND WIRING DIAGRAM34
FIGURE 25 ASSEMBLED THRUST STAND ..35
FIGURE 26 SHOWS THE BACKSIDE OF THE BLAST WALL36
FIGURE 27 SHOWS THE CALORIMETER NOZZLE INSTALLED WITH THE THERMOCOUPLES FOR READING OUTLET TEMPERATURE ...37
FIGURE 28 REFERENCE/INLET THERMOCOUPLE ..37
FIGURE 29 SHOWING THE EXPERIMENTAL DATA FROM RUN 238
FIGURE 30 RUN 1 PERFORMANCE DATA ..40
FIGURE 31 COOLANT TEMPERATURES AT THE INLET/OUTLETS FROM RUN 140
FIGURE 32 SHOWING THE HEAT FLUX AT EACH AXIAL STATION FROM RUN 141
FIGURE 33 PREDICTED/EXPERIMENTAL HEAT FLUX COMPARISON VIA BARTZ’S METHOD41
FIGURE 34 A,B THE NOZZLE BEFORE AND AFTER ..42
FIGURE 35A PERFORMANCE DATA FROM RUN 2 ..42
FIGURE 36A PERFORMANCE DATA FROM RUN 3 ..43
FIGURE 37 RESPONSE TIME VISUALIZATION WHEN EXPOSED TO A STEP TEMPERATURE50
FIGURE 38 PRESSURE CALIBRATION PLOT ..51
FIGURE 39 THE WIRING FOR THE INSTRUMENTS AND THE PHYSICAL SETUP ABOVE53
List of Symbols

Symbols

A - cross sectional area
A* - area ratio
A_c - cross sectional area
A_c-chamber - cross sectional area of combustion chamber
AEVI- aft end vortex injection
C_f - skin friction coefficient
CR – engine contraction ratio - D_c/D_t
C_t - thrust coefficient
C_p – specific heat
C* - characteristic velocity
D – diameter
D* - throat diameter
G – mass flux, lbm/in²
Nu-Nusselt number
H – enthalpy, mass specific
h - heat transfer coefficient
h_v - heat of vaporization
ID – inner diameter
L - length of fuel grain
M – Mach number
MW – molecular weight
ṁ - mass flow rate
O/F - oxidizer to fuel ration
P_a – atmospheric pressure
P_c – combustion chamber pressure
P_e – exit plane pressure
P_0 – total pressure
Pr – Prandtl number
R - gas constant
Re – Reynolds number
q – heat flux
St- Stanton number
r - radius
r* - throat radius
r – regression rate/burn rate
r_c - axial radius of curvature at throat
t - thrust
T - temperature
T_flame – adiabatic flame temperature
T_fuel surface – melting temperature of solid fuel
u - velocity
w_t – wall thickness
Acronyms

AEVI- Aft-end vortex injection
US - upper stage
GLOW - gross liftoff weight

Greek

Δ- difference
γ – ratio of specific heats
η – efficiency factor
δ- boundary layer thickness
ρ – density
ω – exponent of viscosity-temperature relation
µ – dynamic viscosity

Subscripts

c – combustion
e – boundary layer edge values
t -thrust
i – ideal
inj - injector
fg - fuel grain
fs- free stream
hg-hot gas side
ox - oxidizer
wh - hot wall
0 - stagnation/combustion chamber conditions
Chapter I
Introduction

A. Background

a. General

Hybrid rockets are characterized by those that combine a solid fuel grain with a liquid or gaseous oxidizer. During operation, the oxidizer is fed into the combustion chamber which is usually lined by the solid fuel grain. Here, the solid fuel will burn off and mix with the oxidizer as it reacts and exits through the nozzle. A diagram showing a typical hybrid rocket is shown below in Fig. 1.

![Diagram of a traditional hybrid rocket](image)

Figure 1: A diagram of a traditional hybrid rocket

b. Motivation

The growing demand for smaller sized satellites, or nano-satellites, has turned attention towards smaller launch vehicles capable of placing relatively small payloads in orbit. As the cost is currently near 7 million dollars for any dedicated orbital launch mission, the best option for nano-sats is to piggyback on larger missions with extra payload space, or for many smaller payloads to share a single launch vehicle. This either limits the entire payload to a single orbit or requires that each satellite have a separate upper stage motor for individual orbital insertion from the final launch condition. Being able to utilize an upper stage engine for a secondary payload on a rideshare is a significant request, as individual propulsion systems for the secondary payloads add weight and additional risk of damage to the primary payload. Hybrids bring a unique set of features into the picture that may render them useful as upper and lower stage rockets. More importantly, they may be able to utilize propellant combinations that reduce the threat to the primary payload, while being cheaper to produce. Ultimately, it is desired to develop a more economical method for delivering nano-sats to orbit.

c. A Sensible, Economical Rocket

In this study performance is secondary to durability, versatility, economy and safety. It is intended to achieve this with an ABS (Acrylonitrile Butadiene Styrene)/Nitrous Oxide hybrid rocket.
ABS was selected as the solid fuel due to its ready availability, favorable mechanical properties and price. Its favorable mechanical properties allow it to serve as its own pressure vessel, meaning heavy reinforcements won’t be required. It can be 3-D printed, if so desired, or bought in cylindrical form and hollowed out to form the combustion chamber/fuel grain.

Nitrous Oxide is also readily available and is known to be relatively safe in stored form. N₂O has high saturation pressure, non-toxicity and good performance. Nitrous Oxide will not need to be cryogenic to maintain a liquid state, and its self-pressurizing properties will eliminate the need for oxidizer pumps.

d. Performance benefits

Aside from the economical benefits of a hybrid, they are an area of interest for their many desirable qualities over the usual pure liquid or pure solid rockets. They are intended to display the best of both worlds. Hybrids have the start stop capabilities and thrust modulation of a liquid rocket, while requiring one less propellant tank and providing the volumetric efficiency and reduced complexity associated with solid rockets. In addition to their potential performance gains, hybrids are also attractive due to their relative ease of manufacture and benign propellant combinations¹. It is expected that an economical hybrid rocket can be developed for use in various applications, but they are expected to fill a much needed niche for small payloads.

Despite the potential gains of a hybrid, the relatively undeveloped state of hybrid rocket technology leaves pure solid and liquid rockets as the preferred commercial options. The primary hybrid performance hurdles to be overcome are the poor regression rates of the solid fuel, combustion instabilities in larger rockets² and poor mixing of the liquid oxidizer and solid fuel in the combustion chamber. The two proposed innovations for hybrid rocket improvement are a 3-D printed, regeneratively cooled nozzle and aft-end vortex oxidizer injection (AEVI).

B. Proposed innovations

a. AEVI

The performance and efficiency of a hybrid rocket are highly dependent upon the regression rate of the solid fuel, directly affecting thrust, and the mixing of the fuel and oxidizer. In recent studies, it has been found that a rotational flow field in the combustion chamber along the solid fuel grain can realize a 2-6 fold increase in regression rate over the traditional head end oxidizer injection scheme⁹, while also improving propellant mixing in the combustion chamber. Increased regression rates result in a higher total mass of the exhausting propellant and generate more thrust.

AEVI is an operational strategy showing promise for improved fuel regression rates, where the oxidizer is injected tangential to the inner fuel grain wall, resulting in a rotational flow field inside the combustion chamber surrounded by the fuel grain. The oxidizer would first spiral up the grain from the injection location, then turn around and spiral back away from the head end and out the nozzle. The vortex flow field would create a thinner boundary layer and increase the distance and time the oxidizer travels along the grain. It would also facilitate better mixing
between the oxidizer and the solid fuel that has melted off of the fuel wall and entered the combustion chamber flow. The thinner boundary layer would create an increased heat flux to the fuel grain, resulting in a higher regression rate, while the extra distance along the fuel grain traveled by the oxidizer would effectively increase the length without actually using a longer fuel grain. The extended time the propellants spend in the chamber, along with the increased mixing, would encourage complete combustion of the reactants before leaving the combustion chamber. The general scheme is shown below in Fig. 2.

![Oxidizer Flow](image)

Figure 2 The aft-end vortex oxidizer injection scheme

Some preliminary findings for a rocket using this configuration are available from previous work\(^1\), and an attempt to build on these was made in this study.

b. 3-D Printed, Regeneratively Cooled Nozzle

A regeneratively cooled nozzle design is intended to accomplish two things. First, the oxidizer will cool the nozzle walls, increasing the nozzle’s ablation resistance. Second, the oxidizer is preheated before being injected into the combustion chamber, which has been shown to increase combustion stability\(^5\). By printing the cooling channels into the nozzle, it was expected that very thin walls may be realized, allowing for a much higher level of steady state heat flux between the hot gas side and the coolant side. Not only are the benefits of a regeneratively cooled rocket nozzle easier to implement with 3-D printing techniques, but the cooling concept becomes more effective with the channels actually printed into the nozzle itself.
A drawing of a regen cooled nozzle is shown below in Fig. 3b, while Fig. 3a shows a drawing of the two paired together.

The ultimate goal is to combine these into a single flight weight vehicle, utilizing a regeneratively cooled nozzle that feeds the AEVI scheme in an effort to maximize performance, durability and economy. To our knowledge, these two innovations have never been combined on a rocket. An artist’s rendition of this is shown above in Fig. 3a. By using 3-D printing technologies, it is expected to manufacture a single piece to serve as a regeneratively cooled nozzle with injectors. Aside from the oxidizer plumbing from the tank to the nozzle and the
ignition system, the primary rocket components could be manufactured in two pieces, requiring minimal assembly.

C. 3-D Printing via Selective Laser Melting, SLM

New manufacturing techniques, such as SLM (Selective Laser Melting) which builds parts layer by layer in a 3-dimensional printer, allow the production of modestly sized complicated pieces out of a variety of materials and with essentially no labor. The complexity of the piece has no effect on the production costs, as it is typically a direct result of the size of the piece. An effort is currently underway to develop a flight weight rocket utilizing SLM, also known as rapid prototyping, in order to reduce the manufacturing difficulties associated with some of the more complex pieces. These pieces can be quickly produced and reproduced by the touch of a button. This decreases the manpower required for manufacturing and allows for much higher levels of complexity and repeatability to be achieved in the design. It is expected that by utilizing SLM, we will be able to consistently reproduce parts for testing, as well as for an eventual flight configuration.

D. Objectives

This work has been done to begin developing technology for the improvement of hybrid rockets by implementing regenerative cooling via a 3-D printed nozzle and an aft-end vortex oxidizer injection scheme.

a. 3-D printed, regeneratively cooled nozzle

A rocket nozzle that has the oxidizer running axially along the outside wall to cool the nozzle while preheating the oxidizer is not a new concept. The technology to 3-D print that nozzle, however, is new and the utilization of this technology has not yet been implemented to produce a 3-D printed, regeneratively cooled nozzle for a hybrid rocket. In a printed nozzle, the cooling channels can actually be printed inside of the nozzle walls.

An analytical/computational model was developed to generate expected thermal conditions and then validated with an experiment built around an Inconel-625, 3-D printed water cooled nozzle provided by NASA Marshall Space Flight Center.

Validated models and characterization of the operational responses are vital for the optimized design and dependable operation of such a piece. Minimum printing thicknesses are often greater than steady state wall thicknesses for typical heat loads on a cooled nozzle during operation. This requires some knowledge of the nozzle walls ablation response, if practical implementation of a 3-D printed, regeneratively cooled nozzle is to become a reality. During operation, it is unknown whether the hot nozzle wall surface would ablate away evenly while the cooler subsurface maintains its shape, or if the sub-surface material could possibly deform causing the nozzle to lose its shape and effectiveness. These issues are to be evaluated with
experiment. As this has never been done before, the experience is expected to provide necessary insights towards the flight implementation of such a piece.

If the nozzle can be printed and then slowly ablated to the required thickness, allowing for wall temperatures below the thermal limit, then we can potentially develop a 3-D printed regeneratively cooled nozzle capable of withstanding operational heat loads, resulting in a more durable and lightweight nozzle.

b. Aft-End Vortex Injection, AEVI

Hybrid rockets are known to have low solid fuel regression rates, resulting in a fairly high O/F ratio. Because of this, optimum O/F ratios cannot always be achieved without a long, heavy fuel grain, resulting in decreased volumetric efficiency.

In an effort to increase the regression rate in a hybrid rocket without adding weight, AEVI was evaluated for performance enhancement and mass savings versus the traditional injection methods for the same propellant combinations.

Experimentally developed, empirical regression rate relationships are the usual method for developing a regression rate relationship for a specific propellant combination and engine geometry. These are very specific to the operating conditions of the experiment from which the relation was produced. A model for the traditional head end injection that accounts for different propellant combinations has been developed previously, but it is only valid for straight, head end injection. An empirical model for the AEVI scheme, also previously developed experimentally, was presented and modifications to account for different propellant combinations were proposed. A more universal model accurately predicting the regression rates resulting from an AEVI scheme would allow for a design to be optimized for greater ranges of flow rates, geometries and propellant combinations, while easing the need for expensive experimental studies. This could greatly reduce developmental costs for mission tailored, hybrid rockets.
Chapter II.
Rocket Model and Aft-End Vortex Performance Enhancement

Before the various design components are to be presented, the rocket model used for their implementation will be presented in this chapter. The basic rocket design methods will be presented, as well as the tools utilized for design.

A. Preliminary Analysis

a. Performance coefficients

In order to establish a performance baseline, a relatively traditional hybrid rocket model using validated techniques was established. ABS was the solid fuel and Nitrous Oxide was the oxidizer assumed in this analysis.

The performance coefficients C_t and C^* which represent thrust coefficient and characteristic velocity respectively, are shown below as their ideal values, first as functions of γ, P_0, P_c, P_a, T_0, MW and A^*.

$$C_t = \sqrt{2 \times \gamma^2 / (\gamma - 1) \times (2/ (\gamma + 1))^{\gamma + 1 / \gamma - 1} \times (1 - P_e / P_0)^{\gamma - 1 / \gamma} + \frac{P_e - P_a}{P_0} \times A^*}$$ \hspace{1cm} (1)

$$C^* = \sqrt{1 / \gamma \left(\frac{\gamma + 1}{2}\right)^{\gamma + 1 / \gamma - 1} \frac{\dot{r}}{MW} T_0}$$ \hspace{1cm} (2)

The ideal coefficients in Eqs. (1) and (2) can be related to rocket operating conditions and performance as shown in Eqs. (3) and (4) below.

$$P_0 = \eta_c C_{tideal} \dot{m} / A^*$$ \hspace{1cm} (3)

$$t = \eta_c C_{tideal} P_c A^*$$ \hspace{1cm} (4)

With these relations in mind, it is reasonable to begin analysis from the initial mixing of fuel and oxidizer in the combustion chamber. This allows for the evaluation of the gas properties used in Eqs. (1) and (2). The oxidizer mass flow was controlled, leaving the O/F ratio determined as a function of the solid fuel burn rate and the oxidizer flow rate.

b. Solid Fuel Regression Rate Model

The solid fuel in the combustion flow is a result of the regression rate, \dot{r} and the surface area of the fuel grain. The regression rate model employs an enthalpy balance formulation taken from [8] resulting in Eq. 5 below.
\[
\dot{r} = \frac{0.047}{Pr^{0.1532}} \rho_{fuel} \times \left[\frac{C_p (T_{\text{flame}} - T_{\text{fuel surface}})}{h, \text{solid fuel}} \right]^{0.23} \times \left(\frac{m_{ox}}{A_{\text{chamber}}} \right)^{4/5} \times \left(\frac{\mu}{L} \right)^{1/5}
\] \tag{5}

In Eq. 5: \(Pr \)- Prandtl number, \(C_p \)- gas specific heat, \(\mu \)- absolute viscosity, \(h, \text{solid fuel} \)- heat of vaporization of solid fuel, \(L \)- length of the fuel grain.

This model is highly preferred over the empirical regression rate relationships that would be developed experimentally with a curve fit to the results. The empirical relationships are only valid for a small range of engine geometries and oxidizer flow rates from which the original experiment was performed. The development of the regression rate model of Eq. 5 was done by Whitmore in [10], and the highlights are presented in the following discussion.

The heat flux is first related to the regression rate and the convective heat transfer in Eq. 6.

\[h(T_{\text{flame}} - T_{\text{fuel surface}}) = \dot{q} = \rho_{\text{solid fuel}} \dot{r} h_v \] \tag{6}

The heat transfer coefficient is then related to the Stanton number as a function of the Prandtl number and wall skin friction coefficient as shown in Eqs. 7a,b\(^\text{11}\). Eq. 7b is formulated for laminar flow over a flat plate using Reynolds analogy,\(^\text{11}\) relating heat transfer through a boundary layer to the local skin friction. The subscript \(e \) denotes boundary layer edge values.

\[h = C_p \rho u_e S t \] \tag{7a}

\[St = \frac{C_f}{2} Pr^{-2/3} \] \tag{7b}

That concludes the presentation of the work done in Ref. 10 and a modification to this work is proposed below. While Eq. 7b is accurate for laminar or turbulent flow with \(Pr \) near 1, \(Pr \) will be closer to 0.7, and Eq. 8, shown below, is valid for \(Pr \) closer to the expected range \(^\text{11}\).

\[St = c_f / 2 \left(1 + 13 \left(Pr^{2/3} - 1 \right) c_f / 2 \right)^{-1/2} \] \tag{8}

An averaged skin friction relation as a result of the integrated local skin friction is presented\(^\text{10}\) and reposted below in Eq. 9a, along with the correction factor in Eq. 9b to account for wall blowing effects associated with the solid fuel melting off the fuel wall and entering the flow field. Specific heat in Eq. 9b is that of the gas.

\[C_f = \frac{0.074}{Re^{1/5}} \] \tag{9a}

\[c_{fb} = 1.27 \frac{C_p (T_f - T_{sf})}{h_v} c_f \] \tag{9b}
The resulting modified enthalpy balance regression rate model is shown below in Eq 10. The modification in Eq. 10 came from the substitution of Eq. 8 for 7b in the approximation of the Stanton number used to develop Eq. 5.

\[
\dot{r} = \frac{0.047}{B} \frac{\rho_e u_e}{\rho_f} \left(\frac{C_p(T_{\text{flame}} - T_{\text{fuel surface}})}{h_v} \right)^{0.23} \left(\frac{\mu}{L} \right)^{0.2} \tag{10}
\]

where

\[
B = 1 + 13 \left(Pr^{2/3} - 1 \right) \left[\frac{0.047}{Re^{0.2}} \left(\frac{C_p(T_{\text{flame}} - T_{\text{fuel surface}})}{h_v} \right)^{-0.77} \right]^{0.5}
\]

In order to implement this model, free stream flow conditions such as density and velocity are now additional requirements for evaluation of the solid fuel regression rate. To accomplish this, a substitution of oxidizer mass flow rate divided by the combustion chamber cross sectional area for the necessary free stream values will be made, as shown in Eqs. 11a-b.

\[
\rho_e u_e = \frac{\dot{m}_{\text{ox}}}{A_c} \tag{11a}
\]

\[
Re = \frac{\dot{m}_{\text{ox}} L_{\text{grain}}}{A_c \mu} \tag{11b}
\]

The final result is now displayed in Eq. 12 with no additional parameters required for solution. The only benefit of the modification is the St approximation made in Eq. 8 being better suited than the approximation made in Eq. 7b for Pr nearer the actual conditions. This alteration has resulted in a 20% effect on regression rate and little effect on overall rocket performance.

\[
\dot{r} = \frac{0.047}{B} \frac{\dot{m}_{\text{ox}}}{A_c} \left(\frac{\dot{m}_{\text{ox}}}{A_c} \right)^{4/5} \left(\frac{C_p(T_{\text{flame}} - T_{\text{fuel surface}})}{h_v} \right)^{0.23} \left(\frac{\mu}{L} \right)^{0.2} \tag{12}
\]

where

\[
B = 1 + 13 \left(Pr^{2/3} - 1 \right) \left[\frac{0.047}{(\dot{m}_{\text{ox}} L/\mu A_c)^{0.2}} \left(\frac{C_p(T_{\text{flame}} - T_{\text{fuel surface}})}{h_v} \right)^{-0.77} \right]^{0.5}
\]

Flow properties, Pr, T_{\text{flame}} and \mu, are determined from CEA^{27}, Chemical Equilibrium with Applications, which is a chemical equilibrium code, assuming equilibrium reaction for the
given pressure and \(\text{O/F} \) ratio. The rest of the values are known from the rocket geometry and solid fuel properties. A complete mixing of solid fuel and liquid oxidizer is assumed for these calculations, and a uniform concentration is assumed throughout the B.L. The portion of the boundary layer immediately adjacent to the wall will be a fuel rich zone containing the flame zone. The outer layer will be mostly oxidizer/combustion products. This is illustrated in Fig. 4 below.

![Figure 4 The boundary layer along the solid fuel grain in a hybrid rocket combustion chamber](image)

At startup, these flow properties would be ignition source dependent, requiring alterations for different ignition methods. In an effort to simplify the initial condition, the burn rate at the first time step is calculated using an empirical relation, experimentally developed for HTPB and Nitrous\(^{12}\) shown as equation 11 below. HTPB has been shown to have similar characteristics to ABS\(^{13}\). This empirical relation predicts \(\dot{r} \) as a function of \(G_{\text{ox}} \) only. Eq. 13 is in units of mm/s.

\[
\dot{r} = 0.417 G_{\text{ox}}^{0.347}
\]

(13)

It is expected that these empirical relationships are not particularly accurate for a variety of rockets, as the relation in Eq 13 would be conditionally specific on geometry, range of oxidizer mass flux, etc. This is usually stated with the publication of the relationship. Hence, the empirical relation is only to be used as an initial condition.

c. Initial Performance Evaluation

The burn rate calculation paired with grain surface area provide a fuel flow rate and, hence, the O/F ratio is known. A chemical equilibrium code provided chamber conditions as well
as combustion gas properties and characteristic velocity \((C^\ast) \) to be used in finding \(C_{t-\text{ideal}} \) and the proceeding burn rate calculation using Eq 5. From these, along with Eqs. (3) and (4), the performance parameters are evaluated. The combustion efficiency \((\eta_c) \) was assumed from previous work as 0.85 for theoretical values\(^{14}\). The nozzle efficiency \((\eta_t) \) was assumed to be 0.9. This process would continue, in specified time steps, for the duration of the burn.

A baseline analytical model for a traditional head-end injection, ABS-Nitrous Oxide hybrid rocket has been developed. This was then modified to show the effects of an aft-end vortex injection scheme which was compared to the original. As an advantage of implementing aft-end vortex injection, \(\eta_c \) was arbitrarily increased from 0.85 to 0.93 in order to show the advantages and the regression rate was tripled. The regression rate increase is assumed conservative when compared to previous studies of a vortex flow field in the combustion chamber versus traditional oxidizer injection methods\(^{9,15}\). The results of the two analytical studies for identical rocket geometries and oxidizer injection are shown below in Figs. 5-9. The rocket’s geometry is tabulated below in table 1. The results presented below were the result of the in house code (Appendix C) generated for this purpose.

<table>
<thead>
<tr>
<th>Table 1: Rocket Nozzle and Fuel grain geometries, (\bar{m}_{ox}=0.5 \text{ lbm/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r), in</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>0.3</td>
</tr>
</tbody>
</table>

Figure 5. Thrust profiles for the traditional injection scheme along with the proposed aft-end vortex injection scheme (AEVI) \(\bar{r}_{a-e\ vortex} = 3\bar{r}_{traditional} \) and \(C^\ast_{\eta}=0.93 \) as opposed to \(C^\ast_{\eta}=0.85 \).
Upon inspection of Figs. 5-9 the benefits of AEVI are fairly obvious without any effort towards optimization for the specified injection scheme. By observing the O/F plot in Fig.8, it would appear that the particular oxidizer flow rate and engine geometry were optimized for the traditional, head-end injection method. Optimal O/F is 7.5 for N₂O. The loss in performance over time for the traditional is due to the decrease in G₉ox. The vortex injection is less dependent on G₉ox, allowing for the increased burn area to have more effect than the loss of G₉ox on rocket performance. For a specified wall thickness, the burn time is much shorter for the AEVI scheme. This would be expected with the resulting increased regression rate.

Operating conditions resulting from the study along with pertinent parameters are shown and compared in table 2. The improvements associated with AEVI are the result of increased mixing in the combustion chamber improving C₉η and the increased total mass flow rate due to the higher solid fuel burn rate. Thrust levels from the simulation are what you would expect for
an upper stage rocket, and AEVI has shown to outperform the traditional injection scheme with no effort toward design optimization.

Table 2: Results for the traditional and aft-end vortex oxidizer injection comparisons

<table>
<thead>
<tr>
<th></th>
<th>$\dot{m}_{\text{N2O}}, \text{ lbm/s}$</th>
<th>$r^* \text{, in}$</th>
<th>$P_c \text{, psi}$</th>
<th>O/F</th>
<th>Thrust , lbs</th>
<th>$C^* \text{, ft/s}$</th>
<th>ISP , s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\dot{r}_{\text{traditional}}$</td>
<td>0.5</td>
<td>0.3</td>
<td>256.1</td>
<td>5.9-12.7</td>
<td>119.3</td>
<td>4983.9</td>
<td>226.1</td>
</tr>
<tr>
<td>$\dot{r}_{\text{a-e vortex}}$</td>
<td>0.5</td>
<td>0.3</td>
<td>333.5</td>
<td>2.7-4.0</td>
<td>148.9</td>
<td>5075.7</td>
<td>247.5</td>
</tr>
<tr>
<td>Increase, %</td>
<td>n/a</td>
<td>n/a</td>
<td>30.2</td>
<td>n/a</td>
<td>24.8</td>
<td>1.8</td>
<td>9.5</td>
</tr>
</tbody>
</table>

After examining the results above, one can see the advantages to be gained from the flow field modification via AEVI and the usefulness of another study with adjusted rocket geometries and oxidizer flow rates.

B. AEVI Optimization

a. Setup

In Figs. 5-9, it was shown that a shorter fuel grain or a lower oxidizer flow rate should be utilized to exhibit a higher O/F ratio that would be closer to the optimal value of 7.5. The value in an experimental AEVI study can be clearly seen here as a means to accurately qualify the effects from the modified flow field due to the rotational oxidizer injection. The rocket geometry is modified for AEVI and specified below in table 3 and compared to the previous results for the traditional injection scheme. An O/F ratio of 7.5 is desired so the rocket parameters were specified in order to operate near this value.

Table 3: Rocket Nozzle and Fuel grain geometries, $\dot{m}_{\text{ox}}=0.45 \text{ lbm/s}$

<table>
<thead>
<tr>
<th>r , in</th>
<th>A/A</th>
<th>L , in</th>
<th>ID$_{\text{fuel grain}}$, in</th>
<th>OD$_{\text{fuel grain}}$, in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>20</td>
<td>4</td>
<td>1.5</td>
<td>5</td>
</tr>
</tbody>
</table>
b. Results

Table 4: Geometry and Mass Comparisons Traditional vs AEVI

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Traditional</th>
<th>AEVI optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length, in</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>ID, in</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>OD, in</td>
<td>3.2</td>
<td>5</td>
</tr>
<tr>
<td>Fuel grain mass, lbm</td>
<td>2.83</td>
<td>2.69</td>
</tr>
<tr>
<td>Oxidizer mass, lbm (25 sec runtime)</td>
<td>12.5</td>
<td>11.25</td>
</tr>
<tr>
<td>Total Mass, lb</td>
<td>15.33</td>
<td>13.94</td>
</tr>
<tr>
<td>Avg. Specific Impulse, s</td>
<td>228.3</td>
<td>253.2</td>
</tr>
<tr>
<td>Total Impulse, lb-s (25 second runtime)</td>
<td>5783.9</td>
<td>5877.3</td>
</tr>
</tbody>
</table>

Shown in table 4 above, is the mass savings in terms of fuel and oxidizer alone for the AEVI and traditional injection schemes. The total/specific impulse comparison shows a lighter and higher performing AEVI scheme. The weight advantage of the AEVI comes primarily from the decrease in oxidizer. This weight advantage will be increased by the reduction in necessary structural components for the shorter fuel grain, smaller oxidizer tank, etc. Figs. 5-9 are repeated below as Figs. 10a-e for further comparison of the different grain geometries and injections. The AEVI exhibits less degradation during the burn than does the straight head end injection allowing for a longer duration of sustained thrust.
C. Current AEVI Regression Rate Analytical Tools and Outlook

The AEVI regression rate method used in section B was a conservative and simplified model that allowed for a quick comparison to straight, head end injection rocket performance. In order to produce accurate results for a true design study, an accurate model characterizing AEVI was required. An effort to do this was initiated and pathways towards a more universal AEVI model were identified.

a. Status

Much of the preliminary work has been done on the Vortex injection scheme utilizing HTPB/PMMA for the solid fuel, instead of ABS and gaseous oxygen as the oxidizer, in order to accumulate data and gain experience with this scheme and its dependencies. Reference 17 concludes the following, with respect to an aft end vortex injection:

- Up to 640% increase in regression rates over the traditional injection scheme
- Fuel grain/combustion chamber ID had a significant effect on the regression rate as larger ID correlated to improved \dot{r}

Figure 10 a-e AEVI vs Head-End Performance Plots
Local regression rate profiles consisted of three regimes: greatest sustained \(\dot{r} \) at the injection end, decreasing \(\dot{r} \) in the middle, and lower sustained \(\dot{r} \) at the head end.

Injector mass flux and contraction ratio are also important parameters affecting \(\dot{r} \). The study in [17] was conducted for L/D ranging from 1.5-2.7 and port inner diameters as large as 5.08 cm. It is anticipated that the improvements on \(\eta_c \) and regression rate specified in the simulation above for this paper will be shown to be conservative as evidenced in references [16] and [17].

The positive effect of a larger inner diameter is a result of the corresponding increase in angular momentum. For no change in injector size or number and a constant mass flow rate, the oxidizer will be injected at the same velocity but at a greater distance from the axis of rotation.

The third regime of the regression rate profiles mentioned are said to be a result of a recirculation zone at the head end of the combustion chamber. As these tests were done for small L/D, a study on an extended or lengthened fuel grain may provide some insights to the point at which this three regime regression rate model will break down. An alternative empirical regression rate relationship accounting for the geometric parameters CR, L/D, \(G_{\text{inj}} \) and \(G_{\text{ox}} \) was developed and is shown here in Eq. 14.

\[
\dot{r} = 0.0085CR^{0.45} (L/D)^{-0.59} G_{\text{inj}}^{0.45} G_{\text{ox}}^{0.37}
\]

For the two engines used to experimentally validate this relationship, an \(R^2 \) value of 0.977 was achieved with almost all of the data falling within ten percent of the predicted value. An even further improvement on this relationship was made in [11], utilizing a non-dimensional version of Eq. 14 with \(R^2 = 0.992 \) shown in Eq. 15.

\[
\frac{\rho \dot{r}}{G} = 0.082 Re_D^{-0.33} \left(\frac{St_{\text{sw}}}{St_0} \right) \left(\frac{St_p}{St_{\text{sw}}} \right) B
\]

B in Eq. 15 represents the blowing parameter and is detailed in reference 15. The methods for finding the Stanton number ratios are also presented, but are not given here.

It seems that a logical modification to Eqs. (14) and (15) for different fuel and oxidizer combinations would be via the Pr number. By altering the constants in 14 and 15 in accordance with mixture properties such as Pr, \(\mu \), \(C_p \), density and enthalpy of vaporization of the solid fuel, to which the regression rate is related, it is expected to be able to accurately alter the constants in 14 and 15 to account for different propellant combinations. The weighting of each would need to be determined.

b. Outlook

The empirical regression rate relations are growing in number, as studies are being conducted for specific propellant and fuel grain geometry/injector combinations. However, models accounting for propellant combination, engine geometry and rocket size are not being...
developed, at least not to the knowledge of this author. This would prove useful in decreasing the need for experimental studies required for evaluating specific hybrid motor configurations. An attractive avenue for this may be the combination of the studies presented thus far, covering enthalpy balance regression rate models and the growing knowledge of regression rate dependencies on various motor variables, resulting from the empirical regression rate studies paired with the non-dimensional regression rate analysis. By accounting for the effect of the centrifugal force on the skin friction coefficient, namely the spatial derivative term affecting the shear stress and in turn the skin friction, the vortex Stanton number, \(St_v \), could be accounted for via Eq. 8 or some similar relation for the vortex flow field parameters. Perhaps a CFD model would allow for an accurate representation of this, without having to analytically define the spatial gradient providing the wall shear stress term.
Chapter III
Nozzle Heat Flux Investigation

This chapter focuses on the heat loads imposed on a cooled rocket nozzle and the wall temperature profiles for similar operating conditions to the model presented in chapter II. It is intended to compare these predictions to subsequent experimental data and by gaining confidence in our model, it can be used to design a regeneratively cooled nozzle with a reasonable expectation of success.

An analytical approach was first taken towards evaluating the expected heat loads and the resulting wall temperature profile. This was followed with the explanation of the experimental setup and the expected experimental thermal loads. The results of the experiment are in chapter IV.

A. Heat Flux Predictions

Predicted heat fluxes from a closed form approximation are presented here and were used as a foundation for the experimental design.

\(h_{hg} = \left[\frac{0.026}{(D^*)^2} \left(\frac{\mu_0^{0.2} c_p}{\rho T_0^{0.6}} \right) \left(\frac{32.2 p_0}{c^*} \right)^{0.8} \left(\frac{D}{r_c} \right)^{0.1} \right] \left(\frac{\rho A^*}{A} \right)^{0.9} \) \(\sigma \) \hspace{1cm} (20a)

where

\(\sigma = \left[\left(\frac{1}{2} \frac{T_{wh}}{T_0} \left[1 + \frac{\gamma - 1}{2} M^2 \right] + \frac{1}{2} \right)^{0.8 - 0.2 \omega} \left(1 + \frac{\gamma - 1}{2} M^2 \right)^{0.2 \omega} \right]^{-1} \) \hspace{1cm} (20b)

\(\dot{q} = h_{hg} (T_{fs} - T_{wh}) \) \hspace{1cm} (21)

This particular relation requires only gas properties in the combustion chamber, which are determined with CEA, and the nozzle geometry. The only exception is that the free stream Mach number along the flow direction is required in Eq. 20b. The Mach number along the nozzle is evaluated with the isentropic mach number-area relationship and the free stream temperature, used in Eq. 21, is a function of the isentropic Mach number relationship. The heat flux is determined as shown in 21 using the hot-gas free stream temperature, \(T_{fs} \), and \(T_{wh} \). The hot side wall temperature is set at the designated ablation temperature of Inconel 625. This relation has
been developed by D.R. Bartz in [19,20] and shows an appropriate axial trend with a dependence on selecting the appropriate constant that corresponds to the appropriate boundary layer conditions at the throat. Results from Eqns. (20) and (21) are displayed below in Fig. 11 with nitrous oxide and ABS.

![Graph showing heat flux and nozzle profile](image)

Figure 11. Analytical heat flux profile resulting from equation 20.
Operational conditions: \(r^* = 0.3 \text{ in}, \text{O/F} = 6, P_c = 305 \text{ psi} \)

At the nozzle inlet, the heat transfer coefficient is underestimated but has been shown to yield accurate results at the throat\(^{20}\). The discontinuity in Fig. 11 is expected to be a result of the change in slope of the nozzle wall as the diverging section begins to straighten out. As a result the flow won’t be accelerating as drastically, and the temperature drop will be affected, directly resulting in a change in the slope of the heat flux.

Some of the important details in [19] concerning Eq. 20 and its subsidiaries will be restated in the following discussion. First, the important assumptions made are as follows:

- no secondary flows due to combustion
- Aside from losses to the nozzle walls, \(T_0 \) is maintained
- no significant combustion instabilities
- chemical equilibrium conditions
- reversible flow outside the boundary layer
A fully turbulent boundary layer with constant specific heats and Pr in the B.L
the boundary layer shape parameters are evaluated using a 1/7-power law
heat transfer coefficient is primarily dependent upon local mass flux
no changes in total enthalpy in the flow direction other than those caused by heat transfer to the wall
-Cf and St are equivalent to that for a flat- plate flow with constant pressure and constant wall temperature
any chemical reactions in the B.L affect only the driving potential or enthalpy in this case

The boundary layer analysis is carried out with the classic parameters: Re, Pr, Nu, St and Cf. Von Karman’s form of Reynolds’ analogy is used as given in [11].

The possible sources of error from the listed assumptions are identified in the following discussion. The Cf and St number flat plate approximations with constant axial pressure gradients could cause some variations from the actual conditions as a nozzle is has axially varying pressure gradients and an inclined surface. The combustion process will most likely continue, resulting in a higher total temperature than was achieved in the combustion chamber.

B. Nozzle Wall Temperature

In this section, steady state wall thickness for heat fluxes near what has been shown in the section above and the corresponding estimated temperature profiles will be developed via a CFD study using COMSOL. This section is important as it will illustrate the expectation that the wall will initially reach temperatures above the expected ablation temperature at which point the walls will ablate down to a new steady state thickness. At this new steady state thickness the walls will be kept cool enough to eliminate nozzle ablation.

a. Setting up a Finite Element Analysis

The nozzle wall steady state temperature profile will be evaluated just prior to the throat as the maximum heat load will be imposed here. This was illustrated in Fig. 11 above. A finite element study to determine the temperature profile in the nozzle wall is set up below. COMSOL® was used to perform the study, and the geometry with the program generated mesh is displayed below in Fig. 12.
Table 5: Inputs for the Finite Element Study on Wall Temperature

<table>
<thead>
<tr>
<th>(q_{\text{max}}), btu/in(^2)-s</th>
<th>(h_c), btu/in(^2)-s-R</th>
<th>(k_{\text{wall}}), btu/in-s-R</th>
<th>(T_{\text{wall initial}}), (^\circ)R</th>
<th>(T_{\text{coolant}}), (^\circ)R</th>
<th>Wall thickness, in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.25</td>
<td>0.0135</td>
<td>=T10(^{-7})+610(^{-8})</td>
<td>529.67</td>
<td>529.67</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Inputs to the study are specified above in table 5. The heat flux was chosen as the average between the two solutions presented previously in Fig. 11. The determination of the thermal conductivity as a function of wall temperature used in table 5 is shown below in Fig. 13. The coolant initial temperature was specified as room temperature. This in meant to simulate an uncooled oxidizer feed system as well as an ambient initial wall temperature. The coolant heat transfer coefficient was taken from previous studies on nitrous oxide cooled rocket nozzles\(^{21,22}\). In order to confirm the applicability of the coolant side heat transfer coefficient from the experiment in [21] to this study, a Nusselt number analysis was carried out\(^{22}\) using the Dittus-Boelter Nusselt number correlation for a heated liquid. This is shown below in Eq. 22 as well as Nu correlation to \(h \) in Eq. 23. \(D_h \) in Eq. 23 is the hydraulic diameter as the cooling channels are not perfectly circular. The results of this analysis are plotted versus coolant velocity in Fig. 14.

\[
Nu = 0.023Re^{0.8}Pr^{0.4}
\]

\((22)\)
The values for thermal conductivity were found in [23] plotted and fitted in Fig. 13 to generate the relationship versus temperature displayed in table 5.

\[Nu = \frac{hD_h}{k} \] \hspace{2cm} (23)

Figure 13. The curve fit of thermal conductivity for Inconel 625, k versus temperature

\[R^2 = 0.997 \]

The results of the heat transfer prediction using Eqs. (22) and (23) are shown and compared for nitrous oxide and water below.
Figure 14 heat transfer coefficient for nitrous oxide and water as a function of flow velocity at a fixed pipe diameter (Re<10,000). Figure 14 taken from [16]

b. FEA Results

A solution using the specified inputs were then generated and is shown below in Fig. 15. This temperature profile shows temperatures well above the thermal limit of the material. However, below the surface, the inner wall is below that limit.

Figure 13. Wall temperature profile for the conditions specified in table 5. Units on axes is inches
In order to determine if there is a steady state operational thickness for a similar heat flux where the wall temperature was maintained below its thermal limit, a similar study with a thinner wall thickness of 0.011 in was conducted. The results are shown below in Fig. 16. By examining Fig. 16, you can see a steady state thickness has been reached. So long as the nozzle ablates smoothly, it can continue to operate relatively unaffected after it reaches that thickness.

The results of the study on a wall ablated to 11 thousandths of an inch shows wall temperatures slightly below the thermal limit of 1559 R or 1100 F. The same wall thickness with an increased heat flux to 9 btu/in2-s was then evaluated, and the results are displayed below in Fig. 17.

![Figure 14 Temperature profile for an identical nozzle with $w_t = 0.011$ in](image)
Two particular questions surface when examining the analytical results: 1) What is the wall’s response to gradually increasing the heat flux up to and then beyond the materials’ thermal limits? 2) What is the response if the nozzle were immediately subjected to heat loads beyond the 40 thousandths inch thickness limit? It is unknown whether the wall would regress in an orderly fashion, layer by layer or if the sub-layer would begin to melt and cause the walls to deform. If this were extreme enough the nozzle would be likely to lose effectiveness. For example, if the nozzle deforms, shocks or flow separation may form along the distorted walls causing a loss of thrust. These are very important drivers for conducting the experiment.

If the walls do regress in an orderly manner, it would appear as though a much higher operational heat load could be withstood by the cooled nozzle. If this is the case the ultimate withstandable heat load could be much higher than anticipated without degradation.

It can be seen by the comparison of Figs. 15-17 that if \(\dot{q} \) is high enough, the wall will ablate until it reaches a steady state thickness which is a function of heat flux. As the flux increases, the wall thickness for steady state heat transfer decreases.
It is now useful to know the minimum wall thickness for operation. The value of maximum shear stress at an elevated temperature of 1200 F is 82 ksi allowing for a minimum wall thickness at a 600 psi pressure difference of less than 600 millionths of an inch with a factor of safety of 2. This is shown at the end of Appendix C. With this in mind the structural limit will be set aside as it appears that a thermal failure is the most likely.

C. Experimental Setup

To validate our models of nozzle heating, an experiment was devised and executed. In a flight weight vehicle with the proposed aft-end vortex injected, regeneratively cooled nozzle, the design and integration can be quite complex. Added to this is the desire to eliminate any unnecessary weight. Neither is necessary for a productive experiment. With the experimental objectives in mind, modifications are made to the coolant, oxidizer and injection methods.

The primary experimental goals are to evaluate the response of a cooled rocket nozzle at, and even past, the nozzle’s expected limits. Additional objectives are to validate the analytical models as a means to evaluate and modify future designs. The following sections lay out the adjustments made in the interest of simplifying and expediting the experimental procedure, easing the risk factors and pinpointing the desired results.

a. Experimental modifications

i. Injection Scheme

For financial and time considerations, traditional head-end injection was used, as the necessary components are already in place on the test stand. This was primarily done in an attempt to expedite the experimental setup, allowing more time for experiment and analysis. As there will be no aft-end injection, there was also no regenerative heating of the oxidizer before it was introduced to the combustion chamber. The cooling circuit will be independent of the rest of the rocket and is used exclusively to cool the nozzle and to measure the heating distribution.

ii. Oxidizer

Due to recent events with unintentional explosions at Nitrous Oxide testing facilities and the author’s unfamiliarity with the oxidizer, air and gaseous oxygen was used as alternative oxidizers. Nitrous Oxide dissociates exothermically creating a potential hazard. Gaseous O₂ has been used extensively, but the fairly low traditional regression rate characteristics of hybrids render low O/F ratios difficult. Oxidizer to fuel ratios above the stoichiometric ratios produce an oxidizer rich exhaust plume that can oxidize the nozzle wall and cause additional ablation contaminating the experimental results. For this reason, air was used primarily, as it has a higher stoichiometric ratio with ABS which is nearly 10.5 for air compared to 2.5 for oxygen. This minimizes the risk of oxidation on the interior surface of the nozzle due to excess oxygen in the exhaust gases. O₂ will only be used as a supplement to the air as needed to reach higher heat fluxes and to assist in the ignition process.
iii. Coolant
Nitrous Oxide was replaced with water as the coolant for similar reasons as mentioned before with the oxidizer substitutions. Water served the experiment well as a coolant due to its availability and cooling capabilities. A benefit to this substitution was the increased specific heat, allowing for a more uniform water temperature as it passes through the cooling channels accepting heat from the hot wall.

iv. Calorimeter Nozzle
The calorimeter nozzle shown below in figure 17 was printed out of Inconel 625 using SLM at NASA Marshall Space Flight Center in Huntsville, AL. The throat area was similar to what was used in the previous analysis of chapter 2, requiring only minimal changes to the model. The cooling channels in this nozzle are running circumferentially instead of axially. A drawing of the nozzle is shown in Fig. 18, along with the specs of the nozzle in Table 6.

![Figure 16 A semi-transparent model of the printed calorimeter nozzle to be tested](image)

<table>
<thead>
<tr>
<th>Table 6: Calorimeter Nozzle parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^*, in</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>0.311</td>
</tr>
</tbody>
</table>

The circumferential cooling channels can be visualized by the light blue tubes in Fig. 17 and the parameters needed for the analytical model are given in table 6. This design will provide individual heat flux measurements at 6 independent axial sections. This proves useful, as the heat flux is expected to vary axially by more than 300% as shown previously in Fig 11. The
experimental heat flux calculation from the measured values of mass flow rate and water temperature is shown in Eq. 24.

\[q = m c_p [T_{\text{water-out}} - T_{\text{water-in}}] \]

In order to obtain heat flux per unit area, the hot side nozzle surface area corresponding to each cooling station is shown in Table 7 along with the coolant mass flow distribution. This is assuming that the nozzle wall has reached a steady state temperature profile where heat flux in is equal to heat flux out. Figure 19 illustrates the section of the nozzle cooled by each station.

<table>
<thead>
<tr>
<th>Station</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Area, in²</td>
<td>1.227</td>
<td>0.737</td>
<td>0.812</td>
<td>1.1549</td>
<td>1.215</td>
<td>1.215</td>
</tr>
<tr>
<td>% mass flow</td>
<td>15.80</td>
<td>17.95</td>
<td>17.79</td>
<td>16.57</td>
<td>15.88</td>
<td>16.01</td>
</tr>
</tbody>
</table>

Figure 17 Cutaway view of the nozzle showing areas cooled by each station
The heat flux at each axial location as a function of temperature increase is shown below in Fig. 20.

Figure 18 Heat fluxes associated with water temperature increase for each station

The coolant side heat transfer coefficient was approximated using the same Dittus-Boelter correlation used in generating figure 12. It is expected that the water was flowing 30-40 ft/s; corresponding to a heat transfer coefficient 30% higher than what was used in the nozzle wall temperature profile in COMSOL. A sample calculation corresponding to this is included at the end of Appendix C. A higher steady state heat flux may be realized as a result of the increased cooling.

b. Experimental Model

The analytical results for the rocket performance are illustrated on the following pages. These predictions not only provide a basis of what to expect with the modified configuration, but also will serve as a reference to validate or improve the analytical model.

Table 8: Adjusted Model Operational and Geometrical Specifications

<table>
<thead>
<tr>
<th>r, in</th>
<th>L_{fuel grain}, in</th>
<th>ID_{fuel grain}, in</th>
<th>OD_{fuel grain}, in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.311</td>
<td>12.0</td>
<td>0.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Table 9: Modeled Operational Conditions

<table>
<thead>
<tr>
<th>(m_{ox}, \text{ lbm/s})</th>
<th>(P_c, \text{ psi})</th>
<th>O/F</th>
<th>(C_n)</th>
<th>Thrust, lbs</th>
<th>(C^*, \text{ ft/s})</th>
<th>ISP, s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>307.4</td>
<td>6.3-10.6</td>
<td>0.8</td>
<td>112.4</td>
<td>4209.5</td>
<td>133.7</td>
</tr>
</tbody>
</table>

Note: operational conditions are averaged over the steady burn time.
In the figures below, the hitch that you see in the first couple of seconds is a result of the inaccuracies from the initial empirical regression rate correlation used to begin the run. The enthalpy balance regression rate is not used until the second time step. The time variation in the data is a direct result of the change in the O/F ratio. This is caused by the widening of the fuel grain port diameter during the run, which negatively affects the solid fuel regression rate. The O/F is also affected by the increase in burn area as the solid fuel grain regresses, but in this configuration, the effect of decreased regression rate overtakes that of the increased burn area.

Figure 19 a,b Theoretical Thrust, Pressure curve for the thrust stand rocket as specified in tables 5 and 6.

![Theoretical Thrust, Pressure curve](image)

Figure 20 a,b O/F, ISP curve. Note: stoichiometric for Air and ABS \(\approx 10.5\)
The analytical heat fluxes from Bartz’s relation are detailed in chapter 2 and shown for the described experimental model in Fig. 24 below. This is followed by the FEA study of the temperature profile in the 0.04 inch thick, cooled nozzle wall.

Figure 21. Analytical C* curves

Figure 22. Heat fluxes from Bartz’s relation. Throat @ 0.6075 in
The results of the finite element study show the wall temperature near the previously designated thermal limit of 1559 Rankine. This shows that the proposed experimental configuration will generate thermal loads high enough to begin affecting the nozzle wall. This configuration is ideal for our experiment, as a slight decrease in mass flow rate will allow operation below the expected material limits. In addition, a slight increase to the oxidizer mass flow rate will push the thermal limits of the nozzle material and result in nozzle ablation.
Chapter IV
Experiment

This chapter lays out the physical setup and experimentation used in the experimental effort and then provides and analyzes the results. The experimental results presented in section C are from the initial tests and are intended to validate the model prior to pushing the limits of the calorimeter nozzle.

A. Setup/Procedure

A schematic of the physical setup and the wiring is displayed below. These can be seen in a larger format in Appendix B.
Figure 24 Schematic of the physical layout and wiring diagram
The propane tank on the ground paired with a spark plug and the green oxygen tank were used for ignition. The grey water tank was top pressurized at 500 psi with the black nitrogen tank. The yellow tank is the air, which serves as the primary oxidizer. The water jugs collect the water from each station, confirming measurements from the water flow meter and the percentage of water flow expected through each cooling circuit.
Figure 26 shows the backside of the blast wall.

The red box is the ball valve actuator used to control the air flow rate which is read from the display on the flow meter mounted on the backside of the blast wall. The flow meter is also linked to the data recording system allowing for the readings to be logged in real time.

Figs. 27 and 28 below, detail the calorimeter nozzle supply and measurement system. The single inlet thermocouple, shown in Fig. 28, serves as the reference temperature from which the six outlet thermocouples, shown in Fig. 27, are compared.
Figure 27 shows the calorimeter nozzle installed with the thermocouples for reading outlet temperature.

Figure 28 reference/inlet thermocouple.
B. Results/Analysis

To date, the experiment has been run 7 times with roughly 60 seconds of total firing time. Figure 29 below shows the experimental data from the second run and is supported with data from the analytical model in table 10.

![Figure 29 showing the experimental data from run 2.](image)

The average experimental regression rate was 0.0064 in/s. The actual value was expected to be slightly lower than this as the ignition period was not accounted for. The results from the analytical model with identical oxidizer flow rates and initial/final grain diameters to the experimental run in Fig. 29 are shown below in Table 10. The initial and final grain radii are 1.075 and 1.115 inches, respectively. The time varying regression rates are illustrated allowing for a comparison of the predicted and experimental data.
The regression rate model used is deemed reasonable as the burn times are off by ¾ of a second for the specified range of grain radius at the head end. The data in Fig. 30 was a result of a 6.25 second burn where table 10 shows a 7 second burn time. This could be a result of the increased burn rate during the ignition process as O_2 and propane were also injected into the combustion chamber to ignite the ABS. The thrust seen during the experiment is noticeably higher than expected. The higher than expected thrust measurements are believed to be a result of improper calibration procedures.

The results from run 1 are shown below in Fig. 30 along with the temperature and heat flux measurements in Figs. 31 and 32.

Table 10 predicted conditions $\dot{m}_{\text{air}}=0.125\text{lbf/s}, \ r_{\text{fg\ initial}}=1.075\text{ in}, \ r_{\text{fg\ final}}=1.115\text{ in}$

<table>
<thead>
<tr>
<th>Time, s</th>
<th>Thrust, lbf</th>
<th>ISP, s</th>
<th>P_c, psi</th>
<th>O/F</th>
<th>\dot{r}, in/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.38</td>
<td>41.38</td>
<td>46.36</td>
<td>4.5884</td>
<td>0.010</td>
</tr>
<tr>
<td>0.5</td>
<td>7.52</td>
<td>54.06</td>
<td>49.17</td>
<td>8.8837</td>
<td>0.005</td>
</tr>
<tr>
<td>1</td>
<td>7.45</td>
<td>53.28</td>
<td>49.05</td>
<td>8.4037</td>
<td>0.005</td>
</tr>
<tr>
<td>1.5</td>
<td>7.46</td>
<td>53.42</td>
<td>49.07</td>
<td>8.4844</td>
<td>0.005</td>
</tr>
<tr>
<td>2</td>
<td>7.46</td>
<td>53.42</td>
<td>49.07</td>
<td>8.4849</td>
<td>0.005</td>
</tr>
<tr>
<td>2.5</td>
<td>7.47</td>
<td>53.43</td>
<td>49.07</td>
<td>8.4961</td>
<td>0.005</td>
</tr>
<tr>
<td>3</td>
<td>7.47</td>
<td>53.45</td>
<td>49.08</td>
<td>8.5054</td>
<td>0.005</td>
</tr>
<tr>
<td>3.5</td>
<td>7.47</td>
<td>53.47</td>
<td>49.08</td>
<td>8.5157</td>
<td>0.005</td>
</tr>
<tr>
<td>4</td>
<td>7.47</td>
<td>53.48</td>
<td>49.08</td>
<td>8.5254</td>
<td>0.005</td>
</tr>
<tr>
<td>4.5</td>
<td>7.47</td>
<td>53.50</td>
<td>49.08</td>
<td>8.5348</td>
<td>0.005</td>
</tr>
<tr>
<td>5</td>
<td>7.47</td>
<td>53.51</td>
<td>49.09</td>
<td>8.5446</td>
<td>0.005</td>
</tr>
<tr>
<td>5.5</td>
<td>7.47</td>
<td>53.53</td>
<td>49.09</td>
<td>8.5542</td>
<td>0.005</td>
</tr>
<tr>
<td>6</td>
<td>7.47</td>
<td>53.54</td>
<td>49.09</td>
<td>8.5634</td>
<td>0.005</td>
</tr>
<tr>
<td>6.5</td>
<td>7.48</td>
<td>53.56</td>
<td>49.09</td>
<td>8.5735</td>
<td>0.005</td>
</tr>
<tr>
<td>7</td>
<td>7.48</td>
<td>53.57</td>
<td>49.10</td>
<td>8.5826</td>
<td>0.005</td>
</tr>
</tbody>
</table>
Figure 30 run 1 performance data

Figure 31 coolant temperatures at the inlet/outlets from run 1
Figure 32 showing the heat flux at each axial station from run 1.

Figure 33 Predicted/experimental heat flux comparison via Bartz’s method.

For comparison, the predicted heat fluxes at run 1 conditions are displayed above in Fig. 34. The predicted and experimental heat fluxes which are of primary interest, appear to compare very well with one another. This is with the exception of station 5, where it appears a shock has formed causing a higher rate of heat flux. This is due to the low combustion chamber pressure for these operating conditions.
The inner nozzle wall surface has shown no signs of ablation to this point as you can see below in Fig 35a-b. This is good news, as the cooled nozzle isn’t expected to begin to wear until the heat loads approach 4.5 btu/in2-s.

![Figure 34 a,b The nozzle before and after.](image)

Performance data and measured heat flux for runs 2 and 3 are displayed below in Figs. 35-36 a,b.

![Figure 35a Performance data from run 2](image)
Figure 35b Heat flux during run 2

Figure 36a Performance data from run 3
From the 3 runs shown, it can be seen that the experiment has been set up so that the results are reasonably repeatable.

D. Conclusions, Experimental and Design Methods Evaluation

The experiment has been set up and run, and the analytical model has been validated within reasonable accuracy. The modified head end, traditional regression rate model presented in chapter 2 has been validated for the geometry and conditions presented above. The experimental heat flux data agrees well with the predictions. Bartz’s method has provided accurate predictions near the throat. The primary weakness of Bartz’s method appears to be at the nozzle inlet. This limitation was expected19, and due to the method’s convenience and accuracy this will become the primary heat flux prediction method for the following experiments.
Chapter V
Final Remarks

A. Summary

Two hybrid rocket innovations have been examined and an investigation has begun with the objectives of improving performance and lowering costs for hybrid engines. Analytical tools for the design of a hybrid rocket and a cooled rocket nozzle have been developed, presented and evaluated. These are meant to serve as tools in follow-up work evaluating a regeneratively cooled rocket nozzle paired with an aft-end vortex injection scheme.

In the first of these investigations, an Aft-end vortex oxidizer injection has shown that a substantial increase in performance can be realized with only an additional complication of the injection scheme. This hurdle has been shortened by the improvement of rapid prototyping techniques that can repetitively reproduce complicated pieces, such as a regeneratively cooled nozzle with the vortex injectors printed into it. A means for a universal method for evaluating AEVI performance has been proposed and is intended to further streamline the design process.

A 3-D printed, cooled nozzle has been designed, integrated and successfully tested on a hybrid engine. This concept shows promise in developing a cheap reusable rocket nozzle that can be launched into orbit and used repeatedly for station-keeping maneuvers or multiple trajectory corrections without the added weight of ablative materials, thereby increasing the thrust to weight ratio and making room for more payload at launch.

B. Future work

Work is currently underway continuing the cooled nozzle study. Now that the design methods have been confirmed and the thrust stand with all of its instruments is in working order, the experiment can continue with the expectation of producing useful data concerning the failure point and modes of the 3-D printed, cooled nozzle.

It is expected that the insights from the completion of this experimental work will be used in the design of a 3-D printed, cooled nozzle that will inject its coolant directly into the combustion chamber, allowing for the realization of an aft-end vortex hybrid rocket with a regeneratively cooled nozzle.
References
5 G. Story, “Large Scale Hybrid Motor Testing,” Marshal Space Flight Center, Hunstville, AL, 2006
27 Bonnie Mcbride, Sanford Gordon, NASA-Glenn Chemical Equilibrium Program CEA, Nov. 5, 1999
28 Z. Thickstein, F. Macklin, J. Campbell, “Handling Considerations of Nitrous Oxide in Hybrid Rocket Motor Testing,” SpaceDev Inc., Poway, CA, 92064, USA
Appendices
Appendix A
Calibrations/Instruments

Table 11 Instruments

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Model</th>
<th>Range</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouples</td>
<td>TC-J-NPT-G-72</td>
<td>32-1383 °F</td>
<td>see Table 11</td>
</tr>
<tr>
<td>Water Flow meter</td>
<td>FPR 200</td>
<td>0-51 GPM</td>
<td>+/- 2% Fullscale</td>
</tr>
<tr>
<td>Gas Flow meter</td>
<td>FLR 9760D</td>
<td>50-500 SLPM</td>
<td>+/- 2% Fullscale</td>
</tr>
<tr>
<td>Pressure Transducer</td>
<td>Vitran 218</td>
<td>0-250 psi</td>
<td>+/- 0.4% FS</td>
</tr>
<tr>
<td>Force Transducer</td>
<td>Tovey “S” type load cell</td>
<td>0-250 lbf</td>
<td>+/- 0.03% FS</td>
</tr>
<tr>
<td>A/D Board</td>
<td>MiniLab 1008</td>
<td>0-10V</td>
<td>0.02% FS</td>
</tr>
</tbody>
</table>

The thermocouple calibration is presented below. The thermocouples to be associated with each outlet (TC-1:6) are calibrated against the reference or inlet thermocouple (TC-0) before being installed. The average offset is the result of 8500 samples taken at varying temperatures. The maximum percent error was found for a coolant flow rate of 2.5 lbm/s and a heat flux of 1.5 btu/in²-s. As the heat flux increases, the percent error for each station will decrease. Listed next to the thermocouple number is the axial station assigned to that TC.

Table 12 Thermocouple Calibrations Referenced to TC-0, all values in deg F

<table>
<thead>
<tr>
<th>TC- #</th>
<th>1(A-3)</th>
<th>2(A-6)</th>
<th>3(A-1)</th>
<th>4(A-5)</th>
<th>5(A-2)</th>
<th>6(A-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average offset</td>
<td>-0.25</td>
<td>0.01</td>
<td>0.03</td>
<td>0.25</td>
<td>-0.19</td>
<td>0.39</td>
</tr>
<tr>
<td>80% Range of uncertainty</td>
<td>0.06</td>
<td>0.11</td>
<td>0.1203</td>
<td>0.12</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>100% Range of Uncertainty</td>
<td>0.12</td>
<td>0.24</td>
<td>0.17</td>
<td>0.25</td>
<td>0.12</td>
<td>0.28</td>
</tr>
<tr>
<td>Max % Error (100% range)</td>
<td>8.0</td>
<td>16.0</td>
<td>11.3</td>
<td>16.7</td>
<td>8.0</td>
<td>18.7</td>
</tr>
</tbody>
</table>

The response time can also be seen below in figure 32.

Figure 37 Response time visualization when exposed to a step temperature.
A response time of 5 seconds is displayed when transferred from one stagnate pool of water to another. This response time should decrease dramatically when exposed to forced convection due to the flowing water as opposed to natural convection in this case of still water.

The Pressure transducer calibration is shown below in table 13 and figure 38.

<table>
<thead>
<tr>
<th>Volts</th>
<th>Pressure, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.38</td>
<td>35</td>
</tr>
<tr>
<td>1.56</td>
<td>62</td>
</tr>
<tr>
<td>1.86</td>
<td>102</td>
</tr>
<tr>
<td>2.163</td>
<td>141.5</td>
</tr>
<tr>
<td>2.48</td>
<td>185</td>
</tr>
<tr>
<td>2.65</td>
<td>200</td>
</tr>
</tbody>
</table>

Figure 38 Pressure calibration plot

\[y = 131.2x - 143.51 \]

\[R^2 = 0.9983 \]
Appendix B
Thrust Stand Setup/Experimental Notes

Wiring Diagram

Figure 40 shows the wiring diagram above and the physical setup below
Physical setup

![Diagram of experimental setup](image)

Figure 39 the wiring for the instruments and the physical setup above.

Experimental Notes

Electromagnetic Interference (EMI)

The spark plug and the fast acting solenoid valves (small black boxes with two wires), create a large amount of electromagnetic interference. When only running a few instruments, it does not appear to create too many problems. But with the complexity and number of recordings being made in this particular setup it was found that most instruments either needed to be shielded or grounded independently.

The counter (water flow meter) and the high pressure actuated ball valve were grounded to a lightning rod. This eliminated a majority of the problems as the stainless steel body of the counter absorbed a lot of this interference and was a large contributor to DAQ crashes. The DAQ board was also grounded in the same manner to an independent ground rod. This highly reduced the noise during experiment. The force transducer wire junctions were then shielded and the EMI was filtered via ferrite beads at the wire junction. The amplifier box was amplifying any EMI’s so it was also critical that the force transducer wires were protected. This also greatly reduced the EMI that was initially causing the DAQ board to crash upon ignition. The image below shows the DAQ station shielded from the fast acting solenoid valves and the spark plug. You can see the Force transducer wire junction wrapped up with ferrite beads for EMI filtration and hanging on the wall before leading into the green amplifier box sitting next to the computer. The DAQ board is to the left of the computer and is grounded to the metal rod stuck in the ground.
Heat Flux Measurements

A few seconds of water run time prior to ignition is required for the thermocouples to reach a steady state temperature. By doing this to determine each TC’s standard deviation from the reference temperature accurate heat flux data is more probable. Be sure the USB-TC reader is shielded from any sunlight or wind. Either of these can cause inaccurate and varying temperature measurements.

DAQ programs

TracerDAQ ran well and served all necessary purposes however, our version is limited to no more than 8 input channels. With 7 thermocouples and 4 other instruments this became a problem. Matlab can also be used for DAQ but will not accept counters or TC’s if using measurement computing hardware. There is a patch allowing for the thermocouples to be used with MCC hardware but it was not implemented. The MATLAB DAQ code is provided in appendix C. Two computers also worked just fine and TracerDAQ is very common and easy to obtain. The Pressure, thrust, water flow and air flow data was collected at a sampling rate of 30 Hz while the temperature measurements were recorded at 2 Hz.
Appendix C
In-House Codes/Hand Calculations

Hybrid Rocket Performance Code

Authors: Nick Quigley, Brian Hampton, Chris Potter Rocket Performance and Nozzle heat loads via D.R. Bartz closed form approximation

clc;clear all;

Initial conditions/Constants

tic
Oxidizer=5; %1=N2O2 2=O2 3=75N225O2 4=air+o2 5=air
mdxy1=.125; %lbm/s

% Fuel Grain
hgrain=11; %Height of grain (inches)
rhoabs=0.0376; %density of fuel (abs)(lbm/in3)
Rout=1.115; %Outer grain radius (inches)
Rin=1.075; %Inner grain radius (inches)
min_wall_thickness=0.0; %inches
wall=Rout-min_wall_thickness; %stopping condition- ABS wall thickness
u=1; %regression rate manipulation

% Nozzle
rsi=.311; %inch radius
Aratio=3.27; %Nozzle area ratio =3 for sea level =20 for 70000 staying within printing limits
Pa=14.2; %sea level pressure = 15 psi / @70000ft =0.6444 psi
eta=0.95; %nozzle efficiency
etastar=0.8-0.95
Tflsrfc=523; %K melting temperature of ABS used value given in Whitmore's JPP_june10... paper
hvsldfl=2.3*10^6; %joules/kg latent heat of vaporization of Solid fuel

if you want to run different cases for different flow rates

for yu=1:1
 if yu==1
 mdotoxy=mdxy1;
 else if yu==2
 mdotoxy=mdxy2;
 else if yu==3
 mdotoxy=mdxy3;
 end
end

P0=60;%total pressure in psi initial guess
Pno=P0;
%if i==2.716
% Athroat1=.9298;
%else if i==3.56
% Athroat1=1.2061;
% else if i==4.47
% Athroat1=1.4764;
% end
%end

%Athroat1=1.13; %(inches^2)
if mdotoxy==mdxy3
 Aratio=24
else if mdotoxy==mdxy2
 Aratio=26
else if mdotoxy==mdxy1
 Aratio=38
% end
% end

Empirical regression rate constants (initial burn rate)

b=1;
j=1;

 a=u*0.06;
n=0.54;

Moxy=0;

Calculations

check=1;

timestep=.5; %Defines time step (seconds)
count=0;
i=1;

fprintf('Time Thrust Frozen Thrust Equil Thrust ave
ISP_frozen ISP_equil ISP_ave OF_Ratio mdot\n')

%initial values for regrate
%T0=3000; %K flame temperature using temperature in combustion chamber
adiabatic changes during run with O/F

%Cp=0.8569;%will be multiplied to go from cal/g to joules/kg
%mu=0.83293; %millipoise convert to lbm/in s in regrate eqtn
millipoise*0.672*10^-6
%Pr=0.4838;
%dregs=1;
%mdotoxy_step=mdotoxy*timestep;
%gyh=1;
%Regrate=a*Gox^n; %Regression rate (inches/sec)
%Gox=(mdotoxy)/(hgrain*pi()*2*Rin);

while Rin<wall; %lets the code run until of fuelgrain is at predetermined
 minimun thickness
mdotoxy_step=mdotoxy*timestep; % oxidizer mass flow for the timestep
(lbm/timestep)

Gox(i)=(mdotoxy)/(pi()*Rin^2); % units of mdot/Area (lbm/timestep/inch^2)
 reggin(i)=u*0.10404*(Gox(i))^0.681; % in/s
 if i==1
 Regrate=a*Gox(i)^n; % Regression rate (inches/sec)
 else if i>1
 Regrate=u*0.047/(rhoabs*(Pr^0.1532))*(Cp*(4184)*(abs(T0-Tflsrfc))/hvsldfl)^0.23*(mdotoxy/(pi()*Rin^2))^(4/5)*((mu*5.6*10^-6)/hgrain)^0.2;
 Regratefpo=u*(0.047*(mdotoxy/Ac)^(4/5)*((mu*5.6*10^-6)/Lg)^(0.2)*Cp*(4184)*abs(T0-Tflsrfc))/hvsldfl)^0.23*(mdotoxy/.0022)/(pi()*(Rin*2.54)^2)^((mu*10^-3)/(2.54*hgrain))^0.2;
 end

Lg=hgrain;
Ac=pi()*Rin^2;
Bez=13*(Pr^(2/3)-1);
mdoto=mdotoxy;
 mdotox+mdotoxy/(2*OFratio(i-1));
 trb=0.047*((mu*5.6*10^-6)*Ac/(mdoto*Lg))^(0.2)*Cp*(4184)*abs(T0-Tflsrfc))/hvsldfl)^(-0.77);
 Regratefpo=u*(0.047*(mdoto/Ac)^(4/5)*((mu*5.6*10^-6)/Lg)^0.2)*/(Cp*(4184)*abs(T0-Tflsrfc))/hvsldfl)^0.23*(mdotoxy/.0022)/(pi()*(Rin*2.54)^2)^((mu*10^-3)/(2.54*hgrain))^0.2;
 reg(i,1)=Regrate;
end
end

grainchange=Regrate*timestep; % how much grain changes during timestep (inches)
Rin_new=Rin+grainchange; % Inner radius after grain burn during timestep (inches)
mdotfuel_step=(Rin_new^2-Rin^2)*pi()*hgrain*rhoabs; % Fuel mass flow rate (lbm/timestep)
mdotfuel=mdotfuel_step/timestep; % total fuel mass flow rate

OFratio(i)=mdotoxy_step/mdotfuel_step; % dimensionless CEA

% Input OF_ratio, P0 (P naught), and Ae/A* into CEA
% Recieve output of gamma, C*, and a (sonic velocity)
% Brian's CEA function
i=50;
if Oxidizer==1
 CEAin(OFratio(i), P0, Aratio);
% CEAin(OFratio(i), P0, Aratio, 'ABS C 3.85 H 4.85 N 0.43 wt%%=100. h,j/mol= 62630. t(k)=298.15', 'N2O wt%%=100. t(k)=298.15', 'psia', 'calories')
[CsstarT,CsstarE,T0,Tt,Cp,GammaC,GammaT,GammaE, SonVelC,SonVelT,SonVelE, rhoC,rhoT,rhoE, PC,PT,PE] = CEAoutd();
else if Oxidizer==2
 CEAino(OFratio(i), Pno, Aratio);
[CsstarT,CsstarE,T0,Tt,Cp,GammaC,GammaT,GammaE, SonVelC,SonVelT,SonVelE, rhoC,rhoT,rhoE, PC,PT,PE] = CEAoutd();
else if Oxidizer==3
 CEAinn2o2(OFratio(i), Pno, Aratio);
[CsstarT,CsstarE,T0,Tt,Cp,GammaC,GammaT,GammaE, SonVelC,SonVelT,SonVelE, rhoC,rhoT,rhoE, PC,PT,PE] = CEAoutd();
else if Oxidizer==4
 CEAinairo(OFratio(i), Pno, Aratio);
[CsstarT,CsstarE,T0,Tt,Cp,GammaC,GammaT,GammaE, SonVelC,SonVelT,SonVelE, rhoC,rhoT,rhoE, PC,PT,PE] = CEAoutd();
else if Oxidizer==5
 CEAinair(OFratio(i), Pno, Aratio);
[CsstarT,CsstarE,T0,Tt,Cp,GammaC,GammaT,GammaE, SonVelC,SonVelT,SonVelE, rhoC,rhoT,rhoE, PC,PT,PE] = CEAoutd();
end
end
end
end
% Cstar in (ft/s)
% gamma dimensionless
% SonVel in m/s
% rho in grams/cm^3
% Pressure in atmospheres
SonVelC=SonVelC*3.28084; %Converting from meters/s to ft/s
PE=PE*14.659; %converts PE from atmospheres to Psia
PT=PT*14.659;
PC=PC*14.659;
oa=OFratio(i);
fuelprcnt=(1/(1+oa))*100;
T0=(etastar^(1/2))/T0;
T0(i)=T0;
Tsh(i)=Tt;
rhoc(i)=rhoC;
gammac(i)=GammaC;
asc(i)=SonVelC;

Throat Designation

% Athroatnew=1/(P0*32.2/(.9*CstarE*(mdotoxy+mdotfuel)));
% Athroat1(i)=Athroatnew;

Athroat1(1)=rsi^2*pi(); %rthroat=0.
rthroat=sqrt(Athroat1(1)/pi());
Cstary(i)=(CstarE+CstarT)/2;
Pnot(i)=etastar*Cstary(i)*(mdotoxy+mdotfuel)/(32.2*Athroat1(1));
Pno=Pnot(i);
oxprcnt=100-fuelprcnt;

for the next regrate calculation
if Oxidizer==1
 CEAtpin(OFratio(i), Pnot(i), T0, fuelprcnt, oxprcnt);
else if Oxidizer==2
 CEAtpino(OFratio(i), Pnot(i), T0, fuelprcnt, oxprcnt);
else if Oxidizer==3
 oxoprcnt=.25*oxprcnt;
 oxnprcnt=0.75*oxprcnt;
 CEAtpinon(OFratio(i), Pnot(i), T0, fuelprcnt, oxoprcnt, oxnprcnt);
else if Oxidizer==4
 oxoprcnt=0.08*oxprcnt;
 oxnprcnt=0.92*oxprcnt;
 CEAtpinairo(OFratio(i), Pnot(i), T0, fuelprcnt, oxoprcnt, oxnprcnt);
else if Oxidizer==5
 CEAtpinair(OFratio(i), Pnot(i), T0, fuelprcnt, oxprcnt);
end
end
end

[mu, CP, Pr]=CEAtpout();
Prandtl(i)=Pr;
Cpj(i)=CP;
Mu(i)=mu;

%Regrate1=0.042/(Pr^0.1532*rhoabs)*(Cp(T0-Tflsrfc)/hvsldfl)^0.23*(mdotoxy_step/(pi()*Rin^2))^(4/5)*(mu/hgrain)^0.2;

%Prat=20/Pnot(i);

Performance Calculations

time(i)=count;
count=count+timestep;

M=1; %Mach number=1 at throat of rocket
gamma=(GammaT+GammaC)/2; %Average of the throat and exit gamma
%Ma=sqrt((2/(gamma-1))*((1/Prat)^((gamma-1)/gamma)-1));
%Aratio=(1/Ma)*((2/(gamma+1))*(1+((gamma-1)/2)*Ma^2))^(gamma+1)/(gamma-1);
%values for use in CT calculations
CT_ideal_atm(i,j)= sqrt(((2*gamma^2)/(gamma-1)) * ((2/(gamma+1))^...
(gamma+1)/(gamma-1)) * (1-(PE/Pnot(i))^((gamma-1)/gamma)) +...
(PE-Ps)/Pnot(i))*Aratio; %CT ideal equation on page 518 of %propulsion book.
Thrust_equil(i)=eta*CT_ideal_atm(i)*Pnot(i)*Athroat1(1); %Calculates thrust
mdot(i)=mdotfuel+mdotoxy;
Mf=aratiofunc(Aratio,GammaT); %Mach number for Aratio=28 (found from secant method program aratiomunsta.m
P0f=PT/0.5283; %Total Pressure
PEf(i)=Pnot(i)/((1+((GammaT-1)/2)*Mf^2)^((GammaT/(GammaT-1)))); %frozen exit pressure
CT_ideal_frozen(i)= sqrt(((2*gamma^2)/(gamma-1)) * ((2/(gamma+1))^...
(gamma+1)/(gamma-1)) * (1-(PEf(i)/Pnot(i))^((gamma-1)/gamma)) +...
((PEf(i) - Pa)/Pnot(i)) * Aratio;

Thrust_frozen(i) = eta * CT_ideal_frozen(i) * Pnot(i) * Athroat1(1); % Calculates thrust for frozen conditions

CT_actual_atm(i) = Thrust_frozen(i) / (Pnot(i) * Athroat1(1)); % Actual CT value

ISP_equil(i) = Thrust_equil(i) / (mdot(i)); % ISP Equilibrium

ISP_frozen(i) = Thrust_frozen(i) / mdot(i); % Frozen ISP

Thrust_ave(i) = (Thrust_frozen(i) + Thrust_equil(i)) / 2; % Average of thrusts

ISP_ave(i) = (ISP_equil(i) + ISP_frozen(i)) / 2; % Average of ISP's

Rlider = Rin;

Rin = Rin_new;

gammastore(i) = gamma;

fprintf('%3.2f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f
',
 time(i), Thrust_frozen(i), Thrust_equil(i), Thrust_ave(i), ISP_frozen(i), ISP_equil(i), ISP_ave(i), OFratio(i), mdot(i), Pnot(i), Gox(i), Regrate, Rolder)

i = i + 1;

Moxy = Moxy + mdotoxy;

0.00 8.5721 8.7145 8.6433 56.3055 57.2405 56.7730
4.5884 0.1522 49.0827 0.0344 0.0097 1.0750
0.50 10.0138 10.0201 10.0170 71.9400 71.9854 71.9627
8.8050 0.1392 52.0391 0.0341 0.0051 1.0799
1.00 9.9398 9.9402 9.9400 70.9726 70.9753 70.9740
8.3049 0.1401 51.9709 0.0340 0.0053 1.0824
1.50 9.9533 9.9538 9.9535 71.1461 71.1498 71.1479
8.3899 0.1399 51.9324 0.0338 0.0053 1.0851
2.00 9.9529 9.9534 9.9532 71.1430 71.1465 71.1448
8.3890 0.1399 51.9317 0.0336 0.0053 1.0877
2.50 9.9552 9.9557 9.9554 71.1694 71.1730 71.1712
8.4005 0.1399 51.9357 0.0335 0.0052 1.0903
3.00 9.9560 9.9565 9.9562 71.1836 71.1872 71.1854
8.4100 0.1399 51.9372 0.0333 0.0052 1.0930
3.50 9.9579 9.9584 9.9581 71.2064 71.2100 71.2082
8.4202 0.1398 51.9408 0.0331 0.0052 1.0956
4.00 9.9595 9.9600 9.9597 71.2261 71.2298 71.2279
8.4296 0.1398 51.9437 0.0330 0.0052 1.0982
4.50 9.9609 9.9614 9.9612 71.2453 71.2490 71.2472
8.4393 0.1398 51.9463 0.0328 0.0052 1.1008
5.00 9.9620 9.9625 9.9622 71.2610 71.2647 71.2628
8.4486 0.1398 51.9480 0.0327 0.0052 1.1034
5.50 9.9634 9.9640 9.9637 71.2803 71.2841 71.2822
8.4584 0.1398 51.9506 0.0325 0.0051 1.1059
6.00 9.9649 9.9654 9.9651 71.2995 71.3032 71.3013
8.4682 0.1398 51.9532 0.0324 0.0051 1.1085
6.50 9.9666 9.9671 9.9668 71.3195 71.3233 71.3214
8.4774 0.1397 51.9563 0.0322 0.0051 1.1111
7.00 9.9675 9.9681 9.9678 71.3350 71.3388 71.3369
8.4869 0.1397 51.9578 0.0321 0.0051 1.1136

end

taverage = sum(Thrust_ave) / length(Thrust_ave);
mdtave = sum(mdot) / length(mdot);
ispavg = sum(ISP_ave) / length(ISP_ave);
ofratavg = sum(OFratio) / length(OFratio);

%pdfrnce = abs(Pnot(i) - P0);

if pdfrnce > 50
 display('did you account for the change in mdotox?')
end

taverage = sum(Thrust_ave) / length(Thrust_ave);
mdtave = sum(mdot) / length(mdot);
ispavg = sum(ISP_ave) / length(ISP_ave);
ofratavg = sum(OFratio) / length(OFratio);

%pdfrnce = abs(Pnot(i) - P0);

if pdfrnce > 50
 display('did you account for the change in mdotox?')
Burntime=time(i-1);
b=1;

Averaged results

eo=11;
b=length(time-1);
for eo=11:length(time)
 thrusty(eo-10)=Thrust_equil(eo);
 ispy(eo-10)=ISP_ave(eo);
 Cstaryy(eo-10)=Cstary(eo);
 Pnoty(eo-10)=Pnot(eo);
 OFy(eo-10)=OFratio(eo);
end

Nozzle Heat Flux calculations
	nozzle_profile=dlmread('xy_jmax.dat'); %from file converter in matlab directory

Nozzle Heat Flux calculations

nozzle_profile=dlmread('xy_jmax.dat'); %from file converter in matlab directory
for i=1:117
 nozzle_profile1(i,1)=nozzle_profile(i,1);
 nozzle_profile1(i,2)=nozzle_profile(i,2);
end

nozzle_profile1(118,1)=(nozzle_profile(118,1)-
 nozzle_profile(117,1))/2+nozzle_profile(118,1);
nozzle_profile1(118,2)=(nozzle_profile(118,2)-
 nozzle_profile(117,2))/2+nozzle_profile(117,2);
for i=118:length(nozzle_profile)
 nozzle_profile1(i+1,1)=nozzle_profile(i,1);
 nozzle_profile1(i+1,2)=nozzle_profile(i,2);
end
rsi=nozzle_profile1(118,2);
T0=mean(T0); %kelvin
Tthr=mean(Tsh);
Pr=mean(Prandtl);
Twh=1459; %rankine
Cstara=mean(Cstary);
gammas=mean(gammastore);
Pnots=mean(Pnoty);
OFratioave=mean(OFratio);
aa=OFratioave;
fuelprcnt=(1/(1+aa))*100;
oxprcnt=100-fuelprcnt;

if Oxidizer==1
 CEAtpinh(OFratioave, Pnots, T0, fuelprcnt, oxprcnt);
else if Oxidizer==2
 CEAtpinch(OFratioave, Pnots, T0, fuelprcnt, oxprcnt);
else if Oxidizer==3

if Oxidizer==1
 CEAtpinh(OFratioave, Pnots, T0, fuelprcnt, oxprcnt);
else if Oxidizer==2
 CEAtpinch(OFratioave, Pnots, T0, fuelprcnt, oxprcnt);
else if Oxidizer==3

if Oxidizer==1
 CEAtpinh(OFratioave, Pnots, T0, fuelprcnt, oxprcnt);
else if Oxidizer==2
 CEAtpinch(OFratioave, Pnots, T0, fuelprcnt, oxprcnt);
else if Oxidizer==3
\[
\text{oxoprcnt} = 0.25 \times \text{oxprcnt}; \\
\text{oxnprcnt} = 0.75 \times \text{oxprcnt}; \\
\text{CEAtpinoh}(\text{OFratioave, Pnots, T0, fuelprcnt, oxoprcnt, oxnprcnt});
\]

else if Oxidizer==4
\[
\text{oxoprcnt} = 0.05 \times \text{oxprcnt}; \\
\text{oxnprcnt} = 0.95 \times \text{oxprcnt}; \\
\text{CEAtpinairoh}(\text{OFratioave, Pnots, T0, fuelprcnt, oxoprcnt, oxnprcnt});
\]

else if Oxidizer==5
\[
\text{CEAtpinairh}(\text{OFratioave, Pnots, T0, fuelprcnt, oxoprcnt});
\]
end
end
end
end

[\mu, \text{CP}, \text{Pr}] = \text{CEAtpout}();
\% \mu \text{ millipoise}
\% \text{cp \text{cal/g-k}}
\text{radc}=0.1;
\text{xthroat}=0.6075;
\text{omega}=0.68; \% 0.6 for diatomic gases raised to 0.68 to account for monotomic gases
[h, q, rloc, xloc, M, Thg] = \text{nozzleheatflux}(\text{rsi, T0, \mu, CP, Pr, Pnots, Cstara, Twh, gammas, omega, radc, nozzle_profile1});
xloc=rloc*12;
xloc=xloc*12;

\text{avgthrust}=\text{mean}(\text{thrusty});
\text{avgisp}=\text{mean}(\text{ispy});
\text{avgcstar}=\text{mean}(\text{Cstaryy});
\text{avgpo}=\text{mean}(\text{Pnoty});
\text{maxof}=\text{max}(\text{OFy});
\text{minof}=\text{min}(\text{OFy});
\text{Averages}=[\text{avgthrust} \ \text{avgisp} \ \text{avgcstar} \ \text{avgpo}]
\text{ofrange}=[\text{maxof} \ \text{minof}]

figure(1)
\text{plot} (\text{time}, \text{Thrust_equil}, 'b')

hold on
title('Thrust')
\text{legend('Traditional', 'AEVI');}
xlabel('time, s');
ylabel('Thrust, lbs');
b=b+2;
j=j+1;

figure(2)
\text{plot} (\text{time}, \text{ISP_ave}, 'b')

hold on
title('ISP')
\text{legend('Traditional', 'AEVI');}
xlabel('time, s');
ylabel('ISP, s');
figure(3)
plot(time,Pnot,'b')
hold on
title('Combustion Pressure');
legend('Traditional','AEVI');
xlabel('time, s');
ylabel('Pressure, psi');
figure(4)
plot(time,OFratio,'b')
hold on
title('O/F ratio');
legend('Traditional','AEVI');
xlabel('time, s');
ylabel('O/F ratio');
figure(5)
plot(time,Cstary,'b');
hold on
title('Cstar')
legend('Traditional','AEVI');
xlabel('time, s');
ylabel('Cstar, ft/s');

AthroatB=Athroat1(1)
figure(6)
%plot (time,reg(:,1),'b');
%hold on
plot (time,reg(:,2), 'b+');
hold on
%plot(time,reggin,'r');
%hold on
xlabel('time, s')
ylabel('regression rate, in/s')

figure(7)
plot(xloc, h, 'r')
xlabel('axial location, in throat @x=xthroat')
ylabel('h, but/in2-s-R')
hold on
plot(xthroat, h, 'bla');
hold on
figure(8)
plot(xloc,q,'r')
hold on
ylabel('q, but/in2-s')
xlabel('axial location, in throat @x=xthroat')
plot(xthroat, q, 'bla')
hold on
figure(9)
plot(xloc,M)
ylabel('Mach')
hold on
plot(xloc,rloc)
toc

Averages =

1.0e+003 *

Column 1
0.009965398394511
Column 2
0.071300935367459
Column 3
4.0411800000000001
Column 4
0.051953185446713

ofrange =

Column 1
8.486942336716755
Column 2
8.448627249161108

Warning: Ignoring extra legend entries.

AthroatB =

0.303857983047858

Elapsed time is 19.847197 seconds.
Heat Flux function used in performance code

```matlab
function [h, q, rloc, xloc, M, Thg]=nozzleheatflux(rsi, T0, mu, CP, Pr, Pnot, Cstary, Twh, gamma, omega, radc, nozzle_profile)

rloc=nozzle_profile(:,2);
xloc=nozzle_profile(:,1);
rloc=rloc/12;
xloc=xloc/12;
rsi=rsi/12;
rc=radc/12;
T0=T0*1.8; % K to R
mu=mu*6.72*10^-5; % millipoise to lbm/ft-s
CP=CP*0.2388*4.184; % kcal/kg-k to btu/lbm-R
Pnot=Pnot*144; % psi to lbf/ft2
%
% constants for testing
% clear all
% clc
% nozzle_profile=dlmread('xy_jmax.dat');
% rloc=nozzle_profile(:,2);
% xloc=nozzle_profile(:,1);
% rloc=rloc/12;
% xloc=xloc/12;
```
% rsi=0.3/12;
% T0=3300;
% mu=0.986*6.72*10^-5;
% CP=0.9511*0.240;
% Pnot=300*144;
% Cstary=5000;
% Twh=1459;
% gamma=1.1;
% omega=0.68;
% Pr=0.7;
% xthroat=0.7/12;
% rc=0.1/12; \%rc=0.5-1.5 rsi

\%
dstar=2*(rsi);
astar=pi()*(rsi)^2;
n=length(rloc);
i=1;
%defining initial guess for subsonic and supersonic solutions
for i=1:n;
 area(i)=pi()*(rloc(i))^2;
 alpha(i)=area(i)/astar;
end
for i=1:117
 Mo(i)=.2;
end
for i=118:n
 Mo(i)=2;
end

% newton's method
b=(gamma+1)/(2*gamma-2);
c=2/(gamma+1);
ft=1;
for ft=1:n
 \% if ft==118
 \% M(ft)=1
 \% e=0.0001;
 \% else
 \% e=1;
 \% end
 e=1;
 Mit=Mo(ft);
 while e>0.09
 fm=alpha(ft)*Mit-c^((b-1)*Mit^2)/(2*b*c))^(b-1);
 dfm=alpha(ft)-c^((b-1)*Mit^2)/(2*b*c))^(b-1);
 Mnit=Mit-fm/dfm;
 e=abs(Mnit-Mit);
 Mit=Mnit;
 end
 ft=ft+1;
end
\[T_{og} = T_0; \]

% finding heat transfer coefficient and heat flux
for toy = 1:n;
\[h(toy) = 0.026 \ast \left(\frac{1}{144} \right) \ast \left(\frac{\mu^{0.2}}{Pr^{0.6}} \right) \ast \left(\frac{\Pi not \ast 32.2}{C_{stary}} \right)^{0.8} \ast \left(\frac{d_{star}}{rc} \right)^{0.1} \ast \left(\frac{a_{star}}{area(toy)} \right) \ast \left[\frac{1}{(0.5 \ast (T_{wh} / T_{og}) \ast (1 + (M(toy)^2) \ast (\gamma - 1) / 2) + 0.5)^{0.8 - 0.2 \ast \omega}) \ast (1 + M(toy)^2 \ast (\gamma - 1) / 2)^{0.2 \ast \omega}) \right]; \]
\[T_{hg(toy)} = T_{og} / (1 + 0.5 \ast (\gamma - 1) \ast (M(toy)^2)); \]
\[q(toy) = h(toy) \ast (T_{hg(toy)} - T_{wh}); \]
end

% figure(1)
% plot(xloc, q)
% ylabel('q, btu/in2-s')
% hold on
% figure(2)
% plot(xloc, h);
% ylabel('h, btu/in2-s-R')
% hold on
% figure(3)
% plot(xloc, rloc);
% ylabel('radius, ft')
% hold on
% figure(4)
% plot(xloc, M);

MATLAB DAQ Code

%% DAQ setup for the cooled rocket inputs: force, pressure, temperature, gas
%% flow and water flow
%% Channel Settings
% 0 - Pressure
% 1 - Ox Flow
% 2 - Froce Transducer

clear all
clc

% recognize the board
% to find out the ID type: dagwinfo('mcc')

Minilab=analoginput('mcc','0');

%TCb=analoginput('mcc','1');
%
% add channels
addchannel(Minilab,0:3);
addchannel(TCb,0:6);

% getdata - extract analog input data, time, and event information from data
% aquisition engine
% peekdata preview most recent acquired analog input data

% set the sampling rate to 20 hz and aquir 6000 samples, (5min)
set(Minilab,'SampleRate',100); %100 - 2000 for minilab
set(Minilab,'SamplesPerTrigger',18000);

% acquire data
tic
start(Minilab);
%start(TCb);
wait(Minilab,180)% 300 seconds maximum wait time
toc
%wait(TCb);
data=getdata(Minilab);
%datal=getdata(TCb);
dlmwrite('2_18_14_Test4.txt',data,' ')
plot(data);
delete(Minilab);
clear Minilab; % gets rid of Minilab acquired data

%% treating the counter as a pulse and create a plot of rising times to
% % create a totalizer
% % Counting pulses
% % Set the threshold to 3.5 V.
% threshold = 3.5;
% % Create the offset data. Need to append a NaN to the final sample since
% % both vectors need to have the same length.
% offsetData = [data(2:end); NaN];
% % Find the rising edge.
% risingEdge = find(data < threshold & offsetData > threshold);
% % Show the rising edges with red x's.
% hold on
% plot(time(risingEdge), threshold, 'rx');
% % Show the falling edges with green o's.
% plot(time(fallingEdge), threshold, 'go');
% hold off
% % Construct a vector to hold all of the times.
% pulseIndices = zeros(length(risingEdge), 1);
% % Store the rising edge times.
% pulseIndices(1:2:end) = risingEdge;
Minimum wall thickness Calculation for Inconel 625

Table 14 Values used for minimum wall thickness calculation

<table>
<thead>
<tr>
<th>Max shear stress @ 1200 F, ksi</th>
<th>Factor of Safety</th>
<th>Pressure, psi</th>
<th>Channel Width, in</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>2</td>
<td>600</td>
<td>0.03</td>
</tr>
</tbody>
</table>

\[82000 \times w_t = 600 \times 0.03 \times 2\]

\[w_t = 4.39 \times 10^{-4} \text{ inches}\]

Sample Calculation of water flow velocity through the nozzle channels.

Table 15 Values for Sample calculation of Water Flow velocity through the nozzle

<table>
<thead>
<tr>
<th>Density, lbm/ft(^3)</th>
<th>Area per channel, ft(^2)</th>
<th>Number of channels</th>
<th>Target flow rate, lbm/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.3</td>
<td>2.11x10(^{-3})</td>
<td>48</td>
<td>2.5</td>
</tr>
</tbody>
</table>

\[\dot{m} = \rho VA \rightarrow V = \frac{\dot{m}}{\rho A}\]

\[V = \frac{2.5}{62.3 \times 2.11 \times 10^{-5}} = 39.62 \text{ ft/s}\]
VITA

John Nicholas Quigley was born in July of 1988 and raised between Memphis, TN and Lexington, KY before he came to Knoxville, TN to study Aerospace Engineering at the University of Tennessee. He has enjoyed many successes and learned from various failures. He has been very fortunate to have the opportunity to carry out the work presented in this thesis with the assistance and under the tutelage of many very intelligent and helpful people.