Decidability in Algebraic Geometry

John James Iskra

University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Part of the Mathematics Commons

Recommended Citation

To the Graduate Council:

I am submitting herewith a dissertation written by John James Iskra entitled "Decidability in Algebraic Geometry." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Mathematics.

David Anderson, Major Professor

We have read this dissertation and recommend its acceptance:

Gary McCracken, Yasuyuki Kachi, S.B. Mulay

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)
To the Graduate Council:
I am submitting herewith a dissertation written by John James Iskra entitled Decidability in Algebraic Geometry. I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Mathematics.

David Anderson
David Anderson, Major Professor

We have read this dissertation and recommend its acceptance:

Gary McCracken

Yasuuki Kachi

S.B. Mulay

Accepted for the Council:

Anne Mayhew
Vice Chancellor
and Dean of Graduate Studies.

(Original signatures are on file with official student records.)
Decidability In Algebraic Geometry

A Dissertation
Presented for the
Doctor of Philosophy Degree
The University of Tennessee, Knoxville

John James Iskra
August 2004
Acknowledgments

Any work which involved so much time and anxiety owes its existence to many many people. I think of the many mathematics teachers I’ve had: My parents first, of course, but each of my teachers has contributed in some way to whatever knowledge I was able to bring to bear while working on my dissertation problem. I only wish now that I had paid better attention. Many of the faculty at the University of Tennessee showed great patience with my ignorance. In particular, the members of my committee Professors David Anderson and Yasayuki Kachi. Both often dropped whatever they were doing - without complaint - to consider whatever crazy question I might ask them. My advisor S. Mulay provided crucial and substantial help related to the fourth chapter of this dissertation. My fellow graduate students were a source of comfort, and served as sources of both mathematical inspiration and technical assistance. For the latter I especially benefitted from Mike Saum and Jason Howard. I hesitate to say I learned any mathematics as a consequence. John von Neumann once admitted only gradually getting comfortable with the subject, never learning it. The most profound debt of gratitude is that which I owe to my family for their preternatural patience and fortitude. My wife Betty Jo and my sons Nathaniel and Theo were vital, not only to my efforts to complete
this document, but - most importantly - to maintaining my tenuous hold on sanity while I did so. Without them neither would have been possible.
Abstract

The central theme of our investigation is the concept of Decidability in Algebra / Algebraic Geometry. To the best of our knowledge this seems to be novel in the sense that there is no work known to isolate or to focus on the concept of Decidability in the context of Commutative Algebra. Decidability is more restrictive than Grothendieck’s concept of \textit{formally unramified}, but weaker than the concept of \textit{étale}. In this article we study these relationships by characterizing Decidability for ring-extensions of essentially finite type. In the absence of essential finiteness we can only show, at present, that a separable algebraic extension of fields is indeed Decidable.
Contents

1 Decidability .. 1
 1 Preliminaries 1
 2 Pushforwards 4
 3 Flatness 19
 4 Decidability 21

Bibliography .. 32

Vita .. 34
Chapter 1

Decidability

1 Preliminaries

We begin by defining the field of discourse:

Definition 1.1. We define Crng to be the category whose objects are commutative rings with identity and ring homomorphisms which preserve it. We include in this category the ring with one element: $0 = 1$ and call it the zero ring. We further set $\text{Calg}(A)$, (where A is a commutative ring) and $\text{Calg}(k)$ to be the subcategories of A—, and k— algebras respectively.

Remark: In Crng, $\text{Calg}(k)$ and $\text{Calg}(A)$, (where A is a commutative ring) it is well known that push forwards exist. They are just the tensor product over the integers \mathbb{Z}, the field k, and the ring A respectively.
(See [3]Chapter IV section 7)

Definition 1.2. Let

\[
\begin{array}{ccc}
B \otimes_A C & \longrightarrow & C \\
\uparrow \quad \quad & & \quad \uparrow g \\
B & \longleftarrow & A
\end{array}
\]

be the pushforward diagram. We will refer to \(\bar{g} \) as the pushforward of \(g \) by \(f \)

Definition 1.3. Let \(f : A \to B \) be a ring homomorphism. Let

\[
\begin{array}{ccc}
B \otimes_A B & \longrightarrow & B \\
\uparrow j & & \quad \uparrow f \\
B & \longleftarrow & A
\end{array}
\]

be the pushforward diagram. Then, by the definition of pushforward there exists a unique map \(\mu_f \) so that

\[
\begin{array}{ccc}
B & \xrightarrow{\mu_f} & B \\
\downarrow 1_B & & \quad \downarrow 1_B \\
B \otimes_A B & \longleftarrow & B
\end{array}
\]

\[
\begin{array}{ccc}
B & \longleftarrow & B \\
\downarrow j & & \quad \downarrow j \\
B & \longleftarrow & A
\end{array}
\]

\[
\begin{array}{ccc}
B & \longleftarrow & B \\
\downarrow f & & \quad \downarrow f \\
B & \longleftarrow & A
\end{array}
\]

commutes. We will refer to \(\mu_f \) as the codiagonal or multiplication map associated with \(f \), since it is well-known that \(\mu : b \otimes b' \mapsto bb' \). We may leave \(\mu \) undecorated by \(f \) if the context ensures that no confusion will
result.

Definition 1.4. In this paper we will distinguish between *epimorphisms* and surjective maps, although the latter is an example of the former. We define a ring epimorphism f to be any map which is “right cancelable”. That is, f is an epimorphism if whenever $gf = hf$ it must be that $g = h$.

Example: The canonical map carrying a domain into its quotient field is an epimorphism, though generally not surjective.

Lemma 1.1. Suppose $f : A \to B$ is a ring epimorphism. Then μf is an isomorphism.

Proof. Consider the pushforward diagram

\[
\begin{array}{ccc}
B & \xrightarrow{\mu} & B \\
\downarrow{1_B} & & \downarrow{1_B} \\
B \otimes_A B & \xrightarrow{i} & B \\
\downarrow{j} & & \downarrow{f} \\
B & \xleftarrow{f} & A
\end{array}
\]

Recall that the pushforward of an epimorphism is again an epimorphism. But since $\mu i = 1_B$ we have that $i \mu i = i = 1_{B \otimes_A B} i$. The fact that i is an epimorphism ensures that $i \mu = 1_{B \otimes_A B}$. That is that μ is an isomorphism with $\mu^{-1} = i$.

\[\square\]
2 Pushforwards

Lemma 2.1. Suppose $f : C \to B$ and $g : D \to C$ are ring homomorphisms. Then, there exists a map ϕ so that

$$
\begin{array}{c}
\xymatrix{
B & B \otimes_C B \\
& B \\
B & B \otimes_D B \\
& \phi \\
& \mu_f \\
& \lambda_B
}
\end{array}
$$

is a pushforward diagram.

Proof. Let

$$
\begin{array}{c}
\xymatrix{
B \otimes_C B & B \\
& f \\
B & C
}
\end{array}
$$

and

$$
\begin{array}{c}
\xymatrix{
B \otimes_D B & B \\
& f_g \\
B & D
}
\end{array}
$$

be the pushforward diagrams. Then there exists a unique ϕ so that

$$
\begin{array}{c}
\xymatrix{
B \otimes_C B & B \otimes_D B \\
& f_g \\
B & D
}
\end{array}
$$
commutes. Now, μ_{fg} is the unique map so that $\mu_{fg}r = 1_B = \mu_{fg}s$. But, $\mu_f \phi r = \mu_f p = 1_B = \mu_{fg}q = \mu_f \phi s$, whence,

\[
\begin{array}{c}
\mu_f \quad \phi \\
\downarrow \quad \downarrow \\
\mu_{fg} \\
\end{array}
\]

B \xleftarrow{\mu_f} B \otimes_C B
\]

B \xleftarrow{\mu_{fg}} B \otimes_D B
\]

commutes. Suppose now that

\[
\begin{array}{c}
Z \\
\downarrow \quad \downarrow \\
x \\
\downarrow \quad \downarrow \\
y \\
\downarrow \quad \downarrow \\
B \xleftarrow{\mu_f} B \otimes_C B
\]

B \xleftarrow{\mu_{fg}} B \otimes_D B
\]

commutes. Then, $x \phi = y \mu_{fg}$, thus, $x \phi r = y \mu_{fg}r = y$. Thus, $xp = y$

Similarly $xq = y$. Now, consider the commutative diagram

\[
\begin{array}{c}
Z \\
\downarrow \quad \downarrow \\
xp \\
\downarrow \quad \downarrow \\
xq \\
\downarrow \quad \downarrow \\
B \otimes_C B \xleftarrow{p} B \\
\downarrow \quad \downarrow \\
B \xleftarrow{f} C
\]

We thus have a unique map ψ so that

$$\psi p = xp = y,$$

and

$$\psi q = xq = y.$$
Since substituting either \(x \) or \(y\mu f \) for \(\psi \) makes these equations true, we must have that \(y\mu f = x \). In other words,

\[
\begin{array}{c}
Z \\
\downarrow y \\
B \\
\downarrow 1_B \\
B \leftarrow \mu_f B \otimes_C B \\
\end{array}
\quad \begin{array}{c}
x \\
\mu_f \\
\phi \\
\end{array} \quad \begin{array}{c} B \\
\downarrow \phi_g B \otimes_D B \\
\end{array}
\]

commutes. \(y \) is clearly unique.

\[\square\]

Recall that the coequalizer of two ring homomorphisms \(f, g : A \rightarrow B \) is the ring \(B/J \) and projection \(p : B \rightarrow B/J \), where \(J \) is the ideal generated by \(\{ f(x) - g(x) | x \in A \} \).

Lemma 2.2. Let \(f : A \rightarrow B \) be a ring homomorphism. Then, every \(A \)-algebra coequalizer of a pair of maps with domain \(B \) is the pushforward of \(\mu_f \)

Proof. Consider the commutative diagram

\[
\begin{array}{c}
B \\
\downarrow f \\
A
\end{array} \begin{array}{cc}
g & \longrightarrow \\
\downarrow h \\
C \\
\downarrow p \\
D
\end{array}
\]

where \(p : C \rightarrow D \) is the coequalizer of \(g \) and \(h \). Denote by \(< g, h > \), the unique map so that

\[6\]
commutes. Now, both

\[
\begin{array}{c}
D \\
p<gh>i \\
p<gh>j \\
B \otimes_A B \\ B \\
B < f A
\end{array}
\]

and

\[
\begin{array}{c}
D \\
p<gh>i \\
p<gh>j \\
B \otimes_A B \\ B \\
B < f A
\end{array}
\]

commute.

Thus, so does

\[
\begin{array}{c}
D \xleftarrow{ph} B \\
p \\
B \xleftarrow{\mu_f} \\
C \xleftarrow{<gh> A} B \otimes_A B
\end{array}
\]
Suppose

\[
\begin{array}{c}
R \\
\phi \\
\psi \\
D \\
p \\
\mu_f \\
C \\
<_{g,h}> \otimes_A B
\end{array}
\xleftarrow{\phi} \quad \xrightarrow{pg=p} \quad \xleftarrow{\mu_f}
\]

commutes. Thus, we have \(\psi < g, h > = \phi \mu_f \), which implies \(\psi g = \phi = \psi h \). Since \(D \) is a coequalizer, there exists a unique map \(r : D \to R \) so that \(rp = \psi \). Thus, \(r \) is the unique map so that

\[
\begin{array}{c}
R \\
\phi \\
\psi \\
D \\
p \\
\mu_f \\
C \\
<_{g,h}> \otimes_A B
\end{array}
\xleftarrow{r} \quad \xrightarrow{pg=p} \quad \xleftarrow{\mu_f}
\]

commutes. Thus \(p \) is the pushforward of \(\mu_f \).

\[\square \]

Lemma 2.3. Let \(f : A \to B \) be a ring homomorphism. Let

\[
\begin{array}{ccc}
B \otimes_A B & \xleftarrow{i} & B \\
\downarrow{j} & & \downarrow{f} \\
B & \xleftarrow{f} & A
\end{array}
\]

be the pushforward diagram. Then, \(\mu_f \) is the coequalizer of \(i \) and \(j \).

Proof. By definition, \(\mu_f i = \mu_f j \). Suppose that
is a commutative diagram of ring homomorphisms. Then, so is

and so is

Thus, by uniqueness, \(t = ti\mu = tj\mu \). In other words,

commutes. Since \(\mu \) is surjective \(ti \) is unique. \(\square \)

Lemma 2.4. Suppose
is a commutative diagram with e an epimorphism. Then

commutes, where the red and blue diagrams are pushforwards. By definition we then have a unique ϕ so that

commutes. We then have that

is a pushforward diagram.
Proof. First note that

\[ae\mu_f p = ae1_X = ae \]

\[be\mu_f q = be1_X = be. \]

By the uniqueness of \(\phi \) we have that \(ae\mu_f = \phi \). Now, \(\phi p = ae \) thus \(\mu_g\phi p = \mu_gae \). Thus, by definition of \(\mu_g \), \(\mu_g\phi p = e \), which implies that \(\mu_g\phi p\mu_f = e\mu_f \). We conclude that \(\mu_g ae\mu_f = e\mu_f \) and so \(\mu_g\phi = e\mu_f \).

Thus, the diagram

\[
\begin{array}{c}
T \xrightarrow{e} X \\
\mu_g \downarrow \quad \downarrow \mu_f \\
F \xrightarrow{\phi} P
\end{array}
\]

commutes. Suppose

\[
\begin{array}{c}
Z \xrightarrow{x} T \\
y \downarrow \\
T \xrightarrow{e} X \\
\mu_g \downarrow \quad \downarrow \mu_f \\
F \xrightarrow{\phi} P
\end{array}
\]

commutes. I claim then that

\[
\begin{array}{c}
Z \xrightarrow{ya} T \\
y \downarrow \\
T \xrightarrow{e} X \\
\mu_g \downarrow \quad \downarrow \mu_f \\
F \xrightarrow{\phi} P
\end{array}
\]
also commutes. To see this note that \(x\mu_f = y\phi\) which implies that \(x\mu_fp = y\phi p\) and since \(\mu_fp = 1_X\), \(x = y\phi p = yae\). Again,

\[y\alpha\mu_g\phi = yae\mu_f = x\mu_f = y\phi.\]

Now, \(\phi\) is an epimorphism since \(e\) is. Indeed, if \(w\phi = v\phi\), we have that \(w\phi p = v\phi p\), so \(wa e = vbe\). Since \(e\) is epi, \(wa = vb\). But, since \(F\) is a pushforward there is a unique map \(c\) so that \(ca = cb\). Thus \(w = v\), and so \(\phi\) is an epimorphism. Thus, \(y\alpha\mu_g = y\). If

also commutes it would be the case that \(yae = \psi e\). Since \(e\) is an epimorphism, \(ya = \psi\), thus \(ya\) is the unique such map. Thus, \(T\) is the pushforward of \(\mu_f\) and \(\phi\).

\[\square\]

Lemma 2.5. Let \(f : A \rightarrow B\) and \(g : B \rightarrow C\) be ring homomorphisms. Then there exists a pushforward of \(\mu_f\), call it \(\phi\), so that the diagram

\[
\begin{array}{c}
C \otimes_A C \xrightarrow{\mu_f} C \\
\downarrow \phi \quad \downarrow \mu_g \\
C \otimes_B C \\
\end{array}
\]

commutes.
Proof. Let

\[
\begin{align*}
B & \xrightarrow{1_B} B \\
\mu_f & \xrightarrow{1_B} B \\
\mu_g & \xrightarrow{1_C} C \\
C & \xrightarrow{1_C} C \\
\end{align*}
\]

be the pushforward diagrams. Then, there exists a unique ϕ so that

\[
\begin{align*}
C \otimes_B C & \xrightarrow{\phi} C \\
t & \xrightarrow{1_C} C \\
C & \xrightarrow{1_C} C \\
\end{align*}
\]

commutes. Now, $\mu_g \phi u = \mu_g r = 1_C$, and $\mu_g \phi v = \mu_g s = 1_C$. By uniqueness of μ_g, we must have that $\mu_g \phi = \mu_g f$. In other words,
commutes. We have left to show that ϕ is a pushforward of μ_f. Clearly

$$
C \otimes_A C \xrightarrow{\mu_f} C \\
\downarrow \phi \downarrow \downarrow \mu_g \\
C \otimes_B C \xrightarrow{\mu_g} C
$$

commutes. Suppose now that

$$
C \otimes_B C \xleftarrow{\rho g} B \\
\downarrow \phi \downarrow \mu_f \\
C \xleftarrow{u g \mu_f} B \otimes_A B
$$

commutes. Since μ_f is surjective, and thus epi, and because $\beta \mu_f = \alpha u g \mu_f$, it is also true that $\beta = \alpha u g$. Thus, $\alpha u \mu_g \rho g = \alpha u g = \beta$ and, $\alpha u \mu_g \phi = \alpha u \mu_{g f} = \alpha$. In other words,

$$
T \xleftarrow{\alpha u \mu_g} C \otimes_B C \xleftarrow{\rho g} B \\
\downarrow \phi \downarrow \mu_f \\
C \xleftarrow{u g \mu_f} B \otimes_A B
$$

commutes. To see that $\alpha u \mu_g$ is the unique such map, observe that if $z \phi = \alpha$, then $z \phi u \mu_g = \alpha u \mu_g$. So, $z \mu g = \alpha u \mu_g$. Thus, $z = \alpha u \mu_g$.

14
Lemma 2.6. Let $f : A \to S$ and $h : A \to T$ be ring homomorphisms. Let

![Diagram]

be the pushforward of f and h. Then, μ_g is a pushforward of μ_f.

Proof. Let

![Diagram]

and

![Diagram]

be the pushforward diagrams. Consider the commutative diagram

![Diagram]

where we’ve set $b = s h \mu_f$ for ease of notation. Suppose
commutes. Since $z\mu_f = xb$ implies that $z\mu_f i f = xb i f$, thus, $zf = xrg h$.

Thus, we have the commutative diagram

Thus, there exists a unique ϕ so that

commutes. Suppose P is the pushforward of h by $i f$. Then, x is the unique map so that $xrg = xrg$ and $xb = z\mu_f$. But certainly

$$\phi\mu_g r g = \phi\mu_g r g$$

and

$$\phi\mu_g b = \phi h \mu_f = z\mu_f.$$
Thus, \(x = \phi \mu_g \). In other words,

\[
\begin{array}{c}
Z \\
\phi \\
S \otimes_A T \\
\mu_g \\
P \\
h \\
S \otimes_A S \\
\mu_f \\
S \\
\end{array}
\]

commutes. The fact that \(\mu_g \) is surjective insures that \(\phi \) is unique. We now only have left to show that

\[
\begin{array}{c}
P \xrightarrow{r g} T \\
sh \mu_f \\
S \otimes_A S \xrightarrow{i f} A \\
h \\
\end{array}
\]

is a pushforward diagram. To see this, first note that the above diagram can be factored into two commuting diagrams:

\[
\begin{array}{c}
P \xrightarrow{r} S \otimes_A T \xrightarrow{g} T \\
sh \mu_f \\
S \otimes_A S \xrightarrow{i} S \xrightarrow{f} A \\
h \\
\end{array}
\]

The blue diagram is a pushforward, thus we need only show that

\[
\begin{array}{c}
P \xrightarrow{r} S \otimes_A T \\
sh \mu_f \\
S \otimes_A S \xrightarrow{i} S \\
h \\
\end{array}
\]

is a pushforward diagram. Suppose that
commutes. Then, since

\[q\mu_g \tilde{h}\mu_f = q\tilde{h}\mu_f = n \mu_f = n \]

and \(q\mu_g r = q \), we have that

commutes. To see that \(q\mu_g \) is the unique such map, suppose that \(\alpha r = q \) and that \(\alpha s \tilde{h}\mu_f = n \). Note that \(\alpha \) is the unique map so that \(\alpha r = q \) and \(\alpha s = \alpha s \). But, \(q\mu_g r = q \) and certainly, \(q\mu_g s = q\mu_g s \). Thus, \(\alpha = q\mu_g \) proving that \(P \) is the pullback of \(h \) by \(if \). The proof of the lemma is thus completed.

\[\square \]
3 Flatness

Definition 3.1. A ring homomorphism is pre-flat if the pushforward of a monomorphism by it is a monomorphism.

Definition 3.2. A ring homomorphism is flat if any pushforward of it is pre-flat.

Lemma 3.1. A ring homomorphism \(f : A \to B \) is flat as we have defined it if and only if for any monomorphism of \(A \)-algebras \(C \to D \), the induced map \(B \otimes_A C \to B \otimes_A D \) is also a monomorphism.

Proof. Suppose \(f : A \to B \) is flat as we have defined it, and \(C \to D \) is a monomorphism of \(A \)-algebras. Since both squares of the diagram

\[
\begin{array}{ccc}
B \otimes_A D & \to & B \\
\uparrow & & \uparrow f \\
D & \to & C
\end{array}
\]

are pushforwards, as is the rectangle, the induced map \(B \otimes_A C \to B \otimes_A D \) is also a monomorphism.

On the other hand, if given any monomorphism of \(A \)-algebras \(C \to D \), the induced map \(B \otimes_A C \to B \otimes_A D \) is also a monomorphism, then given any \(A \)-algebra \(A \to C \) and \(A \)-algebra monomorphism \(C \to D \) as in the diagram above, \(\bar{f} \) is pre-flat. Thus \(f \) is flat according to our definition. \qed

19
Lemma 3.2. The pushforward of a flat ring homomorphism is flat.

Proof. Suppose $f : S \to A$ is flat and $b : S \to B$ is any ring homomorphism. Let

$$
\begin{array}{c}
P \xrightarrow{p} A \\
q \downarrow \\
B \xleftarrow{b} S
\end{array}
$$

be the pushforward diagram. Let $b : B \to D$ and $e : D \to E$ be monomorphisms. Consider the sequence of pushforward diagrams

$$
\begin{array}{c}
K \xleftarrow{\tilde{e}} T \xleftarrow{d} P \xrightarrow{p} A \\
\tilde{p} \uparrow \\
E \xleftarrow{e} D \xleftarrow{b} B \xleftarrow{d} S
\end{array}
$$

Now, \tilde{p} is the pushforward of f by bd. By the definition of flat, \tilde{p} must be preflat. Since e is a monomorphism and \tilde{p} is preflat, we have that \tilde{e} is monomorphism. Thus, since the pushforward of q by an arbitrary ring homomorphism is preflat, it follows that q is flat. \hfill \Box

Definition 3.3. A ring homomorphism $f : A \to B$ is said to be faithfully flat if it makes B a faithfully flat A-module.

Lemma 3.3. Suppose that $f : A \to B$ is a faithfully flat ring homomorphism, and that $g : G \to D$ is an A-algebra homomorphism. Suppose that $g \otimes 1_B : G \otimes_A B \to D \otimes_A B$ is a monomorphism. Then, so is g.
Proof. Let K be the kernel of g. Then, we have the exact sequence

$$0 \longrightarrow K \longrightarrow G \overset{g}{\longrightarrow} D$$

Since B is flat we have the exact sequence

$$0 \longrightarrow K \otimes_A B \longrightarrow G \otimes_A B \overset{g \otimes 1_B}{\longrightarrow} D \otimes_A B$$

Since $g \otimes 1_B$ is a monomorphism, however, $K \otimes_A B = 0$. Since B is faithful, $K = 0$, that is, g is a monomorphism. \qed

Lemma 3.4. Suppose that M is a faithfully flat A-module, and that N is an A-module so that $M \otimes_A N$ is flat. Then, N is also a flat A module.

Proof. Suppose $h : D \rightarrow B$ is a monomorphism of A-modules. Then, so is $1_M \otimes 1_N \otimes h$ since $M \otimes_A N$ is flat since M is faithfully flat. The last lemma implies then that $1_N \otimes h$ must also be a monomorphism. Thus, N is flat. \qed

4 Decidability

Definition 4.1. A ring homomorphism $f : A \rightarrow Y$ is decidable if its codiagonal $\mu_f : Y \otimes_A Y \rightarrow Y$ is flat.

Lemma 4.1. a. Suppose we have the commutative diagram
with \(e \) an epimorphism and \(f \) decidable. Then, \(g \) is also decidable.
b. Suppose that \(f \) and \(g \) are decidable ring homomorphisms. Then \(gf \) is decidable.
c. The pushforward of a decidable ring homomorphism is decidable.
d. Any epimorphism is decidable.
e. Suppose \(fg \) is decidable. Then, so is \(f \).
f. A map \(f : A \to B \) is decidable if and only if for every pair of \(A \)-algebra homomorphisms \(g, h : B \to C \), the coequalizer of \(g \) and \(h \) is flat over \(C \).
g. A map \(f : A \to B \) is decidable if and only if for every pair of \(A \)-algebra homomorphisms \(g, h : B \to C \) with \(C \) a quasi-local ring, the coequalizer of \(g \) and \(h \) is either the identity or the zero map.

Proof. a.: By definition \(f \) decidable implies that \(\mu_f \), the diagonal of \(f \), is flat. By 2.4 \(\mu_g \) is a pushforward of \(\mu_f \) since \(e \) is an epimorphism. But 2.1 then implies that \(\mu_g \) is also flat. That is, \(g \) is decidable.
b.: By 2.6, \(\mu_{gf} = \mu_g \phi \) where \(\phi \) is a pushforward of \(\mu_f \). Since \(f \) and \(g \) are decidable, \(\mu_f \) and \(\mu_g \) are flat. By 3.2, \(\phi \) is also flat. Since the composition of flat homomorphisms is flat, \(\mu_{gf} \) is flat. Thus \(gf \) is
decidable.

c.: Let g be a pushforward of a ring homomorphism f. Then by 2.5, μ_g is the pushforward of μ_f By 2.1, μ_g is flat since μ_f is. Thus, by definition, g is decidable.

d.: Suppose $f : A \to S$ is an epimorphism. Then, by 1.1, μ_f is an isomorphism and thus is flat. Thus, f is decidable.
e: By Lemma 2.1,

\[
\begin{array}{c}
B & \xrightarrow{\mu_f} & B \otimes_C B \\
\downarrow{1_B} & & \downarrow{\phi} \\
B & \xrightarrow{\mu_f g} & B \otimes_D B
\end{array}
\]

is a pushforward diagram. Since the pushforward of a flat map is flat, and $\mu_f g$ is flat by supposition, we have that μ_f is flat. That is, f is decidable.
f: Follows from Lemmas 2.3 and 2.4.
g: Suppose $f : A \to B$ is decidable and $g, h : B \to C$ are A-algebra homomorphisms with coequalizer $p : C \to D$. Suppose C is quasi-local and $D \neq 0$. Then p is a local map. Since f is decidable, part f of this lemma implies that p is flat. Thus, p is faithfully flat, and, so, it is one-to-one. Since p is also surjective, p is an isomorphism.

On the other hand if the condition holds for all quasi-local C and $g, h : B \to R$ are a pair of A-algebra homomorphisms with coequa-
izer $p : R \to D$, we have that every localization of p is either 0 or an isomorphism. In particular, then, every localization of p is flat, and thus, so is p itself.

\[\square \]

Lemma 4.2. Consider the pushforward diagram

\[
\begin{array}{c}
B \otimes_A C \xleftarrow{\hat{g}} C \\
\downarrow{\hat{g}} \quad \downarrow{g} \\
B \xleftarrow{f} A
\end{array}
\]

Then, if f is faithfully flat, and \hat{g} is decidable, so too is g.

Proof. Since \hat{g} is decidable, the codiagonal map

\[\mu_{\hat{g}} : B \otimes_A C \to B \otimes_A C \otimes_C B \otimes_A C \]

is as well. But, clearly, $\mu_{\hat{g}} \simeq \mu_g \otimes 1_B$. Indeed, if

\[
\begin{array}{c}
B \otimes_A C \xleftarrow{\hat{g}} B \\
\downarrow{h} \quad \downarrow{f} \\
C \xleftarrow{g} A
\end{array}
\]

is the pushforward, then each rectangle in

\[
\begin{array}{c}
B \otimes_A C \xleftarrow{\mu_{\hat{g}}} P \xleftarrow{j} B \otimes_A C \xleftarrow{\hat{g}} B \\
\downarrow{h} \quad \quad \quad \downarrow{\hat{j}} \quad \downarrow{f} \\
C \xleftarrow{\mu_g} C \otimes_A C \xleftarrow{p} C \xleftarrow{g} A
\end{array}
\]

24
are pushforwards, where \(P = B \otimes_A C \otimes_C B \otimes_A C \) and \(j \) and \(p \) are the pushforwards of \(f \) and \(\tilde{f} \) by themselves respectively. But, by definition, then, \(\mu_{\tilde{g}} = \mu_g \otimes 1_B \). Thus, since \(B \) is faithfully flat, we have that \(\mu_g \) must be flat, and so \(g \) is decidable. \(\square \)

Remark: Since every inclusion of fields is faithfully flat this last lemma implies that if a \(k \)-algebra \(S \) is decidable under base change \(k \to L \) then it is decidable over \(k \).

Theorem 4.1. Let \(I \) be an ideal of a ring \(R \). Then the following are equivalent.

(i) The canonical epimorphism \(h : R \to R/I \) is flat.

(ii) \(aR = aI \) for all \(a \in I \).

(iii) There exists \(G \subseteq R \) such that \(GR = I \) and \(gR = gI \) for all \(g \in G \).

Proof. Assume (i). Let \(J \) be an ideal of \(R \) and let \(\iota : J \to R \) be the natural inclusion. Since \(h \) is flat,

\[
\iota \otimes 1 : J \otimes_R R/I \to R \otimes_R R/I
\]

is injective. Identifying \(J \otimes_R R/I \) with \(J/IJ \) and \(R \otimes_R R/I \) with \(R/I \) we conclude that \(I \cap J = JI \). Thus \(I \cap J = JI \) for every ideal \(J \) of \(R \). In particular consider \(a \in I \) and let \(J = aR \). Then \(aR = I \cap aR = (aR)I = aI \). Evidently (ii) holds.
The implication (ii)\(\Rightarrow\) (iii) is obvious.

Now suppose (ii) holds. Then, for each \(g \in G\) there exists \(b_g \in I\) with \(g = b_gg\). Consider a prime ideal \(P\) of \(R\) and let \(h_P\) be the map \(R_P \to R/I \otimes_R R_P\) induced by \(h\). If \(I\) is not contained in \(P\), then \(R/I \otimes_R R_P = 0\) and hence \(h_P\) is flat. Henceforth assume \(I \subseteq P\). It follows that \(1 - b_g\) is in the multiplicatively closed set \(R \setminus P\) for all \(g \in G\). Thus the canonical homomorphism \(R \to R_P\) maps \(I\) to 0; as a consequence \(h_P\) is an isomorphism onto \((R/I)_P\). Flat-ness being a local property, (i) follows. \(\Box\)

Corollary 4.1. With the above notation, if \(h\) is flat, then \(I = I^2\).

Proof: Clearly, \(aI \subseteq I^2\) for all \(a \in I\). Hence, using (ii), it follows that \(a \in I^2\) for all \(a \in I\) i.e. \(I \subseteq I^2\). \(\Box\)

Corollary 4.2. We continue to use the notation of Theorem 1. Assume \(R\) to be quasilocal and \(I\) is a proper ideal. The map \(h\) is flat if and only if it is the identity map i.e. \(I = 0\).

Proof. From the proof of Theorem4.1 it is clear that flat-ness of \(h\) is equivalent to \(h_P\) being an (onto) isomorphism for all prime ideals \(P\) of
R containing I. In particular letting P be the maximal ideal of R our assertion follows. \hfill \Box

Corollary 4.3. We continue to use the notation of Theorem 4.1. Assume I is a finitely generated ideal of R. Then, the following are equivalent.

(i) The canonical epimorphism $h : R \to R/I$ is flat.

(ii) $I = I^2$.

Moreover, in case (i) holds, I is a principal ideal generated by an idempotent.

Proof. In view of Corollary 4.1, we only need to derive (i) from (ii). Assume (ii) holds. Let $\{z_1, \ldots, z_n\}$ be a set of generators of I. Write

$$z_i := \sum_{j=1}^{n} a_{ij}z_j \text{ for } 1 \leq j \leq n$$

where a_{ij} are elements of I. Then the determinant of $[\delta(i,j) - a_{ij}]$, where δ denotes the Kronecker delta function, is of the form $1 - b$ for some b in I and $(1 - b)z_j = 0$ for $1 \leq j \leq n$. Thus (iii) of Theorem 1 holds. Clearly, $bR = I$ and $b = b^2$. \hfill \Box

Theorem 4.2. Let $f : A \to B$ be a homomorphism of rings. For a prime ideal P of B let $Q := f^{-1}(P)$ and let f_P denote the ring-homomorphism $A_Q \to B_P$ induced by f. Then, f is decidable if and
only if \(f_P \) is decidable for all prime ideals \(P \) of \(B \). In other words, decidability is a local property.

Proof. Set \(R := B \otimes_A B \) and let \(h := \mu_f \) be the codiagonal map associated to \(f \). For a prime ideal \(P \) of \(B \), let \(\pi := h^{-1}(P) \). From the proof of Theorem 4.1, it is clear that flat-ness of \(h \) is equivalent to \(h_{\pi} : R_{\pi} \rightarrow B_P \) being an isomorphism onto \(B_P \) for each such \(P \). Let \(Q := f^{-1}(P) \). Note that there is a multiplicative set \(T \subseteq R \setminus \pi \) such that \(B_P \otimes A_Q B_P \) is (canonically isomorphic to) \(T^{-1}R \). Hence flat-ness of \(\mu_{f_P} \) is equivalent to \(h_{\pi} \) being an isomorphism onto \(B_P \). \(\square \)

Definition 4.2. Let \(f : A \rightarrow B \) be a homomorphism of rings.

1. \(f \) is said to be of **essentially finite type** if there exist finitely many elements \(b_1, \ldots, b_n \) of \(B \) and a multiplicatively closed subset \(T \) of \(f(A)[b_1, \ldots, b_n] \) such that \(B = T^{-1}f(A)[b_1, \ldots, b_n] \).

2. \(f \) is said to be **unramified** at a prime ideal \(P \) of \(B \) if upon letting \(Q := f^{-1}(P) \), the ring \(B_P/f(Q)B_P \) is a field separably algebraic over the field \(A_Q/QA_Q \). \(f \) is said to be **unramified** if it is unramified at every prime ideal \(P \) of \(B \).

Theorem 4.3. Suppose a homomorphism \(f : A \rightarrow B \) of rings is of essentially finite type. Then the following are equivalent.

1. \(f \) is decidable.
(ii) $\Omega_{B/A} = 0$ where $\Omega_{B/A}$ denotes the module of Kähler differentials.

(iii) f is unramified.

Proof. Replacing A by $f(A)$ we may assume, without loss, A to be a subring of B. Set $R := B \otimes_A B$ and let I be the kernel of the coidagonal map μ. Observe that μ is the canonical epimorphism from R to R/I and $\Omega_{B/A} = I/I^2$. Furthermore, by hypothesis B is of essentially finite type over A and hence I is a finitely generated ideal of R. Thus the equivalence of (i) and (ii) follows from Corollary 1.3. Under our hypothesis the equivalence of (ii) and (iii) is well-known; for instance see 17.4.1 of [2].

Corollary 4.4. Let L be a field and let k be a subfield of L such that L is an algebraic field-extension of k. If L is separable over k, then the inclusion map $k \to L$ is decidable.

Proof. If $E \subseteq F$ are subfields of L containing k, then observe that the canonical map $E \otimes_k E \to F \otimes_k F$ is injective and $I_E = I_F \cap (F \otimes_k F)$, where I_E, I_F denote the kernels of the coidagonal maps μ_E, μ_F respectively. It follows that the ring $L \otimes_k L$ is the union (i.e. the colimit) of rings $K \otimes_k K$, and I_L is the union (i.e. the colimit) of ideals I_K, where K varies over all finite extensions of k contained in L. A finite extension field K of k contained in L is necessarily separable over k and
hence from Theorem 4.3 it follows that the inclusion $k \to K$ is indeed decidable. In view of (ii) of Theorem 4.1, our assertion is evident. □

Corollary 4.5. Let F be a function-field over a ground-field k and let L be a finite separable extension of F. Let R be a domain containing k and with quotient-field L. Assume R is of essentially finite type over k and set $S := R \cap F$. Then the inclusion map $S \to R$ is decidable if and only if it is unramified.

Proof. Since $k \subseteq S$, it is clear that R is of essentially finite type over S. Hence the assertion follows from Theorem 4.3. □

Corollary 4.6. Let F, L be as above. Suppose V is a valuation domain with quotient field L and $W := V \cap F$. Assume that the integral closure of W in L is a finite module over W. Then, the inclusion map $W \to V$ is Decidable if and only if it is unramified.

Proof. Again, V being of essentially finite type over W, Theorem 4.3 applies. □

Remarks: The integral closure of W in L is well-known to be a finite module over W in the following cases (see for example Chapter VI of [6]).

1. W (and hence also V) is Noetherian.
2. The residue field of \(W \) (hence also that of \(V \)) is of characteristic 0.

3. \(L \) is a normal extension of \(F \) and \([L : F]\) is not divisible by the characteristic of \(F \).
Bibliography
Bibliography

Vita

John Iskra was born in Michigan on June 28, 1964, the fiftieth anniversary of the assassination of Archduke Ferdinand; The event which started the Great War. In between that and the Great War he fought to finish this thesis, not much of international significance happened to him. He graduated in 1987 from the University of Michigan in Ann Arbor with a B.S. in Mathematics. Two years later he moved to Oregon where he taught secondary school and met his wife, Betty Jo. Ten years and two boys later he finished his PhD. He currently lives in Covington, Georgia where he teaches at Emory University’s Oxford College.