5-2014

Functional Study of the Suppressor of Hairy-wing Insulator Protein in Drosophila melanogaster

Shih-Jui Hsu
University of Tennessee - Knoxville, shsu2@utk.edu

Recommended Citation
https://trace.tennessee.edu/utk_graddiss/2763

This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
To the Graduate Council:

I am submitting herewith a dissertation written by Shih-Jui Hsu entitled "Functional Study of the Suppressor of Hairy-wing Insulator Protein in Drosophila melanogaster." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Biochemistry and Cellular and Molecular Biology.

Mariano Labrador, Major Professor

We have read this dissertation and recommend its acceptance:

Bruce McKee, Albrecht von Arnim, Ranjan Ganguly, David Brian

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)
Functional Study of the Suppressor of Hairy-wing Insulator Protein in *Drosophila melanogaster*

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Shih-Jui Hsu

May 2014
ACKNOWLEDGEMENTS

Without many people’s support over the years, I would not be able to accomplish this work. I would like to thank Dr. Mariano Labrador, my PhD advisor, for giving me the opportunity to join his laboratory and complete my graduate studies. His patience and encouragement helped me through my PhD. His passion and endurance for science taught me to never give up because of negative results. I am also very grateful for the support of my committee members Drs. Bruce McKee, Albrecht von Arnim, Ranjan Ganguly and David Brian who have provided fruitful discussions and critical evaluations of my work.

Also, I would like to express my thanks to my former and present labmates. I especially appreciate Dr. Heather Wallace for being my good friend and coach at work. She is a great resource for professional discussion, and her advice helped me through my PhD. Also, Drs. Hyuck-Joon Kang, Shaofei Zhang and Todd Schoborg served as great teachers and I am grateful for their support. I would also like to thank Dr. Srilalitha Kuruganti, Piedad Plata, Ran An and Saghi Asgarifar for their collaboration and discussion.

I would like to thank my friends Sudershana Nair and Kai Sha in Dr. Jae Park’s lab for scientific discussion and levity.

Last but not least, I would like to express my gratitude to my friends and dear family in Taiwan for their constant support. I owe my grandparents and parents a special debt of
gratitude, and I would not be here and be who I am without them. My grandmother has had an especially important impact on my life, and I owe her my success. Without her support, this work would have been impossible. Finally, I would also like to thank my family in the U.S for sharing my ups and downs during my time here. I would like to express my deepest thanks to my husband Tim Wesley who has been my greatest support during my PhD as he always encourages me to pursue my career.
ABSTRACT

Eukaryotic chromatin insulators play an essential role in regulating gene expression and modifying nuclear architecture by organizing the higher-order chromatin structure in response to cellular and developmental cues. The details on how insulators function in this capacity are not completely understood.

Five different types of insulators have been identified in *Drosophila*. Each functional insulator consists of an insulator DNA response element bound by an insulator protein, which recognizes specific DNA sequences. Each type of insulator functions individually as well as collaboratively. Except for the Su(Hw) insulator protein, the other insulator proteins are necessary for viability considering loss of Su(Hw) only interrupts insulator function and causes female sterility. It has been suggested that Su(Hw) may play a separate role in these two functions. To gain a better understanding of Su(Hw), its functions were studied using female germline development as a model system, and the mechanisms of its regulation were studied using an *in vitro* cell culture system.

This study examined the critical function of Su(Hw) in both gene regulation and genome organization during oogenesis. Chapter one describes a remarkable ring canal developmental defect phenotype first identified and characterized in *su(Hw)* mutants, and this phenotype may contribute to female infertility. Chapter two details a newly discovered role of Su(Hw) in maintaining the genome integrity of germline cells. Loss of Su(Hw) causes accumulation of double strand breaks (DSBs), further triggering DNA
damage signaling. Genome instability causes developmental defects resulting in incomplete oogenesis and consequent female sterility.

To understand insulator function regulatory mechanisms, *Drosophila* Schneider 2 cells (S2 cells), were used as the system for investigation. Chapter three demonstrates that Su(Hw) was identified at a novel sub-cellular location within the midbody during mitotic telophase, and SUMOylation and phosphorylation may play a role in the functional regulation and sub-cellular localization of Su(Hw).

Our work proposes that in spite of regulating gene expression, the Su(Hw) insulator also plays a critical role in maintaining genome stability by directing higher-order organization of the chromatin structure. Moreover, the protein-protein interactions and sub-cellular localization of Su(Hw) may regulate its function, and this functionality control may be fine-tuned by post-translational modifications.
TABLE OF CONTENTS

INTRODUCTION
Chromatin organization and gene expression in eukaryotes ... 1
Eukaryotic insulators and their associated proteins .. 3
Different types of insulators in Drosophila .. 5
The gypsy insulator ... 6
Alteration of nuclear organization through association of different Drosophila sub-classes of insulators ... 7
Post-translational modification of insulator proteins .. 8
Gypsy insulator function in developmental processes .. 9
Drosophila oogenesis .. 10

CHAPTER I. ABNORMAL DEVELOPMENT OF RING CANALS CONTRIBUTES TO FEMALE STERILITY IN SUPPRESSOR OF HAIRY WING MUTANT FEMALES.

ABSTRACT

INTRODUCTION

MATERIALS AND METHODS
Fly stocks and culture conditions ... 24
Egg chamber staining and image processing .. 24
Microarray and data analysis .. 25
Real-time RT-PCR ... 26
Fertility assay .. 27

RESULTS

Oocyte development is defective in su(Hw) 64081/+ mutants ... 28
Continuous spatial and temporal expression of Su(Hw) is critical for normal ovary development ... 29
Interacellular transport between nurse cells and the oocyte is partially blocked in su(Hw) mutant ovaries ... 31
Genes involved in nurse cell-oocyte transport are misexpressed in su(Hw) mutant ovaries 33
Loss of Su(Hw) causes structural defects in ring canals during oogenesis ... 34
The ring canal developmental defect is observed in the su(Hw) mutant .. 35
Misexpression of Src64B in su(Hw) mutant ovaries causes structural defects in ring canals 36

DISCUSSION

Oocyte development depends upon Su(Hw) expression in germline cells .. 39
Actin organization is misregulated in su(Hw) mutants ... 40
Su(Hw) affects the expression of ring canal related genes ... 40
Abnormal ring canal development in su(Hw) mutants results from Src64B down-regulation 43

CHAPTER II. THE CHROMATIN INSULATOR PROTEIN SUPPRESSOR OF HAIRY WING MAINTAINS GENOME INTEGRITY DURING DROSOPHILA FEMALE GERMLINE DEVELOPMENT

ABSTRACT

INTRODUCTION

MATERIALS AND METHODS
Fly genetics .. 64
Immunofluorescence staining of ovaries .. 64
Documentation of embryo phenotype .. 65
Western blot ... 65
CHAPTER III. FUNCTIONAL REGULATION OF SU(HW) IN CELLS. 93

ABSTRACT ... 94
INTRODUCTION .. 95
MATERIALS AND METHODS .. 99
 Site-directed mutagenesis .. 99
 Cell culture and transfection ... 99
 Treatment of dsRNA and cell growth curve measurement 100
 Tandem affinity purification .. 100
 Immunoprecipitation and western blot 101
 Yeast-two hybrid assay ... 102
 Immunofluorescence microscopy 103
RESULTS .. 104
 Insulator proteins locate at the midbody 104
 Su(Hw) may not play an important role in cytokinesis 105
 Co-localization of SUMO with insulator proteins in S2 cells .. 106
 Enhanced association between insulator proteins and Su(Hw) in a SUMO-dependent manner ... 106
 Characterization of the interactions between SUMO and Su(Hw) ... 108
 Loss of SUMO interaction with Su(Hw) may cause an unknown cleavage of Su(Hw) ... 109
 Su(Hw) may be a substrate of Aurora Kinase, which promotes Su(Hw) phosphorylation and subsequent cleavage 110
DISCUSSION ... 112
REFERENCES .. 124
APPENDIX .. 138
VITA .. 155
LIST OF TABLES

Table 1.1. Spatial and temporal expression of Su(HW) is critical for ovary development ..46
Table 3.1. Yeast-two-hybrid assay results .. 121
Table A1. The primer list .. 152
LIST OF FIGURES

Figure 11. Five different types of insulators in *Drosophila*...14
Figure 12. Insulators facilitate the formation of higher-order chromatin rosette-like structures.................15
Figure 1.1. Oocyte developmental defects are observed in su(Hw) mutants...45
Figure 1.2. Orb is mislocated in su(Hw) mutant egg chambers...47
Figure 1.3. Su(Hw) regulates many genes involved in oogenesis...48
Figure 1.4. Ring canal morphological differences are identified in su(Hw) mutants..51
Figure 1.5. Accumulation of structural proteins in the ring canal was detected in su(Hw) mutants......................52
Figure 1.6. Ring canal development is defective in su(Hw) mutants...53
Figure 1.7. FUSOME development in su(Hw) mutants...54
Figure 1.8. Restoration of Src64B rescues ring phenotype in su(Hw) mutants...55
Figure 2.1. An abnormal number of nurse cells in egg chambers of su(Hw) mutants...83
Figure 2.2. The impaired MTOC formation in su(Hw) mutants...84
Figure 2.3. Expression of Su(Hw) in germline cells rescues female fertility but only partially rescues embryo development..85
Figure 2.4. Mislocated Gurken protein in su(Hw) mutant egg chambers..86
Figure 2.5. Oogenesis progresses further in the su(Hw) mutant while ATR is mutated..87
Figure 2.6. The accumulation of non-miotic DNA double strand breaks in su(Hw) mutants.......................88
Figure 2.7. No major expression changes of transposable elements in the su(Hw) mutant...90
Figure 2.8. Dramatically increased H4K20me1 in su(Hw) mutants...91
Figure 2.9. Summary ..92
Figure 3.1. Dynamic subcellular localization of Su(Hw) during mitosis..114
Figure 3.2. Su(Hw) is a midbody protein...115
Figure 3.3. Mod(mdg4)-67.2 and BEAF co-localize with Su(Hw) in the midbody..116
Figure 3.4. Su(Hw) does not have a major effect on cell growth...117
Figure 3.5. Tagged SUMO co-localizes with insulator proteins in S2 cells...118
Figure 3.6. More proteins bound to Su(Hw) when desumoylation is inhibited..119
Figure 3.7. Su(Hw) interacts with SUMO in S2 cells..120
Figure 3.8. Su(Hw) proteolysis may be regulated by SUMOylation and phosphorylation......................................122
Figure 3.9. The working model...123
Figure A1. Insulator activity assay..139
Figure A2. Degenerated egg chambers during mid-oogenesis in su(Hw) mutants..140
Figure A3. Su(GFP)::GFP expression driven by various GAL4 drivers..141
Figure A4. Nurse cell dumping occurs while Su(Hw) is expressed in germline cells..142
Figure A5. The outer diameter of ring canals are different between wild-type and su(Hw) mutants.................143
Figure A6. The microarray heatmaps...144
Figure A7. LOSS OF CHK2 does not rescue oogenesis defects in su(Hw) mutants...147
Figure A8. The fold change of transcript levels of TE in su(Hw)114061 compared to wild-type.........................148
Figure A9. Knock-down efficiency of su(Hw) dsRNA in S2 cells..149
Figure A10. Establishment of tagged Su(Hw) overexpression lines...150
Figure A11. Tandem affinity purification...151
INTRODUCTION

Chromatin organization and gene expression in eukaryotes

In eukaryotes, DNA is packed with histone octamers called nucleosomes, a basic unit of chromatin structure containing two copies of the histone proteins H2A, H2B, H3 and H4 wrapped with approximately 146 base-pairs of supercoiled DNA (Kornberg and Lorch 1999). This primary packing structure physically accommodates of DNA into the nucleus and plays a dynamic role in altering DNA accessibility in response to various cellular events, such as transcription, DNA replication, recombination and repair (Misteli 2007). Nucleosomes combine with chromatin-associated RNA and proteins to form chromatin, a structure regulated by post-translational modification of histones through acetylation, methylation or phosphorylation. These modifications not only alter chromatin structure but also affect interaction between chromatin and its binding proteins such as transcriptional regulators in order to control gene expression. For example, methylated histone H3 lysine 9 recruits heterochromatin protein 1 (HP1) which is involved in heterochromatin formation that can spread along the chromatin fiber and silence expression of nearby genes (Black and Whetstine 2011; Zentner and Henikoff 2013).

Gene expression is highly regulated in eukaryotes. In addition to chromatin structure, gene expression is also controlled by regulatory sequences such as enhancers and silencers. Within eukaryotic genomes, enhancers frequently act over
tens of kilobases of DNA to activate cognate promoters that in turn activate the target gene expression. Considering enhancers can act upon promoters in a manner independent of distance or orientation, a mechanism must exist to prevent inappropriate activation of intervening promoters. Communication between promoters and distal enhancers can be prevented when insulators are positioned inbetween, thereby altering gene expression. Furthermore, insulators function as boundaries protecting genes against heterochromatin-mediated silencing. By blocking enhancer-promoter interactions and serving as boundary barriers, insulators serve their primary role as gene expression regulators. Genome-wide distribution of insulators indicates that insulators may have effects spanning both local and global levels of chromatin organization. Beyond their primary role in regulating gene expression, studies have proposed that insulators may be able to organize chromatin into independent domains in order to ensure proper temporal and spatial gene expression (BRASSET and VAURY 2005; GASZNER and FELSENFELD 2006; WEST et al. 2002).

Accumulated evidence suggests that a remote enhancer may activate distant genes via chromatin loop formation. The chromatin-looping model proposes chromatin is divided into functional domains regulating interactions between promoters and enhancers. Insulators facilitate the chromatin looping at the local level, indicating the entire genome may be divided into functional domain clusters of co-regulated genes sharing similar expression profiles. (LABRADOR and CORCES 2002; WALLACE et al. 2010). By way of rapidly developing genomic technologies, insulators have been characterized as mediators of long range intra- and/or inter-chromatin interactions, organizers of
chromatin loop formation within the nucleus, and modifiers of nuclear architecture -
three roles which further control particular gene expression patterning during
development (GURUDATTA and CORCES 2009; LEE and IYER 2012; PHILLIPS-CREMINS and
CORCES 2013; VAN BORTLE and CORCES 2012a).

Eukaryotic insulators and their associated proteins

With in a variety of organisms, insulators have been identified from yeast to
humans as performing a conserved function requiring insulator DNA elements to recruit
their associated insulator binding proteins. To date, six insulators have been identified,
including suppressor of hairy wing [Su(Hw)], GAGA factor, boundary element-
associated factor (BEAF-32), Zeste-white 5 protein (Zw5), transcription factor IIIC
(TFIIC) and CCCTC-binding factor (CTCF) (GURUDATTA and CORCES 2009; VAN BORTLE
and CORCES 2012a). Amongst all, CTCF is a highly conserved insulator protein within
invertebrates and vertebrates (MOON et al. 2005), with the vertebrate CTCF having been
studied for decades.

The primary mammalian insulator protein CTCF has been reported as a classical
transcription factor and a tumor suppressor. CTCF is an eleven zinc-finger nuclear
protein (KLENOVA et al. 1993) with a wide distribution of approximately 66,800 sites in
the human genome, and it targets diverse DNA sequences using different combinations
of its zinc fingers (WANG et al. 2012). As a tumor suppressor, CTCF is involved in
regulating numerous oncogenes and tumor suppressor genes. Deregulation of CTCF
may cause epigenetic silencing of growth suppressor genes, leading to an epigenetic
imbalance which causes cancer (BANIAHMAD et al. 1990; FILIPPOVA et al. 1996; LOBANENKOV et al. 1990). Moreover, CTCF was initially found interacting with insulator DNA elements and blocking promoter-enhancer communication in both the β-globin locus and the *lgf2*/H19 imprinting control region (ICR) (BELL and FELSENFELD 2000; BELL et al. 1999; FILIPPOVA 2008; FILIPPOVA et al. 2001).

The multiple functions of CTCF may be determined by its target DNA sequences, post-translational modifications, and protein-protein interactions (OHLSSON et al. 2010). CTCF associated proteins are important regulators of CTCF function, and their discovery has provided a more detailed picture of CTCF’s insulator function. Genome-wide analysis reveals that CTCF overlaps with cohesin-binding sites in the mammalian genome. Cohesin together with CTCF contributes to stabilization of long-range chromosome interactions and establishes chromatin loops (GAUSE et al. 2008; GONDOR and OHLSSON 2008; PARELHO et al. 2008; RUBIO et al. 2008; WENDT et al. 2008). Also, CTCF recruits its binding partner RNA polymerase II (RNAPII) to certain CTCF/cohesin target sequences in the genome for further regulation of gene expression at those loci (CHERNUKHIN et al. 2007; FAY et al. 2011; LEE and IYER 2012; SHUKLA et al. 2011).

Although CTCF has not been identified in fungi, yeast or plants, other insulator proteins may function in these organisms. Highly conserved tRNA genes associated with TFIIIC (transcription factor III C) were first identified functioning as insulators in yeast (*Saccharomyces cerevisiae*) (DONZE et al. 1999) and were recently characterized in humans as well (RAAB et al. 2012). Genome-wide mapping of the location of TFIIIC
reveals its association with CTCF that suggests these two insulator proteins may have a joint regulatory function in genome organization (CARRIERE et al. 2012; MOOTADERI et al. 2010). Additionally, TFIIIC binding sites in mice are also associated with cohesin, suggesting TFIIIC shares the same accessory protein, cohesin, with CTCF and may function similarly to CTCF in organizing nuclear structure and regulating gene expression in mammalian genomes (VAN BORTLE and CORCES 2012b).

Different types of insulators in Drosophila

Five different types of insulators have been identified in *Drosophila* and defined by their associated insulator proteins (Figure I-1), whereas only two types of insulators have been discovered in mammals so far. The diversity of fly insulator types may offer an opportunity to discern different aspects of insulator function. Although mammalian CTCF has been studied for decades, *Drosophila* CTCF (dCTCF) has only been identified relatively recently (MOHAN et al. 2007). Except for dCTCF, the other four types of insulators have not been discovered within vertebrates. In *Drosophila*, the insulators *scs* and *scs’* were first found close to the junction between the decondensed 87A7 locus and the flanking condensed chromatin. These insulators also contain binding sites for Zw5 and BEAF (GASZNER et al. 1999; KELLUM and SCHEDL 1991; UDVARDY et al. 1985; ZHAO et al. 1995). In addition to *scs* and *scs’*, the Fab-7 element is another type of insulator recruiting the GAGA factor, a DNA binding protein, for insulator activity (OHTSUKI and LEVINE 1998). The *gypsy* insulator is the most well known insulator and is found in the *gypsy* retrotransposon, which recruits Su(Hw) and two accessory proteins, Modifier of mdg4 [Mod(mdg4)-67.2] and Centrosomal Protein 190 (CP190), for
The gypsy insulator

The gypsy insulator represents a well-characterized model for insulator studies. The insertion of the gypsy retrotransposon within gene regulatory regions, such as yellow and cut, causes tissue specific phenotypes. Phenotypes resulting from the insertion of gypsy retrotransposons can be reversed by mutations in su(Hw), indicating functional Su(Hw) is required for the gypsy mutagenic effect in flies (Modolell et al. 1983). Su(Hw), a zinc finger protein, recognizes the twelve repeated copies of a short sequence motif in the 5' untranslated region of the gypsy retrotransposon, and a leucine zipper domain of Su(Hw) mediates its repressive effect on enhancer function. Kim et al., suggested that the amino (N) and carboxyl (C) terminal domains of Su(Hw) are not absolutely required for its insulator function (Harrison et al. 1993; Kim et al. 1996); however, the leucine zipper and adjacent regions of the Su(Hw) protein are important for its enhancer-blocking function (Harrison et al. 1993), which is performed through interaction with the C-terminal acidic domain of Mod(mdg4)-67.2 (Gosh et al. 2001). Mod(mdg4)-67.2 is a BTB (broad complex, tramtrack, bric-a-brac)/POZ (poxvirus and zinc finger) domain protein, which is a large family of proteins in organisms ranging from yeast to humans. The BTB domain is involved in facilitating protein-protein interactions via the formation of BTB dimers, which are required for insulator function (Golovnin et al. 2007). The third component of the gypsy insulator complex, CP190, was identified in a genetic screen for dominant enhancers of the mod(mdg4) mutant phenotype. CP190
co-localizes with both Su(Hw) and Mod(Mdg4) onto polytene chromosomes, and it is essential for formation of insulator bodies. In yeast-two hybrid and immunoprecipitation assays, CP190 interacts with Mod(mdg4) through the N-terminal BTB domain and binds to Su(Hw) (Pai et al. 2004). Hundreds of Su(Hw) binding sites in the genome can be visualized on polytene chromosomes and are thought to correspond to endogenous gypsy insulators. Some of these endogenous gypsy insulators have been shown to have a regulatory function by inhibiting promoter-enhancer interactions, and insulator strength has been shown to depend on the location and number of endogenous Su(Hw) binding sites (Ramos et al. 2006).

Alteration of nuclear organization through association of different Drosophila sub-classes of insulators

CP190 co-localizes in the genome with three different insulators, BEAF32, Su(Hw) and dCTCF, and each of these represents an insulator subclass with differential genome occupancy. These insulator proteins may play different roles in organizing chromatin in order to establish cell-type-specific gene expression profiles via sharing of CP190 (Bushey et al. 2009b; Gerasimova et al. 2007; Pai et al. 2004). Genome wide analyses showed over eighty percent of binding sites of BEAF and dCTCF are located at the 5' end, close to transcription start sites (TSS) of highly expressed genes; however, Su(Hw) is often found associated with genes expressed at low levels or located in relatively gene poor regions in the genome. Differential insulator distribution in the genome is also relevant to specific cellular processes. Gene function analysis indicates that genes containing dCTCF binding sites upstream of TSS are involved in
developmental processes while genes associated with BEAF are related to metabolic pathways. Remarkably, both dCTCF and BEAF display high enrichment binding sites in cell cycle related genes. On the other hand, the distribution of Su(Hw) does not significantly show its relevance to biological functions (BUSHEY et al. 2009a; EMBERLY et al. 2008b; JIANG et al. 2009). Regardless, of all the insulator proteins, Su(Hw) is the only one to show a significant occupancy at the borders of and at particular positions in lamina-associated domains (LADs) of the genome (VAN BEMMEL et al. 2010). Such a distribution may reveal a role of Su(Hw) in fine-tuning the interaction between the genome and the nuclear periphery. By anchoring to the nuclear lamina at the nuclear periphery, different types of insulators may organize chromatin fibers through collaboration with each other as they share accessory proteins, forming a higher-order chromatin rosette-like structure (Figure I-2).

Post-translational modification of insulator proteins

In addition to the collaboration of different insulator proteins in order to specify functionality, post-translational modifications of insulator proteins also play an important role in regulating insulator function. In mammals, transcriptional properties and insulator function of CTCF have each been found to be regulated by different post-translational modifications, including phosphorylation, small ubiquitin-like Modifier conjugation (SUMOylation) and poly-(ADP-ribosyl)ated (PARylation) (DELGADO et al. 1999; MACPHERSON et al. 2009b; YU et al. 2004). These same modifications influence Drosophila insulator function. Remarkably, PARylation is required for insulator function in Drosophila, and PARylation of CP190 plays a central role in mediating interaction
between different genome sites in order to direct the intra- and inter-chromatin loop formations (ONG et al. 2013). Besides, SUMOylation is a known modification that controls *gypsy* insulator protein complex formation but is not necessary for insulator function (GOLOVNIN et al. 2012). A contradictory conclusion suggested SUMOylation negatively regulates insulator function (CAPELSON and CORCES 2006). The two studies used different systems and techniques to test their hypotheses; hence, further studies are required to draw a clear conclusion. On the other hand, dTopors, an E3 ubiquitin ligase, interacts with the *gypsy* insulator complex and plays a role in stabilizing the *gypsy* insulator chromatin domain formation (CAPELSON and CORCES 2005; CAPELSON and CORCES 2006). A growing body of evidence shows that the influence of post-translational modifications during insulator-protein complex formation ultimately affects chromatin organization. These studies shed light on the clockwork nature of the regulation mechanism controlling nuclear chromatin organization as it employs different combinations of insulators as well as various post-translational modifications of insulator proteins in response to different cellular and developmental cues.

Gypsy insulator function in developmental processes

During *Drosophila* development, the *gypsy* insulator plays an important role in regulating gene expression, and null mutations of either *CP190* or *mod(mdg4)* gene are lethal (GERASIMOVA et al. 1995; PAI et al. 2004); however, *su(Hw)* null mutants show a less severe developmental defect: female sterility. The *su(Hw)* mutation was first discovered and identified as a recessive mutation in 1923 by C. B. Bridges. It was named so because of the suppression of the mutant phenotype of a sex-linked gene,
Hairy-wing (BRIDGES and BREHME 1944). The ovarian phenotype of the su(Hw) mutant was first characterized in 1968, and an ovary transplantation experiment showed the ovarian pathology in mutants resulted from the genotype of the ovarian cells (KLUG et al. 1968).

Drosophila oogenesis

The body axes of many animals are defined during embryogenesis; however, in *Drosophila*, axis formation begins during oogenesis, long before egg fertilization. Serial symmetry-breaking events during the mid-stage of oogenesis establish both *Drosophila* anterior-posterior (AP) and dorsal-ventral (DV) axes. The two key steps of symmetry-breaking are oocyte selection and oocyte posterior positioning.

In *Drosophila*, each female contains one pair of ovaries, with each ovary composed of sixteen to twenty functional units named ovarioles, which are independent strings of egg chambers. The ovariole has two sections: the gerarium, a specialized structure where the egg chamber initially forms and harbors stem and somatic cells, and the vitellarium, where the egg chamber matures. Fourteen stages comprise egg chamber development, and these stages are based on morphological changes during oogenesis. Oogenesis starts with the first asymmetric cell division of a germline stem cell located at the far anterior-tip within the gerarium. A daughter stem cell and a cystoblast are generated from this asymmetric division, and the cystoblast continuously divides four times to produce sixteen cystocytes. Eventually, one of these cells adopts the oocyte cell fate, and the remaining fifteen cells become nurse cells containing polyploid chromosomes producing specific cytoplasmic markers such as mRNA and
proteins. These markers are then transported to the oocyte through inter-connected cytoplasmic bridge structures inbetween these sixteen cells called ring canals to support oocyte development (BASTOCK and ST JOHNSTON 2008; HUYNH and ST JOHNSTON 2004).

Step one of symmetry breaking: selection of the oocyte

The initial signal that determines which of the sixteen cells becomes the oocyte relates to the distribution of the fusome, a continuous branching structure which grows within and connects the cells by winding through the ring canals, ultimately making a cluster of the sixteen cells. Each cell division produces another branch of the fusome which connects the new cell to the existing cluster, and this process continues until all sixteen cells are formed. By the end of fourth division, only two of the sixteen cystocytes will contain four ring canals and the largest portions of the fusome. These two cells are called “pro-oocytes,” and only one will become the oocyte though an unknown mechanism (GRIEDER et al. 2000; LIN et al. 1994; LIN and SPRADLING 1995). During oocyte determination, two unique characteristics of the oocyte become evident: specific localization of cytoplasmic markers and meiotic arrest. The first unique characteristic relates to organization of the polarized microtubule (MT) network by the fusome in order to facilitate transport of mRNA and proteins produced by polyploidy nurse cells towards the microtubule organizing center (MTOC) within the oocyte (POKRYWKA and STEPHENSON 1995). The second unique characteristic relates to meiotic arrest during meiosis I as DNA condenses (Bastock and St Johnston 2008; Roth and Lynch 2009).
Step two of symmetry breaking: posterior positioning of the oocyte

Three key mRNAs determine body axes patterning: gurken, bicoid and oskar (BERLETH et al. 1988; KIM-HA et al. 1991; NEUMANSILBERBERG and SCHUPBACH 1993). Between stages six and ten, Grk (a TGF-α homologue) provides signals at two different times that participate in oocyte polarization. The first signal occurs during stage six when Grk induces terminal follicle cells surrounding the oocyte to adopt the posterior fate, after which the posterior follicle cells send an unknown response signal back to the oocyte. This response signal is necessary for the microtubule repolarization that facilitates oocyte nucleus migration to the anterior-lateral corner during stage nine (GONZALEZREYES et al. 1995; ROTH et al. 1995; SCHUPBACH 1987). The second Grk signal triggers the follicle cells closest to the oocyte nucleus to adopt the dorsal fate, and Grk restricts the expression of pipe in the ventral follicle cells in order to control D/V axis formation during stage ten (RIECHMANN and EPHRUSSI 2001; TECHNAU et al. 2012).

On the other hand, localization and translation of bicoid (bcd) and oskar mRNA determine the anterior-posterior polarity of the oocyte. bcd mRNA is MT-dependent and is coupled with the minus-end-directed motor dynein in the nurse cells prior to its transport to the oocyte. The Bicoid protein gradient is required for regulation of zygotic gap genes and formation of anterior structures. Another key player in AP polarity determination is oskar mRNA, which associates with the plus-end directed motor kinesin and is transported along MT to the posterior pole of the oocyte (CHA et al. 2001; CHA et al. 2002; SCHNORRER et al. 2000). Several critical molecules involved in the patterning of the embryo are recruited to the posterior pole by the Oskar protein, such
Figure I1. Five different types of insulators in *Drosophila*.

Each functional insulator unit contains a DNA binding protein that recognizes and binds to the sequence-specific insulator DNA element. The accessory proteins, such as Mod(mdg4) and CP190 are recruited to the insulators and facilitate collaboration between different subclasses of insulators. This figure was modified from the reference (Van Bortle and Corces 2012b).
Figure I2. Insulators facilitate the formation of higher-order chromatin rosette-like structures.

It has been suggested that insulators separate the chromatin fiber into domains. The domains of open chromatin (yellow nucleosomes) are flanked by insulator associating proteins (pink, blue and green ovals), which anchor the whole complex to the nuclear periphery by interacting with the nuclear lamina (red lines). This figure was modified from the reference (LABRADOR and CORCES 2002).
CHAPTER I.

Abnormal Development of Ring Canals
Contributes to Female Sterility in Suppressor
of Hairy wing Mutant Females.

Shih-Jui Hsu, Maria P. Plata, Ben Ernest and Mariano Labrador

This paper will be submitted to Developmental Biology.
1). Shih-Jui Hsu: Conceiving and designing experiments, performing
 experiments, analyzing data, making figures and writing the manuscript.
2). Maria P. Plata: Designed and performed microarray experiment.
3). Ben Ernest: analyzed microarray data.
4). Mariano Labrador: Conceiving and designing experiments, analyzing data,
 and writing the manuscript.
Abstract

Chromatin insulators organize eukaryotic genomes into chromatin domains, orchestrating gene transcription by stabilizing interactions between distant genome sites. Mutations in genes encoding insulator proteins generally are lethal; however, in *Drosophila*, mutations in the gene encoding the Suppressor of Hairy-wing insulator protein [Su(Hw)] have no noticeable phenotype except female sterility, suggesting this protein specifically plays an important role during oogenesis. Whereas previous reports have indicated the role of Su(Hw) in oogenesis is independent of its insulator activity, the function of Su(Hw) in *Drosophila* oogenesis remains unclear. We show here that mutations in *su(Hw)* result in smaller ring canal lumens and smaller outer ring diameters, particularly in stage eight egg chambers, which likely impede molecular and vesicle passage from nurse cells to the oocyte. Fluorescence microscopy reveals mutations in *su(Hw)* lead to excess accumulation of Kelch (Kel) and Filament-actin (F-actin) proteins in the ring canal structures of developing egg chambers. Furthermore, we found down-regulation of the *Src* oncogene at 64B (*Src64B*) is important for ring canal development as microarray analysis and real-time RT-PCR revealed there is a three-fold decrease in *Src64B* expression in *su(Hw)* mutant ovaries. Restoration of *Src64B* expression in *su(Hw)* mutant female germ cells rescued the ring phenotype but did not restore fertility. We conclude that loss of Su(Hw) affects expression of many oogenesis related genes and down-regulates *Src64B*, causing ring canal development defects potentially
contributing to obstruction of molecular flow and eventual failure of egg chamber organization.
Introduction

While DNA provides the blueprint for eukaryotic cell structure and function, chromatin structure is critical for regulating gene expression considering post-translational modifications of histones have positive or negative effects on the binding of transcriptional machinery to target DNA sequences. Target sequences, such as enhancers, may act over tens of kilobases of DNA in conjunction with cognate promoters in order to activate the expression of a target gene (MARSMAN and HORSFIELD 2012; ONG and CORCES 2011), and insulators have the ability to block this communication when placed between enhancers and promoters. In addition, insulators may function as boundaries protecting genes from heterochromatin mediated silencing (BRASSET and VAURY 2005; GASZNER and FELSENFELD 2006; YANG and CORCES 2012). These two properties of insulators suggest they organize chromatin into independent gene expression domains that ensure proper temporal and spatial gene expression during development and cell differentiation (LABRADOR and CORCES 2002; WALLACE and FELSENFELD 2007).

Chromatin insulators have been discovered in a variety of organisms ranging from yeast to humans (GURUDATTA and CORCES 2009; SCHOBORG and LABRADOR 2010). One of the best-characterized insulators is the Drosophila gypsy insulator which is composed of three major proteins: Su(Hw), which directly binds the insulator DNA, Modifier of mdg4 protein [Mod(mdg4)-67.2], and Centrosomal protein 190 (CP190). These three gypsy insulator components
engage via protein-protein interactions, thus allowing chromatin insulator function
(Gerasimova et al. 1995; Ghosh et al. 2001; Pai et al. 2004). Although the two
binding partners of Su(Hw), Mod(mdg4)-67.2 and CP190 proteins, are required
for chromatin insulator activity, only Su(Hw) is essential for oogenesis (Baxley et
al. 2011).

In Drosophila, oogenesis begins at the first asymmetric division of one
germline stem cell located at the far anterior-tip of the gerarium. This
asymmetric cell division gives rise to a daughter stem cell and a cystoblast,
which will later form an egg chamber by generating sixteen cells following four
incomplete mitotic divisions. In each developing egg-chamber, only one cell
adopts the oocyte cell fate while the remaining fifteen cells become nurse cells,
which will produce essential nutrients that provide support for the oocyte and
later embryo development (Riechmann and Ephrussi 2001).

In the gerarium, each mitotic division ends with incomplete cytokinesis
generating cytoplasmic bridge structures called ring canals that eventually
interconnect all germline cells within the egg chamber. Within the gerarium, a
germline-specific organelle called the fusome (encoded by Hu-li tai shao gene,
hts) grows within the cystocytes as a continuous branching structure that winds
through and plugs the ring canals. Each cell division produces another branch of
the fusome, connecting the new cell to the cluster of previously formed cells. This
process continues until all sixteen cells form, but eventually, the plugs break
down when the cystocytes leave the gerarium. The ring canals remain, functioning as channels facilitating transport of cytoplasmic constituents including mRNAs, proteins, macro-molecules, organelles and vesicles that ultimately travel to the developing oocyte (DE CUEVAS and SPRADLING 1998; LIN et al. 1994).

The molecular flow towards the oocyte occurs in two phases: the early slow phase, a process releasing specific and selected molecules from nurse cells to the oocyte, and a later fast phase, a rapid process beginning at stage 10B when nurse cells dump the entirety of their cytoplasmic contents into the oocyte (BATE and MARTINEZ ARIAS 1993a; BUSZCZAK and COOLEY 2000; HAGLUND et al. 2011). A phenotype described as “dumpless” (i.e. defective yolk deposit phenotype) commonly arises from mutations in genes encoding components of protein complexes involved in cytoskeleton organization pathways or ring canal formation, such as the mutations hts, kelch, and Src64B (DODSON et al. 1998; XUE and COOLEY 1993; YUE and SPRADLING 1992).

Su(Hw) is detected in the nucleus of both somatic follicle cells and germline cells in ovaries, and loss of Su(Hw) results in female sterility. Early studies noticed that su(Hw) mutations suppressed yolk deposition and sequentially arrested ovary development at mid-oogenesis, thereby causing sterility (BAXLEY et al. 2011; HARRISON et al. 1993; KLUG et al. 1968; KLUG et al. 1970). The su(Hw) mutant allele su(Hw)f encodes a protein containing a defective Zinc-finger 10 that eliminates insulator activity even though germline
development remains normal (HARRISON et al. 1993). Analyzing the global role of Su(Hw) during oogenic transcription, Baxley et al. (2011) concluded that the effect of Su(Hw) in germline development is independent of its function of demarcating transcriptional domains, suggesting that the functions of Su(Hw) in regulating insulator activity and female germline development are separable (BAXLEY et al. 2011). Additionally, a recent report suggests that Su(Hw) may function as a classic transcriptional regulator during oogenesis and that a major effect of the absence of Su(Hw) during oogenesis is failure to repress RNA-binding protein 9 (Rbp9). In fact, reducing Rbp9 expression by half within ovaries largely rescued su(Hw) mutant oogenesis defects, although fertility was not completely restored given that eggs produced by rescued females contained patterning defects and did not produce viable offspring (SOSHNEV et al. 2013; SOSHNEV et al. 2012).

This study used a cell type and stage specific Gal4-UAS binary system to examine spatial and temporal expression of Su(Hw) and also determine its precise role in different stages of oogenesis and ovary development. We show that germline specific expression of Su(Hw) driven by Gal4 in su(Hw) mutant ovaries is necessary for yolk-deposition and normal oocyte development. At the same time, Gal4 driven expression of Su(Hw) in somatic follicle cells is not sufficient for oogenesis. Interestingly, we found intracellular transport is blocked prior to stage eight in su(Hw) mutants, and this blockage may result from defective ring canal development during oogenesis. Ring canals in su(Hw)
mutant ovaries show abnormal morphology with excess accumulation of F-actin and Kelch, yielding a smaller lumen similar to those of unrelated ring canal mutations preventing molecular passage. Furthermore, microarray data showed eighty-five misregulated genes in su(Hw) mutants participate in oogenesis, and among these genes Src64B is significantly down-regulated. Overexpression of Src64B in su(Hw) mutants rescues the ring canal phenotype but cannot completely restore intracellular transport within egg chambers, suggesting Su(Hw) is required for other components of egg chamber organization necessary for proper transport and development in addition to ring canal formation.
Materials and methods

Fly stocks and culture conditions

All fly stocks were cultured using cornmeal-agar food and yeast in a 25°C incubator. Fly stocks used in this study included su(Hw) mutant lines: w^{1118}; PBac(LALL)su(Hw)^{e04061}/TM6B (BDSC: 18224), y^{2} w^{c6}; su(Hw)^{y}/TM6B and su(Hw)e1, gifts from Victor Corces (Emory University). Expression of Su(Hw)::eGFP [yw; P{suHw::eGFP,w^{+}}] was driven by various Gal4 drivers including w^{*}; P{en^{2.4}-Gal4}^{e22C} (BDSC: 1973); w^{*};P{GAL4-nos.NGT40} (BDSC: 4442); w^{*}; P{nos-Gal4::VP16}, w^{*}; P{matalpha4-GAL-VP16}V37 (BDSC:7063), gifts from Bruce McKee (University of Tennessee) and yw; P{Tj-Gal4}, a gift from Dr. Steven DiNardo (University of Pennsylvania). For the Src64B restoration experiment, we used w^{*}; P{UAS-Src64B.C}2 (BDSC: 8477).

Egg chamber staining and image processing

Three to five-day-old female flies were collected and their ovaries were dissected for ovary whole mount immunostaining following standard protocols (PAGE and HAWLEY 2001). Briefly, tissues were fixed in heptane (Sigma) with 4% paraformaldehyde and washed with PBST. Fixed tissues were incubated with blocking solution. Multiple primary antibodies were used for staining and dilution: 1:100 rabbit anti-GFP antibody (Invitrogen), 1:200 mouse anti-Orb antibody, 1:200 mouse anti-Kel antibody, 1:200 mouse anti-Hts F antibody, 1:200 mouse anti-Hts RC antibody and 1:200 Lamin Dm0 antibody (Developmental studies hybridoma bank). Secondary antibodies: FITC-conjugated anti-rabbit IgG,
TexRed-conjugated anti-rabbit IgG and FITC-conjugated anti-mouse IgG (The Jackson Laboratory) were used with a 1:200 dilution. F-actin staining was performed using TexRed-phallodin (Life Technologies). DNA was stained with 4’, 6-diamidino-2-phenylindole (DAPI, 0.5 μg/ml) and all samples were mounted in Vectashield mounting medium (Vector Laboratories).

Slides were analyzed using a Leica DM6000B wide-field fluorescence microscope equipped with a Hamamatsu ORCA-ER CCD camera and a HC PL FLUOTAR 20x /0.50NA objective. Image acquisition was performed using Simple PCI v6.6 (Hamamatsu Photonics). Images were processed using the AutoQuant’s 3D Deconvolution Algorithm utilizing an adaptive (blind) PSF implemented into Leica Deblur (v2.3.2) software. All wild-type and mutant samples were processed and imaged under identical immunostaining conditions and microscope, camera and software settings. Egg chambers were measured using Image J software and specific stages were determined based on size (SULLIVAN et al. 2000).

Microarray and data analysis

Fifteen three-day-old wild-type (Oregon R) and homologous mutant [su(Hw)£] female flies were collected for ovary dissection. Ovarian mRNA was extracted and used for microarray hybridization through Affymetrix Drosophila 2.0 arrays (Cat. #900532) that were performed by the microarray facility at the University of Tennessee, Knoxville. Three biological repeats of each genotype were analyzed.
Microarray analysis was performed using R version 3.0.2 (R Core Team (2013)). Raw expression data were normalized using the gcrma package (Wu et al. 2004). The mas5 calls function from the affy package (Gautier et al. 2004) was used to identify each expression value as present, absent, or marginal. Genes present in all replicates of at least one treatment group were kept for further analysis, ultimately giving 7324 genes. The limma package (Smyth 2005) was used to compare gene expression between mutants and wild-type flies, and the p-values were adjusted by the FDR method to control the false discovery rate. Affymetrix probe IDs were matched with FlyBase IDs and gene symbols using the Ensembl BioMart tool. Based on gene ontology at FlyBase, 962 probe IDs were matched to oogenesis-related genes. Heatmaps were constructed with hierarchical clustering (heatmap.2 function in R gplots package (Warnes 2013)) to determine the difference of transcriptional profiles between mutants and wild-type ovaries.

Real-time RT-PCR

Three to five-day-old female flies were collected for ovary dissection, and late-stage egg chambers after stage nine were removed. Ovarian total RNA was purified using TRIzol reagent (Invitrogen) and was then reverse-transcribed to cDNA using the SuperScript First-strand cDNA synthesis kit (Invitrogen). For each genotype sample, two independent biological RNA samples were prepared. Real-time PCR was performed using specific primers of targeted genes and iQ SYBR Green Supermix (Biorad) while the reactions were set up on a BioRad iQ5
Multicolor Real-Time PCR Detection System. For each gene amplification, three independent technical repeats were prepared. Each amplification condition was optimized, and primer specificity was determined using the melting curve. The expression level of each gene was normalized to the internal control rp49 (ΔCt value), and the relative abundance of target gene transcripts among each genotype was determined using the relative quantitative method (ΔΔCt value). Primers used in this study were listed in Table A.1 in the appendix.

Fertility assay

Wild-type and rescued virgin female flies were collected and mated with male flies (yw). Rescue female flies carrying either the su(Hw):eGFP or Src64B transgenes were driven by the Gal4 drivers. Eggs were collected for three days using grape juice agar plates containing wet yeast paste (SULLIVAN et al. 2000). The fertility rescue ratio was calculated using the total number of eggs laid by rescued females divided by the total number laid by wild-type females.
Results

Oocyte development is defective in su(Hw)^e04061/v mutants

su(Hw) mutant females are sterile as a result of incomplete oogenesis, and mutant egg chambers ultimately undergo apoptosis following arrested development at mid-oogenesis (BAXLEY et al. 2011; HARRISON et al. 1993; HARRISON et al. 1992; KLUG et al. 1968; KLUG et al. 1970). In order to further characterize the role of Su(Hw) in oogenesis, we used the su(Hw)^e04061 mutant, created by an insertion of a piggy-bac transposon at the 5’ end of the second exon, as well as the su(Hw)^v mutant, which carries a deletion of the su(Hw) promoter (HARRISON et al. 1992). Both homozygous su(Hw)^e04061/e04061 and trans-heterozygous su(Hw)^e04061/v mutant flies show a loss of insulator activity as well as female fertility (Figure A1, in Appendix) (BAXLEY et al. 2011; SCHOBORG et al. 2013). The oogenesis phenotype of both mutant genotypes is practically undistinguishable, and to avoid genetic interference from second site mutations, we used a trans-heterozygous su(Hw)^e04061/v mutant for phenotype characterization.

We began by analyzing the structures of egg chambers throughout oogenesis using TexRed-phalloidin staining as a filamentous actin probe and verified that su(Hw) mutant oocytes cease growing after stage eight of oogenesis (Figure 1.1). At stage nine, the volume of wild-type oocytes reaches more than one-third of the overall egg chamber size; however, the mutant oocyte does not expand dramatically from stage eight to nine as it does in wild-type (Figure 1.1 D-
E and I-J). Some mutant egg chambers continued growing beyond stage nine, yet the size of these oocytes never expanded and instead showed a shrunken nuclear lamina in the oocyte and nurse cells, an early indication that these cells were undergoing apoptosis (PRITCHETT et al. 2009), which consequently leads to degeneration of the entire egg chamber (Figure A2). Since oocyte development depends on yolk deposition and transport of essential factors from nurse cells to the oocyte through the ring canals, our result suggests this process is impaired in su(Hw) mutant ovaries, yielding defective oocyte development.

Continuous spatial and temporal expression of Su(Hw) is critical for normal ovary development

Loss of su(Hw) results in oocyte developmental defects that may be derived from failed communication between nurse cells and developing oocytes. Su(Hw) is detected in somatic follicle cells and post-mitotic nurse cells in egg chambers (BAXLEY et al. 2011), and introducing exogenous su(Hw) expression in both types of cells rescues the su(Hw) mutant phenotype (HARRISON et al. 1993). To determine which cell type and stage of Su(Hw) expression is necessary for oogenesis, we took advantage of the Gal4-UAS binary system to express a su(Hw)::eGFP transgene in su(Hw)⁰⁴⁰⁶¹/v mutant flies (SCHOBORG et al. 2013). We used traffic jam (tj-Gal4) to drive gene expression in all somatic follicle cells throughout oogenesis and en2.4-Gal4 to drive expression of Su(Hw)::eGFP in follicle stem cells specifically (LEATHERMAN and DINARDO 2010; SOKOL and COOLEY 2003). We used three different Gal4 drivers to control Su(Hw)::eGFP
expression in germline cells at different stages of oogenesis: *metα*-Gal4 which expresses Gal4 under the *alphaTub67C* promoter starting at stage four of oogenesis, and *nanos*-Gal4 as well as *nos*-Gal4 which both express Gal4 throughout oogenesis, though *nanos*-gal4 gives specific expression peaks during the germarium stage and later in stage nine egg chambers (RORTH 1998; VAN DOREN et al. 1998). Expression of Su(Hw)::eGFP with each driver was confirmed by immunofluorescence staining using anti-GFP specific antibodies (Figure 3A).

Rescued virgin females with Su(Hw)::eGFP expression driven under different Gal drivers were collected and crossed with male flies (*yw*). We quantified the number of eggs laid by each rescued line within three days to determine the fertility rescue rate. Mutant flies expressing Su(Hw)::eGFP driven by *tj*-Gal4 and *en2.4*-Gal4 in follicle cells were infertile and manifested the same incomplete oogenesis as mutant flies not overexpressing Su(Hw)::eGFP (Table 1). On the other hand, introducing Su(Hw)::eGFP expression in germline cells restored mutant fertility to different degrees depending upon the specific driver. All three overexpression lines showed less than a 50% fertility rescue rate (Table 1), and only mutant females with *nanos*-Gal4 driven Su(Hw)::eGFP expression were able to lay a small number of wild-type eggs (41.4%) that hatched successfully. Furthermore, mutant flies rescued by Su(Hw)::eGFP expression driven by *metα*-Gal4 and *nos*-Gal4 laid significantly less eggs, indicating that fewer egg chambers were able to complete oogenesis, likely a result of an inappropriate amount of Su(Hw) expression. In addition, all embryos produced by
metα-Gal4 and *nos*-Gal4 females displayed axis defects (Hsu et al. unpublished data), revealing the possibility Su(Hw) affects axis determination. In summary, the expression of Su(Hw) only in follicle cells is not sufficient for completing oogenesis, and reveals that the Su(Hw) expression in germline cells is necessary. These results suggest that normal oocyte differentiation requires precise temporal and spatial expression of Su(Hw).

Intercellular transport between nurse cells and the oocyte is partially blocked in su(Hw) mutant ovaries

The transport of cytoplasm from nurse cells to the oocyte is divided into two phases: the slow phase, which is longer and takes place from early stages to stage ten of oogenesis, and the fast dumping phase, which takes place from stage 10B to 11 while the oocyte doubles in volume. After observing a marked lack of volume expansion in mutant oocytes from stage eight to nine, we speculate that loss of Su(Hw) may affect nurse cell dumping. An indicator of nurse cell preparation for the fast dumping phase is the formation of actin filament cables, called actin bundles, that are derived from the cortex extending toward the nucleus at stage ten (GUILD et al. 1997; GUTZEIT 1986). Since *su(Hw)* mutant egg chambers never reach stage 10B, no fast dumping occurs in mutants. To understand whether Su(Hw) is required for fast dumping to take place, we used TexRed-phallodin staining to detect actin bundle formation in egg chambers. We found that the oocyte enlargement at stage 10B as well as the actin bundles appeared normal in egg chambers with overexpression of Su(Hw).
using the nos-Gal4 driver (Figure A4). These data suggest the failed fast
dumping process is at least partially a consequence of a lack of Su(Hw)
expression in female mutant germline cells.

In addition to nutrients released during the fast dumping phase, the slow
phase also releases maternal morphogens, which will be later required for proper
determination of the embryo dorsal-ventral patterning during development (BATE
and MARTINEZ ARIAS 1993a). To determine whether these slow phase molecules
can also travel from nurse cells to the oocyte in the earlier stages of oogenesis in
su(Hw) mutant ovaries, we used the oo18 RNA binding protein Orb (POKRYWKA
and STEPHENSON 1995) as a marker to evaluate molecular flow efficiency in wild-
type and mutant ovary egg chambers. As expected, Orb translocated from nurse
cells to the oocyte and specifically accumulated posteriorly in the wild-type
oocyte (Figure 1.2-A). In mutant egg chambers, Orb localization appeared
normal in most early stage chambers (Figure 1.2-C), indicating that lack of
Su(Hw) does not cause major problems with oocyte determination or molecular
transport during early stages of oogenesis. In both heterozygous and trans-
heterozygous mutants, we detected an abnormal accumulation of Orb in the
cytoplasm of nurse cells and a striking reduction of Orb in stages seven and eight
of the oocytes (Figure 1.2-B and C). These data suggest that an inefficient
translocation of essential maternal morphogens from the nurse cells to the
oocyte in su(Hw) mutant egg chambers may be the cause of severe
developmental defects.
Genes involved in nurse cell-oocyte transport are misexpressed in su(Hw) mutant ovaries

To understand whether the defective transport phenotype in the su(Hw) mutant results from misregulation of the genes involved in molecular transport, microarray analysis was performed using wild-type (OR) and su(Hw)el homozygous mutant ovarian mRNA. su(Hw)el is a loss of function allele resulting from a point mutation that causes the splice junction alteration (HARRISON et al. 1993).

The microarray data show significant changes in the expression of eighty-five genes (P<0.001) known to have a role in oogenesis (Figure 1.3-A). The relative amount of change for a select group of these genes is shown in Figure 1.3-B. In spite of a forty-three fold decrease of su(Hw) expression in su(Hw)el mutants, a few genes were up-regulated. Among these, rbp9 was increased almost thirty-two fold, a finding consistent with results obtained by Soshnev et al., suggesting Su(Hw) can indeed function as a transcriptional repressor in Drosophila ovaries (SOSHNEV et al. 2013). On the other hand, seventy-five out of eighty-five genes appeared to be down-regulated. In particular, Src64B (down-regulated) and hts (up-regulated) have a role directly related to the structure and function of ring canals.
Loss of Su(Hw) causes structural defects in ring canals during oogenesis

Considering the discovery of misexpression of *hts* and *Src64B*, immunofluorescence experiments were performed to determine whether *su(Hw)* mutant ring canals show defects related to inefficient molecular transport. Comparison of *su(Hw)* mutant and wild-type ring canal sizes using F-actin fluorescence staining revealed a remarkable difference (Figure 1.1). We further confirmed this observation through immunostaining experiments in mutant and wild-type ovaries using antibodies specific to Kelch, a structural component of ring canals that functions in cross-linking F-actin within the ring (KELSO et al. 2002; ROBINSON and COOLEY 1997). Results showed that amounts of cytoplasmic Kelch distributed in the nurse cell cytoplasm of mutant egg chambers were above normal (Figure 1.4-A and B) and that ring canals appeared thicker (Figure 1.4-C and D) and longer (Figure 1.4-E and F) as a consequence of excessive accumulation of F-actin in the ring structure (Figure 1.4-G and H).

Loss of *hts* causes female sterility (DING et al. 1993; YUE and SPRADLING 1992), and the *hts* gene encodes a polyprotein Ovhts in ovaries that undergoes cleavage to produce two different proteins, Ovhts-Fus and Ovhts-RC. Ovhts-Fus localizes at the fusome in mitotic cells within the early gerarium, whereas Ovhts-RC serves as a ring canal structure protein in later oogenesis (PETRELLA et al. 2007). Except for F-actin and Kelch, we used an antibody against Ovhts-RC to determine the detailed structure of ring canals using immunostaining. Interestingly, the mutant rings at stage six were not only thinker but also had
smaller inner diameters due to accumulation of the structural proteins, Kelch and Ovhts-RC (Figure 1.5). These thicker rings created smaller lumens that may have caused obstruction of molecular passage.

The ring canal developmental defect is observed in the \textit{su(Hw)} mutant

To monitor ring growth differences between wild-type and mutant egg chambers during development, we measured ring canal outer diameters from stages four to eight (Figure 1.6-A). Given that ring sizes vary in each egg chamber depending upon ring age such that older rings formed earlier during mitosis within the gerarium appear larger, we used fluorescence microscopy to measure all fifteen rings in each egg chamber, recording data only from images clearly displaying all fifteen rings. The ring size distribution of stages five and eight in mutant and wild-type egg chambers is shown within histograms in Figures 1.6-B and C. The average ring size at stage five was 3.2 \(\mu\text{m}\) in wild-type and 2.9 \(\mu\text{m}\) in mutants, revealing no significant difference (Figure A5). Additionally, ring sizes at stages six and seven did not show a significant difference; however, wild-type rings at stage eight expanded to 5.7 \(\mu\text{m}\) (N=120, standard deviation=0.9), while mutant rings expanded only to 4.8 \(\mu\text{m}\) (N=90, standard deviation=0.8), showing mutant ring canals are significantly smaller (Student’s t-Test, \(p<0.0001\)) (Figure 1.6-B and C). In addition to the significantly delayed outer ring diameter expansion at stage eight in \textit{su(Hw)} mutants, inner ring diameters were abnormally small during earlier stages. These data suggest
that the smaller rings at stage eight may be an accumulative effect of abnormal ring development from earlier stages.

The hts gene misexpression together with the observation of abnormal rings at different stages in su(Hw) mutants (Figure 1.5) leads us to ask whether fusome development during the germarium stage is affected. We used an anti-Hts F monoclonal antibody to perform immunostaining in the wild-type and the mutant germarium. These experiments revealed a seemingly normal fusome in su(Hw) mutants, plugging ring canals during initial mitotic divisions and forming branched structures in the germarium that disappeared at stage one, consistent with observations in wild-type ovaries (Figure 1.7-A). We concluded fluorescence microscopy could not detect significant fusome organization defects in su(Hw) mutant ovaries (Figure 1.7-B). Consequently, these results suggest defects in ring canals do not originate from hts overexpression in the germarium stage, and that hts overexpression does not cause major defects in the formation and structure of the fusome.

Misexpression of Src64B in su(Hw) mutant ovaries causes structural defects in ring canals

While hts was up-regulated, Src64 was down-regulated in the su(Hw) mutant (Figure 1.3). Src64B is a protein tyrosine kinase playing an important role in regulating ring canal growth and morphogenesis during *Drosophila* oogenesis, and su(Hw) mutants and Src64B mutants have the same phenotype of retained

The actin binding protein Kelch functions in cross-linking actin monomers during ring canal formation, consequently stabilizing F-actin by protecting it from depolymerization (ROBINSON et al. 1994). F-actin polymerization and depolymerization are dynamic processes during ring canal development. At stage six for example, the ring canal expands rapidly in preparation for nurse cell dumping during subsequent stages. When the outer ring canal diameter rapidly expands to increase the lumen, F-actin must depolymerize in the inner ring rim to prepare for ring size expansion. kel null mutants show disorganized actin filaments starting at stage four and present a completely disrupted organization at stage six when ring expansion is necessary for nurse cell dumping (ROBINSON and COOLEY 1997; XUE and COOLEY 1993). Src64B kinase activity regulates Kel function through phosphorylation, and both a mutation of tyrosine 627 in kelch and a null mutation of Src64B cause a dramatic reduction in actin monomer turnover resulting in thicker rings with small lumens, a phenotype similar to the ring phenotype described in su(Hw) mutant egg chambers (Figure 1.4 and 1.5) (DODSON et al. 1998; KELSO et al. 2002; ROBINSON and COOLEY 1997; XUE and COOLEY 1993).
These observations suggest not only that abnormal ring canal structure in \textit{su(Hw)} mutants may impact molecular transport within the egg chamber, thereby causing oogenesis failure and sterility, but also that this phenotype is partially due to \textit{Src64B} misexpression. To exclude the possibility that decreased expression of \textit{Src64B} observed in microarray experiments stems from a developmental factor, we performed real-time RT-PCR to compare \textit{Src64B} expression in wild-type and \textit{su(Hw)} mutants by manually removing egg chambers older than stage nine. Results showed \textit{Src64B} expression is suppressed by more than 70\% in \textit{su(Hw)} mutant ovaries compared to wild-type, a result consistent with the microarray data (Figure 1.3-C). As we detected an abnormal accumulation of F-actin in ring canals and found that \textit{Src64B} is under-expressed in \textit{su(Hw)} mutants, we hypothesized the thick ring phenotype resulted from lack of \textit{Src64B} expression. To test this hypothesis, we used \textit{nos-Gal4} to drive \textit{Src64B} expression in \textit{su(Hw)} mutants and then observed ring canal morphology in \textit{Src64B} rescued females. Ovary immunostaining in \textit{Src64B} rescued females showed that Kelch and F-actin accumulation within rings was eliminated, a finding similar to wild-type rings (Figure 1.8). These data suggest abnormal ring canal morphology in \textit{su(Hw)} mutants was caused by \textit{Src64B} misregulation. Nevertheless, fertility of these \textit{Src64B} rescued females was not recovered, indicating other factors may be critical to cause oogenesis failure in addition to \textit{Src64B} misregulation.

Discussion

Loss of \(su(Hw) \) causes female sterility as a result of incomplete oocyte development as well as egg chamber degeneration beginning at mid-oogenesis (Baxley *et al.* 2011; Harrison *et al.* 1993; Klug *et al.* 1968; Klug *et al.* 1970). To further understand causes of mutant sterility, we investigated egg chamber structure and molecular flow while searching for corresponding misregulated genes. Ultimately, we found \(Src64B \) down-regulation causes abnormal ring canal development, thereby disrupting Kelch functionality of actin organization.

Oocyte development depends upon Su(Hw) expression in germline cells

We first found mutant oocyte cytoplasm ceases enlarging at stage nine (Figure 1.1), indicating absence of nurse cell rapid dumping. Also, in earlier stages, Orb remained in the nurse cell cytoplasm, revealing an impact on molecular transport between nurse cells and the oocyte (Figure 1.2). Specific morphogens traveling into the oocyte are important for oocyte maturation and embryo development, and loss or mislocation of these morphogens causes oogenesis failure or abnormal embryo production. Moreover, restoration of \(Su(Hw) \) expression using germline specific Gal4 drivers rescues nurse cell dumping, oocyte development, and female fertility (Table 1 and Figure A4). The fact the fertility rescue rate was increased from 1.6% (\(met\alpha\)-Gal4) to 6.1% (\(nos\)-Gal4) indicates that \(Su(Hw) \) expression in germline cells is necessary in early oogenesis before stage four. In addition, the fertility rescue rate is also
dependent on the appropriate amount of Su(Hw) expression at particular stages. The flies with Su(Hw) expression under nanos-Gal4 showed the highest rescue rate (41.4%) compared to the flies with expression under the stronger nos-Gal4 driver (6.1%). Overall, these data show Su(Hw) expression in germline cells is required for proper oocyte development. Although Su(Hw) expression in germline cells is necessary for female fertility, production of abnormal embryos suggests Su(Hw) expression in somatic follicle cells may be necessary for embryo development.

Actin organization is misregulated in su(Hw) mutants

Ring canal position and orientation corresponds to neighboring nurse cell arrangements within egg chambers, and mutant ring positioning is atypical (Figure 1.1), indicating the fifteen nurse cells are arranged differently within the egg chamber. This unusual organization may contribute to inefficient molecular transport. Excessive F-actin accumulation in rings suggests actin organization is misregulated upon loss of su(Hw) expression; hence, this misregulation may contribute to the difficulty of molecular transport in egg chambers.

Su(Hw) affects the expression of ring canal related genes

In this study, microarray analysis was performed using the mature female ovaries of a loss of function mutant, su(Hw)^e1. In addition, we also compared the transcriptional changes in response to the su(Hw) mutation using array data
generated from young virgin female ovaries including, wild-type, *su(Hw)²/e₀⁴⁰⁶¹*, *su(Hw)²/v* and *su(Hw)¹* (SOSHNEV et al. 2013). Given the developmental differences between our data and Soshnev's, we reasoned that gene sets that have a similar transcriptional response to the *su(Hw)* mutation in both are likely to be highly influenced by this gene. Hierarchical clustering based on oogenesis-related genes and most other gene sets showed that our samples clustered separately from Soshnev's samples, indicating that there were large differences between our samples and theirs due to the different developmental stages. When the samples were clustered based on genes in “eggshell chorion assembly” (GO:0007306), “structural constituent of chorion” (GO:0005213) and “multicellular organism development” (GO:0007275), all of which contain mostly chorion-related genes, the *su(Hw)* mutants from both data sets and the wild types clustered tightly together. This may indicate that these chorion-related genes are tightly regulated by Su(Hw) since they exhibited a similar response in our samples and Soshnev's samples despite the large differences in gene expression due to different developmental stages (Figure A6).

Consistently, *Rbp9* is highly up-regulated in *su(Hw)⁰¹* mutants and in other *su(Hw)* mutants. This gene encodes a RNA-binding protein belonging to the ELVA/Hu gene family that participates in regulating gene expression by influencing mRNA splicing and translation (HILGERS et al. 2012; SOLLER et al. 2010). *Drosophila* Rbp9 interacts with U-rich mRNA and regulates the turnover of its target mRNAs (KIM and BAKER 1993; PARK et al. 1998). In *su(Hw)* mutants,
Rbp9 is de-suppressed, and decreased expression of *Rbp9* partially rescued fertility (Soshnev et al. 2013).

A decreased binding affinity of Su(Hw) at the *Rbp9* promoter region in *su(Hw)/v* was shown in the ChIP-seq analysis; however, suppression of *Rbp9* remained (Soshnev et al. 2013). This data indicates either that the Su(Hw) regulation of *Rbp9* may not be sensitive to Su(Hw) binding affinity or that other critical factors contribute to *Rbp9* regulation. Additionally, overexpression of *Rbp9* driven by nos-Gal4 causes apoptosis of stage ten egg chambers; yet, the enlargement of oocytes at stage ten was still observed (Jeong and Kim-Ha 2003). This indicates oocyte development in *Rbp9* overexpression egg chambers advanced beyond the stages when *su(Hw)* mutant oocytes terminated. This comparison also suggests that other important factors may contribute to failed oocytes development and egg chamber degeneration before stage ten in *su(Hw)* mutants. Altogether, we reasoned that *Rbp9* may not be the only target gene of Su(Hw) that contributes to female sterility upon loss of Su(Hw).

Two ring canal related genes, *hts* and *Src64B*, were found to be misregulated according to our microarray analysis using the *su(Hw)*

41 mutant. We also compared expression patterns of those two genes using publicly available data of other *su(Hw)* mutants, including *su(Hw)*

42 and *su(Hw)*

43 (Soshnev et al. 2013), and both genes showed a similar expression pattern among the different mutants. In addition, qRT-PCR confirmed the microarray results by
revealing a three-fold down-regulation of \(Src64B \) in \(su(Hw)^{we04061} \) mutants (Figure 1.3). These results suggest that the misregulation of ring canal related genes is a general effect in the \(su(Hw) \) mutant. In order to understand how those two genes are regulated by Su(Hw), we analyzed the location of Su(Hw) using ChIP on chip data in ovary tissues at the UCSC genome browser (SOSHNEV et al. 2012). The results showed neither Su(Hw) binding sites in the \(hts \) gene coding region nor the regulatory region; yet, they showed a strong Su(Hw) binding site approximately 4 Kb upstream of the \(Src64B \) gene and two other binding sites at the intron sequences of \(Src64B \). This analysis suggests a possible direct regulatory role of Su(Hw) in \(Src64B \) gene expression through RNA splicing or promoter regulation.

Abnormal ring canal development in \(su(Hw) \) mutants results from \(Src64B \) down-regulation

The abnormally thick ring structure appears throughout oogenesis from stage four to stage eight in \(su(Hw) \) mutant egg chambers (Figures 1.4 and 1.5). To rule out the possibility egg chamber degeneration delays ring expansion, we examined rings in egg chambers older than stage eight, noting the outer diameter of rings continuously increased instead of shrinking.

Misexpression of Src64B may cause ring canal actin disorganization due to dysfunctional Kelch, which normally maintains rapid turnover of the actin cytoskeleton. Restoration of Src64B expression in \(su(Hw) \) mutants recovers ring canal morphology but not female fertility (Figure 1.8). Altogether, we
demonstrated a novel \textit{su(Hw)} mutant ring canal phenotype resulting from significant \textit{Src64B} down-regulation during oogenesis. Although \textit{Src64B} down-regulation is not the only factor leading to infertility, mutation of \textit{su(Hw)} may have a pleiotropic effect in oogenesis. More studies are needed to characterize other critical factors causing oogenesis failure in the \textit{su(Hw)} mutant.
Figure 1.1. Oocyte developmental defects are observed in \textit{su(Hw)} mutants.

F-actin staining on wild-type and \textit{su(Hw)} mutant ovaries appears red and DAPI staining of DNA appears blue. The oocyte was observed at different stages of each genotype and the scale bar is 50 μm in each image. The dashed lines highlight the regions of oocytes at stage eight and nine.
Table 1.1. Spatial and temporal expression of Su(Hw) is critical for ovary development.

<table>
<thead>
<tr>
<th>Gal4 Driver</th>
<th>Cell Types</th>
<th>Stages</th>
<th>Fertility Rescue</th>
</tr>
</thead>
<tbody>
<tr>
<td>nanos-Gal4</td>
<td>Germline Cells</td>
<td>From G throughout oogenesis</td>
<td>41.4 % (235/567)</td>
</tr>
<tr>
<td>nos-Gal4</td>
<td>Germline Cells</td>
<td>From G throughout oogenesis</td>
<td>6.1 % (33/539)</td>
</tr>
<tr>
<td>meta-Gal4</td>
<td>Germline Cells</td>
<td>From stage four throughout oogenesis</td>
<td>1.6 % (2/128)</td>
</tr>
<tr>
<td>en2.4-Gal4</td>
<td>Somatic germline cells</td>
<td>From G to stage one</td>
<td>0 %</td>
</tr>
<tr>
<td>tj-Gal4</td>
<td>Somatic cells</td>
<td>From G throughout oogenesis</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Different Gal4 drivers were used in su(Hw) mutants to control su(Hw)::eGFP expression within specific cell types and ovary developmental stages (G: germarium) as listed in the table. The sterility rescue rate of each line was determined by counting eggs.
Figure 1.2. Orb is mislocated in *su(Hw)* mutant egg chambers.

Wild-type (A), *su(Hw)* heterozygous (B), and trans-heterozygous (C) egg chambers were stained with an Orb antibody in green and DAPI in blue. The scale bar is 50 μm.
Figure 1.3. Su(Hw) regulates many genes involved in oogenesis.

Eighty-five genes related to ovary development having a significant change in expression greater than three-fold were shown in the heatmap with up-regulation shown in red and down-regulation in blue. The color key is shown at the bottom of (A). The table showed the selected genes and their corresponding change in expression (B). Gene expression of $Src64B$ in ovaries was confirmed with qRT-PCR (C).
Figure 1.3. Continued.
Figure 1.4. Ring canal morphological differences are identified in *su(Hw)* mutants.

Ring canals in wild-type and mutant egg chambers were stained with Kelch antibody in green and Phalloidin in red. A and B show Kelch staining throughout the whole egg chamber at stage eight and individual rings in wild-type (C and E) and mutants (D and F). The isosurface images of rings (G and H) were generated using Leica Deblur software. The cartoon ring image showed the accumulation of actin in rings. The scale bars in whole egg chamber images represent 10 μm, and those in individual ring images are 1 μm.
Figure 1.5. Accumulation of structural proteins in the ring canal was detected in su(Hw) mutants.

The cartoon ring image illustrates the ring structure (A). Staining for different structural proteins is shown in (B-E). Both Kelch and Ovhts-RC show accumulation at the inner rim in mutants (C and E) but not wild-type (B and F).
Figure 1.6. Ring canal development is defective in *su(Hw)* mutants.

From stage four to eight, the rings were detected using F-actin staining (A) and the size of rings at each stage were quantified using the measurement tool in image J. The measurements of ring outer diameters in each genotype at stage five and eight are shown in histograms (B and C) (wild-type: white bar, mutant: grey bar).
Figure 1.7. Fusome development in $su(Hw)$ mutants.

Ovary staining was performed using Hts F antibody for fusomes showing in green, F-actin in red and DAPI in blue. Early germarium stage egg chambers in wild-type (A-C) and $su(Hw)$ mutants (D-F) are shown. Region 3 (stage one egg chambers) was labeled with three white asterisks and region 2 was labeled with two. The labeled region images were cropped, and the magnified images of these are shown in B and C for wild-type and E and F for mutants.
Figure 1.8. Restoration of Src64B rescues ring phenotype in *su(Hw)* mutants.

The ring morphology was detected using F-actin staining in wild-type (A), *su(Hw)* mutant (B), and *nosGal4>*Src64B rescued *su(Hw)* mutant egg chambers (C). Also, the individual rings from rescued and wild-type egg chambers stained with F-actin in red and Kel in green were cropped and shown in D to H.
CHAPTER II.

The Chromatin Insulator Protein Suppressor of Hairy Wing Maintains Genome Integrity During Drosophila Female Germline Development

Shih-Jui Hsu, Heather Ann Wallace, and Mariano Labrador

Author contributions:

1). Shih-Jui Hsu: Conceiving and designing experiments, performing experiments, analyzing data, making figures and writing the manuscript.

2). Heather A. Wallace: designed and performed experiments and analyzed data related to detection of transposon activity.

3). Mariano Labrador: Conceiving and designing experiments, analyzing data, making figures and writing the manuscript.
Abstract

Chromatin insulator proteins mediate the formation of stable interactions between distant insulator sites along chromatin fibers. Lack of insulator function is generally lethal, since these long-range contacts orchestrate communications between regulatory sequences and gene promoters throughout the genome, allowing accurate gene transcription regulation during embryo development and cell differentiation. Conversely, the *Drosophila* insulator protein Suppressor of Hairy wing [Su(Hw)] is not required for viability, and has been identified as playing a crucial role in female oogenesis. Insulator proteins act by facilitating protein-protein interactions that stabilize distant chromatin contacts, but the mechanisms by which these contacts enable insulator function remain unclear. To gain insight into the functional properties of chromatin insulators, we further characterized the oogenesis phenotypes of *su(Hw)* mutant females. We found that mutant egg chambers frequently display an irregular number of nurse cells, have poorly formed microtubule organization centers (MTOC) in the gerarium, and have mislocalized Gurken (Grk) in later stages of oogenesis. Furthermore, embryos from partially rescued females exhibited unequivocal dorsal-ventral patterning defects that are identical to defects found in spindle mutants or in piRNA pathway mutants. Analysis using antibodies against phosphorylated H2Av (γH2Av) revealed an excess of DNA double strand breaks (DSBs) which trigger activation of the ATR mediated DNA-damage response. Our data also revealed that these DSBs do not result from faulty suppression of transposable elements, altogether suggesting that Su(Hw) plays a critical role in maintaining genome
integrity during germline development in *Drosophila* females by a mechanism unrelated to transposable elements activity.
Introduction

Higher-order chromatin organization in the nucleus is facilitated by chromatin insulators, which stabilize interactions between distant sites in the chromatin fiber. These long-range contacts help orchestrate interactions between regulatory sequences and gene promoters in order to accommodate the complex genomic networks of gene transcription required to promote cell and tissue differentiation during embryo development (LABRADOR and CORCES 2002; YANG and CORCES 2012).

Although not well understood in plants and only understood to have limited activity in yeasts, insulators conserve function throughout eukaryotes (GURUDATTA and CORCES 2009; VAN BORTLE and CORCES 2012b). Insulator properties have been characterized in two ways: preventing communication between distal enhancers and promoters when positioned in between, and acting as boundaries to protect genes against heterochromatin-mediated silencing (BRASSET and VAURY 2005; GASZNER and FELSENFELD 2006; WEST et al. 2002). These properties are facilitated by insulator proteins, which bind the insulator DNA and mediate protein-protein interactions (PHILLIPS-CREMINS and CORCES 2013; VAN BORTLE and CORCES 2012a).

One of the earliest characterized insulators is found in the *Drosophila gypsy* retrotransposon. *Gypsy* can integrate into the regulatory region of genes, thereby disrupting communication between enhancers and promoters and causing mutations that can be suppressed by a second site mutation in the suppressor of Hairy wing gene [su(Hw)] (MODELL et al. 1983; PARKHURST and
In addition to Su(Hw), which directly binds to the insulator DNA, two other major proteins have been identified that are required for *gypsy* insulator function: Modifier of mdg4 [Mod(mdg4)-67.2] and Centrosomal Protein 190 (CP190), which both directly interact with Su(Hw) (Georgiev and Kozycina 1996; Georgiev and Gerasimova 1989; Gerasimova et al. 1995; Ghosh et al. 2001; Pai et al. 2004). Unlike other insulator proteins in *Drosophila* such as dCTCF, CP190, BEAF or GAGA factor, the function of both Su(Hw) and its binding partner Mod(mdg4)-67.2 are dispensable for viability (Butcher et al. 2004; Gerasimova et al. 1995; Katokhin et al. 2001; Klug et al. 1968; Mohan et al. 2007; Roy et al. 2007). CP190, the other binding partner, has insulator activity that is independent from Su(Hw) and forms insulators in the genome in association with other insulator proteins (Bushey et al. 2009a; Mohan et al. 2007; Moshkovich et al. 2011). Homozygous Su(Hw) loss-of-function mutations are viable with no evident phenotype, except that females are sterile (Klug et al. 1968; Klug et al. 1970). Although the two binding partners of Su(Hw), Mod(mdg4)-67.2 and CP190, are required for *gypsy* insulator activity, only Su(Hw) is essential for oogenesis. In ovaries, Su(Hw) is detected in the nucleus of both somatic follicle cells and germ cells (Baxley et al. 2011). Loss of Su(Hw) leads to suppression of yolk deposition in the oocyte and oocyte development arrests at mid-oogenesis (Harrison et al. 1993; Klug et al. 1968; Klug et al. 1970), but the mechanisms causing these oogenesis defects remain poorly understood, and a thorough analysis of *su(Hw)* mutant phenotypes could
be instrumental for further understanding the role of Su(Hw) in oogenesis as well as insulator protein function in general.

In *Drosophila*, oogenesis begins with an asymmetric cell division of a germline stem cell at germarium stage, which gives rise to a daughter stem cell and a cystoblast. The cystoblast will undergo four incomplete mitotic divisions, forming an egg chamber containing sixteen germ cells that remain interconnected by ring canals and are enclosed by an epithelium of follicle cells. Each egg chamber undergoes a developmental process fourteen stages long that culminates with the formation of a mature oocyte. As oogenesis progresses, the endopolyploid nuclei of the fifteen nurse cells undergo a dramatic change from a condensed five-blobs configuration to a decondensed morphology at stage six (BATE and MARTINEZ ARIAS 1993b). Before the mid-oogenesis arrest, the only visible chromatin-configuration defect in *su(Hw)* mutant egg chambers is a delayed chromatin dispersal of nurse cell polytene chromosomes occurring at stage seven or eight, and mid-oogenesis arrest eliminates the prolonged development of defective egg chambers resulting in egg chamber degeneration around stage nine or ten (BAXLEY et al. 2011; HARRISON et al. 1993; KLUG et al. 1968). This defective nurse-cell chromatin dispersal phenotype is common among a large number of unrelated mutants carrying mutant allele genes, such as *prp22*, encoding a spliceosome component, and *rhino*, encoding a piwi-interacting RNA (piRNA) related protein (KLATTENHOFF et al. 2009; VOLPE et al.)
2001); however, this phenotype makes it difficult to understand the activity of Su(Hw) in ovaries.

In addition to defects resulting from mutations of genes encoding proteins that perform specific tasks during oogenesis, uncontrolled transposon activity may also cause severe disruption of development. Numerous studies have characterized piRNAs, which are the critical molecules involved in suppression of transposon activity. These RNA sequences were originally called repeat-associated siRNAs (rasi-RNAs) as they are derived from retrotransposons and repetitive sequences in the genome (ARAVIN et al. 2003; BRENNECKE et al. 2007; FESCHOTTE 2008; YIN and LIN 2007). Mutations in genes involved in piRNA production such as aubergine (aub), spindle-E (spnE) and maelstom (mael) result in transposable element overexpression and mobilization that create double strand breaks (DSBs) in the host genome (COOK et al. 2004; KLATTENHOFF et al. 2007; SIENSKI et al. 2012). The unleashed retrotransposon activation triggers the DNA damage response, thereby causing defects in polarity formation of the microtubule organization center (MTOC) in early oogenesis and further disrupting Gurken signaling in later stages that are essential to dorsal-ventral determination during embryonic development (KHURANA and THEURKAUF 2010; KLATTENHOFF et al. 2007). This consequent DNA damage response utilizes the same pathway triggered by unrepaired DSBs in mutants of spindle class genes encoding meiotic DNA damage repair enzymes. These unrepaired DSBs activate meiotic checkpoints mediated by mei-41 (ataxia telangiectasia-related,
ATR orthologue) and *mnk* (checkpoint kinase 2 ortholog) (Abdu et al. 2002; Ghabrial and Schupbach 1999; Larocque et al. 2007).

Recent insights into the role of Su(Hw) during oogenesis came from genome-wide studies of the transcriptional activity of genes which suggested that the function of Su(Hw) in oogenesis could be independent of its function as a chromatin insulator, and that Su(Hw) functions as a transcriptional regulator rather than as a chromatin insulator demarcating transcriptional domains (Baxley et al. 2011; Harrison et al. 1993; Soshnev et al. 2013; Soshnev et al. 2012). In this study, we demonstrated that the loss of Su(Hw) created massive non-meiotic DSBs that accumulated in germline cells of ovaries, thereby activating the DNA damage checkpoints which result in oogenesis failure. We found the cause of DSBs was not from over-activation of transposable elements, but rather may stem from misregulation of DNA repair or DNA replication.
Materials and methods

Fly genetics

All fly stocks were cultured on cornmeal-agar food with yeast at 25°C. The fly stocks used in this study are: \(y^{2}wct^{6} \); \(su(Hw)^{\gamma}/TM6B \), a gift from Victor Corces (Emory University); \(w^{+}:P\{\text{GAL4-nos.NGT40}\} \) (BDSC: 4442) and \(mei-41^{D5} \), gifts from Laura Lee (Vanderbilt University); \(P\{\text{naos-Gal4::VP16}\} \) and \(\text{spnD}^{2} \), gifts from Bruce McKee (University of Tennessee); \(\text{mnk}^{6006} \), a gift from Bill Theurkauff (University of Massachusetts, Worcester). Other fly stocks were from the Bloomington stock center.

Immuno-fluorescence staining of ovaries

Three- to five-day-old female ovaries were collected for ovary whole mount immunostaining as described (PAGE and HAWLEY 2001). Briefly, tissues were fixed in heptane (Sigma) with 4% para-formaldehyde and washed with PBST. Fixed tissues were incubated with blocking solution. Primary antibodies used for staining are as follows: anti-rabbit eGFP (Invitrogen, 1:100), anti-rabbit \(\gamma\text{H2Av} \) (Rockland, 1:5000), anti-mouse Orb and anti-mouse Grk (Developmental Studies Hybridoma Bank, 1:200). The following secondary antibodies were used at 1:200 dilution: FITC-conjugated anti-rabbit IgG, Texas Red-conjugated anti-rabbit IgG and FITC-conjugated anti-mouse IgG (The Jackson Laboratory). F-actin staining was performed using Texas Red-X phallodin (Life Technologies). Ovaries were stained with 4′, 6-diamidino-2-phenylindole (DAPI, 0.5 μg/ml) and were mounted in Vectashield mounting medium (Vector Laboratories). Slides
were analyzed under a Leica DM6000B wide-field fluorescence microscope equipped with a Hamamatsu ORCA-ER CCD camera and a HC PL FLUOTAR 20x /0.50NA objective. Image acquisition was performed using Simple PCI v6.6 (Hamamatsu Photonics). Images were processed using the AutoQuant's 3D Deconvolution Algorithm utilizing an adaptive (blind) PSF implemented into Leica Deblur (v2.3.2) software. Wild-type and mutant samples were prepared and imaged under identical immunostaining conditions and microscope, camera and software settings. Egg chamber stage was determined based on the size (SULLIVAN et al. 2000) measured in Image J.

Documentation of embryo phenotype

Two to three-day-old su(Hw) mutant virgin females carrying the su(Hw):eGFP transgenes driven by nano-Gal4 driver were crossed with yw male flies. Eggs were collected for three days using grape juice agar plates containing wet yeast paste (SULLIVAN et al. 2000). The embryo morphology was observed under the Leica MZ16FQ stereomicroscope.

Western blot

Three- to five-day-old female ovaries were dissected and then homogenized in RIPA lysis buffer with protease inhibitor and phosphatase inhibitors (Roche). Lysates were resolved on a 15% acrylamide gel, wet transferred overnight at 4°C, and then probed with both anti-rabbit monomethylated H4K20 (Abcam, 1:1000) and anti-mouse LaminDm0 (Developmental Studies Hybridoma Bank,
Real-time RT-PCR

Real-time PCR quantification of TE expression was carried out with ABGene (Rockford, IL) SYBR green PCR master mix. PCR conditions for each primer pair were tested to determine the efficiency of amplification and to ensure amplification was in the linear range. PCR products for each primer pair were amplified from cDNA using the BioRad iQ5 Multicolor Real-Time PCR detection system (Primers listed in Table A1). cDNA was reverse transcribed from at least three different RNA samples. Ct values were normalized to the Ct values of the housekeeping gene rp49. Change in expression level was calculated using the ∆∆Ct method based on the threshold cycle (Ct) value for each PCR reaction (BioRad real time PCR application guide). Results are presented as fold-change in mutant relative to wild-type. The statistical significance of the results was calculated using the Student’s t-test.
Results

Egg chamber formation is abnormal in su(Hw) mutants

Loss of Su(Hw) causes female sterility from incomplete oocyte development which then induces egg chamber degeneration at mid-oogenesis (Baxley et al. 2011; Harrison et al. 1993; Klug et al. 1968; Klug et al. 1970). In addition to this, earlier observations identified a different phenotype found in su(Hw) homozygous mutants and su(Hw)$^{e04061/2}$ trans-heterozygous mutants that has an increased number of nurse cells in a fraction of egg chambers. The increased number of nurse cells was detected only in egg chambers of certain su(Hw) mutants; therefore, this phenotype was disregarded and not considered as common (Baxley et al. 2011; Harrison et al. 1993). To further examine the function of Su(Hw), we decided to perform a comprehensive analysis of the causes of female sterility in su(Hw) mutants including abnormal nurse cell number. We used the mutant alleles su(Hw)e04061 and su(Hw)$^\gamma$, the former containing an insertion of a piggyBac transposon in the 5’ end of the second exon (Baxley et al. 2011) and the latter carrying a deletion of the su(Hw) promoter (Harrison et al. 1992). Consistent with the previous findings, we also observed an abnormal number of nurse cells in mutant egg chambers from su(Hw)$^{e04061/e04061}$ homozygotes (Figure 2.1 D) and su(Hw)$^{e04061/\gamma}$ trans-heterozygotes (Figure 2.1 A-C). As our observations also showed an increased number of nurse cells in mutant egg chambers, we decided to perform a quantitative analysis of the number of nurse cells within each individual egg chamber of su(Hw)$^{e04061/\gamma}$ trans-heterozygous mutants using an antibody against
nuclear lamin to stain the nuclear periphery of nurse cells for cell counts. Mutant and wild-type stained ovaries were selected randomly, and egg chambers were analyzed using maximum projections of twenty Z-stack images that were collected with increments of 2 μm. Maximum projection images contain all the information required for reliable counts of nurse cells nucleus in each egg chamber. Results show that in addition to an increased number, a reduced number of nurse cells was also observed in \(su(Hw)^{e04061/v} \) trans-heterozygous egg chambers. Overall, 7.48% of the \(su(Hw)^{e04061/v} \) mutant population of egg chambers had an irregular number of nurse cells, either with less or more than the fifteen cells normally found in egg chambers from wild-type ovaries. Approximately 2% of egg chambers had more than fifteen nurse cells (Figure 2.1E). This phenotype may arise from defective development of follicle cells, leading to fused egg chambers (MATA et al. 2000), yet this might result from an additional mitotic division of cystoblasts in the early germarium. On the other hand, 5.61% of egg chambers had a reduced number of nurse cells. Fewer nurse cells in mutant egg chambers may indicate incomplete mitotic divisions during the germarium stage. Taken together, these observations suggest that an irregular number of nurse cells, whether greater or fewer, is a mutant phenotype generated upon loss of \(su(Hw) \) indicating that phenotypic defects of these mutants already manifest in the germarium at the early stages of oogenesis.

Microtubules are misorganized in \(su(Hw) \) mutant egg chambers

Another similar phenotype with abnormal nurse cell numbers in egg chambers was also observed in the mutants which have a loss of function in
piRNA related pathways, including *rhino*, *fmr1* and *maelstrom (mael)* mutants (Epstein et al. 2009; Satō et al. 2011b; Volpe et al. 2001). Maelstrom is a γ-tubulin associated protein involved in proper positioning of the microtubule organization center (MTOC), which is required to determine oocyte polarity and the precise localization of specific mRNAs within the *Drosophila* oocyte (Clegg et al. 2001; Clegg et al. 1997; Satō et al. 2011a; Satō et al. 2011b).

Microtubule organization is critical at various stages of oogenesis. In stage one, formation of the MTOC, a structure with concentrated α-tubulin at the posterior of the oocytes, is required for oocyte differentiation. In stages three through six, a microtubule array is extended from the MTOC through ring canals to the neighboring nurse cells. This polarized network of microtubules is required for intercellular transport from nurse cells to the oocyte. During stage seven, the microtubule network is reorganized, causing a shift in the polarity of the MTOC from posterior to anterior, and the growing microtubule network pushes the oocyte nucleus to the anterior corner (Steinhauer and Kalderon 2006; Theurkauf et al. 1992). To address whether the irregular number of nurse cells in *su(Hw)* mutants correlated to microtubule disorganization, we used an α-tubulin antibody to detect microtubule networks in the ovaries. We found that the wild-type MTOC forms properly, exhibiting a concentrated signal at the posterior of the oocyte in the germarium (Figure 2.2 A and A'); however, in *su(Hw)* mutants, the α-tubulin signal is weaker and more diffused within the egg chamber and is not as highly concentrated at the MTOC as it is in wild-type (Figure 2.2 B
This phenotype was specific to \textit{su(Hw)} mutants, as we did not observe the same phenotype in the \textit{mod(mdg4)u1} mutant (Figure 2.2 C and C’).

Next, to determine whether the disorganization of the MTOC is a phenotype caused by loss of Su(Hw), we asked whether the MTOC phenotype could be rescued by ectopic expression of \textit{su(Hw)}::eGFP driven by the \textit{nanos}-Gal4 driver. We have previously shown that \textit{su(Hw)}::eGFP completely rescues insulator activity in \textit{su(Hw)} mutants (SCHOBORG \textit{et al.} 2013) and that the fertility of these mutants can also be partially rescued by introducing exogenous \textit{su(Hw)}::eGFP expression under a \textit{nanos}-Gal4 driver in germline cells (Hsu et. al submitted). The \textit{nanos}-Gal4 driver directs the expression of Gal4 throughout all the stages of oogenesis (RORTH 1998; VAN DOREN \textit{et al.} 1998). Expression of Su(Hw)::eGFP with this driver was confirmed using immunofluorescence staining with anti-GFP antibodies (Hsu et. al submitted). Here, our results show that expression of \textit{su(Hw)}::eGFP driven by \textit{nanos}-GAL4 also rescues the defective MTOC phenotype in the gerarium of \textit{su(Hw)} mutant ovarioles (Figure 2.2 D). All together, these data suggest that loss of Su(Hw) impairs proper formation of the MTOC and imply that this microtubule network is disorganized and may not efficiently function to facilitate egg chamber development.

\textbf{Gurken is mislocalized in the oocyte of \textit{su(Hw)} mutant egg chambers}

We have shown that Su(Hw)::eGFP expression driven by \textit{nanos}-Gal4 rescues the MTOC in egg chambers and restores fertility in mutant flies.
However, nanos-Gal4 driven Su(Hw)::eGFP rescued females laid a small number of eggs, and approximately 75% of the embryos produced by these females revealed a dorsal-ventral axis defect phenotype (Figure 2.3 A). We categorized these phenotypes as described in Ghabrial et al.: type I with two wild-type appendages, type II with two abnormal appendages, type III with a single appendage, and type IV with no appendages (Ghabrial et al. 1998). The number of each type of embryo was quantified and shown in the stacked column graph (Figure 2.3 B). Type I embryos are viable and have no noticeable developmental defects through the adult stage. These results show that ectopically driven expression of Su(Hw) by nanos-Gal4 is not sufficient to completely rescue Su(Hw) function in mutant ovaries but partially recovers the fertility because rescued females laid a small number of viable eggs (41%) compared to wild-type (Hsu et al., submitted); besides, these data also reveal that Su(Hw) expression in germline cells is also required for specification of dorsal-ventral patterning during oogenesis.

Embryo dorsal-ventral patterning is determined by the key axis-determining mRNAs of *gurken* (*grk*), *oskar* (*osk*) and *bicoid* (*bcd*), which are transported along microtubules to specific locations in the oocytes (Kugler and Lasko 2009). In order to understand whether defective microtubule organization in *su(Hw)* mutants affects axis determination, we used anti-Gurken antibodies to detect the localization of Gurken, a *Drosophila* transforming growth factor α (TGF α) protein, which is important for dorsal-ventral determination of embryos.
In wild-type egg chambers, grk mRNA requires transportation to the oocyte prior to subsequent translation. Gurken protein specifically localizes at the anterior of the oocyte during stage six (Figure 2.4 A and C) and later, as the oocyte relocates to the anterior-dorsal corner, Gurken gradually moves to the corner and forms a crescent shape around the oocyte nucleus at stage nine (Figure 2.4 B). Our data shows that in su(Hw) mutants, Gurken fails to translocate to the anterior-dorsal corner of the oocyte in 95% (N=20) of the egg chambers at stage nine (Figure 2.4 E). Likely, mislocalization of Gurken causes oocyte failure to signal follicle cells to determine dorsal fate, consequently interrupting the axis plan of the developing egg chamber. Summarizing, our data suggest that lack of Su(Hw) expression causes defective formation of the microtubule network in developing egg chambers, thereby impeding Gurken localization which causes specification failure of dorsal-ventral patterning in embryos.

Loss of su(Hw) activates DNA damage checkpoints during oogenesis

Disorganized microtubules, mislocalized Gurken and disrupted axis specification in eggs are phenotypes frequently observed in mutants of spindle class genes and piRNA pathway related genes, such as *spnE*, *armi* and *maelstrom* (Klattenhoff et al. 2007; Sato et al. 2011b). In these mutants, cells lose the ability to repair DNA damage or repress retrotransposon activity, generating an excess of DSBs to the point unrepaired DSBs accumulate and turn
on the ATR/Chk2 dependent DNA-damage signaling pathway in the female germline (KHURANA and THEURKAUF 2010).

As su(Hw) mutants have a similar phenotype to spindle class and piRNA mutants, we suspected developmental failure of female germline in su(Hw) mutant flies is caused by activation of the DNA damage checkpoints. We first asked whether the DNA-damage signaling pathway is activated, preventing further development of su(Hw) mutant egg chambers. To address this question, we examined the possible restoration of both oocyte development and female fertility using su(Hw) and mei-41D5 (Drosophila ATR) double mutant flies (BRODSKY et al. 2004). Results showed that although double mutant females remained sterile, they contained more stage nine egg chambers with correct positioning of Gurken around the oocyte nucleus (54% recovery, N=24) (Figure 2.5 A-C) and had proper enlargement of the developing oocyte at stage nine and ten (Figure 2.5 B and D). These results show that loss of ATR partially recovers oocyte development in the su(Hw) mutant and suggest that loss of Su(Hw) function triggers a DNA-damage response, possibly through the ATR-dependent pathway.

To understand whether loss of Su(Hw) activates the ATR/Chk2 mediated DNA-damage pathway in the same manner as mutants related to the piRNA pathway, we generated a double mutant with su(Hw) and chk2 (mnk6006 allele) (BRODSKY et al. 2004) mutations, as Chk2 is a downstream kinase of ATR. We
tested whether a $chk2$ mutation is able to rescue the female sterile phenotype in the $su(Hw)$ mutant. The results showed neither the fertility nor the Gurken localization was recovered in the double mutants (Figure A7). These results suggest that spindle phenotypes caused by loss of $Su(Hw)$ may be $Chk2$ independent and that there may be a $Chk2$ alternative pathway downstream of the ATR mediated DNA damage signaling pathway involved in the generation of this phenotype.

Massive non-meiotic DSBs occur during oogenesis in $su(Hw)$ mutants

Our results suggest that DSBs activate DNA damage signaling pathways in $su(Hw)$ mutants, resulting in MTOC disorganization and Gurken mislocalization. In order to further investigate whether DSBs in these mutants activate the ATR-mediated DNA damage pathway, we performed immunostaining in ovaries using specific antibodies against phosphorylated histone 2Av variant ($\gamma H2Av$) as a marker for detection of DSBs. In the wild-type, DSBs were observed in dividing cystocytes, which later become nurse cells and pro-oocytes in region two of the germarium where homologous recombination takes place (Figure 2.6 A and B). These meiotic DSBs are produced by Spo11, an exonuclease encoded by the $mei-w68$ gene, and the DNA breaks in the oocyte are repaired before developing egg chambers reach stage one (JANG et al. 2003; McKIM and HAYASHI-HAGIHARA 1998; MEHROTRA and MCKIM 2006). In order to eliminate the background of meiotic DSBs, we generated $su(Hw)$ and $mei-68$ double mutant flies, and then detected non-meiotic DSBs with a $\gamma H2Av$
antibody in ovaries. We found an excess of non-meiotic double strand breaks in nurse cells of this double mutant beginning at the germarium stage (Figure 2.6 C, D and E) and continuing until later egg chamber stages (Figure 2.6 F and G). This result strongly indicates that loss of Su(Hw) activity leads to formation of non-meiotic DSBs in the female germline cells.

Su(Hw) does not play a major role in regulating global transposable element activity in the *Drosophila* germline

It is well known that Su(Hw) strongly regulates transcription of the *gypsy* retrotransposon, and loss of the insulator activity reverses the phenotype of *gypsy* induced mutations at several different loci in *Drosophila* (HARRISON *et al.* 1993; PARKhurst and CORCES 1985; PARKhurst and CORCES 1986; PARKhurst *et al.* 1988). Our data, showing a dramatic accumulation of meiotic-independent DSBs in female germline cells of *su(Hw)* mutants, led us to ask in addition to *gypsy* whether other transposable elements (TEs) are overexpressed in the *su(Hw)* mutant, creating an excess of DSBs in the genome and activating the DNA damage checkpoints during oogenesis.

TEs are divided into two classes depending on the molecular structures and mobilization mechanisms. Class I elements are retrotransposons, which transpose through integration of the copied DNA from RNA intermediates produced by reverse transcription; and class II elements are DNA transposons that utilize the DNA excision mechanism to transfer the elements into a new
position in the genome (Slotkin and Martienssen 2007). To measure the activity of TEs, we performed real-time RT-PCR to quantify the transcripts of TEs produced in wild-type and su(Hw)^e04061 homozygous mutant ovaries. In both genotypes, egg chambers later than stage nine were manually removed to eliminate sources of potential interference during different developmental stages, such as a global misregulation of TEs caused by oogenesis defects but not Su(Hw) specific regulation. Ovarian total RNA from both genotypes was also extracted for real-time RT-PCR using specific primer sets for fifteen different TEs and rp49 as an internal control. Our selection included germline and somatic specific transposons, and it also covered the TEs with long-terminal repeats (LTR) and non-LTR.

The expression patterns of fifteen transposons in the mutant were compared to the wild-type shown in a fold-change graph (Figure A8). Our data show consistent with previous studies that gypsy transcript levels are significantly reduced in su(Hw) mutants; however, different patterns of expression change were observed in other TEs. Besides gypsy, expression of four other TEs, Stalker, Copia, Jockey and I-element, have statistically significant changes in su(Hw) mutants (Figure 2.7). Loss of Su(Hw) had a slight effect on expression change of TEs, which is independent of tissue specificity and LTRs; therefore, Su(Hw) may not directly be involved in suppression of transposon activity during female germline development. This data suggests the cause of excess DSBs in mutants may correlate with other unknown factors.
Abundant monomethylation of H4K20 accumulates in su(Hw) mutant ovaries

We have shown that loss of Su(Hw) causes a dramatic accumulation of DSBs in nurse cells and that these DSBs are not induced by transposable element activity, suggesting Su(Hw) plays an important role in maintaining genome stability in germline cells in a TE independent manner. On the other hand, mounting evidence suggests that monomethylation of histone 4 lysine 20 (H4K20me1), mediated by the PR-Set7/ SET8 methyltransferase, has an important role in maintaining genome stability (BECK et al. 2012; JORGENSEN et al. 2013; Wu and Rice 2011). For example, in mammalian cells, removal of pr-set7 results in DNA damage and S-phase arrest; conversely, constant expression of PR-Set7 causes accumulation of H4K20me1 at replication origins and results in re-replication (JORGENSEN et al. 2007; TARDAT et al. 2010). Additionally, highly proliferating tissues in Drosophila, such as wing discs and salivary glands, are smaller in size and contain fewer cells in pr-set7 mutants due to improper cell division during development. Finally, in Drosophila S2 cells, depletion of pr-set7 affects chromosome compaction in higher-order chromatin organization and triggers the DNA damage response (KARACHENTSEV et al. 2007; KARACHENTSEV et al. 2005; SAKAGUCHI et al. 2012; SAKAGUCHI and STEWARD 2007). Together, this evidence suggests that misregulation of pr-set7 and H4K20me1 affect genome stability and cell cycle progression.
To test whether Su(Hw) and H4K20me1 function in the same pathway that leads to DSBs and activation of DNA damage responses in su(Hw) mutants, we performed western blotting in ovaries of wild-type and mutants using a H4K20me1 antibody. Our results show that the amount of H4K20me1 significantly increased in su(Hw) mutant ovaries (Figure 2.8), revealing that lack of Su(Hw) may relate to abnormal chromosome packing and chromatin organization in a global manner. Moreover, elevated amounts of H4K20me1 may indicate inappropriate re-replication occurs, causing DSBs, disrupting genome stability, and eventually leading to oogenesis failure.
Discussion

Activation of the DNA damage signaling pathway results in female germline developmental defects in *su(Hw)* mutants

This study has revealed a new role of Su(Hw) in regulating *Drosophila* female germline development through maintenance of genome integrity. We have shown that loss of Su(Hw) results in massive DSBs in germline cells and turns on the ATR mediated DNA damage signaling pathway leading to cessation of oocyte development at mid-oogenesis (Figure 2.9).

Cytoskeleton disorganization, morphogen mislocalization and irregular numbers of nurse cells were found in *su(Hw)* mutant egg chambers. These phenotypes are usually observed in DNA repair mutants or piRNA pathway mutants (GONZALEZ-REYES *et al.* 1997; KLATTENHOFF *et al.* 2007; MORRIS and LEHMANN 1999). Our results show that mutations of the checkpoint gate keeper, *ATR/ mei-41*, partially rescued oogenesis in *su(Hw)* mutants; whereas, *Chk2/mnk* mutation did not. This result implies that the ATR/Chk2 DNA damage pathway may not be the only activated signaling pathway in response to DSBs resulting from loss of Su(Hw). It is known that both ATR and telangiectasia-mutated (ATM) kinases are involved in DNA damage and DNA repair responses. Both kinases are able to phosphorylate H2Av in response to DSBs, and the cross talk between these two pathways function in meiotic checkpoints in both mammals and flies (JOYCE *et al.* 2011; SANCAR *et al.* 2004). Although the detailed mechanism of how ATR and ATM coordinate and perform the function during in *Drosophila*
oogenesis still remains unclear, we cannot rule out the possibility that ATM is responsible for the DNA damage response triggered by DSBs upon loss of Su(Hw).

Abnormal endoreplication may be the cause of excessive DSBs in nurse cells of su(Hw) mutants

The recognition of γH2Av has become a standard assay for DSB detection. Up to date, the known intrinsic causes of DSBs in female germline development are meiotic recombination, retrotransposon mobilization and endoreplication (Hong et al. 2007; Klattenhoff et al. 2007; Lake et al. 2013; Lilly and Spradling 1996; Mehrotra et al. 2008). We have proven the accumulation of DSBs in su(Hw) mutant results from neither meiotic recombination (Figure 2.6) nor retrotransposon mobilization (Figure 2.7); hence, we speculate that excessive DSBs in su(Hw) mutants may result from abnormal endoreplication in nurse cells.

In *Drosophila* ovaries, endoreplication is a specialized event that produces polyploid nurse cells that supply nutrients for oocyte development, and it takes place within a limited time during oogenesis, passing only through Gap (G) and DNA synthesis (S) phases but not the mitosis (M) phase. During endoreplication, the euchromatin regions are first duplicated. Afterwards, some heterochromatic sequences are duplicated during late S phase, possibly losing the opportunity for replication in each endoreplication cycle, and this loss of replication is called...
underreplication. The damaged DNA has been found locate at the junction between replicated euchromatin and underreplicated heterochromatin regions (Hammond and Laird 1985; Lilly and Spradling 1996). During replication, Su(Hw) has the ability to function as a boundary that prevents heterochromatin from spreading into replicating sequences and ensures successful DNA replication (Lu and Tower 1997). In addition, Su(Hw) is capable of altering chromatin accessibility by recruiting histone acetyltransferase and the chromatin remodeling complexes, thereby creating a platform for replication firing (Lu and Tower 1997; Vorobyeva et al. 2013). In our study, both massive DSB accumulation and significantly increased H4K20me1 in the su(Hw) mutant suggest DSBs may correlate with abnormal endoreplication in nurse cells because of unbalanced replication between heterochromatin and euchromatin regions upon loss of Su(Hw). Considering, we propose Su(Hw) may be involved in maintaining genome stability by properly organizing chromatin during DNA replication amid female germline development.

Abnormal DNA damage and unrepaired DNA lesions also cause genome instability (Chapman et al. 2012). We still cannot rule out the possibility that loss of Su(Hw) may slow down DNA repair through an unclear mechanism resulting in DSB accumulation. One way to correct the DSBs is homologous recombination (HR) repair, and Su(Hw) influences the DSB repair frequency in germline cells by altering chromatin conformation. Lankenau et al., suggested that chromatin bound Su(Hw) tightens the chromatin conformation; whereas, loss of Su(Hw)
reduces the conformational constraints of chromatin fibers and enhances recombinational repair frequency. The repair frequency is enhanced due to a gain of mobility of the 3'-hydroxy breakage end while it searches for homology (Lankenau et al. 2000). On the other hand, in somatic cells, Su(Hw) functions to promote DNA pairing during embryogenesis (Bosco 2012; Frisch et al. 2006). Altogether, these observations imply that Su(Hw) may influence homologous pairing by directing higher-order chromatin organization in a tissue specific manner, but the detailed mechanism requires resolution. Whether the accumulation of γH2Av foci in the su(Hw) mutant is derived from the change of repair frequency through chromatin organization remains unknown. Our study opens an exciting new avenue to understand the function of chromatin insulator proteins in DNA replication and DNA repair through alteration of chromatin structure in eukaryotic cells.
Figure 2.1. An abnormal number of nurse cells in egg chambers of *su(Hw)* mutants.

Wild-type and mutant egg chambers were stained with Lamin antibody in green and phalloidin in red. A-A': fifteen nurse cells in one wild-type egg chamber. B-B': an example of *su(Hw)*v/e04061 egg chamber with less than fifteen nurse cells. C-C': a *su(Hw)*v/e04061 mutant egg chamber with more than fifteen nurse cells. D: more than fifteen nurse cells in a *su(Hw)*e04061/e04061 egg chamber. E. In total, 66 *su(Hw)*v/TM6 and 107 *su(Hw)*e04061/v individual egg chambers were observed and percentages of egg chamber with equal, more and less than fifteen cells were shown in the table.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Number of NC</th>
<th>Percentage of egg chamber</th>
</tr>
</thead>
<tbody>
<tr>
<td>su(Hw)v/TM6</td>
<td>15</td>
<td>100.00% (N=66)</td>
</tr>
<tr>
<td>su(Hw)v/e04061</td>
<td>15</td>
<td>92.52% (N=99)</td>
</tr>
<tr>
<td></td>
<td>>15</td>
<td>1.87% (N=2)</td>
</tr>
<tr>
<td></td>
<td><15</td>
<td>5.61% (N=6)</td>
</tr>
</tbody>
</table>
Figure 2.2. The impaired MTOC formation in su(Hw) mutants.

The microtubule is labeled with α-tubulin antibody in green. A-D: The different genotype egg chambers at the germarium stage were shown and stage one egg chambers (red arrows) were magnified. A'-D': Magnified stage one egg chambers showed a bright and condensed MTOC at the anterior in both wild-type (A') and mod(mdg4) mutants (C'), but not in the su(Hw) mutant (B). The expression of germline Su(Hw)::eGFP rescued the MTOC organization (D). Scale bars are 10 μm.
Figure 2.3. Expression of Su(Hw) in germline cells rescues female fertility but only partially rescues embryo development.

The same number of virgin female flies of the wild-type and rescued flies (only rescued flies expressing Nanos-Gal4 driven Su(Hw)::eGFP) were crossed with wild-type male flies for three days and eggs were collected. Different dorsal-ventral phenotypes of embryos were categorized as I to IV (A) and the percentage of each type of embryos was counted as shown in the stacked column graph (B). Wild-type female flies produced 97% type I, 2% type II and 1% type IV embryos; however, rescued flies produced only 24% type I (two normal appendages), 44% type II (two abnormal appendages), 21% type III (one appendage), and 11% type IV (no appendage). Sterile su(Hw) mutant females were used as a negative control.
Figure 2.4. Mislocated Gurken protein in $su(Hw)$ mutant egg chambers.

The Grk protein was labeled in green and its location was monitored at stage six (*) and nine (**). A-C: In wild-type, Grk locates at the posterior of oocyte at stage six (C) and translocates to the dorsal-anterior corner at stage nine (B). D-F: Instead of locating at dorsal-anterior corner, Grk mislocates to the anterior of oocyte at stage nine in the $su(Hw)$ mutant.
Figure 2.5. Oogenesis progresses further in the su(Hw) mutant while ATR is mutated.

A-C: Grk was labeled in green and the signal was detected in different genotype egg chambers at stage nine. D. The stage ten egg chamber was detected in mei-41 and the su(Hw) double mutant with DAPI staining. The scale bar is equivalent to 20 μM.
Figure 2.6. The accumulation of non-meiotic DNA double strand breaks in su(Hw) mutants.

The DSB foci were also visualized using immunoflorescence staining with γH2Av antibody in red at the early germarium and later stage egg chambers. Orb was used as a marker to locate the oocyte. A. In wild-type, the DSBs were detected in region 2 of germarium (A') and a few foci in nurse cells at stage one (A''). B. Accumulated DSB foci were observed in the mutant germarium (B') and the cropped stage one egg chamber was shown in B''. C-C'' and E-E'': mei-w68 mutant showed the clearance of DSBs in region 2 but DSBs in nurse cells at stage one were still observed. D-D'': Strong DSB foci accumulated in the nurse cells at stage one. The scale bar is 10 μm in A-E and 5 μm in A''-E''. F-G: The DSB foci were detected throughout the oogenesis, and the γH2Av signal was relatively stronger in su(Hw) mutants (G'') compared to wild-type (F'').
Figure 2.7. No major expression changes of transposable elements in the *su(Hw)* mutant.

Transcript levels of TEs were quantified by real-time PCR and were normalized to rp49. Fold change values represent the relative expression of mRNA in ovaries from *su(Hw)*^e04061^ homozygotes compared with ovaries from *su(Hw)*^e04061^ heterozygotes. The late egg chambers of each sample are removed. Two asterisks indicate P < 0.001.
Figure 2.8. Dramatically increased H4K20me1 in su(Hw) mutants.

Western blot analysis of H4K20me1 in wild-type and su(Hw) mutant ovary extracts. Using Lamin as the loading control, significantly increased H4K20me1 was detected in mutants compared to wild-type.
Figure 2.9. Summary
CHAPTER III.

Functional regulation of Su(Hw) in cells.
Abstract

During *Drosophila* oogenesis, cystocytes undergo mitotic cell division with incomplete cytokinesis, producing a specialized ring canal structure. The ring canal is a remaining structure from incomplete closure of a contractile ring; however, a similar structure in normal mitosis, called the midbody, functions as a transient intercellular bridge that facilitates transportation of vesicles and mitotic regulators. Upon completion of mitosis, this ring closes, causing the dissociation of two daughter cells from each other which completes cytokinesis. Immunoflorescence staining in S2 cells made a novel discovery that Su(Hw) locates at the midbody from telophase through cytokinesis. Other insulator proteins, Mod(mdg4)-67.2 and BEAF, co-localize with Su(Hw) at the midbody but CP190 does not. Investigations discovered that SUMO co-localized with insulator proteins during mitosis at several different subcellular locations, including the midbody, centrosomes, and insulator bodies as well as on chromatin. Yeast-two hybrid and immunoprecipitation data revealed that the interaction between Su(Hw) and SUMO may be facilitated through other proteins that participate in this complex. To understand how Su(Hw) is regulated by post-translational modifications, different forms of Su(Hw) containing mutations at the SUMO interacting domains, the SUMOylation sites, or the phosphorylation sites were generated and expressed in cells. Surprisingly, we found the protein stability of Su(Hw) is affected by different modifications. Altogether, our model proposes that both phosphorylation and SUMOylation may play an important role in regulating the proteolysis and subcellular localization of Su(Hw). Further study is needed to determine the detailed mechanism of regulation.
Introduction

During mitosis, two daughter cells obtain equal genomic material following chromosome segregation. The final step of mitosis, cytokinesis, is an essential process that ensures proper formation of the two duplicated cells. In between the two dividing cells, anti-parallel bundles of microtubules form during anaphase and are called the midzone or central spindles. Later during telophase, the midzone compresses as the plasma membrane contracts to form the cleavage furrow which leaves the two daughter cells connected with an intracellular bridge that facilitates transportation of vesicles and mitotic regulators. The midbody (MB) is an organelle located within this bridge and contains a dense organization of microtubule interacting proteins derived from the midzone. The MB, also called Flemming body, was first described by Walther Flemming in 1891. For the past few decades, the MB has been known to serve as a platform for abscission. Through proteomic analysis, numerous proteins that are involved in different regulation pathways and that contribute to abscission were indentified in the MB (SKOP et al. 2004). The known pathways that regulate the abscission mechanism include vesicle trafficking, microtubule organization, membrane scission and ubiquitination. Following cytokinetic abscission, the two daughter cells separate completely and the post-mitotic MB either remains in one of the daughter cells or is released from both cells. The released MBs either undergo degradation or are taken up by other cells (CHEN et al. 2013; EGGERT et al. 2006; HU et al. 2012).

Normal dividing mitotic cells and differentiating cells derived from the asymmetric cell division of stem cells have a unique feature of either releasing their MBs or have increased autophagic activity to degrade retained MBs; however, cancer stem cells and normal stem cells accumulate a high level of MBs (ETTINGER et al. 2011; KUO et al. 2011; SCHINK
These discoveries indicate that the MB plays an important role in determining cell fate. Beyond its cytokinetic function, MBs have a non-cytokinetic role in regulating polarity specification in chicken spinal cords, fly neurons and follicle cells within fly ovaries (MORAIS-DE-SA and SUNKEL 2013; POLLAROLO et al. 2011; WILCOCK et al. 2007). Although the MB was discovered a century ago, its precise function is still poorly understood.

Proteomic analysis and immunofluorescence staining have identified the mammalian chromatin insulator CTCF as a midbody protein. CTCF functions as a nuclear protein during interphase but has a different distribution during cell division. From metaphase to anaphase, CTCF translocates from the nucleus to the centrosome. Later, CTCF moves to the MB during telophase and returns to the nucleus while mitosis ends (SKOP et al. 2004; ZHANG et al. 2004). It is still unclear how the specific time and location of CTCF affect the cell cycle progression. In Drosophila, CP190 was first identified as a centrosomal microtubule associated protein (OEGEMA et al. 1995) and the CP190 association with the centrosome and microtubules is important for early embryogenesis. Although CP190 is required for viability in flies, it plays no role in mitosis in cultured S2 cells (CHODAGAM et al. 2005; PAI et al. 2004). Another insulator protein BEAF has been shown to play a role in regulating chromosome organization during the cell cycle. BEAF binding sites are strongly associated with cell cycle and chromosome segregation related genes, and depletion of BEAF causes chromosome segregation defects, an increased population of 4N cells, and eventually causes cell growth arrest (EMBERLY et al. 2008a). Though there has been progress in describing the
roles of CTCF, CP190 and BEAF within the cell cycle, the role of Su(Hw) within the cell cycle has not been described as of yet.

Su(Hw) locates on polytene chromosomes and in insulator bodies (SCHOBORG et al. 2013; SPANA et al. 1988), and our investigations found that Su(Hw) locates at the midbody as well. Our discovery encouraged us to investigate the regulation of Su(Hw) subcellular localization. Post-translational modifications (PTM) play important roles in regulating protein properties and functions. One of the PTMs, SUMOylation (small ubiquitin-related modifier modification), has been linked to alteration of protein-protein interactions and protein subcellular localization, both of which affect protein function. SUMOylation is a process of serial enzyme reactions that attach SUMO to its substrates. Initially, SUMO is synthesized as an inactive precursor and becomes mature once cleaved by a SUMO-specific isopeptidase (called ULP1 in invertebrates and SENPs in mammals) that exposes diglycines at the C-terminus. After SUMO activating E1 enzymes recognize the exposed diglycines of SUMO, SUMO subsequently transfers to the SUMO-conjugating E2 enzyme. Finally, E3 ligase conjugates SUMO to the lysine residues of the substrates by forming a covalent isopeptide bond. SUMO substrates often have lysine residues in the classic consensus SUMOylation sites (ψ-K-X-D/E, ψ is a large hydrophobic residue) or non-consensus sites. In addition to the covalent bond, SUMO also interacts with target proteins through non-covalent binding at its SUMO interacting motif (SIM), a short sequence with hydrophobic residues (V/I-X-V/I-V/I or inverted). The SUMO-SIM interaction behaves as a protein glue that not only enhances the intermolecular interaction of the proteins in the complex, but also modifies intramolecular interactions.
within an individual protein (GAREAU and LIMA 2010). This feature reinforces the finding that the SUMOylation enzyme often targets a group of proteins that are functionally or physically linked to the same biological pathway or location within cells.

Recent studies have suggested that substrates of SUMO are mostly nuclear proteins. Through nuclear protein modification, SUMO can alter chromatin structure during multiple cellular events including transcription, replication and DNA repair. For example, mammalian CTCF is a substrate of SUMO, and SUMOylation of CTCF facilitates the regulation of chromatin structure alteration (KITCHEN and SCHOENHERR 2010; MACPHERSON et al. 2009a). Both Drosophila Mod(mdg4)-67.2 and CP190 are substrates of SUMO (CAPELSON and CORCES 2006); however, a direct relationship between SUMO and Su(Hw) has not been characterized as of yet. SUMO conjugation of Mod(mdg4)-67.2 is prerequisite for integration of SUMO conjugated Mod(mdg4)-67.2 and Su(Hw) into insulator bodies, but integration is not required for insulator function (GOLOVNIN et al. 2012).

To understand whether SUMO participates in regulating the interacting partners of Su(Hw) and consequently its function as it shuffles between the chromatin, insulator bodies, and midbody, we used cellular and molecular techniques to verify the location of Su(Hw), SUMO and other insulator proteins at the midbody of S2 cells. In addition, biochemistry and yeast genetics methods were applied for characterizing the interaction between Su(Hw) and SUMO.
Materials and methods

Site-directed mutagenesis

The mutations of *SUMO, su(Hw), and mod(mdg4)-67.2* were generated with PCR-based site directed mutagenesis (WANG and WILKINSON 2000). Specific primers containing point mutations or deletion sites were designed and used in PCR reactions with a wild-type gene plasmid as the template. The PCR mixture was treated with DpnI to remove the template plasmid and the reaction mixture was transformed into DH5α competent cells. The plasmids were purified from the transformants and sequenced. All primer sequences are listed in Table A.1.

Cell culture and transfection

Drosophila Schneider line 2 cells (S2 cells) were grown in HyQ SFX-insect medium (HyClone) with penicillin-streptomycin antibiotics at 25°C without CO₂. Cells were plated in each well of a six-well plate and expression vectors were transfected using lipofectin reagent (Invitrogen Life Technologies). Cells used in immunoprecipitation assays were transfected with pPAC-FLAG-SUMO, pPAC-FLAG-SUMO\(^{GG}\) or pPAC-FLAG-SUMO\(^{dGG}\) gifts from Dr. Albert Courey (University of California, Los Angeles). The stable lines with Su(Hw) mutations were generated by transfection with different mutated Su(Hw)::eGFP constructs and selected with hygromycin (300 µg/ml, Invitrogen) for three weeks. The expression of Su(Hw)::eGFP mutants were induced by copper sulfate (500 µM, Sigma) in the culture medium for 24 hours prior to the subsequent assay.
Treatment of dsRNA and cell growth curve measurement

The DNA template for double stranded RNA (dsRNA) was generated using PCR with a pair of primers containing a T7 promoter sequence and was amplified from a specific sequence of target genes (Table A.1.). The cDNA containing T7 promoter was transcribed into single stranded RNA (ssRNA) using the in vitro transcription kit (Promega, Ribomax Large Scale production system T7), and ssRNAs were annealed to form double stranded RNAi probes using the temperature gradient method (WORBY et al. 2001). Nine different dsRNAs targeting specific sequences of su(Hw) were tested (Figure A9. in Appendix). 1X10^6 S2 cells were plated on a well plate and test groups were treated with 15 µg su(Hw) dsRNA daily (generated by the aforementioned in vitro transcription reaction) while control groups were treated with distilled water daily. Each group had duplicated samples and cell numbers were counted manually.

Tandem affinity purification

su(Hw) was amplified using primers (Table A.1) containing Nco I (5’) and Mfe I (3’) and cloned into pBSacTAP. Both the Su(Hw) expression vector and pBS-PURO vector were transfected into S2 cells, and the transfected cells were selected with puromycin (10µg/ml) for three weeks. To isolate single cell clones, cells were diluted in 1% SFX based soft agar and grown for two weeks until colonies formed on the agar. The individual colonies were collected separately and maintained as a single population. The exogenous Su(Hw) expression in each individual line was checked with western blotting and immunoflorescence staining (Figure A.10 in Appendix).
2X10⁹ cells were spun down and the cell pellet was dounced in Buffer B (20 mM HEPES pH 7.9, 20 % glycerol, 200 mM KCl, 0.5 mM DTT, 0.5 mM EDTA, 1 % Protease Inhibitor Cocktail, 0.5 % NP40) for nuclear protein extraction. The nuclear extract was incubated with cross-linked IgG sepharose resin (GE Healthcare) for 2 hours at 4 °C. The proteins attached to beads were washed three times with Buffer B, four times with Buffer C (20 mM HEPES pH 7.9, 20 % glycerol, 200 mM KCl, 0.5 mM DTT, 0.5 mM EDTA, 0.1 % NP40) and then twice with TEV cleavage buffer (10 mM Tris-Cl pH 8, 150 mM NaCl, 0.1 % NP40, 0.5 mM DTT, 0.5 mM EDTA). After these washes, protein-bead complexes were incubated with TEV protease (Invitrogen) at 4°C overnight. The next day, the cleaved Su(Hw) protein complexes in the supernatant were transferred to the calmodulin binding buffer (10 mM Tris-Cl pH 8, 10 mM beta-mercaptoethanol, 150 mM NaCl, 1 mM Mg-acetate, 1 mM imidazole, 2 mM CaCl₂, 0.1 % NP40). The mixture was then incubated with the second calmodulin affinity resin (Stratagene) for 2 hours at 4°C. After the incubation, the resin was washed five times with calmodulin binding buffer and eluted using SDS sample buffer. The purification efficiency was checked during the entire purification process (Figure A.11 in Appendix).

Immunoprecipitation and western blot

The cell lysate was extracted with RIPA buffer containing protease inhibitor (Roche) and IAA (Acros Organics). The cell extract was incubated with 1:100 rabbit α-Su(Hw) antibody for 2 hours and Protein A agarose beads were added (Pierce) in the lysate-antibody reaction. The mixture was incubated at 4°C overnight. For FLAG-IP, EZview™ red α-FLAG M2 agarose (Sigma) was used. The antigen-antibody complexes were
washed with the wash buffer (10 μM PMSF, 1 mM DTT in PBS buffer) six times, and samples were boiled with SDS-sample buffer. The proteins were separated on SDS-PAGE. Different primary and secondary antibodies were used for western blotting as follows: 1:5000 rabbit α-Su(Hw), 1:5000 rat α-CP190, 1:1000 α-GFP (Invitrogen), 1:5000 α-Rabbit-HRP (Pierce) and 1:1000 α-Rat-HRP (Pierce).

Yeast-two hybrid assay

pGAD424 (prey) and pGBDU-C1 (bait) vectors were used for testing the protein-protein interactions in the yeast strain pJ-694A (James et al. 1996). Both vectors carry the constitutive promoter, ADH1, controlling expression of bait and prey genes. The bait fusion protein was fused with Gal4 BD (DNA binding domain) and the prey was fused with Gal4 AD (activation domain). Prey and bait constructs were created using the Infusion PCR Cloning System method (Clontech) with specific primers in Table A.1. The bait fusion protein was expressed, and it localized at the promoter of the reporter gene in the yeast genome. The positive interaction between bait and prey activated the transcription of the histidine (His) reporter gene in this system. First, the bait construct was transformed into cells using the lithium acetate method (James 2001), and cells were selected on plates lacking uracil (Ura). Next, the transformants were transformed using the prey construct and co-transformants were selected on plates without uracil and leucine. The assay was carried out by plating co-transformants on the selective plates lacking His, and only the cells expressing the His reporter gene survived. After 3-4 days incubation at 30°C, appearance of cell growth on the selective plates indicated positive interaction between bait and prey.
Immunofluorescence microscopy

Cells were dropped onto concanavalin A pre-treated coverslips and fixed with 4% para-formaldehyde for 10 min at room temperature. Next, cells were permeabilized with 0.2% Triton X-100 for 5 min and blocked with blocking solution (3% milk in 1XPBS) for 10 min at room temperature. Fixed cells were incubated with different combinations of diluted antibodies. The dilution factors of each primary antibody used in this study were as follows: 1:200 rabbit α-Su(Hw) antibody, 1:200 rat α-CP190 antibody, 1:200 rat α-Mod(Mdg4)-67.2, 1:150 mouse α-Tubulin- FITC conjugated antibody (Sigma), 1:100 mouse α-FLAG antibody (Sigma), 1:100 mouse α-BEAF antibody and 1:100 mouse α-PEANUT antibody (Developmetal Studies hybridoma bank), FITC-conjugated donkey anti-rabbit IgG antibody, Texas Red dye-conjugated donkey anti-rabbit IgG antibody, Texas Red dye-conjugated donkey anti-rat IgG antibody, FITC-conjugated donkey anti-rat IgG antibody and FITC-conjugated donkey anti-mouse IgG antibody (Jackson ImmunoResearch). DNA was stained with DAPI solution (Roche) for 30 sec, and the slides were mounted with mounting medium (Vector Laboratories). Slides were observed using a Leica DM6000B widefield epifluorescence microscope equipped with a Hamamatsu ORCA-ER CCD camera and a HC PL FLUOTAR 20x /0.50NA objective. Image acquisition was performed using Simple PCI v6.6 (Hamamatsu Photonics).
Results

Insulator proteins locate at the midbody

The chromatin insulator protein, Su(Hw), is a zinc finger DNA binding protein that interacts with other proteins within the nucleus to form complexes with DNA as well as to form macrostructures known as insulator bodies. A growing list of evidence shows that Su(Hw) plays a role in transcriptional regulation and perhaps DNA replication (Lu and Tower 1997; Vorobyeva et al. 2013). Eukaryotic genome transcription is highly active in interphase but repressed when the cell enters mitosis (Gottesfeld and Forbes 1997). Whether Su(Hw) is required to associate with chromatin DNA during mitosis while transcription is suppressed remains unclear. To answer this question, we first monitored the localization of Su(Hw) in S2 cells during mitosis. We performed immunofluorescence staining and made a novel discovery of different subcellular localizations of Su(Hw). From prophase, Su(Hw) gradually dissociated from chromatin, moved to the spindle midzone, and finally returned to the DNA by the end of mitosis (Figure 3.1). From telophase to cytokinesis, Su(Hw) was co-localized with α-tubulin at the intracellular bridge structure at the midzone (Figure 3.1) and disassembled from the intracellular bridge while the two daughter cells separated. To determine whether the bridge structure where Su(Hw) located is at the MB or not, we compared our Su(Hw) immunofluorescence image with one of the well-known MB associated proteins, Aurora B protein kinase, which is one component of the chromosomal passenger complex (CPC) that conducts cell division (Ruchaud et al. 2007) (Figure 3.2-A and B). Analysis of the images suggests that Su(Hw) is a potential MB protein. To further confirm Su(Hw) is present at the MB, we checked co-localization of Su(Hw) and other MB markers, namely Peanut and SUMO (Shih et al.)
Indeed, Su(Hw) localization overlapped with both Peanut and SUMO in the images (Figure 3.2-C and D). This discovery aroused a question of whether other insulator proteins also exist in the MB. We detected whether CP190, Mod(mdg4)-67.2 and BEAF insulator proteins were present at the midbody in S2 cells using immunofluorescence staining. Our result was consistent with previous studies showing that CP190, a centrosomal protein, does not enter this transient bridge structure during the late stage of mitosis (Figure 3.3-A). Further investigation also revealed that Mod(mdg4)-67.2 and BEAF are detected at the midbody (Figure 3.3-B and C). Our interests lie in why and how chromatin insulator proteins have different subcellular localizations during cell cycle progression.

Su(Hw) may not play an important role in cytokinesis

BEAF plays an important role in chromosome segregation (EMBERLY et al. 2008a) and locates at the MB (Figure 3.3-C), and we asked whether another MB insulator protein, Su(Hw), also interferes with the cell cycle progression. We knocked down Su(Hw) expression with su(Hw) dsRNA in S2 cells and knock-down efficiency was checked with western blotting (Figure 3.4). Cell growth was monitored by manual cell counts for five days. The cell growth curve showed su(Hw) knock-down cells had no noticeable difference of growth rate from wild-type cells (Figure 3.4). This data indicates no major effect of losing Su(Hw) in the cell cycle progression. The function of insulator proteins in the midbody during cytokinesis remains unclear and open for further study.
Co-localization of SUMO with insulator proteins in S2 cells

CP190 and Mod(mdg4)-67.2 interact with SUMO and are substrates for SUMOylation (CAPELSON and CORCES 2006). Our study shows that SUMO colocalizes with Su(Hw) at the MB, and SUMO was also found interacting with Su(Hw) in the Drosophila protein interaction map (DPiM). Moreover, using SUMOsp software (REN et al. 2009), we identified that the N-terminus of Su(Hw) has two SUMO interacting motifs (SIMs) and four potential SUMOylation sites (Figure 3.8-A). These sites are highly conserved through ten Drosophila species. To investigate whether Su(Hw) interacts with SUMO, we transfected a FLAG-tagged SUMO expression vector into S2 cells and performed immunofluorescence staining to determine the subcellular localization of these proteins. Results indicated Su(Hw), BEAF, CP190 and Mod(mdg4)-67.2 all co-localized with SUMO. Notably, SUMO is enriched at large foci (insulator bodies), where insulator proteins aggregate (Figure 3.5). This data strongly suggests a possible role of SUMO directing the interaction between different subclasses of insulator proteins.

Enhanced association between insulator proteins and Su(Hw) in a SUMO-dependent manner

We have established a Su(Hw) stable line constitutively expressing Su(Hw) with a tandem affinity purification (TAP) tag. This stable line was used for further examination to check how SUMO affects insulator protein interactions. We treated cell lysate with iodoacetamide (IAA), which is an isopeptidase inhibitor that suppresses SUMO de-conjugation. Tandem affinity purification of the IAA treated sample revealed
that even more Su(Hw), Mod(mdg4)-67.2, and CP190 (Figure 3.6-A) were present, a finding consistent with the observation in the immunofluorescence staining results (Figure 3.5). Furthermore, purification followed by silver staining showed these three proteins along with other unknown proteins associate with Su(Hw) (Figure 3.6-B).

In a reciprocal immunoprecipitation assay, we found Su(Hw) presents in FLAG-SUMO pull-downs. Particularly, in the IAA treated sample, a band of higher molecular weight than that of Su(Hw) was observed, (Figure 3.7-A) suggesting that the post-translational modification of Su(Hw) only occurred when excess SUMO was present while de-SUMOylation was suppressed. Also, we used two other mutation forms of SUMO to show whether the interaction between SUMO and Su(Hw) is mediated by SUMOylation or SUMO interaction. The diglycines at the C-terminus of SUMO are required for the SUMO activating enzymes to recognize and activate SUMO proteins which must be properly activated by the SUMO activating enzymes in order to SUMOylate target proteins. FLAG-SUMOGG functions as an active form of SUMO while the other mutant, FLAG-SUMOdGG, cannot be activated but is still able to associate with proteins through non-covalent interactions mediated by SIMs on the targets (Smith et al. 2004). Su(Hw) was detected in both FLAG-SUMOdGG and FLAG-SUMOGG pull-downs, indicating that Su(Hw) was present in the complexes mediated by both the SUMO interacting motifs and SUMOylation sites (Figure 3.7-B). More Su(Hw) associated proteins are present in a SUMO-dependent manner, revealing a possible role of SUMO in regulating the Su(Hw) insulator protein complex formation and stability.
Characterization of the interactions between SUMO and Su(Hw)

SUMO regulates insulator proteins by conjugating Mod(mdg4)-67.2 and CP190 (GOLOVNIN et al. 2012). Our results showed insulator protein interactions were enhanced in a SUMO-dependent manner (Figure 3.6), and the subcellular localization of insulator proteins overlapped with SUMO (Figure 3.5). Also, Su(Hw) was detected in the SUMO complexes. These data indicate that assembly of the Su(Hw) insulator complex may occur under the control of SUMO regulation. It is possible that SUMO stabilizes the entire Su(Hw) insulator complex and this process is regulated by both covalent SUMOylation and noncovalent SUMO interaction. Although Capelson et al., (2006) suggested that Su(Hw) is not a substrate of SUMOylation in vitro, the connection between SUMO and Su(Hw) may be mediated by noncovalently bound SUMO interacting through SIMs in Su(Hw). We have identified two predicted SIMs in Su(Hw) (Figure 3.8-A) which may be responsible for this interaction.

To further dissect the interaction between SUMO and Su(Hw), we performed a yeast-two-hybrid assay. su(Hw) was cloned into pGBDU-C1 fused with a Gal4 DNA binding domain as a bait, and its corresponding prey were wild-type mod(mdg4)-67.2, mod(mdg4)-67.2 mSIM (mutated SUMO interacting motif: V 495,497,498 A), full-length SUMO, and a truncated form, SUMOdGG. All the prey genes were cloned in pGAD424 and fused to a Gal4 activation domain. The reciprocal assay was also performed by swapping prey genes into bait genes and vice versa. All the mutant constructs were generated using the site-directed mutagenesis method (WANG and WILKINSON 2000).
The interaction between Su(Hw) and Mod(mdg4)-67.2 was already verified in yeast two-hybrid experiments (GHOSH et al. 2001) and was consequently used as a positive control. The results show that Su(Hw) interacted with Mod(mdg4)-67.2, consistent with previous findings. Also, Mod(mdg4)-67.2 interacted with SUMO as expected, and Mod(mdg4)-67.2 mSIM lost the interaction with SUMOdGG, indicating Mod(mdg4)-67.3 495-VRVV-498 is a bona fide SIM. On the contrary, no interaction was identified between Su(Hw) with either SUMO or SUMOdGG in yeast cells (Table 3.1). All together, these results imply that the interactions between SUMO and Su(Hw) in the pull-down could be mediated by other proteins, such as Mod(mdg4)-67.2 in physiological conditions that do not exist in yeast cells.

Loss of SUMO interaction with Su(Hw) may cause an unknown cleavage of Su(Hw)

In order to understand how SUMO may regulate the biological function of Su(Hw), we generated different mutant constructs of Su(Hw) at predicted SUMOylation sites as well as at SIMs. These constructs were driven by metallothionein promoters and were transfected into S2 cells to establish stable transfectants. Using western blotting, we detected the expression of Su(Hw)-GFP fusion proteins with anti-GFP antibodies in the stable transfectants. Surprisingly, not only a full-length form of Su(Hw) but also a 10-20KDa shortened form were found in the cells expressing mutated Su(Hw). These mutations are su\textit{(Hw)}\textsubscript{K140A} with a mutated SUMOylation site and su\textit{(Hw)}\textsubscript{V150A} containing a disrupted SIM where VTVV is converted to ATAA. In addition to SUMO related mutations, su\textit{(Hw)}\textsubscript{d100} is a mutation with a truncation of 144
base pairs from amino acid 155 to 202 (Figure 3.8-A) that is able to rescue insulator function while only partially recovering sterility in \(\text{su(Hw)} \) mutants (HARRISON et al. 1993). The deleted sequence is next to the predicted SUMO regulatory sequence, and its deletion may interfere with the regulation of SUMO on Su(Hw). The immunoblotting data from these three mutants indicate interference of SUMO regulation in Su(Hw) may cause cleavage or degradation of Su(Hw) and produce shortened Su(Hw). Nevertheless, the function of this shortened Su(Hw) is still unknown.

Su(Hw) may be a substrate of Aurora Kinase, which promotes Su(Hw) phosphorylation and subsequent cleavage

Interaction with SUMO alters the biological function of target proteins and affects downstream cellular events. This functionality switch is controlled by SUMO binding. We have shown that mutations at SUMO related sites of Su(Hw) lead to cleavage, but we sought how this switch works. SUMOylation and SUMO interaction can be positively or negatively regulated by substrate phosphorylation. We found in a phosphorylation site mapping database that the 65\(^{th}\) serine (Ser 65) of Su(Hw) near the SUMO regulatory region is a phosphorylaton site in *Drosophila* Kc167 cells (BODENMILLER et al. 2007) and Ser 65 was also predicted as an Aurora kinase phosphorylation site using the GPS2.0, which predicts kinase-specific phosphorylation sites (XUE et al. 2008). Our data and the published data indirectly suggest that Aurora B and Su(Hw) may co-localize at the MB during telophase (Figure 3.1). Based on these predictions and data analyses, we speculate Su(Hw) may transiently interact with Aurora B and undergo phosphorylation during a specific stage of mitosis. To answer whether phosphorylation of Ser 65 of
Su(Hw) controls SUMO regulation on Su(Hw), we created a constitutively phosphorylated Ser 65 on su(Hw) by changing Ser to aspartic acid, which mimics a phosphorylated serine. This mutated Su(Hw) was transfected into S2 cells and western blotting data showed that this constitutively phosphorylated Ser 65 of Su(Hw) results in cleavage and shortening of Su(Hw) (Figure 3.8-B). The phosphorylated Su(Hw) undergoes proteolysis and generates a N-terminal fragment smaller than 20KDa plus a remaining C-terminal fragment. Taken together, Aurora B phosphorylation and SUMOylation may both play a role in regulating an unknown cleavage mechanism of Su(Hw).
Discussion

Numerous studies suggest that combination of post-translational modifications regulates protein stability (ULRICH 2012). For example, by forming a complex with IkB$_{\alpha}$, the transcription factor function of NFkB is inhibited. While IkB$_{\alpha}$ is phosphorylated by IkB kinase (IKK) and undergoes degradation, dissociated NFkB is activated again. In this scenario, SUMOylation antagonizes phosphorylation of IkB$_{\alpha}$, thereby preventing degradation of IkB$_{\alpha}$ (DESTERRO et al. 1998). A similar regulation mechanism may also apply to Su(Hw). Our working model proposes SUMOylation or SUMO interaction inhibits cleavage of Su(Hw). At specific stages of mitosis, Su(Hw) is phosphorylated by Aurora B triggering an unknown cleavage mechanism causing the N-terminal fragment of Su(Hw) to translocate to the MB where it performs an unknown function (Figure 3.9).

In addition to the potential post-translational modifications of Su(Hw) described here, several open questions remain unanswered. First, the function of Su(Hw) in the MB is still unknown. Although no noticeable cell growth defect was detected in su(Hw) knock-down cells, it is still possible that the function of Su(Hw) at the MB is unnecessary in embryonic cells (S2 cells) but is required in other types of cells. Just as stem cells in mammals contain high concentrations of MBs for specialized biological functions (ETTINGER et al. 2011; KUO et al. 2011; SCHINK and STENMARK 2011; WILCOCK et al. 2007), MBs in Drosophila stem cells may be necessary for an unknown cellular function. Additionally, we observed that SUMO stabilizes insulator protein complex formation and concentrated SUMO signals were detected in the large insulator bodies containing BEAF and Su(Hw) (Figure 3.5 and 3.6). These data reveal the possibility that SUMO
directs the association between different subclasses of insulators. To uncover the importance of SUMO in regulating insulator interactions and further reorganizing the chromatin structure in response to different cellular events or developmental processes, it will be an interesting study in the future.
Figure 3.1. Dynamic subcellular localization of Su(Hw) during mitosis.

S2 cells were collected for immunofluorescence staining using α-Tubulin (green) and Su(Hw) (red) antibodies. Images of cells at different stages of the cell cycle were selected and labeled from prophase (A-A’’), metaphase (B-B’’), anaphase (C-C’’), telophase (D-D’’ and E-E’’) and cytokinesis (F-F’’). Upper cartoon panel is the picture from Vader et al. (VADER and LENS 2008).
Figure 3.2. Su(Hw) is a midbody protein.

S2 cells were used for immunofluorescence and different antibodies were used as labeled in A and C-C”. Cells in panel D were transfected with FLAG-tagged SUMO and anti-FLAG antibody was used for SUMO detection. The panel B is an image modified from a reference paper (CARMENA et al. 2009).
Figure 3.3. Mod(mdg4)-67.2 and BEAF co-localize with Su(Hw) in the midbody.

Immunofluorescence was performed in S2 cells with distinct antibody combinations as labeled and A-C shows the co-localization of two proteins. A’-C’ and A”-C” shows the staining of individual protein.
Figure 3.4. Su(Hw) does not have a major effect on cell growth.

1X10^6 S2 cells were plated in the six-well plate and treated with su(Hw) dsRNA daily. The cell growth was monitored by manual counts, and the Su(Hw) knock-down efficiency was checked using western blotting.
Figure 3.5. Tagged SUMO co-localizes with insulator proteins in S2 cells.

Cells transfected with FLAG-SUMO were collected 48 hours later and different antibody combinations were used for immunofluorescence staining to detect the co-localization of each insulator protein with SUMO labeled in each image. A-A’’’ shows co-localization of BEAF, Su(Hw) and SUMO; B-B’’’ represents the co-localization of CP190, Su(Hw) and SUMO, and C-C’’’ shows co-localization of Mod(mdg4)-67.2, Su(Hw) and SUMO.
Cell extracts from tagged Su(Hw)-expressing cells and control wild-type cells were treated with iodoacetamide (IAA) and purified by sequential immunoprecipitation using IgG beads and CAM beads. **A.** The western blot shows the Su(Hw) in input and insulator proteins in pull-down. **B.** Sliver staining was carried out using pull-down extract.
Figure 3.7. Su(Hw) interacts with SUMO in S2 cells.

FLAG-tagged SUMO^{FL}, SUMO^{GG} and SUMO^{dGG} were transfected into S2 cells and 48 hours after transfection, cells were harvested for protein extraction with the lysis buffer containing IAA. Immunoprecipitation of FLAG was then performed. A. Using western blot, Su(Hw) was detected in the cell extract (Input) on the left and SUMO protein complex (FLAG pull-down) on the right. Different exposure times of Su(Hw) are both shown here in the upper panel (longer exposure time) and bottom panel (shorter exposure time). B. FLAG pull-down was performed with different forms of FLAG-SUMO and insulator proteins were detected using western blotting (first two panels). The bottom panel showed the input of each IP reaction.
Table 3.1. Yeast-two-hybrid assay results.

<table>
<thead>
<tr>
<th>AD</th>
<th>BD</th>
<th>SUMO-dGG</th>
<th>Mod(mdg4)-67.2</th>
<th>Mod(mdg4)-67.2 mSIM</th>
<th>Su(Hw)</th>
<th>pGBDU-C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMO</td>
<td>NA</td>
<td>++++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SUMO-dGG</td>
<td>NA</td>
<td>++++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Su(Hw)</td>
<td>-</td>
<td>++++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Su(Hw)-d100</td>
<td>NA</td>
<td>++++</td>
<td>+</td>
<td>-</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Su(Hw)-mSIM</td>
<td>NA</td>
<td>++++</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Mod(mdg4)-67.2</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>++++</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>pGAD424</td>
<td>NA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NA</td>
</tr>
</tbody>
</table>

The number of “+” indicates the strength of interaction. “-" represents no interaction and “+” represents interaction. NA means “not available.”
Figure 3.8. Su(Hw) proteolysis may be regulated by SUMOylation and Phosphorylation.

A. The amino acid sequence of Su(Hw) from amino acid 41 to 210. The lysines (K) in red are predicted SUMOylation sites. K140 (bold) is the classic consensus SUMOylation site (ψKxD/E, ψ is a large hydrophobic residue) and highly conserved through 10 Drosophila strains. The two sequences IKIL and VTVV in green boxes are SUMO interaction motifs (consensus: V/I-X-V/I-X/V) and both are highly conserved. The amino acids underlined represent truncation regions in the d100 mutant. S65 in orange is a phosphorylation site.

B. Expression of wild-type and mutant Su(Hw)-GFP using western blotting with a GFP antibody.
Figure 3.9. The working model.

A combination of post-translational modifications may regulate proteolysis of Su(Hw) and further influence subcellular localization and function of Su(Hw) in *Drosophila* cells.
REFERENCES

BRIDGES, C. B., and K. S. BREHME, 1944 The mutants of Drosophila melanogaster, Washington, D.C.,

DJAGAEVA, I., S. DORONKIN and S. K. BECKENDORF, 2005 Src64 is involved in fusome development and karyosome formation during Drosophila oogenesis. Dev Biol **284**: 143-156.

EMBERLY, E., R. BLATTES, B. SCHUETTENGRUBER, M. HENNION, N. JIANG et al., 2008a BEAF regulates cell-cycle genes through the controlled deposition of H3K9 methylation marks into its conserved dual-core binding sites. PLoS Biol **6**: 2896-2910.

EMBERLY, E., R. BLATTES, B. SCHUETTENGRUBER, M. HENNION, N. JIANG et al., 2008b BEAF Regulates Cell-Cycle Genes through the Controlled Deposition of H3K9 Methylation Marks into Its Conserved Dual-Core Binding Sites. Plos Biology **6**: 2896-2910.

GHOSH, D., T. I. GERASIMOVA and V. G. CORCES, 2001 Interactions between the Su(Hw) and Mod(mdg4) proteins required for gypsy insulator function. EMBO J 20: 2518-2527.

GOLOVNIN, A., I. VOLKOV and P. GEORGIJEV, 2012 SUMO conjugation is required for the assembly of Drosophila Su(Hw) and Mod(mdg4) into insulator bodies that facilitate insulator complex formation. J Cell Sci.

James, P., J. Halladay and E. A. Craig, 1996 Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144: 1425-1436.
Conserved Nuclear Factor Required for Optimal Transcriptional Activity of the Cell

Klenova, E. M., R. H. Nicolas, H. F. Paterson, A. F. Carne, C. M. Heath et al., 1993 Ctcf, a Conserved Nuclear Factor Required for Optimal Transcriptional Activity of the

LOBANEKOV, V. V., V. V. ADLER, E. M. KLENOVA, R. H. NICOLAS and G. H. GOODWIN, 1990 Ccctc-Binding Factor (Ctcf) - a Novel Sequence-Specific DNA-Binding Protein Which Interacts with the 5′-Flanking Sequence of the Chicken C-Myc Gene. Gene Regulation and Aids : Transcriptional Activation, Retroviruses, and Pathogenesis 7: 45-68.
Lu, L., and J. Tower, 1997 A transcriptional insulator element, the su(Hw) binding site, protects a chromosomal DNA replication origin from position effects. Molecular and Cellular Biology 17: 2202-2206.

Mohan, M., M. Bartkuhn, M. Herold, A. Philippen, N. Heinl et al., 2007 The Drosophila insulator proteins CTCF and CP190 link enhancer blocking to body patterning. EMBO J 26: 4203-4214.

Moon, H., G. Filippova, D. Loukino, E. Pugacheva, Q. Chen et al., 2005 CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator. EMBO Rep 6: 165-170.

Morais-de-Sa, E., and C. Sunkel, 2013 Adherens junctions determine the apical position of the midbody during follicular epithelial cell division. EMBO Rep 14: 696-703.

APPENDIX
Figure A1. Insulator activity assay.

A phenotypic marker, \(c^{f6} \), results from an insertion of the \(gypsy \) retrotransposon between the wing margin enhancer and the \(cut \) gene promoter, showing a jagged shape of wing edge (GAUSE et al. 2001). Here, \(y^2c^{f6}; su(Hw)^+ \) shows jagged wings, indicating functional insulator activity, yet the \(y^2c^{f6}; su(Hw)^{v/e04061} \) does not.
Figure A2. Degenerated egg chambers during mid-oogenesis in *su(Hw)* mutants.

The green-staining lamin shows the disrupted nurse cell nuclear lamin at stage nine in mutants but not wild-type (A). Arrows point to the stage nine egg chambers. The oocytes of stage six and nine were cropped for better resolution, and wild-type oocytes are shown in B and C and mutants in E and F. The scale bars are 50 μm in A and D, and 5 μm in B, C, E and F.
Figure A3. Su(GFP)::GFP expression driven by various GAL4 drivers.

The egg chambers were stained with GFP antibody in green and F-actin in red. Each image was labeled with its genotype, and the scale bar is equivalent to 50 μm.
Figure A4. Nurse cell dumping occurs while Su(Hw) is expressed in germline cells.

nosGal4 rescued ovaries were stained red for F-actin using phalloidin conjugated with TexRed at stage 10B (A). A zoom-in image was shown in (B). The scale bar is equal to 50 μm in A and 10 μm in B.
Figure A5. The outer diameter of ring canals are different between wild-type and su(Hw) mutants.

The outer ring diameter was measured in egg chambers of both genotypes and the bar chart shows the average outer ring diameter at each stage as labeled with colors. Single asterisks indicate $P < 0.05$ and double asterisks indicate $P < 0.001$.
A6-A. The heatmap of structural constituent of chorion.

The array data from different su(Hw) mutants was analyzed using the gene set enrichment analysis (GSEA) and flies were clustered based on genes in “structural constituent of chorion”. Each mutant has three repeats.
A6-B. The heatmap of multi-cellular organism development
A6-C. The heatmap of eggshell chorion assembly.
Figure A7. Loss of Chk2 does not rescue oogenesis defects in $su(Hw)$ mutants.

Gurken was labeled in green and the signal was detected in different genotype egg chambers with DAPI staining (A and B). The Gurken only signal is shown in mnk^{6006} homozygotes and the $mnk^{6006}; su(Hw)$ double mutants.
Figure A8. The fold change of transcript levels of TEs in $su(Hw)^{e04061}$ compared to wild-type.

Transcript levels of TEs were quantified by real-time PCR and were normalized to rp49. Fold change values represent the relative expression of mRNA in ovaries from $su(Hw)^{e04061}$ homozygotes compared with ovaries from $su(Hw)^{e04061}$ heterozygotes. The late egg chambers of each sample are removed. Two asterisks indicate $P < 0.001$.
Figure A9. Knock-down efficiency of su(Hw) dsRNA in S2 cells.

A. The Su(Hw) RNAi probes 1-9 were designed using the E-RNAi website. B. The dsRNAs were produced by in vitro transcription using DNA templates generated by PCR. Cells were treated with 15 µg su(Hw) dsRNA probe, and the knock-down efficiency of Su(Hw) was measured using western blotting with an anti-Su(Hw) antibody. Rho1 is a positive control for dsRNA treatment and tubulin as internal control. C. Cells were treated with 15 µg su(Hw) dsRNA probe 8 and the knock-down efficiency of Su(Hw) was analyzed using western blotting.
Figure A10. Establishment of tagged Su(Hw) overexpression lines.

A. Su(Hw) expression in control cells and stable lines (N5, C9-1 and C9-2) was checked with Su(Hw) antibody. 50 µg of ovarian protein from Oregon R flies was used as a positive control. B. C9-1 with the highest expression of tagged Su(Hw) was used for immunoflorescence staining and checked for co-localization with Mod(mdg4)67.2 and CP190. CAM antibody was used to detect tagged Su(Hw).
Figure A11. Tandem affinity purification.

The cartoon shows the entire procedure, and the western blot images on the side show the existence of tagged Su(Hw) in each step. Lane 1: control cells and 2: C9-1 cells with tagged Su(Hw) expression.
Table A1. The primer list.

All the primer sets were used in this study and were for different experiments.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5→3)</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco RI-DB-Su(Hw) F-infusion</td>
<td>AGACTACGCTGAATTCAATGAGTCCTCCAAGGAG</td>
<td>Y2H</td>
</tr>
<tr>
<td>Bam HI-DB-Su(Hw) R-infusion</td>
<td>GCAGGTGACGGATCCTCAAGCTTTCTTGTGCT</td>
<td>Y2H</td>
</tr>
<tr>
<td>EcoRI-DB-Mod F infusion</td>
<td>AGACTACGCTGAATTCAATGGCGACGACGACGCA</td>
<td>Y2H</td>
</tr>
<tr>
<td>BamHI-DB-Mod R: infusion</td>
<td>GCAGGTGACGGATCCTCAAGCTTTCTTGTGCT</td>
<td>Y2H</td>
</tr>
<tr>
<td>EcoRI-DB-Sumo F</td>
<td>ATACGAATTCATGTCTGACGAAAAAGAGAGG</td>
<td>Y2H</td>
</tr>
<tr>
<td>BamHI-DB-Sumo R</td>
<td>TACTGGATCCTATTGACGCGCACCAGA</td>
<td>Y2H</td>
</tr>
<tr>
<td>Src64B-F</td>
<td>CATTCTGGTGGAGGAGCTGT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Src64B-R</td>
<td>CCGGGAAGTATGGTAGTTCTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Rp49-F</td>
<td>TGTTCCAGCTCTCAAGATGACCATC</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Rp49-R</td>
<td>CTGGGTGTGCGCCATTTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Gypsy-F</td>
<td>TGAAGACCCGAAATCAAG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Gypsy-R</td>
<td>TCCAGGCCCACATACTGTC</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Jockey-F</td>
<td>GCAGCAGGTTACTCTGAG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Jockey-R</td>
<td>CAGGGTGCCAGACTCTGTC</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Doc3-F</td>
<td>CTTGACCTAGCTCTGCAAG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Doc3-R</td>
<td>GCCATTAGCGTCCAGGTA</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Nomad-F</td>
<td>CAACCCTCTCCAGTGTAC</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Nomad-R</td>
<td>GAGAAAGGTTTACGGACTGT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>X-element-F</td>
<td>CCTTGCGCTACAGAACCTAG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>X-element-R</td>
<td>GCAGCTTGAGCTGGTACTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>RooA-F</td>
<td>CAGAAGATGTTAATCTCCATTT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>RooA-R</td>
<td>TCATTAGTGTAGCTGGT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Baggins-F</td>
<td>GGACCTGTGATCCAGGACGTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Baggins-R</td>
<td>GTGTCCAGAGCATGTCAGT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Primer name</td>
<td>Sequence (5→3)</td>
<td>Experiment</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Beagle-F</td>
<td>CTGACCATCAGCCTTTGAC</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Beagle-R</td>
<td>CAGAGCGTCGGGCTACAGTA</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Stalker-F</td>
<td>GTAGCAGACGCACCTCCTAC</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Stalker-R</td>
<td>CCTAGGCAAATGTTCCCTTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Gtwin-F</td>
<td>ATGAAAGTCCTCGGCAACCT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Gtwin-R</td>
<td>ACGCTTGGTAAAAGTATGCAATTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Tabor-F</td>
<td>GGACCAGACAAGAAAGCAGTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Tabor-R</td>
<td>GAGAACCACGACGTTTTTCCGCT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>412-F</td>
<td>CCGTGATGGGAAATACGCAACCTCCTCCTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>412-R</td>
<td>GGACAACCTGGGATCTCGCCT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Idefix-F</td>
<td>GTACGGTACTGATCAACTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Idefix-R</td>
<td>GAATACACTTTCAGTTGAGACCTCCTCCTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Copia-F</td>
<td>CCCTATTTGAAGCAGTGAGA</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Copia-R</td>
<td>GACATGAGGGTGTGTTTTTCCGCT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>I-Element-F</td>
<td>GCTCTTTCACCTCAGTTGACCTCCTCCTG</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>I-Element-R</td>
<td>GCTAGCAAATCTGAGTGTTTTTCCGCT</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>Su(Hw)K140A F</td>
<td>CACTATGATTTTGTCATAGGATGAGTGATTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)K140A R:</td>
<td>GGTATGCAAGTGAGTGATTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)K145A F</td>
<td>CTGTAATAGAATACGCGCGGCGCACCACACGTTAC</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)K145A R</td>
<td>GATAGCCCGGTTGCTCGGCGCGTGTTTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)V150,152,153A F</td>
<td>CAAGGCGGACCAACCCCGTGATTTTGTCATAGGATGAGTGATTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)V150,152,153A R</td>
<td>GGTATGCAAGTGAGTGATTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)d100 F</td>
<td>GACACCAGGGTTACGTGTCACCTCAGACGCGCGCGTTGATTTTGTCATAGGATGAGTGATTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)d100 R</td>
<td>GTAGAGTTTTCCGCTCAGGAGGTGAGTGAGTGAGTGAGTGATTTTGTCATAGGATGAGTGATTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Sumo-GG F</td>
<td>CAGCAGCAGACTGTTGAGTGTAAGGCAGTGTCAGGCTTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Sumo-GG R</td>
<td>GTGCCTGTCTAGGATCTCGGCTTTTCCGCTTTTCCGCTTTTCCGCTTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)J71,73&L74A F</td>
<td>GCAAGGTTGTCGGATGAGTGAGTGAGTGAGTGATTTTGTCATAGGATGAGTGATTTTCCGCT</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)J71,73&L74A R</td>
<td>GGTGTCGGGTTGCTTGGGTTGCTTTTCCGCTTTTCCGCTTTTCCGCT</td>
<td>SDM</td>
</tr>
</tbody>
</table>
Table A1. Continued.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5'→3)</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Su(Hw)S65D F</td>
<td>CAACAAGCAGAGGAAGGCGATGGCCCGATGGCGATGTGCCGACCATCAAAA</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw)S65D R</td>
<td>TTTTGATGCGCGATCCAGCGACATCGCCACCTCTCTCTGTGTTG</td>
<td>SDM</td>
</tr>
<tr>
<td>Sumo-dGG F</td>
<td>GGTTTACCCAGCAGACCTTAAGGAGATCGCGACCTGCACCTGC</td>
<td>SDM</td>
</tr>
<tr>
<td>Sumo-dGG R</td>
<td>GCAGGTCGACAGGCTTTAAAGTCTGCTGCTGGTAACC</td>
<td>SDM</td>
</tr>
<tr>
<td>Sumo-dGG in pPAC-FlagF</td>
<td>GGTTAACCCAGCAGACCTTAAGAGGTCCGAGATCGCCGTC</td>
<td>SDM</td>
</tr>
<tr>
<td>Sumo-dGG in pPAC-FlagR</td>
<td>GACGGATCCTGAGCTTTAAGGCTGCTGCTGGTAACC</td>
<td>SDM</td>
</tr>
<tr>
<td>Rho1 dsRNA probe-F</td>
<td>TAATACGACTCTACTATAGGTATTGTGTTGTTATGTTAGTTGCGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Rho1 dsRNA probe-R</td>
<td>TAATACGACTCTACTATAGGATCAAGAAACACAACAGACATCG</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe1-F</td>
<td>ttaatacgtcactatagggagTGGGAGATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe1-R</td>
<td>ttaatacgtcactatagggagTGGGAGATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe2-F</td>
<td>gacttaatacgtcactatagggagCTCTCCAGACCTTCCTGCTGGTAAACC</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe2-R</td>
<td>gacttaatacgtcactatagggagCTCTCCAGACCTTCCTGCTGGTAAACC</td>
<td>SDM</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe3-F</td>
<td>gaaatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe3-R</td>
<td>gaaatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe4-F</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe4-R</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe5-F</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe5-R</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe6-F</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe6-R</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe7-F</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe7-R</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe8-F</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe8-R</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe9-F</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>Su(Hw) dsRNA probe9-R</td>
<td>taatacgtcactatagggagTTATCGGAAATCGCCGACCTGCACCTGC</td>
<td>dsRNA</td>
</tr>
<tr>
<td>psu(Hw)-TAP F</td>
<td>ACTACCATGGGAGATGAGCTCCATCTCCAAGGCGGAGG</td>
<td>Cloning</td>
</tr>
<tr>
<td>psu(Hw)-TAP R</td>
<td>TGCCCAATTGGAGCTTCTCTGTGTTCCGCTAC</td>
<td>Cloning</td>
</tr>
</tbody>
</table>
VITA

Shih-Jui Hsu was born in Taipei, Taiwan. In 2001, she graduated from National Chung Hsing University in Taichung with a Bachelor’s in Science with a major in Zoology. Her undergraduate study stimulated her curiosity to explore science, propelling her to pursue graduate studies in the lab of Dr. Shun-Yuan Jiang at the National Defense Medical Center in Taiwan where she earned her Master’s degree in 2003. After two years working as a research assistant with Dr. Hsieh at Academia Sinica in Taiwan, she decided to gain a completely new research experience in the U.S by enrolling in the graduate program of Biochemistry, Cellular, and Molecular Biology Department at the University of Tennessee-Knoxville in 2006. She began her PhD work in the lab of Dr. Mariano Labrador. While working as a graduate student, she enjoyed the many opportunities to teach lab courses and discussion sections, and was ultimately honored with the Outstanding Teaching Assistant Award in 2011 and the Kouns Excellence in Teaching Award in 2013.