Design of a Clinical Boron Neutron Capture Therapy Treatment Facility: An Adaptation for University Honors Department senior project requirements

Joshua Taylor Carson
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj

Recommended Citation
https://trace.tennessee.edu/utk_chanhonoproj/203
Design of a Clinical Boron Neutron Capture Therapy Treatment Facility: an adaptation for University Honors Department senior project requirements

Joshua T. Carson
December 16, 1996
Table of Contents

Background ... 1

Purpose .. 1

Design of a Clinical Boron Neutron Capture Therapy (BNCT) 2
Treatment Facility - a project explanation

Group Methods to Facilitate Project Completion ... 3

Personal Contributions to the Group Project .. 3

Opinions and Insights about the Design Project ... 5
Background

As a recipient of the University of Tennessee, Knoxville's Whittle Scholarship, one of my requirements for graduation is the completion of a University Honors Program senior project. As outlined in the University Honors Program Student Handbook, the senior project is "an opportunity for each honors student to become engaged in research or creative activity that marks a capstone of the undergraduate experience." Although a large portion of senior projects relate to the student's field of study, the University Honors Department does not require that a student complete his/her project in his/her academic major. This loose constraint allows students to explore new areas and to learn things they otherwise would not have studied in school. Because of the extreme scope these senior projects can be focused on, the University Honors Department has incorporated a few general requirements to qualify a student's work as a senior project.

The first requirement for a student to complete is to select and recruit a faculty mentor. As the primary purpose of the faculty mentor is to assist and guide the student along his/her senior project, a faculty mentor should be knowledgeable in the project's subject and accessible to the student. Selecting a faculty mentor is a crucial part of the senior project for he/she will have to approve the initial senior project prospectus, to review and edit drafts of the project, and to approve the final draft for submission as a senior project. After selecting a faculty mentor, the second requirement of a senior project is to enroll in the senior project seminar, a one-hour class taught by the University Honors' department head. Although this class is designed around the senior project, its emphasis is not on completing the senior project, but rather to assist students in selecting, researching, and beginning their senior projects, to expose students to various other academic interests, and to provide students the opportunity to deliver professional oral presentations.

Recognizing that many academic majors also require some type of senior research or senior design project to culminate a student's undergraduate experience, the University Honors Department provides a method, listed in the University Honors Program Student Handbook, to complete both requirements with a single project: "If a student wishes to use some part of a senior non-honors or group project as the student's senior honors project, the additional effort should be clearly defined on the 'Senior Project Approval,' and permission should be obtained from the University Honors Office." Upon completion of these requirements for a University
Honors senior project, students should finish a work that can be placed upon their resumes and discussed with prospective employers or admissions boards.

Purpose

The purpose of this paper is to adapt my nuclear engineering senior design project, "Design of a Clinical Boron Neutron Capture Therapy Treatment Facility," to the constraints and qualifications necessary to satisfy the requirements of a University Honors Program's senior project. In order to accomplish this goal, the remainder of this paper will focus on explaining the project in a non-technical fashion, the methods used by my group to complete the design project, my personal contributions to the design project, and my insights and opinions on the design project.

Design of a Clinical Boron Neutron Capture Therapy (BNCT) Treatment Facility - a project explanation

BNCT is an idea concerning the treatment and destruction of formerly inoperable tumors. Patients are given a solution of boron which is readily absorbed by and concentrated in the malignant tumor cells. Upon being exposed to a stream of neutrons, a boron atom will absorb a neutron and split into two particles. The separation, or fission, of the boron atom will generate enough energy to kill the malignant cell without harming the surrounding healthy cells. However, this process is far more difficult than it first appears. Not only must a neutron collide with a boron atom, that neutron must have a certain energy level when the collision occurs. If the energy level of the neutron is too high or too low, the desired separation of the boron atom will not occur.

As neutrons must not only engage boron atoms but engage them in a specific energy range, my design project focuses primarily on changing the energy of the neutrons when they arrive at the boron atoms, and secondly on designing a BNCT treatment center layout. As one possible source of neutrons for BNCT, Oak Ridge National Lab's Tower Shielding Reactor (TSR), lies within a short drive from Knoxville, my class's goal would be to design the treatment facility at the TSR and apply the above foci. The results and further
explanation of the project is contained in our final draft, "Design of a Clinical Boron Neutron Capture Therapy Treatment Facility."

Group Methods to Facilitate Project Completion

Selected from the students enrolled in the Spring 1996 section of Nuclear Engineering 472, my design group consisted of six students: Chet Ramsey, Cindy Maples, Don Marsh, Anne Robinson-Silber, Randy Hooker, and myself. Once we were assigned to groups, our first task was to decide how we wanted to approach this project. Following much discussion, we decided that we would begin our research by gaining an understanding of the history behind BNCT and the TSR. Once comfortable with the basic terminology associated with BNCT and the TSR, we began our second task, deciding upon the scope and organization of our work. Over the course of the next few weeks, we narrowed down the scope of our project to include the design of a shutter and collimator system for the TSR, as well as a design for the treatment facility. Eventually, we broke it down into fifteen basic elements, listed in section 1.4 of "Design of a Clinical Boron Neutron Capture Therapy Treatment Facility." We then assigned group members to work in various categories according to his/her interests and skills. Around this time in the project we decided that in order to promote efficiency among the group that we would need to appoint group leader. Although the group leader would be expected to assist and to assign work to other team members, he/she would also have to perform duties of his/her own, which weighed heavily upon our decision when electing a member to this position. Eventually, Chet Ramsey was appointed our group leader. After breaking down the project and assigning group members to specific tasks, the final, and most difficult aspect, of our project was to accumulate all of the information we had collected and insert it into a report fashion. This proved to be troublesome as combining the thoughts and ideas of six unique individuals is a combination of much time and patience.

Personal Contributions to the Group Project

In addition to performing some common tasks of the group (e.g., background research, report editing, and report writing), I concentrated my efforts primarily on the economic, licensing, and mechanical design
aspects of our design project. Obtaining estimates on the construction of the BNCT facility, discussing and determining necessary equipment and personnel for the facility, collecting estimates on the equipment and personnel, determining approximate cost of treatment, estimating start-up, maintenance, operating, and decommissioning costs, and determining the cost of licensing the facility were primary interests in the economic analysis of our design. In order to accomplish these tasks, I had to contact multiple individuals who were knowledgeable on many different subjects. For instance, to obtain an estimate for the construction of our proposed facility, I discussed the floor plans with Randy and Cindy to determine the absolute necessary components for construction (e.g., the treatment room must have concrete walls) and then spoke with different contractors who would be able to bid on such a job. In order to determine what equipment and personnel would be necessary to operate such a facility, I spoke with several chemists, doctors, and nurses who provided valuable opinions. After deciding what we needed, I then had to contact distributors of the equipment to obtain estimates. Much of my time was also spent discussing the estimated start-up, maintenance, shutdown, and decommissioning costs with several individuals at Tennessee Center for Research and Development, a Knoxville company currently working on a feasibility study for a BNCT treatment facility at the TSR.

In addition to the economic research, I invested a great deal of time in researching the licensing aspects of our design. The majority of this research was done over the phone, conversing with individuals at the Oak Ridge National Lab, the Department of Energy, and other government organizations. In addition to the multiple conversations, I spent time reading some government regulations that were determined to be of primary importance to our design. Although much research was put into the licensing necessary to operate our proposed BNCT treatment facility, a large portion was left for future work until greater details about the facility are available.

Not all of my contributions to the project were in the form of pure research and persistence, as I was also involved with the mechanical design of the shutter/collimator system. This gave me an opportunity to implement some of the critical thinking skills that are so necessary to engineering. After discussing the pros and cons of many ideas, we decided that rather than modify the existing system at the TSR, we would design a
entirely new system. Much of my personal contribution to this facet of the design project revolved around intrinsic safety features and stability of the system.

Opinions and Insights about the Design Project

Overall, I found this design project to be an interesting and informative endeavor. Although we did not have the opportunity to choose our own project, designing a BNCT treatment facility was an excellent choice because it was able to combine traditional facets of nuclear engineering (e.g., neutron transport) with the health physics/medical side of nuclear engineering. This not only peaked different interests in our group, but also forced us to become more dynamic in our thinking. Requiring everything from library research to computer simulations to personal inquiries, the project took the form of "real world" engineering.

Although the technical skills developed and information acquired may prove useful in the future, the most important skills developed during this project came from the challenge of six individuals attempting to work together as one team. Through this experience, I gained insight on how important communication was to the group's success, how different individuals express their thoughts and opinions in different ways, how utilizing the talents of different individuals can lead to greater efficiency, how different people are productive in different settings, and many other things. Participating in this group gave me further conviction as to the importance of being able to communicate and listen to others, no matter what field I enter.

Even with the success of my project, if I had to do it again there are a few changes I would attempt to implement. First of all, I would definitely begin the research earlier. Although a last minute alteration may not be able to be avoided, I can not stress enough the importance of pacing yourself throughout the semester. Not only will this lead to a project of higher quality, it will also make the project more enjoyable. Secondly, I would attempt to get involved in almost all of the facets of the project. Once again, the greater your involvement in the project, the more you will enjoy and learn from it. Finally, I would not hesitate to contact people who have offered to help you and even those that have not. I was surprised at how much information can be obtained with a little explanation of my project along with a few "please and thank you"s. More times than not people were willing to go out of their way to help me with the project.
Design of a Clinical Boron Neutron Capture Therapy Treatment Facility: an adaptation for University Honors Department senior project requirements

Joshua T. Carson
December 16, 1996
Table of Contents

Background ... 1

Purpose .. 1

Design of a Clinical Boron Neutron Capture Therapy (BNCT)2
Treatment Facility - a project explanation

Group Methods to Facilitate Project Completion .. 3

Personal Contributions to the Group Project .. 3

Opinions and Insights about the Design Project .. 5
Background

As a recipient of the University of Tennessee, Knoxville’s Whittle Scholarship, one of my requirements for graduation is the completion of a University Honors Program senior project. As outlined in the University Honors Program Student Handbook, the senior project is “an opportunity for each honors student to become engaged in research or creative activity that marks a capstone of the undergraduate experience.” Although a large portion of senior projects relate to the student’s field of study, the University Honors Department does not require that a student complete his/her project in his/her academic major. This loose constraint allows students to explore new areas and to learn things they otherwise would not have studied in school. Because of the extreme scope these senior projects can be focused on, the University Honors Department has incorporated a few general requirements to qualify a student’s work as a senior project.

The first requirement for a student to complete is to select and recruit a faculty mentor. As the primary purpose of the faculty mentor is to assist and guide the student along his/her senior project, a faculty mentor should be knowledgeable in the project’s subject and accessible to the student. Selecting a faculty mentor is a crucial part of the senior project for he/she will have to approve the initial senior project prospectus, to review and edit drafts of the project, and to approve the final draft for submission as a senior project. After selecting a faculty mentor, the second requirement of a senior project is to enroll in the senior project seminar, a one-hour class taught by the University Honors’ department head. Although this class is designed around the senior project, its emphasis is not on completing the senior project, but rather to assist students in selecting, researching, and beginning their senior projects, to expose students to various other academic interests, and to provide students the opportunity to deliver professional oral presentations. Recognizing that many academic majors also require some type of senior research or senior design project to culminate a student’s undergraduate experience, the University Honors Department provides a method, listed in the University Honors Program Student Handbook, to complete both requirements with a single project: “If a student wishes to use some part of a senior non-honors or group project as the student’s senior honors project, the additional effort should be clearly defined on the ‘Senior Project Approval,’ and permission should be obtained from the University Honors Office.” Upon completion of these requirements for a University
Honors senior project, students should finish a work that can be placed upon their resumes and discussed with prospective employers or admissions boards.

Purpose

The purpose of this paper is to adapt my nuclear engineering senior design project, "Design of a Clinical Boron Neutron Capture Therapy Treatment Facility," to the constraints and qualifications necessary to satisfy the requirements of a University Honors Program’s senior project. In order to accomplish this goal, the remainder of this paper will focus on explaining the project in a non-technical fashion, the methods used by my group to complete the design project, my personal contributions to the design project, and my insights and opinions on the design project.

Design of a Clinical Boron Neutron Capture Therapy (BNCT) Treatment Facility - a project explanation

BNCT is an idea concerning the treatment and destruction of formerly inoperable tumors. Patients are given a solution of boron which is readily absorbed by and concentrated in the malignant tumor cells. Upon being exposed to a stream of neutrons, a boron atom will absorb a neutron and split into two particles. The separation, or fission, of the boron atom will generate enough energy to kill the malignant cell without harming the surrounding healthy cells. However, this process is far more difficult than it first appears. Not only must a neutron collide with a boron atom, that neutron must have a certain energy level when the collision occurs. If the energy level of the neutron is too high or too low, the desired separation of the boron atom will not occur.

As neutrons must not only engage boron atoms but engage them in a specific energy range, my design project focuses primarily on changing the energy of the neutrons when they arrive at the boron atoms, and secondly on designing a BNCT treatment center layout. As one possible source of neutrons for BNCT, Oak Ridge National Lab’s Tower Shielding Reactor (TSR), lies within a short drive from Knoxville, my class’s goal would be to design the treatment facility at the TSR and apply the above foci. The results and further
explanation of the project is contained in our final draft, “Design of a Clinical Boron Neutron Capture Therapy Treatment Facility.”

Group Methods to Facilitate Project Completion

Selected from the students enrolled in the Spring 1996 section of Nuclear Engineering 472, my design group consisted of six students: Chet Ramsey, Cindy Maples, Don Marsh, Anne Robinson-Silber, Randy Hooker, and myself. Once we were assigned to groups, our first task was to decide how we wanted to approach this project. Following much discussion, we decided that we would begin our research by gaining an understanding of the history behind BNCT and the TSR. Once comfortable with the basic terminology associated with BNCT and the TSR, we began our second task, deciding upon the scope and organization of our work. Over the course of the next few weeks, we narrowed down the scope of our project to include the design of a shutter and collimator system for the TSR, as well as a design for the treatment facility. Eventually, we broke it down into fifteen basic elements, listed in section 1.4 of “Design of a Clinical Boron Neutron Capture Therapy Treatment Facility.” We then assigned group members to work in various categories according to his/her interests and skills. Around this time in the project we decided that in order to promote efficiency among the group that we would need to appoint group leader. Although the group leader would be expected to assist and to assign work to other team members, he/she would also have to perform duties of his/her own, which weighed heavily upon our decision when electing a member to this position. Eventually, Chet Ramsey was appointed our group leader. After breaking down the project and assigning group members to specific tasks, the final, and most difficult aspect, of our project was to accumulate all of the information we had collected and insert it into a report fashion. This proved to be troublesome as combining the thoughts and ideas of six unique individuals is a combination of much time and patience.

Personal Contributions to the Group Project

In addition to performing some common tasks of the group (e.g., background research, report editing, and report writing), I concentrated my efforts primarily on the economic, licensing, and mechanical design
aspects of our design project. Obtaining estimates on the construction of the BNCT facility, discussing and
determining necessary equipment and personnel for the facility, collecting estimates on the equipment and
personnel, determining approximate cost of treatment, estimating start-up, maintenance, operating, and
decommissioning costs, and determining the cost of licensing the facility were primary interests in the
economic analysis of our design. In order to accomplish these tasks, I had to contact multiple individuals who
were knowledgeable on many different subjects. For instance, to obtain an estimate for the construction of our
proposed facility, I discussed the floor plans with Randy and Cindy to determine the absolute necessary
components for construction (e.g., the treatment room must have concrete walls) and then spoke with different
contractors who would be able to bid on such a job. In order to determine what equipment and personnel
would be necessary to operate such a facility, I spoke with several chemists, doctors, and nurses who provided
valuable opinions. After deciding what we needed, I then had to contact distributors of the equipment to obtain
estimates. Much of my time was also spent discussing the estimated start-up, maintenance, shutdown, and
decommissioning costs with several individuals at Tennessee Center for Research and Development, a
Knoxville company currently working on a feasibility study for a BNCT treatment facility at the TSR.

In addition to the economic research, I invested a great deal of time in researching the licensing
aspects of our design. The majority of this research was done over the phone, conversing with individuals at
the Oak Ridge National Lab, the Department of Energy, and other government organizations. In addition to the
multiple conversations, I spent time reading some government regulations that were determined to be of
primary importance to our design. Although much research was put into the licensing necessary to operate our
proposed BNCT treatment facility, a large portion was left for future work until greater details about the facility
are available.

Not all of my contributions to the project were in the form of pure research and persistence, as I was
also involved with the mechanical design of the shutter/collimator system. This gave me an opportunity to
implement some of the critical thinking skills that are so necessary to engineering. After discussing the pros
and cons of many ideas, we decided that rather than modify the existing system at the TSR, we would design a
entirely new system. Much of my personal contribution to this facet of the design project revolved around intrinsic safety features and stability of the system.

Opinions and Insights about the Design Project

Overall, I found this design project to be an interesting and informative endeavor. Although we did not have the opportunity to choose our own project, designing a BNCT treatment facility was an excellent choice because it was able to combine traditional facets of nuclear engineering (e.g., neutron transport) with the health physics/medical side of nuclear engineering. This not only peaked different interests in our group, but also forced us to become more dynamic in our thinking. Requiring everything from library research to computer simulations to personal inquiries, the project took the form of “real world” engineering.

Although the technical skills developed and information acquired may prove useful in the future, the most important skills developed during this project came from the challenge of six individuals attempting to work together as one team. Through this experience, I gained insight on how important communication was to the group’s success, how different individuals express their thoughts and opinions in different ways, how utilizing the talents of different individuals can lead to greater efficiency, how different people are productive in different settings, and many other things. Participating in this group gave me further conviction as to the importance of being able to communicate and listen to others, no matter what field I enter.

Even with the success of my project, if I had to do it again there are a few changes I would attempt to implement. First of all, I would definitely begin the research earlier. Although a last minute alteration may not be able to be avoided, I cannot stress enough the importance of pacing yourself throughout the semester. Not only will this lead to a project of higher quality, it will also make the project more enjoyable. Secondly, I would attempt to get involved in almost all of the facets of the project. Once again, the greater your involvement in the project, the more you will enjoy and learn from it. Finally, I would not hesitate to contact people who have offered to help you and even those that have not. I was surprised at how much information can be obtained with a little explanation of my project along with a few “please and thank you”s. More times than not people were willing to go out of their way to help me with the project.
Design of a Clinical Boron Neutron Capture Therapy Treatment Facility

Chet Ramsey
Cindy Maples
Don Marsh
Anne Robinson-Silber
Josh Carson
Randy Hooker

Undergraduate Entry
University of Tennessee, Knoxville

April 17, 1996

American Nuclear Society
Student Design Competition

Faculty Advisor
Dr. H. L. Dodds, Jr.

Nuclear Engineering Department
The University of Tennessee, Knoxville
Dedication

We would like to dedicate our work to the 5415 people that die every year from Glioblasoma Multiform
Acknowledgments

We would like to thank the following individuals for their time and expertise in speaking to our design class: G. Flanagan, D. Ingersoll, C. Slater, and W. Hill of Oak Ridge National Laboratories, G. Dilworth and C. Wilson of the Tennessee Center for Research and Development, G. Kabalka of the University of Tennessee Chemistry Department and R. A. Lillie. We would also like to thank R. Pevey and S. Goluoglu for their tireless efforts and assistance with DORT and other computer codes. An additional thanks to C. Wilson for his input in the economic analysis and to G. Kabalka for assistance in the medical facility design. Our thanks to T. Kerlin for reviewing our original report draft. Finally to H. L. Dodds, our sincere gratitude for his efforts in coordination and organization of our project.
Abstract

The goal of this design project is to develop a conceptual design of a clinical facility for Boron Neutron Capture Therapy that utilizes Oak Ridge National Laboratory’s Tower Shielding Reactor as the neutron source. The primary focus of this report is to develop an overall facility design as well as designs for a conceptual beam collimator and beam shutter. Additionally, system safety and facility economics are addressed.

The overall facility design includes treatment rooms, a confinement building, and supporting medical facilities. The medical facilities support the outpatient treatment of cancer patients in a comfortable environment. The treatment room and confinement building provide protection for the patients, environment, and personnel during normal and abnormal operations. Facility economics are evaluated for startup, maintenance, operating, and decommissioning costs as well as income generated from treating patients.
Table of Contents

1. Introduction .. 1
 1.1 Background .. 1
 1.2 Design Objectives .. 3
 1.3 Scope and Organization of Work 4
 1.4 Work Breakdown Structure 5

2. BNCT History .. 7
 2.1 Initial Clinical Trials 7
 2.2 Boron Chemistry .. 8
 2.3 Current Clinical Trials 10

3. Site Selection ... 12
 3.1 Neutron Sources ... 12
 3.2 Possible Reactor Sites in the U.S. 13
 3.3 Possible Reactor Sites at ORNL 14
 3.4 The Tower Shielding Facility 16
 3.5 TSR Core Region .. 18
 3.6 Core Heat Transfer .. 19

4. Beam Shutter Design .. 21
 4.1 Description of System and Operation 22
 4.2 Interchangeable Filter Design 25
 4.3 Safety Features ... 26
 4.4 Hydraulic System Specifics 26

5. Shutter Design .. 29
 5.1 Shutter Calculations 29
 5.2 Detailed Description of Shutter Design 30

6. Collimator Design ... 32
 6.1 Collimator Modeling and Calculations 32
 6.2 Programs to Analyze DORT Output 33
 6.3 Collimator Optimization 35
 6.4 Detained Collimator Design 43

7. Clinical Facility Design 47
 7.1 Site Location ... 47
 7.2 Present Tower and Facility Layout 47
 7.3 Proposed Additions ... 49
 7.4 Optional Thermal Treatment Room 53
 7.5 Treatment Sequence .. 54
 7.6 Filtration System ... 55
 7.7 Reactor Coolant System 56
 7.8 Future Expansion ... 57

8. Conclusions .. 58

9. Future Work .. 59
Chapter 1

Introduction

1.1 Background

In the United States, 1,515 people die every day from all types of cancer. At present, the only way to survive is with an effective treatment, but with some forms of cancer there is none. An ideal treatment for cancer would ignore normal cells while simultaneously seeking out and destroying rapidly dividing cells. With today's medical, chemical, and nuclear technology, a procedure based on these principles has been successfully administered.

Boron neutron capture therapy (BNCT) is a treatment that brings together two components that individually have little effect on normal tissue. The first component is a chemical compound that contains the stable isotope boron-10, and the second is a beam of neutrons. When injected into the body, the chemical compound will concentrate in cancerous cells. After a short period of time, the boron compound is biologically removed from normal tissue. When the boron-10 absorbs neutrons it subsequently decays by alpha emission. The alpha particle and the recoiling lithium atom deposit most of their energy inside the cell containing the original boron. The result of this reaction is a deadly radiation field of heavy particles localized to tumor cells as shown in Figure 1.1.
Although treatment such as surgery, chemotherapy, and radiation have successfully treated many types of cancer, there are some forms for which BNCT is the only solution. One of the most highly malignant and resistant of all cancers is Glioblasoma Multiform (GBM). GBM is a cancer of the glial supportive tissue of the central nervous system (CNS). Glial cells, which make up over 90 percent of the CNS, provide chemical and physical support to neurons. Unlike neurons, glial cells are extremely susceptible to cancer because they are constantly undergoing mitosis. The standard treatment for GBM is an external beam of 4 to 6 MeV X-rays, given in doses of approximately 60 Gy administered in fractions of 1.8 to 2.0 Gy daily five days a week.31 Unfortunately, this method destroys much of the intervening healthy brain tissue in the beam path, and unless every cancer cell is killed, there is a possibility that the cancer will reestablish itself. The median survival rate for treated GBM ranges from eight to fourteen months while untreated GBM results in a median survival rate of three months.

During 1995, approximately 323,000 people in the United States died from brain, colon, skin, lung, breast, and prostate cancer, all of which could have been treated with BNCT. If proven effective, over 90,000 patients yr-1 could qualify for BNCT. The life extension and higher quality of life beyond conventional treatments could potentially return over $73 billion to the U.S. Treasury over a 10 year period.14
1.2 Design Objectives

The goal of this design project is to develop a conceptual design of a clinical facility for Boron Neutron Capture Therapy that utilizes Oak Ridge National Laboratory’s (ORNL) Tower Shielding Reactor (TSR) as the neutron source. The primary focus of this project is to develop an overall facility design as well as designs for a conceptual beam collimator and beam shutter. Additionally, system safety and facility economics will be addressed by the final design.

The beam collimator should be designed in order to maximize the dose delivered to the tumor and minimize the dose delivered to the rest of the body by varying the diameter, thickness, material, and angle of the collimator as shown in Figure 1.2. The neutron fluence incident on the collimator is anisotropic and equally distributed across its surface. In order to minimize radiation exposure to the body, the neutron leakage from the reactor is collimated into a narrow beam.

In order to maximize the number of patients treated daily and reduce stress on the reactor core, the reactor will not shut down between treatments. A shutter should be designed to reduce the radiation exposure in the treatment room to levels as low as
reasonably achievable, thus allowing unrestricted entry for attending personnel. The shutter design should also contain a safety system to insure closure during both normal and credible abnormal operations.

The overall facility design includes treatment rooms, a confinement building, and supporting medical facilities. The medical facilities will support the outpatient treatment of cancer patients in a comfortable environment. The treatment room and confinement building will provide protection for the patients, environment, and personnel during normal and abnormal operations. Facility economics will also be evaluated for startup, maintenance, operating, and decommissioning costs as well as income generated from treating patients.

1.3 Scope and Organization of Work

Chapter 2 of this report summarizes the history and previous research that has gone into making boron neutron capture therapy a viable treatment method. This section also summarizes the work that has gone into boron chemistry, animal testing, and clinical trials.

Chapter 3 describes the selection process for finding an appropriate neutron source. The advantages and disadvantages of different types of neutron sources are discussed. The final selection of the Tower Shielding Reactor is also discussed.

Chapter 4 summarizes the design of the hydraulics used to move the shutter. Safety systems and interchangeable filters are also discussed.
Chapter 5 summarizes the design of the shutter for the neutron beam. This section discusses the materials chosen for the shield.

Chapter 6 summarizes the design of the collimator for the epithermal beam. This section also discusses the materials and geometry chosen for the fabrication of the collimator.

Chapter 7 summarizes the design of the facility including the medical, chemical, and nuclear aspects. Related equipment required for standard operations and safety are also discussed. Additionally, suppliers and cost estimates for the overall facility and related equipment are also given in Chapter 7.

The complete facility design is provided in Chapter 8. A total cost estimate for the start-up, maintenance, operating, and decommissioning is discussed. Treatment cost and revenue generated are also discussed in Chapter 8.

Chapter 9 describes work that needs to be considered for the future.

1.4 Work Breakdown Structure

<table>
<thead>
<tr>
<th></th>
<th>Joshua Carson</th>
<th>Randall Hooker</th>
<th>Cynthia Maples</th>
<th>Donald Marsh</th>
<th>Chester Ramsey</th>
<th>Anne Robinson-Silber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Research</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Collimator Design Cases</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Economic Analysis</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Economic Research</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Equipment Research</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Facility Design</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facility Research</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Familiarization with</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Codes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licensing Research</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Materials Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mechanical Design</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Medical Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Editing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Report Writing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Shutter Design Cases</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Chapter 2

BNCT History

2.1 Initial Clinical Trials

The therapeutic potential of boron neutron capture therapy is not a new idea. It was a dream first conceptualized in 1936 by G.L. Locher of the Franklin Institute, but was not given form until 1951 by W.H. Sweet. Sweet and his colleagues first demonstrated that the chemical compound borax would concentrate in tumor cells in the human brain. Shortly thereafter, clinical trials were initiated at the Brookhaven National Laboratory (BNL) in conjunction with the Massachusetts General Hospital. The trials at BNL were carried out from 1951 to 1952 and additional trials were carried out from 1961 to 1962 at the Massachusetts Institute of Technology (MIT). Unfortunately, the trials failed to show any therapeutic advantage, and in some cases, actually shortened the patient’s life. The first boron compounds used did not achieve selective localization in the tumor due to their diffusibility and low molecular weight. This, combined with a beam of thermal neutrons that was rapidly attenuated in tissue, resulted in massive damage to adjacent skin and brain.

Fortunately, one of the researchers, H. Hatanaka, returned to Japan to continue working on boron neutron capture therapy. Dr. Hatanaka treated over a hundred patients with a wide variety of tumor grades and history with promising results, as shown in Figure 2.1. Group 1 represents 46 patients who received chemotherapy and radiation treatment.
before their BNCT treatment. Group 2 represents all 38 patients that received only BNCT between 1968 and 1985. Group 3 represents the twelve BNCT patients with tumors less than six centimeters from the surface of the brain. Group 4 represents the eleven patients treated between 1987 and 1989. The five year survival rate for Group 3 patients was 58.3 percent and 68 percent for Group 4. The five year survival rate with conventional surgery, chemotherapy, and radiotherapy was 4.6 percent.

2.2 Boron Chemistry

Several nuclides have high cross sections for thermal neutrons, but boron-10 is the only one that is ideally suited for BNCT. Boron-10 is not radioactive and is readily available, comprising approximately 20 percent of naturally occurring boron. The particles

Figure 2. 1 Hatanaka Data
emitted by the neutron capture reaction $^{10}\text{B}(n,\alpha)^{7}\text{Li}$ have a high Linear Energy Transfer (LET), and their path lengths are approximately one cell diameter (10 microns). This effect theoretically limits the radiation damage to tumor cells that have taken up a sufficient amount of boron-10. Another advantage of boron-10 is that the alpha particles can kill dividing and non dividing cells alike. This is important because tumors are known to have a large number of viable but inactive cells, and other forms of radiation treatment and chemotherapy work best only on cells that are dividing.

Boron compounds used in BNCT have a high specificity for malignant cells with low concentrations in normal tissue and blood.10 Initially, boron compounds such as sodium borate and boric acid were selected for their availability, known pharmacology, and lack of toxicity. The differences in the concentration between the tumor and brain for these chemicals, which was small to begin with, dissipated over a period of 1 to 2 hours. These shortcomings prompted a major effort in boron chemistry, which resulted in over a hundred compounds being screened.6 Eventually, p-carboxybenzeneboronic acid and sodium decahydrodecaborate were selected for the first clinical trials at MIT.

Researchers at Shionogi Research Laboratories developed and synthesized the compound $\text{Na}_2\text{B}_{12}\text{H}_{11}\text{SH}$, also known as BSH, for use in BNCT.18 Dr. Hatanaka determined boron uptake by surgically collecting tissue samples from 57 patients. These patients received BSH doses of 30 to 80 mg per kilogram of body weight approximately twelve hours before neutron irradiation. The average concentration was 26.3 ppm in the tumor and 18.2 ppm in the blood, and the mean tumor to blood ratio was 1.69.
Recently, there has been an increasing interest in the boron containing amino acid borophenylalanine (BPA).11 In Japan, BPA was used as a capture agent for BNCT of melanomas in both humans and animals.24 BPA has a very low toxicity, a high affinity to tumor cells, a tumor-to-blood ratio of 3.5, and a tumor-to-brain ratio of 3.9.28 It is these characteristics that make clinical BNCT possible.4

2.3 Current Clinical Trials25

Dr. Hatanaka’s patients are treated with a thermal neutron beam that has a penetration of 3 to 4 centimeters. In order to treat deep seated tumors, a craniotomy is performed to remove the scalp and skull. Even with the craniotomy the treatment lasts from 1 to 6 hours. To overcome this limitation, current BNCT research is directed at filtering out fast neutrons, thermal neutrons, and photons to produce an epithermal neutron beam with an energy range of 0.5 eV to 10 keV. An epithermal neutron beam passes through the skin and skull and moderates to thermal energy levels around 2 cm into the brain, allowing the treatment of tumors deeper than 4 cm without surgery. With an epithermal fluence of 1×10^9 n/cm2 sec$^{-1}$, the treatment period is reduced to under one hour.8

At present, there are two groups in the United States using the epithermal neutron beam approach to treat patients on an experimental basis. In 1994 the Brookhaven Medical Research Reactor, as shown in Figure 2.2, received approval from the Food and Drug Administration (FDA) to treat 28 patients dying of GBM. In 1995 MIT began clinical BNCT trials, and the University of Missouri is conducting animal tests.27 It is
expected that the FDA will give final approval for BNCT to be used as a clinical treatment within the next two years.32

Figure 2.2 The Brookhaven Medical Research Reactor

A - Reactor Core
B - Beam Shutter
C - Epithermal Filter
Chapter 3

Site Selection

3.1 Neutron Sources

An epithermal neutron fluence rate greater than 1×10^9 neutrons cm$^{-2}$ sec$^{-1}$ is needed for successful boron neutron capture therapy. At the present time, only nuclear reactors are capable of generating such beams. There are approximately 35 research reactors, with power levels greater than 1 MW, in the United States that could potentially be modified for boron neutron capture therapy. The Brookhaven Medical Research Reactor, the MIT Research Reactor, and the Georgia Institute of Technology Research Reactor have irradiation facilities that were designed for medical and biological research.

One alternative source for the epithermal neutrons needed for boron neutron capture therapy is the spontaneously fissioning isotope californium-252. 252Cf has a half-life of 2.645 years and decays by spontaneous fission 3.09 percent of the time. 252Cf has a prompt neutron emission rate of 2.31×10^{12} (neutrons sec$^{-1}$ g$^{-1}$). The entire supply of 252Cf for the western world comes from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory, which produces less than a gram a year. Over a gram of 252Cf is needed to produce an epithermal beam of neutrons of sufficient strength, thus making this option economically impossible.

Epithermal neutrons for BNCT can also be produced in low energy proton accelerators. The main advantages of accelerator-based designs are a low mean neutron
energy from the source, low gamma ray contamination of the beam, low cost, ease of siting in or near hospitals, and a compact geometry. A neutron fluence rate of 1×10^9 neutrons cm$^{-2}$ sec$^{-1}$ can be obtained from a thick natural lithium target under bombardment by a 2.8 MeV proton beam operating at 10 mA. The high power density deposited in the lithium target by such a beam would melt the lithium metal, even with the most efficient of forced water cooling systems. Although liquid lithium targets have been used experimentally, having liquid lithium and water in close proximity to the patient’s head could present a serious problem should one of the cooling lines rupture. Until an advanced neutron target is developed, this method is not a feasible neutron source of BNCT.

3.2 Possible Reactor Sites in the United States

Even if a nuclear reactor has a desirable neutron spectrum, it is usually not feasible for BNCT. Most reactors are contained inside pressure vessels surrounded by shielding. Some reactors are located in containment buildings or underwater in pools. In order to get an epithermal beam of 1×10^9 neutrons cm$^{-2}$ sec$^{-1}$ the patient must be located close to the reactor, because the fluence rate decreases by approximately r^2. For most situations it is not possible to place a clinical facility inside a nuclear facility.

Extensive work has been done on the conceptual design of clinical facilities for BNCT at the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory, the Missouri University Research Reactor (MURR), and the Georgia Institute of Technology Research Reactor (GTRR). Each of these facilities have outstanding neutron beam strength and purity, but each facility has its drawbacks. All three of these facility
share one common shortcoming: they are research facilities. The GIRR and MURR are university reactors that are primarily used for scientific research. If they are used for BNCT, other research projects will be conducted in the same area. Support facilities will be minimal and patients will be under external medical supervision. The PBF could function exclusively as a BNCT center, but at a price. In order to build a treatment room, a hot-cell needs to be decontaminated and a hole needs to be drilled in the reactor’s pressure vessel. The estimated cost for the conversion of the PBF is at least 30 million.

3.3 Possible Reactors Sites at ORNL

Another possible location for a BNCT center is the Oak Ridge National Laboratory. ORNL has six potential epithermal neutron sources: the High Flux Isotope Reactor, the Oak Ridge Linear Accelerator, the Oak Ridge Research Reactor, the Bulk Shielding Reactor, the Health Physics Research Reactor, and the Tower Shielding Reactor. Unfortunately, only one of these reactors can be used for boron neutron capture therapy.

The High Flux Isotope Reactor is a versatile 100 MW reactor that has the highest thermal flux (2.5×10^{15} neutrons cm$^{-2}$ sec$^{-1}$) in the world. The HFIR is used for medical and industrial isotope production, neutron scattering research, materials research, transplutonium isotope production, material irradiation, and neutron activation analyses. The HFIR currently has three tangential and one centerline beam tube from which to pull off neutrons. The best beam for BNCT would come from the centerline tube, but the flux
at the end of the epithermal filter, 1×10^8 neutrons cm$^{-2}$ sec$^{-1}$, would be an order of magnitude lower than what is required.

The Oak Ridge Linear Accelerator (ORELA) has a total neutron production rate of 0.8×10^{14} neutrons sec$^{-1}$ at 50 kW. It has 18 flight stations positioned at 9, 20, 35, 40, 40, and 200 meters from the target. The flux at the closest target, 1×10^7 neutrons cm$^{-2}$ sec$^{-1}$, is two orders of magnitude lower than what is needed for BNCT.1,21

The Oak Ridge Research Reactor (ORR), the Bulk Shielding Reactor (BSR), and the Health Physics Research Reactor (HPRR) have all been shut down. The cost to restart one of these facilities and modify it for use in BNCT precludes their use.

The Tower Shielding Reactor, shown in Figure 3.1, can easily be restarted and modified for use in BNCT.20 At present, the 1 MW Tower Shielding Reactor (TSR) is placed in a concrete shield on an unenclosed 30 meter long by 60 meter wide concrete pad. Because there is no building around the reactor, a nuclear and medical facility could easily be built on site around the existing structures. This one of a kind spherical core has a total neutron leakage of 1.2×10^{15} neutrons sec$^{-1}$. By adding a filter, an epithermal beam with a fluence rate of over 1×10^9 neutrons cm$^{-2}$ sec$^{-1}$ is produced, allowing treatment times of less than 30 minutes. The reactor, location, and facility layout make it ideal for BNCT.
The Tower Shielding Facility at ORNL was built in 1954 for shielding studies needed for the Aircraft Nuclear Propulsion Project (ANP). This research project required that the reactor radiation source be located in a region free from ground or structural scattering. After the ANP Project was canceled in the early 1960’s, the facility was used to conduct a variety of experiments, including Space Nuclear Auxiliary Power, nuclear weapons shield studies, civil defense studies, the Liquid Metal Cooled Reactor (LMR)
program, the Gas Cooled Fast Reactor (GCFR) program, and for the conduction of large scale radiation transport studies.

The TSF consists of four 96 meter high towers erected on the corners of a 30 meter wide by 60 meter long rectangle. Two of the towers were originally used for suspending the reactor, while the other two were used for supporting other equipment such as shield components and detectors. In 1975, the reactor was placed in a ground-based concrete shield with a horizontal collimator, including a 80 cm diameter stepped cylindrical beam port. The shield and collimator were designed to allow placement of experimental mockups within 91 cm of the center of the reactor and to provide a relatively uniform spatial profile of the neutron source emerging from the beam collimator.

The reactor collimator opened onto a concrete pad 20 meters wide by 60 meters long. The radiation from fission and activation products in the core was attenuated by a large movable lead shutter. The shutter was opened only when all personnel were in an underground bunker which is covered with 107 cm of dirt and 46 cm of concrete.

The original Tower Shielding Reactor (TSR-I) was a boxed shaped 500 kW reactor. It was replaced in 1960 with the spherically symmetric TSR-II, which has been operated at power levels of up to 100 kW at both ground level and elevated positions. The TSF-II core consists of 60 mm thick curved aluminum-clad uranium-aluminum alloy plates cooled and moderated with light water. The plates are shaped so that the assembled core is a spherical fuel annulus from which radiation is emitted symmetrically. The neutron-absorbing control plates for the reactor are contained in the fuel-free region centered
inside the fuel annulus. Outside the fuel annulus is a reflector region that can be filled with aluminum-water, lead-boral-aluminum, or any other combination of material needed.

3.5 TSR Core Region

The fuel annulus, the control ball, and the reflector are contained in the lower section of a cylindrical aluminum tank with a hemispherical bottom, as shown in Figure 3.2. This aluminum tank is 244 cm long, has an inside diameter of 94 cm at the hemispherical end, and an inside radius of 102 cm at the open end to allow maintenance procedures. The core consists of twenty-one fuel elements designed so that the fuel plates in adjacent elements join to form many concentric cylinders separated by water passages. The spherical annulus is 14 cm thick and has an outside diameter of 74 cm. Each fuel plate is 0.15 cm thick and consists of uranium-aluminum alloy clad in aluminum. The fuel plates are welded 0.30 cm apart into aluminum side plates to form fuel elements. Three types of elements are used: annular elements that form a cylindrical fuel annulus; central elements that are used in the upper and lower sections of the core; and one 7.62 cm diameter cylindrical plug element, which is centered in the lower central elements. There are 12 annular elements and 8 central elements in the reactor core.

The internal reflector region is filled by a 43.18 cm diameter sphere which contains six neutron absorbing control plates and the mechanism for positioning them to operate and shut down the reactor. The assembled control ball is mounted on four blocks which are welded on the inside of the central cylinder. Each control plate is a dished, hermetically-sealed hollow plate of 1.59 mm thick stainless steel filled with boron carbide.
Five shim safety plates move simultaneously relative to the fuel to operate the reactor. Each plate is independently driven toward the fuel, four outward and one downward, to shut down the reactor. The sixth regulating plate moves vertically in the upper region of the sphere and can be servo-operated to maintain the reactor power at a constant level. All cavities within the control ball are filled with water. Movement of the control plates is achieved by a combination of mechanical and hydraulic forces. As the control plates are pushed away from the fuel, a shutdown spring is loaded. In the case of an emergency shutdown, the shutdown spring will fully extend the control plates.

3.6 Core Heat Transfer

The reactor was designed so that the surface temperature of the fuel plates is maintained below the saturation temperature of water at every point in the core. The saturation temperature in the core is 139.4 C at a pressure of 0.251 MPa. Under normal operating conditions, the cooling water flow rate is approximately three m³ min⁻¹ and the maximum allowable power is 1 MW. If the power level were raised to 3 MW and the cooling water flow rate was dropped to 1.5 m³ min⁻¹, the maximum fuel temperature would be 96 C, which is below the boiling point even at atmospheric pressure.
Figure 3.2 TSR Pressure Vessel
3.7 Site Location and Regional Support

The Tower Shielding Facility is located approximately 9 miles from the city of Oak Ridge, Tennessee and 21 miles from the city of Knoxville, Tennessee. The site is located on the edge of ORNL and is easily accessible from Interstate-40. The TSF is easily accessible for the Southern, Northeastern, and Midwestern States.

Besides ORNL, a BNCT facility at the Tower Shielding Facility has enormous regional support. The Tennessee Center for Research and Development (TCRD) has shown an consistent interest in developing a clinical facility. Due to TCRD's efforts, the Department of Energy (DOE) has agreed to lease the TSF for up 99 years to interested parties.

The University of Tennessee, Knoxville can support all aspects of BNCT development and Treatment. Dr. George Kabalka from the Department of Chemistry is one of the countries leading authorities on boron chemistry and is currently active in the development of BPA and other advanced boron compounds. The University of Tennessee Medical Center and Cancer Clinic can provide medical therapies, radiological oncology, surgical procedures, pharmacological research, and patient diagnosis. The University of Tennessee also has one of two magnetic resonance imagining (MRI) machines in the country capable of imaging boron instead of hydrogen. Additional support can be provided by the Department of Veterinary Medicine for animal testing and by the Department of Nuclear Engineering for nuclear research.
Chapter 4

Beam Shutter Mechanism

In order to maximize the epithermal fluence rate to the patient during treatment, and minimize the total dose rate between treatments, a shutter mechanism is needed to turn the beam on and off. The shutter mechanism has passive safety features and the capability to interchange beam filters. The main limitations imposed on this design are the allowable dimensions, safety, availability of equipment, and cost of equipment.

4.1 Description of System and Operation

In previous experiments at the Tower Shielding Reactor the Large Concrete Beam Collimator (LCBC) acted as a horizontal shutter and collimator as shown in Figure 4.1. Although the LCBC attenuates decay radiation from fission products and activated materials, it does very little when the beam is activated. By removing the LCBC, patients can be positioned 38.73 cm closer to the core of the reactor, producing a fluence rate increase of approximately 300 percent.
In order to keep the patient as close to the reactor as possible, the shutter and filter should be attached and move together. Because the distance to the patient must be minimized, the shutter/filter assembly can only move horizontally or vertically, as shown in Figure 4.2. The horizontal configuration allows easy overhead access to both the shutter...
and the filter, but it is difficult to move. In the vertical configuration it is difficult to change the beam filter, but the system has gravity as an inherent safety feature.

![Diagram of a shutter/filter system](image)

Figure 4.3 Shutter in the closed position

In order to get a fast, effective, and safe shutter/filter system, the best option is the vertical configuration hydraulically lifted with the shutter stacked atop the filter. The assembly would remain in the lowered position with the shutter in front of the reactor beam portal until the time for therapy to begin, as shown in Figure 4.3. At the beginning of the therapy the hydraulic system will activate and the filter and collimator will be lifted into the position between the reactor beam portal and the patient, as shown in Figure 4.4. At the end of the treatment session the hydraulics will lower and the shutter will again cover the beam portal, making the treatment room safe for facility workers to enter while the reactor is operating.
4.2 Interchangeable Filter Design

In order to maximize revenues, the BNCT Tower Shielding Facility can also treat melanoma, lung, colon, prostate, and breast cancer. Each type of cancer requires a unique filter and collimator, and this design has the capability to change the filter/collimator assembly with ease. A cross bar installed at the shutter rest position is capable of holding the shutter section of the assembly in place without the spectrum modifier in position. This allows the further lowering of the filter/collimator assembly clear of the cross bars. At this level the filter/collimator can be removed from either side and replaced with a different type of spectrum modifier and collimator.
4.3 Safety Features

The primary concern in this design choice is safety. This design employs an innate gravity safety feature; in the event of an accident where the hydraulics would fail, the assembly will fall into the closed position and end any radiation exposure to the patient. The shutter section of the assembly has been designed to be 50 cm wider than the spectrum modifier section of the assembly. Within this additional space there will be two dual purpose cross bars located at the base of the shutter when it is in the lowered position. These bars would provide a resting place and emergency support for the shutter should there be any reason that the spectrum modifier or hydraulics failed to support it. A series of guide bars are also placed along the side edges of the walls, beginning at the cross bar and extending to the top of the shutter in the raised position. These are to insure that the assembly does not move from its intended vertical course and that it cannot be inadvertently or accidentally removed from the beam portal opening. An additional hydraulic power unit, reservoir, and pump are included in the confinement building for system redundancy.

4.4 Hydraulic System Specifics

The hydraulic lifting system for the filter/collimator assembly, shown in Figure 4.5, is required to raise approximately 11,000 kg 2.5 meters. For safety and future expandability of the facility, the lifted mass was rounded up to 18,000 kg. This height was determined from the maximum distance that the assembly will need to be raised plus an
additional amount for changing the filters. A vertical lifting force twice the weight of the

object being lifted is needed for fast operation. The hydraulic system required for this
application consists of four separate five inch bore cylinders, each with a two inch
diameter rod, capable of lifting over 37,000 kg. A cylinder is placed at each corner of a
110 cm wide by 72 cm long plenum on which the filter and shutter will rest. For added
safety, an additional cylinder of identical dimensions is located at the center of the plenum
so in the event that one of the exterior cylinders should fail, the assembly can be safely
guided to the closed position. Each of the cylinders operate at 8.69 MPa delivering over
9,350 kg of force, which will more than adequately cover any future need of the facility.
The cylinders can be obtained at an estimated cost of approximately $4,870 each. In

Figure 4.5 Hydraulic System
addition to the cylinders, a hydraulic power unit with a 114 liter reservoir and pump will be required. The estimated cost for the pump and reservoir is $3,500, and the miscellaneous tubing and fittings required to complete the system are an additional $750.
Chapter 5

Shutter Design

The beginning of the shutter assembly is located 53.66 cm from the center of the reactor. The combined neutron and gamma dose rate at this point is approximately 3×10^5 Sv hour$^{-1}$. The recommended annual limit for radiation workers is 50 mSv yr$^{-1}$. In order to reduce the dose rate to acceptable levels, a shutter 110 cm thick must be constructed to attenuate the beam. The shutter must protect both the patient and the facility staff from unnecessary radiation exposures. The primary limitations imposed on the design are the allowable dimensions, mass, safety limits, cost, and feasibility of manufacture.

5.1 Shutter Calculations

The shutter calculations were performed using XSDRNPM (X-Section Dynamics for Reactor Nucleonics with Petrie Modifications) running on a Sun SPARCserver 1000E with a 84 group P$_3$ cross-sections library and external source provided by ORNL. A program, called DOSE, was written to easily display the fluence and dose rates at the last spatial mesh point.
5.2 Detailed Description of Shutter Design

In order to maximize the number of patients treated per day and to minimize operational stress on the reactor and control ball, the facility will operate at during treatment and 100 kW between treatments. A beam shutter is used to reduce the radiation levels in the treatment room to as low as reasonably achievable when the reactor is operated at 100 kW.

Approximately 84 different shielding models of varying thickness and composition were considered. Water and concrete are poor shields for this application, as shown in Table 5.1. The water shield thermalizes neutrons, but allows a large number of gamma rays to pass through uncollided. The concrete shield blocks the gamma rays, but allows the fast neutrons to pass through. A mixture of borated polyethylene and tungsten provide the best shield for the limited space. The borated polyethylene has a high hydrogen content, allowing it to thermalize the fast neutrons, while the tungsten provides gamma ray shielding.

Table 5.1 Shutter Calculations

<table>
<thead>
<tr>
<th>Shielding Configuration</th>
<th>Dose (Sv/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>110cm Water</td>
<td>176</td>
</tr>
<tr>
<td>110cm High Density Concrete (HD)</td>
<td>6.64</td>
</tr>
<tr>
<td>80cm HD, 20cm Water, 1cm Cd, 9cm Pb</td>
<td>1.71E-02</td>
</tr>
<tr>
<td>10cm W, 72cm B-Poly, 18cm Bi, 10cm Li-Poly</td>
<td>8.16E-03</td>
</tr>
<tr>
<td>15cm Bi, 68cm B-Poly, 13cm W, 14cm B-Poly</td>
<td>3.68E-03</td>
</tr>
<tr>
<td>10cm W, 15cm B-Poly, 5cm W, 50cm B-Poly, 10cm W, 20cm B-Poly</td>
<td>1.70E-03</td>
</tr>
</tbody>
</table>
The final shutter design, shown in Figure 5.1, reduces the dose rate at 1 MW operating power to 1.70×10^{-3} Sv hr$^{-1}$ on the wall closest to the reactor. When the reactor power is lowered to 100 kW, the dose rate drops to 1.07×10^{-5} Sv hr$^{-1}$, which is an acceptable limit with an occupancy factor of 4 hours per week.

![Figure 5.1 Final Shutter Design](image)

Figure 5.1 Final Shutter Design
Chapter 6

Collimator Design

The major criterion that one must consider when designing a collimator for use in boron neutron capture therapy is to deliver the highest possible thermal fluence to the brain, while administering the lowest achievable whole body dose. The spectrum of the beam is modified to the optimal spectrum for boron neutron capture therapy by a filter designed by engineers at ORNL. Other limitations imposed on the design the allowable dimensions, mass, safety limits, cost, and feasibility of manufacture.

6.1 Collimator Modeling and Calculations

The two dimensional discrete ordinance program DORT is ideally suited for collimator and shielding design because it generates the exact fluence rate for each mesh point. An 84 group cross sections with P_3 scattering and a combined gamma ray and neutron source were provided by ORNL. All DORT calculations are performed on four Sun SPARCstation 20’s, one SPARCserver 690, and one SPARCserver 1000E using P_3 scattering, a S-16 quadrature, 84 group cross sections, and the supplied reactor source. Although most calculations were finished in under an hour, DORT requires a large amount of disk space to store the output files and special programs to read them.
6.2 Programs to Analyze DORT Output

Two programs were written to analyze the flux output from DORT. The first program, called FLIP (Flux Linear Interpolation Program), takes the boundary source provided by ORNL and interpolates it to the intervals needed for the collimator geometry. This is necessary because ORNL’s filter model has different intervals than what is needed for the design of the collimator. FLIP reads the intervals from an input file called READFLUX.INP, which contains ORNL’s original intervals and the new collimator intervals.

The second program, called DRIP (DORT Reading Interpolation Program), reads the flux output from DORT. DRIP displays the fluence and dose rate for each energy group at points specified in an input file. The dose rate is calculated by multiplying the energy dependent 1991 ANSI standard dose response function, VELM61.DRF, by each energy group. The fluence and dose rates are displayed in a table and a Postscript flux map of the output is displayed.

A test was performed before running any calculations to verify that the source created with FLIP was the same as ORNL’s. The fluence rate calculated with the modified source was compared to a sample problem supplied by ORNL at two points: 0,0 and 50,0. Both points were in close agreement, as shown in Figure 6.1 and 6.2.
Figure 6.1 Verification of Source at Point (0,0)

Figure 6.2 Verification of Source at Point (50, 0)
6.3 Collimator Optimization

Three points of interest are used to determine the optimal collimator design. The first point is along the centerline of the reactor at the collimator exit where the epithermal neutron fluence should be the highest. The second point is 7 cm into the brain where a high thermal fluence is needed. The third point is 50 cm to the right of the center of the brain where the total fluence rate should be low. This point is of importance because limiting the whole body dose is a major design restriction.

The first mesh used to model the filter and collimator consisted of approximately 13,000 one cm by one cm mesh points. In order to cut down the CPU time for each calculation, a course mesh of approximately 5,700 points was used instead of the fine mesh. A comparison of the fine mesh to the course mesh at the collimator exit is shown in Figure 6.3, and for 7 cm into the brain in Figure 6.4. Because the flux distributions are similar, the course mesh can be used to reduce runtime from 8 hours to under one hour.
In collimator design five properties are varied in order to achieve the optimal thermal neutron fluence and penetration into the brain. These properties include the collimator material, the radius of the opening, the angle of the collimator, the thickness of the collimator, and the overall position of the collimator, as shown in Figure 1.2 (page 3). Eighty-nine different collimator models were created and analyzed by varying these parameters.
Materials used in a collimator should rapidly moderate, absorb, and/or scatter neutrons so that the majority of neutrons reaching the patient are coming through the collimator opening. Lithiated polyethylene, lithiated paraffin, and borated polyethylene are good moderators because of their high hydrogen content. Lithium and boron have high absorption cross sections for thermal neutrons and decay by alpha emission. Out of five collimators made of lithiated polyethylene, lithiated paraffin, borated polyethylene, concrete, and aluminum, the lithiated polyethylene and aluminum collimators have the highest epithermal fluence rates. A comparison of the models at the collimator exit shows that the aluminum has a clear advantage over the lithiated polyethylene, as shown in Figure 6.5. A comparison of the two models seven cm into the brain shows that the aluminum has approximately two times the fluence rate of the lithiated polyethylene, as

![Figure 6.5 Material Changes at Collimator Exit](image)
shown in Figure 6.6. Unfortunately, aluminum has a high epithermal and thermal fluence rate because it is a poor collimator. The neutrons that pass through the aluminum lose very little energy when compared to the lithiated polyethylene, as shown in Figure 6.7. In order to minimize the dose to the patient’s body and maximize the epithermal fluence, lithiated polyethylene is used as the collimator material.

![Figure 6.6 Material Changes at 7 cm into Brain](image)

![Figure 6.7 Material Changes at Collimator Exit](image)

The radius of the collimator opening determines the size of the epithermal beam used during treatment. For the treatment of deep seated brain tumors, like GBM, a wide
collimated epithermal beam works better than a narrow collimated beam. Two models with a 6 cm and 9 cm radius are compared at the collimator exit in Figure 6.8. In order to maximize penetration, as shown in Figure 6.9 by the higher fluence rate, a 9 cm radius is used for the collimator opening.

![Figure 6.8 Radius Changes at Collimator Exit](image)

![Figure 6.9 Radius Changes 7 cm Into Brain](image)
By decreasing the angle of the collimator, the attenuation provided by the lithiated polyethylene is reduced. Although this allows more epithermal neutrons to pass uncollided, there is an associated increase in fast neutrons and gamma rays, as shown in Figure 6.10. The negative effects of the fast neutrons and gamma rays is outweighed by the positive effects from increased penetration provided by the eleven degree collimator, as shown in Figure 6.11.

![Figure 6.10 Changes in Angles at the Collimator Exit](image1)

![Figure 6.11 Angle Changes 7 cm Into Brain](image2)
Varying the thickness of the collimator has approximately the same effect as changing the collimator angle. By decreasing the thickness, more epithermal neutrons can pass through the collimator uncollided, as shown in Figure 6.12. Changing the thickness of the collimator does not drastically change the penetration. The real disadvantage of thin collimators is that they provide little protection to the patient’s body, as shown in Figure 6.13. For this reason, a 10 cm thick collimator is used to reduce beam contaminants produced from lowering the collimator angle.

![Figure 6.12 Thickness Changes at the Collimator Exit](image)
The overall positioning of the collimator with respect to the last layer of bismuth in the filter was examined. By placing the collimator inside the bismuth layer, the air gap is removed and the patient is moved closer to the reactor. A model with the collimator placed entirely in the bismuth layer with no air gap, a model with 5 cm of the collimator placed in the bismuth, and a model with the collimator in the normal position are compared. Even with the patient closer to the reactor, the standard collimator has a higher epithermal fluence rate at the collimator exit, as shown in Figure 6.14. Placing the collimator inside the bismuth not only lowers penetration but increases the gamma ray dose delivered to the patient's body, as shown in Figure 6.15. The geometry that optimizes the flux to the brain while minimizing the dose to the patient’s body is the standard configuration.
6.4 Detailed Collimator Design

In order to decrease the amount of filter material used and increase the epithermal fluence rate at the collimator exit, the filter/collimator assembly is cylindrically shaped, wrapped in a reflector, and fits directly over the reactor beam port. Beryllium, lead,
tungsten, aluminum, and graphite were tested as reflectors. The test results are as shown in Table 6.1.

Table 6.1 Reflector Changes

<table>
<thead>
<tr>
<th>Material</th>
<th>Epithermal Fluence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>3.44E+09</td>
</tr>
<tr>
<td>Lead</td>
<td>4.89E+09</td>
</tr>
<tr>
<td>Tungsten</td>
<td>3.04E+09</td>
</tr>
<tr>
<td>Graphite</td>
<td>1.32E+09</td>
</tr>
<tr>
<td>Beryllium</td>
<td>3.07E+09</td>
</tr>
</tbody>
</table>

In order to maximize the epithermal fluence rate, lead is used as the reflector even though it also increases the fast neutron fluence rate.

The final design is a 10 cm thick lithiated polyethylene collimator with a 9 cm radius and an 11 degree angle. The collimator is attached to the filter and wrapped in lead as shown in Figure 6.16. The total neutron and gamma ray fluence rate across the outside surface of the final collimator is shown in Figure 6.17. The fluence rate decreases at an acceptable rate across the collimator, but some neutron leakage is still coming from the reflector and air gap. The thermal and epithermal neutron fluence from the exit of the collimator and through the phantom is shown in Figure 6.18. The thermal fluence rate peaks at approximately three centimeters into the brain, approximately five centimeters from the collimator, and then slowly decreases. With this thermal distribution, any tumor located in the head can be treated.
Figure 6.16 Final Collimator/Filter Design

Figure 6.17 Total Fluence Rate Across Collimator
Figure 6.18 Thermal and Epithermal Penetration into the Brain
Chapter 7

Clinical Facility Design

7.1 Site Location

The Tower Shielding Facility is located on a hill with an elevation of 1069 ft. 2.35 miles south-southeast of Oak Ridge National Laboratory (ORNL). It is 9 miles from the city of Oak Ridge, Tennessee and 21 miles from the city of Knoxville, Tennessee. The immediate terrain on all sides of the tower structure slopes downward at the base of the towers, and the grade gradually rises to the top of Copper Ridge, approximately 400 ft to the north of the towers.

7.2 Present Tower and Facility Layout

Since the TSR-II is currently classified as an unshielded reactor, the TSF is situated within a general exclusion area that is enclosed by a 6-ft-high chain-link fence topped with three strands of barbed wire.

Two reinforced-concrete underground buildings are located adjacent to and north of the towers, as shown in Figure 7.1. The smaller building is used as a service and shop area and is connected to the larger building by an 2.44 meter wide walkway. The larger building contains the reactor controls, data-collecting facility, counting room, and offices.
The buildings are shielded against radiation by an 0.46 meter thick concrete roof covered with approximately one meter of dirt.

![Diagram of the underground bunker]

Figure 7.1. Underground Bunker

The tower structure is a braced and guyed steel frame forming a 30 meter by 61 meter rectangle, with a leg placed at each of the four corners. Each leg is 2.75 meters square, 96 meters high, and terminates at the lower end in an inverted truncated pyramid. Each pair of legs is joined at the top by a horizontal truss-type bridge running east and west. Maintenance access is provided by a bridge between legs I and IV of the north tower.
The tower structure is protected from lightning by means of a wire grounding net. A copper-clad steel-strand shielding wire is mounted on porcelain insulators to form a rectangle at a 5-ft minimum above the entire structure. Shielding wire also extends from the top of each tower to the ground to protect the inclined guys. The steel towers, the inclined guy wires, and the grounding system are connected to a buried counterpoise. The resistance to the ground of the above-ground grid system is between 1 and 3 ohms.

A two-section reinforced concrete pool provides shielding during the removal and storage of fuel elements. The pool is located midway between the west tower legs; its large section is 6.10 meters square and 7.62 meters deep. The small section of the pool is 1.22 meters wide, 3.66 meters long, and 6.71 meters deep. A guided float is installed in the pool for raising and lowering reactor shields. The water in the pool is circulated through a system of filters to keep it clear for raising the shields.

7.3 Proposed Additions

An outpatient medical facility, estimated to cost between 1.8 and 2 million dollars, will be constructed at the reactor site to house the necessary equipment for the boron neutron capture therapy, as shown in Figures 7.2 and 7.3.
A confinement building, 30.48 meters long and 15.24 meters wide, with 0.45 meter thick concrete walls, is added around the reactor and pool to insure that exposure is limited to very low doses and all radioactivity is contained. A 9.14 meter long and 4.57 meter wide loading area is located in the northwest corner of the confinement building. The treatment room is 15.24 meters wide and 15.24 meters long to reduce neutron backscatter. It is located immediately adjacent to the east side of the reactor, adjoining the confinement building at the reactor porthole. The treatment room will have 0.45 meter thick concrete walls with 15 cm borated polyethylene tiles to absorb any backscatter radiation from the neutron beam. The dose rates outside of treatment room are shown in
Figure 7.4. On the south side of the treatment room will be an observation room, 6.10 meters long and 3.66 meters wide, that will allow medical personnel and the patient’s family to observe the treatment.

Figure 7.4 Doses Outside Treatment Room

8*10^{-6}Sv/hr

3*10^{-6}Sv/hr

4*10^{-6}Sv/hr

7*10^{-7}Sv/hr

Should an emergency in the treatment procedure arise, an emergency room, 6.10 meters long and 7.62 meters wide, will be located on the south side of the treatment room so that the patient may be taken directly from the treatment room to the emergency room. The primary emergency room equipment can be purchased for approximately $30,000. If a medical emergency occurs while the patient is in the treatment room, a surgical scrub room, 3.04 meters wide and 3.04 meters long, will be accessible to the emergency room.
so that physicians may properly prepare for surgery. The cost estimates for the surgical scrub room equipment are $10,000.

A maintenance room, with dimensions of 6.10 meters long and 6.10 meters wide, will be added for electrical and mechanical support. The facility has two storage areas: one on the north side of the treatment room, connected to the maintenance room, and the other adjacent to the observation room on the south side of the treatment room. A faculty lounge, 6.10 meters long and 3.51 meters wide, is located north of the maintenance room. Six offices for physicians and technicians will be in the northwest corner of the facility, along with a conference room.

7.4 Optional Thermal Treatment Room

An additional treatment room can be added into the existing facility with minor modifications to reactor and shutter assembly. Neutron leakage from the primary filter is directed through a tank of heavy water, which moderates the fast and epithermal neutrons. With 30 cm of heavy water place 97 cm from the beam centerline, as shown in Figure 7.5. The thermal neutron fluence at the exit of the heavy water filter is 1.95×10^9.
Upon arrival at the facility, the patient and his or her family enters a 12.34 meter long by 6.25 meter wide waiting room at the main entrance on the west side of the building. The patient then registers at the reception area. Restrooms are accessible from the waiting room adjacent to the reception area. The physician then directs the patient and family from the waiting room to an exam room. There are eight examination rooms, 3.05 meters wide and 6.10 meters long, located south of the emergency room. Each examination room is estimated to cost $9,000. The total price for all examination rooms is approximately $80,000, which includes a nurse call system. A technician or nurse prepares the patient for treatment, and takes any final measurements for dose calculations. These calculations are determined on computers, estimated at $70,000 each, which are
housed in the pretreatment planning room located on the southeast corner of the facility. A chemistry laboratory, 6.10 meters square, and a pharmaceutical laboratory, 6.10 meters long and 3.66 meters wide, is located west of the examination rooms and are used to quickly transfer and administer the boron pharmaceutical to the patient. After the patient has received the boron compound, he or she is transferred to the treatment room. The family can then move to the observation room or back to the waiting room. After the treatment has been completed, the patient is returned to the examination room for post-treatment observation.

7.6 Filtration System

The confinement building and the treatment room have separate air filtering and ventilation systems from the rest of the facility to contain radioactive particles in the event of an emergency. To maintain the facility the two rooms have individual vacuum control systems but can share a common filtration system. Each of the vacuum control systems include two redundant fans, a differential pressure sensor, motor operated dampers, and control circuitry. Due to the need to combine the ductwork to the filtering system, the treatment room is kept at a higher pressure. If there are any leaks, or if the system should fail, the net leakage of material is directed into the confinement building and not the treatment room. The air filtration system for the confinement building and the treatment room consists of a filter unit, a centrifugal fan, and an air flow control module. The filter unit contains a demister, a relative humidity heater, a prefilter bank, HEPA filter bank, two banks of carbon absorbers in series, and another HEPA filter bank. The air flow control
unit contains a differential pressure sensor and transmitter, control circuitry, a damper actuator and two modulating dampers. The vents from this system are equipped with radiation monitoring equipment. This system creates the need to limit the recirculation of the air to the confinement building. The monitored vents in the treatment room can also act as a removal system in case of an accident involving leakage of material into the treatment room and additional facility areas. This system is the mirror image of the type currently used in power producing nuclear plants, and is more than adequate to meet requirements.

7.7 Reactor Coolant System

The existing reactor coolant system consists of a main pump that pumps demineralized water from the detention tank through an aluminum pipe into the reactor. The hot leg coming out of the reactor then goes to forced draft air radiator. In order to obtain a Class 104 license from the Nuclear Regulatory Commission, this system needs a substantial upgrade.

A flow header is placed on top the pressure vessel to provide three separate coolant loops. Each coolant loop has its own heat exchanger, with 5 m² of surface area, and a 7,500 W pumping system. Each added loop costs approximately $20,000. The forced air radiator is replaced with a cooling tower approximately 6 meters wide, 12 meters long, and 6 meters high at a cost of $20,000.
7.8 Future Expansion

The proposed facility is designed for outpatient treatment in order to minimize startup cost. The facility also has the capability to be expanded for additional inpatient accommodations when more revenue is desired. Long term patient rooms, a cafeteria, an X-ray room, an MRI room, a PET scan room, and additional office space can be added on the ground level as well as second and third floors. A research laboratory and facility for animal testing has also been proposed for research on other treatments, such as those for lung, breast, colon, and prostate cancer. This facility would be in a separate building from the treatment center, so that sanitation could be assured for patients. Table 1 summarizes the cost for the facility.
In conclusion, the optimally designed collimator yields an epithermal neutron flux of 3.44×10^9 neutrons cm$^{-2}$ sec$^{-1}$ at the collimator exit, and a thermal neutron flux of 1.58×10^9 neutrons cm$^{-2}$ sec$^{-1}$ at a point 7 cm into the brain. Thus, the 1 MW reactor at the Tower Shielding Facility can be utilized to generate a more optimal dose than that currently being used at the 5 MW reactor at Brookhaven National Laboratory.

(Epithermal neutron flux of 1.8×10^9 neutrons cm$^{-2}$ sec$^{-1}$)

The conceptually designed shutter lowers the dose to 1.7×10^{-3} Sv hr$^{-1}$ at the shutter’s surface when the reactor is operating at full power.

The overall facility conceptual design incorporates all the necessary medical accommodations in an efficient, outpatient clinic. The treatment room is designed with 0.46 m thick concrete walls with a layer of 15.2 cm of borated polyethylene to minimize both the dose to adjacent rooms and the backscatter dose to the patient.

The entire conversion process and construction of the facility would cost approximately $20 million, and could generate approximately $24 million in annual revenue at an approximate cost of $80,000 per patient.
Chapter 9

Future Work

There are several design considerations that have not been mentioned thus far. These will need to be addressed in order for the conceptual design of the BNCT clinical facility at the Tower Shielding Reactor Site to be complete.

A feasibility study for a third treatment room with major structural changes will need to be made. Also, the feasibility study of converting the facility from an out patient facility to a primary care facility that is self-sufficient needs to be performed. The current facility design must include paving and additional parking with an economic analysis of the two. A conceptual development of the second treatment room with a maximized beam must also be developed.

In the future, one must evaluate the currents, neutron kerma, and kerma at the collimator exit to generate an intensity vs. purity plot for comparison with ORNL’s optimum beam.

For the optimum beam and a minimized dose at the shutter exit, codes must continued to be run. A detailed analysis of the thermal hydraulics must be performed. Finally, a more detailed economic analysis must be performed for the design to be complete.
Appendix 1

Programs

A1.1 Dose

real flux(84),drf(84)
character*20 xsname
character*120 aline,aprev
print*, ' XSDRNPM output file?'
read*, '(a20)'xsname
open(1,file=xsname,form='formatted',status='old')
read(1,'(a120)'aline
C***
C
C
print *,aline
C***
C
10 if(aline(3:12).ne.'total flux')then
read(1,'(a120)'aline
C***
C
C
C
print *,aline
C***
go to 10
endif
read(1,'(a120)'aline
read(1,'(a120)'aline
do 30 ibase=0,9
20 if(aline(3:6).ne.'int.')then
aprev=aline
read(1,'(a120)'aline
C***
C
C
C
print *,aline
C***
go to 20
endif
read(aprev,'(7x,8f13.0)')(flux(ibase*8+i),i=1,8)
read(1,'(a120)'aline
30 continue
40 if(aline(4:6).ne.'cla')then
aprev=aline
read(1,'(a120)'aline
C***
C print *,aline
C***
go to 40
endif
read(aprev,'(7x,8f13.0)')(flux(i),i=81,84)
call daiso('velm61.drr',1,10000)
call daisr('drf',0,84,drf,1)
val=0.
do 50 i=1,84
 val=val+drf(i)*flux(i)
50 continue
write(*,9010)
9010 format(/4x,'Grp.'5x,'Flux',11x,'DRF',12x,'%'/2x,
 *'======= ============ ===','=========== ==:=========:=')
9020 format(4x,i4,2x,lpe12.5,1x,lpeI4.7,Ix,OpnO.4)
do 60 i=1,84
 write(*,9020)i,flux(i),drf(i),flux(i)*drf(i)/val*100.
60 continue
val=val*4.24E4
print*,' The dose rate is ',/mrem/hr'
call pfstop
stop
end
C**
C**
subroutine pfstop
parameter(nscr=z10000)
parameter(ncscr=10000)
character*1 zca
common/sccr/ncscr,zca(nscr),izzz1,izzzm
common/ccscr/nccscr,zca(ncscr),izzzcm
ratio1=(izzzm*1.)/(nscr*1.)*100.
ratio2=(izzzcm*1.)/(ncscr*1.)*100.
write(*,9010)izzzm,nscr,ratio1
9010 format(/17h EXT used ,i10,8h out of ,i10,
 *25h real/integer variables ,(f8.3,2h%))
write(*,9020)izzzcm,ncscr,ratio2
9020 format(12x,5h and ,i10,8h out of ,i10,12h characters ,12x,1h,(f8.
 *3,2h%)/)
return
end
subroutine daiso(a200,lu,ldum) 02/19/94
C***
C Module name:
C DAISO
C
C Called modules:
C GTTOKE
C
C External variables - used:
C Internal variables:
C ALINE C*80
C
C Variables read:
C ALINE C*80
C
C**
parameter(ntoke = 100000)
character*32 token
integer*4 toklen
common/token/toke,token(ntoke),toklen(ntoke),irefind
character(*a200
character*20 a30, afile(10)
character*80 aline
integer lus(IO)
data lusll,9 1,92,93,94,95,96,97,98,99/
lus(l)=lu
afJle(l)=a200
ifile=1
nline=1
10 open(lus(ifile),file=afile(ifile)(1:leng(afile(ifile),20»),
*form='formatted',status='old')
C**
C Read input and tokenize
C**
20 read(lus(ifile),'(a80)',end=50)aline
if(aline(1:8).eq.'include ')then
do i1=9,38
if(aline(i1:i1).ne.' ')go to 30
enddo
30 j=1
a30=''
do i2=i1,38
if(aline(i2:i2).eq.' ')go to 40
a30(j:j)=aline(i2:i2)
j=j+1
enddo
40 ifile=ifile+1
if(ifile.gt.l0)then
writer*,9010)a30, afile(ifile-1)
9010 format(/2x,*=-----------*,'=-----*=',5x,'DAISY input error!',31x,'/)
*2x,'=',54x,'=/2x,'=',5x,'The include of file ',a28,1x,'=/2x,
*='5x,'by file ',a28,13x,'=/2x,'=',54x,'=/2x,'=',5x,
*Exceeds the limit of 10 '; nested includes',10x,'=/2x,'=',54x,
*='=/2x,'=',5x,'Halting execution!',31x,'=/2x,'=',54x,'=/2x,
='-------------', ''='-',54x,'=')
stop
62
endif
afile(ifile)=a30
do j=I, ifile-l
if(afile(ifile).eq.afile(j) then
write(* .9020)afile(ifile-1),afile(j)
9020 format(2x,':=======',/2x,'=',54x,'=',/2x,'=','DAISY input error!',31x,=/
*2x,'=',54x,'=',/2x,'=',5x,'File ==> ',a28,12x,'=',/2x,'=',5x,
*includes file ',a28,7x,'=',/2x,'=',54x,'=',/2x,'=',5x,
*which is already open.',27x,'=',/2x,'=',54x,'=',/2x,'=',5x,
*Halting execution.',31x,=/2x,'=',54x,=/2x,
*======',/2x,'=',54x,=/2x,
stop
endif
dendo
call gttoke(aline)
nline=nline+1
go to 20
50 close(lus(ifile))
ifile=ifile-1
if(ifile.ne.0)go to 20
nline=nline-1
irefind=1
C**
C Temporary write
C**
C write(*,9030)ntoke
C 9030 format('ntoke = ',i5)
C write(*,9040)(i,token(i),i=1,ntoke)
C 9040 format(5x,i5,a)
return
end
subroutine daisr(atitle,idfalt,nvald,val,ist)
C**
C Module name: DAISR
C**
C Called modules: DAISF
C**
C COMMON blocks: token
C**
C Parameters(value): *
C**
C External variables - used: ATITLE C*(
C IDFALT 1*4
C NTOKE I*4
C NVALD I*4
C TOKEN (ntokex) C*32
C TOKLEN (ntokex) I*4
C VAL (*) C*
C
C External variables - set:
C TOKEN (ntokex) C*32
C VAL (*) C*
C
C Internal variables:
C IT I*4
C
C Variables read:
C VAL (*) C*
C
C Variables written:
C ATITLE C*
C NVALD I*4
C VAL (*) C*
C
C**
parameter(ntokex=100000)
character*32 token
integer*4 toklen
common/token/ntoke,token(ntokex),toklen(ntokex),irefind
character(*)atitle
real val(*)

nval=0
if(nval.ge.0)then
 return
endif
C**
call daisf(atitle,1,it)
C**
call daisf(atitle,ist,it)
if(it.eq.0)then
 if(idfalt.eq.1) return
 write(*,9010)atitle
9010 format(//'DAISR ERROR - VARIABLE '.a32,' NOT FOUND')
write(*,'(//)')
write(99,9010)atitle
write(99,'(///)')
stop
endif
10 if(nval.eq.nvald)then
C**
C
C This allows the user to put an 'E' even if the count is right
C
C**

64
if(token(it).eq.'c')i3=it+1
return
eendif
if(it.gt.ntoke)then
if(idfalt.eq.0)then
 write(*,9020)atitle,nval,nvald,(ii,val(ii),ii=1,nval)
 write(*,'(/I'))
 write(99,9020)atitle,nval,nvald,(ii,val(ii),ii=1,nval)
 write(99,'(/I)')
 9020 format//'
DAISR ERROR - ARRAY ',a32' is only given '
* i5,' of the ',i5,' entries required:'/S~i5,2x,lpe15.8')
 return
else
 return
eendif
eendif
endif
if(it.ne.ntoke.and.token(it+1).eq.' ')then
call daisf(atitle,i3,it)
C f val fills rest of field with value VAL.
C
C**
elseif(token(it)(1:1).eq.'f')then
 if(toklen(it).eq.1)then
 it=it+1
 else
 token(it)(1:32)=token(it)(2:32)
 endif
 read(token(it),9040)rep
 nrep=nvald-nval
 do i=1,nrep
 nval=nval+1
 val(nval)=rep
 enddo
 it=it+1
C**
C Special symbol = e
C e Does not bother rest of field (Allows programmer to
C initialize input values to defaults)
C
C**
elseif(token(it).eq.'e')then
 nval=nvald
 it=it+1
C**
C Special symbol = i
C val1 i nint val2 = Interpolates NINT values between VAL1
C and VAL2 (results in NINT+2 entries)
C
C**
elseif(token(it)(1:1).eq.'i')then
 if(toklen(it).eq.1)then
 it=it+1
 else
 token(it)(1:32)=token(it)(2:32)
 endif
 read(token(it),9030)nint
 it=it+1
 read(token(it),9040)val2
 val1=val(nval)
 do i=1,nint
 nval=nval+1
 val(nval)=val1+(val2-val1)*i/(nint+1.0)
 enddo
 nval=nval+1
 val(nval)=val2
 it=it+1
C**
C Special symbol = l
C\n\nval1 nint val2 = Interpolates NINT values between VAL1 and VAL2 (results in NINT+2 entries)
C
C**
else if(token(it).eq.'l')then
 it=it+1
 read(token(it),9030)nint
 it=it+1
 read(token(it),9040)val2
 val1=val(nval)
 do i=1,nint
 nval=nval+1
 val(nval)=val1+(val2-val1)*i/(nint+1.0)
 enddo
 nval=nval+1
 val(nval)=val2
 it=it+1
C**
C
C Special symbol = m
C m nint val1 val2 = Delivers the midpoints of NINT regions between VAL1 and VAL2 (results in NINT entries)
C
C**
else if(token(it)(1:1).eq.'m')then
 if(token(it).eq.'l')then
 it=it+1
 else
 token(it)(1:32)=token(it)(2:32)
 endif
 read(token(it),9030)nint
 it=it+1
 read(token(it),9040)val1
 it=it+1
 read(token(it),9040)val2
 dval=(val2-val1)/float(nint)
 val1=val1-dval*.5
 do i=1,nint
 nval=nval+1
 val1=val1+dval
 val(nval)=val1
 enddo
 it=it+1
 else
 nval=nval+1
 read(token(it),9040)val(nval)
 endif
 go to 10
9030 format(bn,i20)
9040 format(bn,f20.0)
 it=it+1
 endif
 go to 10

67
subroutine daisf(atitle,ist,ii)

C Module name:
C DAISF
C
C Called by:
C DAISC DAISI DAISR
C
C Parameters(value):
C
C External variables - used:
C ATITLE C*(
C IST I*4
C NTOKE I*4
C TOKEN (ntokex) C*32
C
C External variables - set:
C IT I*4
C
C
parameter(ntokex=100000)
character*32 token
integer*4 toklen
common/token/ntoke,token(ntokex),toklen(ntokex),irefind
parameter(nequalx=3000)
character*(*)atitle
character*32 cleft
common/equals/nequal,iequals(nequalx)
if(irefind.eq.i)then
 irefind=0
 nequal=0
 do i=1,ntoke
 if(token(i).eq.'='then
 nequal=nequal+1
 iequals(nequal)=i
 endif
 enddo
endif
diff ie=1,nequal
 if(iequals(ie).ge.ist)go to 10
 enddo
 it=0
return
10 do j=ie,nequal
 i=iequals(j)
 if(token(i-1).eq.atitle)then
 it=i+1
 endif
enddo
return
enddo
it=0
return
end

C**
C**
subroutine gttoke(aline)
gttoke
C**
C
C Module name: GTTOKE
C
C Called by: DAI SO
C
C COMMON blocks: token
C
C Parameters(value):
C
C External variables - used:
C ALINE C*80
C
C External variables - set:
C NTOKE 1*4
C TOKEN (ntokex) C*32
C TOKLEN (ntokex) 1*4
C
C**

parameter(ntokex=100000)
character*32 token
character*80 aline
integer*4 toklen
common/token/ntoke,token(ntokex),toklen(ntokex),irefind
data ifirst/1/
if(ifirst.eq.1)then
 ifirst=0
 ntokex=0
endif
nchar=80

C**
C TOKLEN = Length of token in characters
C
C**
C Find the first and last non-delimiters
C
C**
do icol=1,nchar
 ich=ichar(aline(icol:icol))
C**
C The delimiters are blank, comma, =, and TAB
C
C**
if(ich.ne.9.and.ich.ne.32.and.ich.ne.61.and.ich.ne.44)then
 do iend=nchar,icol,-1
 ich=ichar(aline(icol:icol))
 if(ich.ne.9.and.ich.ne.32.and.ich.ne.61.and.ich.ne.44)go
 * to 10
 endif
 enddo
endif
C**
C The statement is blank. Return
C
C**
go to 30
10 ic=icol-1
C**
C 1. Locate the next delimiter.
C
C**
20 ic=ic+1
 if(ic.gt.iend)then
C**
C if you run out of characters, package those you have into
C a type 2 token
C
C**
if(aline(icol:icol).eq.'!')go to 30
 ntoken=ntoken+1
 tokenlen(ntoken)=iend-icol+1
 token(ntoken)=aline(icol:iend)
 go to 30
 endif
 ich=ichar(aline(ic:ic))
C**
C The delimiters are blank, comma, =, and TAB
C
C**
if(ich.eq. 9 .or.ich.eq.32.or.ich.eq.61.or.ich.eq.44)then
C**
C 2. Package the previous characters (if there are any) into
C a type 2 token
C
C**
if(icol.ne.ic)then
 if(aline(icol:icol).eq.'!')go to 30
 ntoken=ntoken+1
 endif
toklen(ntoke)=ic-icol
token(ntoke)=aline(icol:ic-1)
endif

C**
C
C If it was an equal sign, add a token with the equal in it
C
C**
if(ich.eq.61)then
 ntoket=ntoke+1
 token(ntoke)=='='
toklen(ntoke)=1
endif

C**
C
C 3. Find the next non-blank and set as ICOL
C
C**
do icol=ic+1,iend
C**
C
C A. If all went well, loop back to 1.
C
C**
if(aline(iool:icol).ne! ')then
 ic=icol-1
 go to 20
endif
enddo

C**
C
C B. If you run out of characters, return
C
C**
go to 30
endif

C**
C
C Keep collecting characters
C
C**
go to 20
30 return
end

C**
C
C**
function leng(a,lim)
C
C Module name: LENG
C
C External variables - used:
C A C*64
C LIM 1*4
C
C Internal variables:
C LENG 1*4
C
C***
 character*1 a(*)
 do leng=lim,1,-1
 if(a(leng).ne.' ' .and. a(leng).ne.char(9))return
 enddo
 leng=0
 return
end
end
program drip
 character*8 hname, huse(2)
 character*8 date, user, charge, case, time
 character*8 tit1(12)
 character*60 file1

C**
C*
C Reads DORT output in the VARFLM format
C*
C**
write(*,9010)
9010 format(6x,'What is the DORT flux output file name?'/)
read(*,'(a60)')file1
open(3,file='file1',status='old',form='unformatted')
open(1,file='dortread.out',status='known',form='formatted')
open(2,file='dortread.dos',status='unknown',form='formatted')

C**
C Read FILE IDENTIFICATION
C**
read(3)hname,(huse(i),i=1,2),ivers
write(1,9020)hname,(huse(i),i=1,2),ivers
9020 format(12x,'File name ==> ',a8,2x,'User identification ==> ',a6,*a6/9x,'File version ==> ',i6)

C**
C Read FILE LABEL
C**
read(3)date, user, charge, case, time,(tit1(i),i=1,12)
write(1,9030)date, user, charge, case, time,(tit1(i),i=1,12)
write(2,9040)date, user, charge, case, time,(tit1(i),i=1,12)
9030 format(!8x,'Date ==> ',a8/8x,'User ==> ',a8/6x,'Charge ==> ',a8,*8x,'Case ==> ',a8/8x,'Time ==> ',a8/1x,'Title ==> ',i2x,a6,a6,a6,a6,a6,a6,a6,a6,a6,a6,a6,a6,a6)
9040 format('!',8x,'Date ==> ',a8/1x,'User ==> ',a8/6x,'Charge ==> ',a8/1x,'Case ==> ',a8/1x,'Time ==> ',a8/1x,*'Title ==> ',a6,a6,a6,a6,a6,a6,a6,a6,a6,a6,a6,a6,a6)

C**
C Read FILE CONTROL
C**
read(3)igm, neut jm, lm, ima, mma, ism, ismism, isbt, iter,(idum,i=1,15)
write(1,9050)igm, neut jm, lm, ima, mma, ism, ismism, isbt, iter
write(2,9060)igm, neut jm, lm, ima, mma, ism, ismism, isbt, iter
9050 format(21x,'No. of energy groups ==> ',1x,i6/23x,*'Last neutron group ==> ','i6/20x,'Number of J intervals ==> ',i6/23x,*'i6/7x,'Maximum length of moment',i1x,'expansion ==> ','i6/20x,*'Number of I intervals ==>',i1x,'i6/12x,
*Number of boundary directions => 16x,
*Number of I-boundary sets => 116x,
*Total number of I-intervals => 214x,
*I-set for system boundaries => 12x,
*Outer iteration no. when fluxes written => 6
9060 format('!*',21x,'no. of energy groups =>',1x,16f',23x,
*Last neutron group => ',15f',20x,'number of J intervals =>',
*Jx,7f',7x,'maximum length of moment',1x,'expansion =>',1f/
*J!,20x,'number of J intervals =>',1f/!,12x,
*Number of boundary directions => ',1f/!,16x,
*Number of I-boundary sets => ',1f/!,14x,
*Total number of I-intervals => ',1f/!,14x,
*I-set for system boundaries => ',1f/!,2x,
*Outer iteration no. when fluxes written => ',1f)
write(2,9070)igm,neut,jm,mma
9070 format('!*'!IGM is number of energy groups'!','2x,
*MMIA is number of angles'!'/1x,igm = ',15f/1x,
*Last neutron group = ',15f/1x,neut = ',15f/1x,mma = ',15f)
call doit(igm,ism,jm,mma,neut)
call pfstop
stop
end
C**
C**
subroutine doit(igm,ism,jm,mma,neut)
parameter(nscr=300000)
parameter(ncscr=10000)
character*1 zca
common/srch/ncsc,za(nscr),izzz1,izzzm
common/cscrch/ncscr,za(ncscr),izzzcm
data ifrst/1/
ncsc=ncsc
ncscr=ncscr
klmbig=ialc8((igm),lmbig)
kimbis=ialc8((ism),imbis)
kiset=ialc8((jm),iset)
kz=ialc8((jm+1),z)
kr=ialc8((3000)*(ism),r)
call zdoit(igm,ism,jm,mma,neut,za(klmbig),za(kimbis),za(*
kiset),za(kz),za(kr))
ncscr=ncscr
ncsc=ncsc
return
end
C**
C**
subroutine zdoit(igm,ism,jm,mma,neut,lmibig,imbis,iset,z,r)
integer lmibig(*),imbis(*),iset(*)
real z(*),r(3000,*)
character*60 file
C Read FILE INTEGER PARAMETERS
C (Will not print because I do not use them)
C
C***
read(3)(lmbig(ig),ig=1,igm),(imbis(is),is=1,ism),(iset(j),j=1,jm)
imbigx=0
do 10 ig=1,igm
 if(lmbig(ig).gt.imbigx)imbigx=lmbig(ig)
10 continue
imbisx=0
do 20 i=1,igm
 if(imbis(i).gt.imbisx)imbisx=imbis(i)
20 continue
write(2,9010)imbis(isbt)
9010 format(2x,'nr = ',i5)
C***
C Read FILE REAL PARAMETERS
C
C***
read(3)(z(j),j=1,jm+1),((r(i,is),i=1,imbis(is)+1),is=1,ism),
 *ener,ig=1,igm),emin,cneut,ev,devdk,effk,power,(dumrl,i=1,13)
write(2,9020)(z(i),i=1,jm+1)
9020 format(1x,'z =/(1x,0f9.4,1x,0f9.4,1x,0f9.4,1x,0f9.4,1x,
 *0f9.4,1x))
write(2,9030)(r(i,isbt),i=1,imbis(isbt)+1)
9030 format(1x,'r =/(1x,0f9.4,1x,0f9.4,1x,0f9.4,1x,0f9.4,1x,
 *0f9.4,1x))
write(*,9040)
9040 format(/3x,'What is the input file that contains the (r,z) p',
 *points desired?'/)
read(*,'(a60Y)')file1
call daiso(file1,1,10000)
call dcount('points',ndes,1)
ndes=ndes/2
call rdflux(igm,jm,imbisx,imbis,iset,mma,isbt,neut,r,z,ndes)
return
end
C***
C***
subroutine rdflux(igm,jm,imbisx,imbis,iset,mma,isbt,neut,r,z,ndes)
parameter(nscrx=300000)
parameter(ncscrx=100000)
character*1 zca
common/srch/nscr,za(nscrx),izzz,izzzm
common/csrcr/nscr,zca(ncscrx),izzzcm
data ifirst1/1/
nscr0=nscr
ncscr0=ncscr
kflum=ialc8((imbisx)*(jm)*igm),'flum ',
kdose=ialc8((imbisx)*(jm)*(3),'dose ',
kneut=ialc8((igm),'dneut ')
75
kdose=ialc8((igm),'dose')
dden=ialc8((imbisx)*(im),'den')
kzdes=ialc8((ndes),'zdes')
krdes=ialc8((ndes),'rdes')
kp=ialc8((ndes*2),'points')
kides=ialc8((ndes),'ides')
jdes=ialc8((ndes),'jdes')
call zrdflux(igm,jm,imbisx,imbis,iset,mma,isbt,neut,r,z,ndes,za(*k.f1um),za(kdose),za(kdneut),za(kfdose),za(kden),za(kzdes),za(krdes),za(kpoints),za(kides),za(kjdes))
}

rdflux 2
nsccr=ncscr
ncscr=ncscr
return
end

C***
C***

subroutine zrdflux(igm,jm,imbisx,imbis,iset,mma,isbt,neut,r,z,
* ndes,flum,dose,dneut,fdosc,den,zdes,rdes,
* points,ides,jdes)
real flum(imbisx,jm,*),dose(imbisx,jm,*)
real dneut(*),fdose(*),den(imbisx,*)
real zdes(*),rdes(*),points(*)
integer ides(*)jdes(*)
character*32 drf
character*60 file
character*80 file,title
real r(*),z(*),r0(2),z0(2)
integer imbis(*),iset(*)
call daisr('points',0,ndes*2,points,1)
do 10 i=1,ndes
rdes(i)=points(2*i-1)
zdes(i)=points(2*i)
10 continue
do 20 i=1,igm
dneut(i)=1.
20 continue

C***
C***

character*32 drf
character*60 file
character*80 file,title
real r(*),z(*),r0(2),z0(2)
integer imbis(*),iset(*)
call daisr('points',0,ndes*2,points,1)
do 10 i=1,ndes
rdes(i)=points(2*i-1)
zdes(i)=points(2*i)
10 continue
do 20 i=1,igm
dneut(i)=1.
20 continue

C***
C***

cm=((91.3*91.3)/(53.66*53.66))*16666.67
write(*,9010)
9010 format(3x,'What is the file name for the dose response func',
*ions?')
read(*,160)file
if(file.ne."")then
call dclear

call daiso(file,1,10000)
call daisr('drf',0,igm,dneut,1)
else
 print*, 'What group do you want?'
read(*, '(bn,i10') igdes
do 30 i=1,igm
dneut(i)=0
30 continue
dneut(igdes)=1.
endif
do 50 i=1,imbisx
 do 40 j=1,jm
 dose(i,j,1)=0.
 dose(i,j,2)=0.
 40 continue
50 continue
C***
C Read SCALAR FLUX MOMENTS
C***
imb=imbis(isbt)
do 90 ig=1,igm
 print*, 'Group ',ig
do 80 j=1,jm
 is=iset(j)
 ims=imbis(is)
 read(3)(flum(i,j,ig),i=1,ims)
do 60 i=1,ims
 flum(i,j,ig)=flum(i,j,ig)*fact
60 continue
do 70 i=1,ims
 if(ig.le.neut) then
 dose(i,j,1)=dose(i,j,1)+flum(i,j,ig)*dneut(ig)
 else
 dose(i,j,2)=dose(i,j,2)+flum(i,j,ig)*dneut(ig)
 endif
70 continue
9020 format(2x,i3,2x,i3,2x,i3,2x,2pc15.8)
80 continue
read(3)
90 continue
write(2,9030)(imbis(iset(j)),j=1,jm)
9030 format('!',i3,'Scalar dose in format',i3,i,6x,
 '*(','dose(i,j,i=1,imbis(j)'),j=1,jm)',i3,i',6x,
 '*where the IMBIS are the ',i,'number of I nodes',i,8x,
 '*per J level',i,i',4x,'Here are the IMBIS values',i,'-',i',i',5x,
 '*imbis =',i'(1,i4,1x,i4,1x,i4,1x,i4,1x,i4,1x,i4,1x,i4,1x,i4,1x,i4,
 '*1x,i4,1x,i4))
write(2,9040)
9040 format('!',i3,'Neutron scalar doses -',i',i',2x,'n_dose =')
do 100 j=1,jm
 zmidi=0.5*(z(j)+z(j+1))
100 continue
write(2,9050)zmid,(dose(i,j,1),i=1,imbis(iset(j)))
100 continue
9050 format('!2x,'Height = ',0pf12.5/(1x,2pe11.4,1x,2pe11.4,1x,
*2pe11.4,1x,2pe11.4,1x,2pe11.4))
write(2,9060)
9060 format('!2x,'Gamma scalar doses - ')'2x,'g_dose ='
 do 110 j=1,jm
 zmjd=0.5*exp(j)+z(j+1)
 write(2,9050)zmjd,(dose(i,j,2),i=1,imbis(iset(j)))
110 continue
C***
C Combine neutron and gamma into a total dose
C***
do 130 j=1,jm
 do 120 i=1,imbis(iset(j))
 dose(i,j,3)=dose(i,j,1)+dose(i,j,2)
120 continue
130 continue
C***
C For each of the desired points
C***
zn=jm
nr=imbisx
do 210 id=1,ndes
 write(*,9070)id,des(id),zdes(id)
9070 format(/3x,'Desired point #',i4,2x,'(',0pf9.4,',
*0pf9.4,')',//2x,'Point ',i4,2x,'(',0pf9.4,',
*0pf9.4,')',/3x,'Point ',i4,2x,'(',0pf9.4,',
*0pf9.4,')')
C***
C Find the (ij) point
C***
if(rdes(id).lt.r(1).or.rdes(id).gt.r(nr+1))then
 write(*,9080)rdes(id),r(1),r(nr+1)
9080 format(/2x,'Listen, you dummy!',3x,'The desired R point, '
*0pf9.5/4x,'is outside the data range','e =>9(0pf9.5,',
*0pf7.3,')//5x,'Ignoring that point...')
go to 200
endif
if(zdes(id).lt.z(1).or.zdes(id).gt.z(nz+1))then
 write(*,9090)zdes(id),z(1),z(nz+1)
9090 format(/2x,'Listen, you dummy!',3x,'The desired Z point, '
*0pf9.5/4x,'is outside the data range','e =>9(0pf9.5,',
*0pf7.3,')//5x,'Ignoring that point...')
go to 200
endif
doi40 ir=1,nr
 if(rdes(id).lt.r(ir+1))go to 150
continue
 i=ir
 do 160 iz=1,nz
 if(zdes(id).lt.z(iz+1)) go to 170
 continue
 j=iz
 write(*,9100)i,j
 9100 format(9x,'The point is in cell (',i4:','i4:')')
 C***
 C
 C Print the table
 C
 C***
 tdos=0.
 do 180 ig=1,igm
 fdose(ig)=flum(ij,ig)*dncut(ig)
 tdos=tdos+fdose(ig)
 continue
 write(*,9110)
 do 190 ig=1,igm
 perc=fdose(ig)/tdos*100.
 if(perc.gt.0.) write(*,9120)ig,flum(ij,ig),fdose(ig),perc
 9110 format(9x,'Group',5x,'Flux',10x,'Dose',9x,'%'/9x,*'===== ========== ,'========== ======')
 9120 format(9x,i4,2x,lpeI3.6, Ix.,lpeI4.7,Ix.,Opffi.2)
 190 continue
 200 continue
 210 continue
 C***
 C
 C Make the dose map
 C
 C***
 print*, 'What do you want the .PS dose file to be?'
 read(*, '(a30)')file
 title='Dose map for file '//file(1:30)
 nxO=1
 nyO=1
 rO(1)=r(1)
 rO(2)=r(nr+1)
 zO(1)=z(1)
 zO(2)=z(nz+1)
 do 230 i=1,nr
 do 220 j=1,nz
 den(i,j)=alog(dose(i,j,3))
 220 continue
 230 continue
 240 calJ makeps(rO,zO,nxO,nyO,den,r,z,nr,nz,title, file, 1)
 return
 end
 C***
 C***
 subroutine makeps(xO,yO,nxO,nyO,den,x,y,nx,ny,title,file,inorm)
parameter(nscrx=300000)
parameter(ncscrx=10000)
character*1 zca
common/scrch/nscr,za(nscrx),izzzl,izzzm
common/esrch/ncser,zca(ncscrx),izzzem
data ifirst/I/
nscr0=nscr
ncser0=ncser
kcolor=ialc8((nx)*(ny),'color ')
call zmakeps(xO,yO,nxO,nyO,den,x,y,nx,ny,title,file,inonn,za(*kcolor))
nscr=nscr0
ncser=ncser0
return
end
C***
C***
subroutine zmakeps(xO,yO,nxO,nyO,den,x,y,nx,ny,title,file,inonn,*
color)
real color(nx,*)
real xO(nxO+1),yO(nyO+1)
real x(nx+1),y(ny+1),den(nx,ny)
character*80 title,file,aline
C***
C Sort the material densities *
C***
wtmax=-1000000000.
do 20 j=1,ny
 do 10 i=1,nx
 if(den(i,j).gt.wtmax)wtmax=den(i,j)
10 continue
20 continue
if(inorm.eq.0)then
 wtmin=0.
else
 wtmin=1000000000.
do 40 j=1,ny
 do 30 i=1,nx
 if(den(i,j).lt.wtmin)wtmin=den(i,j)
30 continue
40 continue
endif
if(wtmax.le.wtmin)wtmax=wtmin+1.
do 60 j=1,ny
 do 50 i=1,nx
 frac=(den(i,j)-wtmin)/(wtmax-wtmin)
 color(i,j)=1.-frac
50 continue
60 continue
C***

C
C Initialize the DRAW subroutines
C
C**
call drbegin(x0(1),y0(1),x0(nx0+1),y0(ny0+1),title,file)
C**
C
C Draw the calculational cells
C
C**
call drthick(.001)
call drtype('dashed')
do 80 j=1,ny
 do 70 i=1,nx
 call drfbox(x(i),y(j),x(i+1),y(j+1),color(i,j))
70 continue
80 continue
call drtype('solid')
C**
C
C Draw the bounding box
C
C**
call drbox(x0(1),y0(1),x0(nx0+1),y0(ny0+1))
C**
C
C Draw the boxes of original mesh
C
C**
density=1.
do 100 i=1,nx0
 do 90 j=1,ny0
 ji=ny0+1-j
 call drbox(x0(i),y0(j),x0(i+1),y0(j+1))
90 continue
100 continue
C**
C
C End the DRAW subroutine set
C
C**
call drend

aline='ghostview //file(1:leng(file,32))/f &'
call system(aline)
return
end
C**
C**
function ialc8(nn,avar)
c CHARACTER*12 avar
PARAMETER(nscrx=300000)
PARAMETER(ncscrx=100000)
CHARACTER*1 zca
81
if(nscr.eq.0)then
 nscr=1
 izzzl=1
 izzzm=1
endif
ialc8=nscr
nscr=nscr+nn
if(nscr.gt.ncscrx)then
 write(*,9010)avar,nn,nscr
 9010 format(31h No more REAL/INT scratch room. ,7h Var ,a,6h Leng ,
 * i9,13h Requested = ,i9)
 stop
endif
if(nscr.gt.izzzm)izzzm=nscr
return
end
C***
C***
function icalc8(nn)
 parameter(nscrx=300000)
 parameter(ncscrx=10000)
 character*1 zea
 common/scrchlnscr,za(nscrx),izzzl,izzzm
 common/cscrch/ncscrx,za(ncscrx),izzzm
 if(ncscr.eq.0)then
 ncscr=1
 izzzm=1
 endif
 ialc8=ncscr
 ncscr=ncscr+nn
 if(ncscr.gt.ncscrx)then
 write(*,9010)avar,nn,ncscr
 9010 format(50h There is not enough CHAR scratch room. Stopping.)
 stop
 endif
 if(ncscr.gt.izzzm)izzzm=ncscr
 return
end
C***
C***
subroutine pfstop
 parameter(nscrx=300000)
 parameter(ncscrx=10000)
 character*1 zca
 common/scrchlnscr,za(nscrx),izzzl,izzzm
 common/cscrch/ncscrx,za(ncscrx),izzzm
 ratio1=(izzzm*1.)/(nscrx*1.)*100.
 ratio2=(izzzm*1.)/(ncscrx*1.)*100.
 write(*,9010)izzzm,ncscrx,ratio1
 9010 format(17h DORTREAD used ,i10,8h out of ,i10,
 *25h real/integer variables ,(f8.3,2h%))
write(*,9020)izzzcm,ncscrx,ratio2
9020 format(12x,5h and ,i10,8h out of ,i10,12h characters ,12x,1h(.,f8.
 *3,2h%)/)
 return
end
program flip
 character*6 hname, huse(2)
 character*8 date, user, charge, case, time
 character*8 titl(12)
 character*60 file1

C***
C
C
C
C***
file1='/scratch/nuke/oldfort.36' getdo
 open(3, file=file1, status='old', form='unformatted')
 open(1, file='temp9.out', status='unknown', form='formatted')
 open(2, file='temp9.dos', status='unknown', form='formatted')
 open(4, file='fort.36', status='unknown', form='unformatted')
C***
C
C
C***

read(3) hname, (huse(i), i=1,2), ivers
write(4) hname, (huse(i), i=1,2), ivers
write(1,9020) hname, (huse(i), i=1,2), ivers
write(*,9020) hname, (huse(i), i=1,2), ivers
9020 format(12x,'File name ==> ',a8,2x,'User identification ==> ',a6,
 *a6/9x,'File version ==> ',i2)
C***
C
C***

read(3) date, user, charge, case, time, (titl(i), i=1,7)
write(4) date, user, charge, case, time, (titl(i), i=1,7)
write(1,9030) date, user, charge, case, time, (title(i), i=1,7)
write(2,9040) date, user, charge, case, time, (title(i), i=1,7)
write(*,9040) date, user, charge, case, time, (title(i), i=1,7)

9030 format(/8x,'Date ==> ',a8/8x,'User ==> ',a8/6x,'Charge ==> ',a8/
 *8x,'Case ==> ',a8/8x,'Time ==> ',a8//1x,'Title ==> '/2x,a6,a6,a6,
 *a6,a6,a6,a6,a6,a6,a6,a4)
9040 format('/!,'8x,'Date ==> ',a8/!',8x,'User ==> ',a8/!,6x,
 *'Charge ==> ',a8/!',8x,'Case ==> ',a8/!',8x,'Time ==> ',a8/!
 *'Title ==> '/!,'a6,a6,a6,a6,a6,a6,a6,a6,a6)

C***
C
C Read FILE CONTROL
C
C***

read(3)igmjrn,ima,mma,nintsr,njntsr,(idum,i=1,19)
write(1,9050)igmjrn,ima,mma,nintsr,njntsr
write(*,9060)igmjrn,ima,mma,nintsr
write(2,9060)igmjrn,ima,mma,nintsr

9050 format(21x,'No. of energy groups ==> ',i6/20x,
 *'Number of J intervals ==> ',i6/20x,
 *'Number of I intervals ==> ',i6/12x,
 *'Number of boundary directions ==> ',i6/13x,
 *'Number of I-boundary sources ==> ',i6/13x,
 *'Number of J-boundary sources ==> ',i6)
9060 format('/!',21x,'No. of energy groups ==> ',i6/20x,
 *'Number of J intervals ==> ',i6/12x,
 *'Number of I intervals ==> ',i6/13x,
 *'Number of boundary directions ==> ',i6/13x,
 *'Number of I-boundary sources ==> ',i6/13x,
 *'Number of J-boundary sources ==> ',i6)

CALL DAISO('readflux.inp', 1, 10000)
CALL DCOUNT('rold',nrold,1)
CALL DCOUNT('rnew',nrnew,1)

nrnew=nrnew-1
nrold=nrold-1

85
if(nrold.ne.100) then
 print *, 'rold must have 101 values'
CALL PFSTOP
STOP
endif
write(4)igm, jm, nrnew, mma, nintsr, njntsr,(idum, i=1, 19)
call doit(igm, ism, jm, mma, ima, nrold, nrnew)
CALL PFSTOP
STOP
end
C***
C***
subroutine doit(igm, ism, jm, mma, ima, nrold, nrnew)
parameter(nscrx= 300000)
parameter(ncscrx= 10000)
character* 1 zca
common/scr/nscr, za(nscrx), izz1, izzm
common/cscr/hncscr, zca(ncscrx), izzcm
data ifirstJ 11
nscr0=nscr
ncscr0=ncscr
kz=ialc((jm+1), 'z ')
krold=ialc((nrold+1), 'rold ')
krnew=ialc((nrnew+1), 'new ')
kfluxold=ialc((mma)*((nrold+1)), 'fluxold ')
kfluxnew=ialc((mma)*((nrnew+1)), 'fluxnew ')
call zdoit
*(igm, ism, jm, mma, ima, nrold, nrnew,
*za(kz), za(krold), za(krnew), za(kfluxold), za(kfluxnew))
nscr=nscr0
ncscr=ncscr0
return
end
subroutine zdoit
*(igm, ism, jm, mma, ima, nrold, nrnew,
*z, rold, rnew, fluxold, fluxnew)

real z(*), rold(*), rnew(*)
real fluxold(mma,*), fluxnew(mma,*)

character*60 file1
real temp(96,100)
do i=1,51
r(i)=i-1
endo
do i=52,61
r(i)=r(i-1)+2.5
endo
do i=62,81
r(i)=r(i-1)+1.25
endo
do i=82,91
r(i)=r(i-1)+2.5
endo
do i=92,101
r(i)=r(i-1)+5.0
endo
CALL DAISR('£old',0,IOl,rold,1)
do 5001 i=1,101
print *, 'rold',i,rold(i)
5001 CONTINUE
CALL DAISR('rnew',0,nrnew+1,rnew,1)
do 5002 i=1,nrnew+1
print *, 'r ',i,rnew(i)
5002 CONTINUE
C**
C *
C Read FILE INTEGER PARAMETERS *
C (Will not print because I do not use them) *
C *
C**

87
```plaintext
read(3)z0
write(4)z0
write(*,541)z0
541 format(7x,'Boundary source taken at',1x,'z = ',0pf8.3)
do 5003 ig=1,igm
   read(3)((fluxold(j,i),j=1,mma),i=1,nrold)
c   write(*,'(i5,1x,f15.2,e15.8)')(i,0.5*(rold(i)+rold(i+1)),
c   *fluxold(mma,i),i=1,nrold)
c   Now mix them
   do 5004 j=1,nrold
      if(rold(j).gt.rnew(1))go to 31
   5004 CONTINUE
31   j=j-1
   do 5005 i=1,nrnew
      do 5006 k=1,mma
         fluxnew(k,i)=0.
      5006 CONTINUE
      do 5005 CONTINUE
   5005 CONTINUE
   c   print *,'j = ',j
   do 5007 i=1,nrnew
      c   print *,'For i = ',i
      rmin=rnew(i)
      33   rmax=rold(j+1)
   c   print *,'Is rnew(i+1) > rmax ? rnew(i+1),rmax
      if(rnew(i+1).lt.rmax)rmax=rnew(i+1)
      frac=(rmax-rmin)/(rnew(i+1)-rnew(i))
      c   print *,'frac is now ',frac
      do 5008 k=1,mma
         fluxnew(k,i)=fluxnew(k,i)+frac*fluxold(k,j)
      5008 CONTINUE
   c   print *,'old flux is now ',fluxold(mma,j)
c   print *,'new flux is now ',fluxnew(mma,i)
      if(rmax.eq.rnew(i+1))then
         c   print *,'Go on to next i'
go to 32
```

endif
j=j+1
if(j.gt.nrold)go to 41
c print *,' Go to next j'
 rmin=rmax
go to 33
32 CONTINUE
5007 CONTINUE

41 continue
 write(*,'(i5,1x,f15.2,e15.8)'),i,0.5*(rnew(i)+rnew(i+1)),
 *fluxnew(mma,i),i=1,nrnew
 write(4)((fluxnew(i,j)=1,mma),i=1,nrnew)
5003 CONTINUE
zero=0.
c This writes the gamma groups as zeroes
 do 5009 ig=1,84-igm
 write(4)((zero,j=1,mma),i=1,nrnew)
5009 CONTINUE
write(4)fluxnew(1,1)
close(4)
return
cnd
C***
C***
subroutine rdflux(igm,jm,imbisx,imbis3,set,mma,isbt,neut,r,z,
 * ndes)
parameter(nscr= 300000)
parameter(ncscr= 100000)
character*1 zca
common/scrch/nscr,zca(ncscr),izzz1,izzzm
common/cscrch/ncscr,zca(ncscr),izzcm
data ifirst/1/
ncr0=ncscr
ncscr0=ncscr

kflum=ialc8((imbisx)*(jm)*(igm), 'flum ')
kflum=ialc8((imbisx)*(jm)*(igm), 'flum ')
kdosc=ialc8((imbisx)*(jm)*(igm), 'dosc ')
kflum=ialc8((imbisx)*(jm)*(igm), 'flum ')
kdlneut=ialc8((igm), 'dneut ')
kdlneut=ialc8((igm), 'dneut ')
kfdose=ialc8((igm), 'fdose ')
kfdose=ialc8((igm), 'fdose ')
kdcn=ialc8((imbisx)*(jm), 'den ')
kdcn=ialc8((imbisx)*(jm), 'den ')
kzdes=ialc8((ndes), 'zdes ')
kzdes=ialc8((ndes), 'zdes ')
krdes=ialc8((ndes), 'rdes ')
krdes=ialc8((ndes), 'rdes ')
kpoints=ialc8((ndes*2), 'points ')
kpoints=ialc8((ndes*2), 'points ')
kides=ialc8((ndes), 'ides ')
kides=ialc8((ndes), 'ides ')
kjdes=ialc8((ndes), 'jdes ')
kjdes=ialc8((ndes), 'jdes ')
call zrdllux
call zrdllux
* (igm, jm, imbisx, imbis, iset, isbt, neut, r, z,
* ndes,
* za(kflum), za(kdosc), za(kdlneut), za(kfdose), za(kdcn), za(kzdes),
* za(krdes), za(kpoints), za(kides), za(kjdes))
ncsr=ncsr0
ncsr=ncsr0
return
return
end
end
subroutine zrdllux
subroutine zrdllux
* (igm, jm, imbisx, imbis, iset, isbt, neut, r, z,
* ndes,
* flum, dose, dneut, fdose, den, zdes, rdes, points, ides, jdes)
real flum(imbisx,jm,*), dose(imbisx,jm,*)
real flum(imbisx,jm,*), dose(imbisx,jm,*)
real dneut(*), fdose(*), den(imbisx,*)
real dneut(*), fdose(*), den(imbisx,*)
real zdes(*), rdes(*), points(*)
real zdes(*), rdes(*), points(*)
iinteger ides(*), jdes(*)
iinteger ides(*), jdes(*)
 character*32 drf
 character*60 file1
 character*80 file, title
 real r(*) , z(*) , r0(2), z0(2)
 real r(*) , z(*) , r0(2), z0(2)
iinteger imbis(*), iset(*)
iinteger imbis(*), iset(*)
CALL DAISR('points',0,ndes*2,points,1)
do 5010 i=1, ndes
rdes(i)=points(2*i-1)
zdes(i)=points(2*i)

5010 CONTINUE
 do 5011 i=1,igm
 dneut(i)=1.
 5011 CONTINUE

C***
C
C THE NEXT FACTOR IS A HARDWIRED SCALING FACTOR
C
C***

fact=(91.3*91.3)/(53.66*53.66)
C***

write(*,9010)
9010 format(/3x,'What is the file name for the dose response func',
 'ions?')

read(*,'(a60)')file1
if(file1.ne."")then
 CALL DCLEAR
 CALL DAISO(file1,1, 10000)
 CALL DAI5R('drf',0,igm,dneut,1)
else
 print*, 'What group do you want?'
 read(*,'(bn,i10)')igdes
 do 5012 i=1,igm
 dneut(i)=0
 5012 CONTINUE
 dneut(igdes)=1.
endif
 do 5013 i=1,imbisx
 do 5014 j=1,jm
 dose(i,j,1)=0.
 dose(i,j,2)=0.
 5014 CONTINUE
 5013 CONTINUE
C***
C
C Read SCALAR FLUX MOMENTS
C
C***
imb=imbis(isbt)
C***
C***
do 5015 ig=1,igm
 print*, 'Group', ig
 do 5016 j=1,jm
 is=iset(j)
 imn=imbi(is)
 read(3)(flum(ij,ig),i=1,imn)
 do 5017 i=1,imn
 flum(ij,ig)=fium(ij,ig)*fact
 5017 CONTINUE
 do 5018 i=1,imn
 if(ig.le.neut)then
 dose(i,j,1)=dose(i,j,1)+flum(ij,ig)*dncut(ig)
 else
 dose(i,j,2)=dose(i,j,2)+flum(ij,ig)*dncut(ig)
 endif
 5018 CONTINUE
C***
C
C
C
C***
write(1,9030)(igj,i,flum(ij),i=1,imn)
C***
9020 format(2x,i3.2~i3,ix,i3,2~2pe5.8)
5016 CONTINUE
read(3)
5015 CONTINUE
 write(2,9030)(imbis(iset(j)),j=1,jm)
9030 format('!'!'!',3x,'Scalar dose in format'!'!'!',6x,
*\(((\text{dose}(ij), i=1, \text{imbis}(j)), j=1, \text{jm}) \)

*where the IMBIS are the 'number of I nodes'/', 8x,

*"per J level"/"/4x,'Here are the IMBIS value',s -'/"/5x,

*\text{imbis} =/(1x,i4,1x,i4,1x,i4,1x,i4,1x,i4,1x,i4,1x,i4,1x,i4,i4,1x,i4,1x,i4,i4,1x,i4,1x,i4,i4)

\[\text{imbis} = (1x,i4,1x,i4)\]

write(2,9040)

9040 format('!/"!',3x,'Neutron scalar doses -!/"/2x,'n_dose =')

do 5019 j=1,\text{jm}

zmid=0.5*(z(j)+z(j+1))

write(2,9050)zmid,(\text{dose}(ij,1), i=1, \text{imbis}(\text{iset}(j)))

5019 CONTINUE

9050 format('!',2x,'Height = ",0pf12.5/(1x,2pc11.4,1x,2pc11.4,1x,

\[2pc11.4,1x,2pc11.4,1x,2pc11.4))\]

write(2,9060)

9060 format('!/"!',3x,'Gamma scalar doses -!/"/2x,'g_dose =')

do 5020 j=1,\text{jm}

zmid=0.5*(z(j)+z(j+1))

write(2,9050)zmid,(\text{dose}(ij,2), i=1, \text{imbis}(\text{iset}(j)))

5020 CONTINUE

C***
C
C Combine neutron and gamma into a total dose
C
C***

do 5021 j=1,\text{jm}

do 5022 i=1, \text{imbis}(\text{iset}(j))

dose(ij,3)=dose(ij,1)+dose(ij,2)

5022 CONTINUE

5021 CONTINUE

C***
C
C For each of the desired points
C
C***

\(n_z=jm \)
nr=imbisx

do 5023 id=1,nrdes
 write(*,9070)id,rdes(id),zdes(id)
9070 format('=',9i0,',','=',9i0,',','=',9i0),i4,',','(',f9.4,',',
*','(f9.4,')','(i4,',',f9.4,')',');
*
C***
C
C Find the (ij) point
C
C***

if(rdes(id).lt.r(1).or.rdes(id).gt.r(nr+1))then
 write(*,9080)rdes(id),r(1),r(nr+1)
9080 format(2x,'Listen, you dummy!',3x,'The desired R point, ',
*','(f9.5,4x,'is outside the data rang','e ==> (',f9.5,'),',
*','(f7.3,')f5x,'Ignoring that point...?')
 go to 30
endif

if(zdes(id).lt.z(1).or.zdes(id).gt.z(nz+1))then
 write(*,9090)zdes(id),z(1),z(nz+1)
9090 format(2x,'Listen, you dummy!',3x,'The desired Z point, ',
*','(f9.5,4x,'is outside the data rang','e ==> (',f9.5,'),',
*','(f7.3,')f5x,'Ignoring that point...?')
 go to 30
endif

do 5024 ir=1,nr
 if(rdes(id).lt.r(ir+1))go to 10
5024 CONTINUE
10 i=ir
 do 5025 iz=1,nz
 if(zdes(id).lt.z(iz+1))go to 20
5025 CONTINUE
20 j=iz
 write(*,9100)i,j
9100 format(9x,'The point is in cell (',i4,',',i4,')/')
C***
C
C
C
C Print the table
C
C***

tdos=0.
do 5026 ig=1,igm
 fdose(ig)=flum(ij,ig)*dneut(ig)
 tdos=tdos+fdose(ig)
5026 CONTINUE

write(*,9110)
do 5027 ig=1,igm
 perc=fdose(ig)/tdos*100.
 if(perc.gt.0.)write(*,9120)ig,flum(ij,ig),fdose(ig),perc
9110 format(9x,'Group',5x,'Flux',10x,'Dose',9x,'%'/9x
 '*===== ========= ======',':'=':==:==:==:== =====::=='
9120 format(9x,i4,2x,lpe13.6,1x,lpeI4.7,1x,Opf6.2)
5027 CONTINUE
30 CONTINUE
5023 CONTINUE
C***
C
C
C Make the dose map
C
C***

print*, 'What do you want the .PS dose file to be?'
read(*,'(a30)')file
title='Dose map for file '+file
nxO=1
nyO=1
rO(1)=r(1)
rO(2)=r(nr+1)
zO(1)=z(1)
zO(2)=z(nz+1)
do 5028 i=1,nr
do 5029 j=1,nz
 den(i,j)=alog(dose(i,j,3))
5029 CONTINUE
5028 CONTINUE
 call makeps(r0,z0,nx0,ny0,den,r,z,nr,nz,title,file,1)
 return
end

C***
C***
subroutine makeps(x0,y0,nx,ny,den,x,y,nx,ny,title,file,inorm)
C***

C C Module name:
C C MAKEPS
C C Called modules:
C C DRBEGIN DRTHICK DRTYPE DRFBOX DRBOX DREND LENG
C C Called by:
C C DETERM DOIT
C C External variables - used:
C C DEN (nx,ny) R*4
C C FILE C*80
C C INORM I*4
C C NX I*4
C C NX0 I*4
C C NY I*4
C C NY0 I*4
C
C***

parameter(nscrx= 300000)
parameter(ncscrx= 10000)
character*1 zca
common/srcl,za(nscrx),izzz,izzzm

96
common/csc/ncscr,zca(ncscr),izzzcm

data ifirst/l/

nscr0=nscr
ncscr0=ncscr
kcolor=ialc8((nx)*(ny),'color ',)
call zmakeps
*(x0,y0,nx0,ny0,den,x,y,nx,ny,title,file,inorm,
*za(kcolor))
nscr=nscr0
ncscr=ncscr0
return
c
end

subroutine zmakeps
*(x0,y0,nx0,ny0,den,x,y,nx,ny,title,file,inorm,
*color)
real color(nx,*

real x0(nx0+1),y0(ny0+1)
real x(nx+1),y(ny+1),den(nx,ny)
character*80 title,file,aline

C**
C
C Sort the material densities
C
C**
wmax=-1000000000.
do 5030 j=1,ny
do 5031 i=1,nx
 if(den(i,j).gt.wmax)wmax=den(i,j)
5031 CONTINUE
5030 CONTINUE

if(inorm.eq.0)then
 wtmin=0.
else
 wtmin=1000000000.

97
do 5032 j=1,ny
 do 5033 i=1,nx
 if(den(i,j).lt.wtmin) wtmin=den(i,j)
 5033 CONTINUE
 CONTINUE
endif
if(wtmax.le.wtmin) wtmax=wtmin+1.
 do 5034 j=1,ny
 do 5035 i=1,nx
 frac=(den(i,j)-wtmin)/(wtmax-wtmin)
 color(i,j)=1.-frac
 5035 CONTINUE
 5034 CONTINUE
C***
C Initialize the DRAW subroutine:
C *
C***
call drbegin(x0(1),y0(1),x0(nx0+1),y0(ny0+1),title,file)
C***
C Draw the calculational cells
C *
C***
call drthick(.001)
call drtype('dashed')
 do 5036 j=1,ny
 do 5037 i=1,nx
 call drfbox(x(i),y(j),x(i+1),y(j+1),color(i,j))
 5037 CONTINUE
 5036 CONTINUE
call drtype('solid')
C***
C Draw the bounding box
C *
C
C***
call drbox(x0(1),y0(1),x0(nx0+1),y0(ny0+1))
C***
C**
C Draw the boxes of original mesh
C**
C***
density=1.
do 5038 i=1,nx0
do 5039 j=1,ny0
 jj=ny0+1-j
call drbox(x0(i),y0(j),x0(i+1),y0(j+1))
5039 CONTINUE
5038 CONTINUE
C***
C**
C End the DRAW subroutine set
C**
C***
call drend
aline='xpsview 'llfile(l :leng(file)2)/l'
call system(aline)
return
end

function ialc8(nn,avar)
character*12 avar
parameter(nscrx= 300000)
parameter(ncscrx= 100000)
character*1 zca
common/scrch/nsc,rza(nscrx),izzz1,izzzm
common/cssrch/nscrx,zca(nscrx),izzzcm
if(nsc.eq.0)then
 nscr=1
 izzz1=1
99
izzzm=1
endif
ialc8=nscr
nscr=nscr+nn
if(nscr.gt.nscrx)then
write(*,9999)avar,nn,nscr
9999 format(31h No more REAL/INT scratch room.,
*7h Var,a,6h Leng,i9,13h Requested = ,i9)
stop
endif
if(nscr.gt.izzzm)izzzm=nscr
return
end
function icalc8(nn)
parameter(nscrx= 300000)
parameter(nscr= 10000)
character*1 zca
common/scrch/nscr,za(nscrx),izzz1,izzzm
common/cscrch/nscr,zca(nscrx),izzzcm
if(nscr.eq.0)then
 nscr=1
 izzzcm=1
endif
icalc8=nscr
nscr=nscr+nn
if(nscr.gt.nscrx)then
write(*,9999)
9999 format(50h There is not enough CHAR scratch room. Stopping.)
stop
endif
if(nscr.gt.izzzcm)izzzcm=nscr
return
end
subroutine pfstop
parameter(nscrx= 300000)
PARAMETER(NCSRX= 10000)

CHARACTER*1 ZCA

COMMON/SCRCH/NCSR,ZA(NCSR),IZZZ1,IZZZM
COMMON/CSCRCH/NCSCR,ZCA(NCSR),IZZZCM

RATIO1 = (IZZZM*1.)/(NCCSR*1.)*100.
RATIO2 = (IZZZCM*1.)/(NCCSR*1.)*100.

WRITE(*,9999) IZZZM,NCCSR,RATIO1
9999 FORMAT(/17H TEMP9 used ,I10,8H out of ,I10,
 *25H real/integer variables ,F8.3,2H%)

WRITE(*,9998) IZZZCM,NCCSR,RATIO2
9998 FORMAT(12X,5H and ,I10,8H out of ,I10,
 *12H characters ,12X,1H,(F8.3,2H%)/)

RETURN

END
Appendix 2

Economics

Table 1. Facility Expenses

<table>
<thead>
<tr>
<th>Clinical Operations</th>
<th>1996 dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>4406160</td>
</tr>
<tr>
<td>Benefits and Taxes</td>
<td>1365910</td>
</tr>
<tr>
<td>Clinic Overhead</td>
<td>410879</td>
</tr>
<tr>
<td>Medical Supplies</td>
<td>88647</td>
</tr>
<tr>
<td>Medical Equipment</td>
<td>26594</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>Total Clinical Operations</td>
<td>6298190</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Overhead</th>
<th>35459</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities maintanance</td>
<td></td>
</tr>
<tr>
<td>Telephone</td>
<td>8865</td>
</tr>
<tr>
<td>Utilities</td>
<td>19946</td>
</tr>
<tr>
<td>Insurance</td>
<td>88647</td>
</tr>
<tr>
<td>Office Supplies</td>
<td>8865</td>
</tr>
<tr>
<td>Travel</td>
<td>2659</td>
</tr>
<tr>
<td>Meetings and Conferences</td>
<td>3546</td>
</tr>
<tr>
<td>Postage and Delivery</td>
<td>3546</td>
</tr>
<tr>
<td>Legal and Professional</td>
<td>88647</td>
</tr>
<tr>
<td>Consultants</td>
<td>53188</td>
</tr>
<tr>
<td>Licenses and Fees</td>
<td>53188</td>
</tr>
<tr>
<td>Information Systems Maintenance</td>
<td>17729</td>
</tr>
<tr>
<td>Employee Development</td>
<td>26594</td>
</tr>
<tr>
<td>Total Clinical Overhead</td>
<td>410879</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reactor Operations</th>
<th>100000</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/C Nuclear Engineering Operations</td>
<td></td>
</tr>
<tr>
<td>Nuclear Supplies</td>
<td>93080</td>
</tr>
<tr>
<td>Reactor Maintenance</td>
<td>37232</td>
</tr>
<tr>
<td>Reactor Overhead</td>
<td>1195291</td>
</tr>
<tr>
<td>Total Reactor Operations</td>
<td>1425603</td>
</tr>
<tr>
<td>Reactor Overhead</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Facilities Maintenance</td>
<td>17729</td>
</tr>
<tr>
<td>Facilities Rent</td>
<td>1099996</td>
</tr>
<tr>
<td>Telephone</td>
<td>8865</td>
</tr>
<tr>
<td>Utilities</td>
<td>8865</td>
</tr>
<tr>
<td>Insurance</td>
<td>35459</td>
</tr>
<tr>
<td>Office Supplies</td>
<td>3546</td>
</tr>
<tr>
<td>Travel</td>
<td>2659</td>
</tr>
<tr>
<td>Meeting and Conferences</td>
<td>1330</td>
</tr>
<tr>
<td>Postage and Delivery</td>
<td>2659</td>
</tr>
<tr>
<td>Legal and Professional</td>
<td>4432</td>
</tr>
<tr>
<td>Consultants</td>
<td>0</td>
</tr>
<tr>
<td>Licenses and Fees</td>
<td>3546</td>
</tr>
<tr>
<td>Information Systems</td>
<td>4432</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee Development</td>
<td>1773</td>
</tr>
</tbody>
</table>

| Total Reactor Overhead| 1195291|

<table>
<thead>
<tr>
<th>Expenses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Operations</td>
<td>6298190</td>
</tr>
<tr>
<td>Clinical Overhead</td>
<td>410879</td>
</tr>
<tr>
<td>Reactor Operations</td>
<td>1425603</td>
</tr>
<tr>
<td>Reactor Overhead</td>
<td>1195291</td>
</tr>
<tr>
<td>Research</td>
<td>4700000</td>
</tr>
</tbody>
</table>

| Total Expenses | $14029963|

<table>
<thead>
<tr>
<th>Personnel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Director</td>
<td>203612</td>
</tr>
<tr>
<td>Dep. Executive Director</td>
<td>179178</td>
</tr>
<tr>
<td>Administrative Director</td>
<td>179178</td>
</tr>
<tr>
<td>Personnel Manager</td>
<td>105878</td>
</tr>
<tr>
<td>Patient Services Manager</td>
<td>105878</td>
</tr>
<tr>
<td>Staff (Emp-1)</td>
<td>40722</td>
</tr>
<tr>
<td>Staff (Emp-2)</td>
<td>40722</td>
</tr>
<tr>
<td>Accounting</td>
<td>105878</td>
</tr>
<tr>
<td>Maintenance (Facility)</td>
<td>52125</td>
</tr>
<tr>
<td>Staff (Emp-1)</td>
<td>28506</td>
</tr>
<tr>
<td>Staff (Emp-2)</td>
<td>28506</td>
</tr>
<tr>
<td>Housekeeping</td>
<td>57011</td>
</tr>
<tr>
<td>Staff (Emp-1)</td>
<td>36650</td>
</tr>
<tr>
<td>Staff (Emp-2)</td>
<td>36650</td>
</tr>
<tr>
<td>Position</td>
<td>Code</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Maintenance (Grounds)</td>
<td>52125</td>
</tr>
<tr>
<td>Staff (Emp-1)</td>
<td>28506</td>
</tr>
<tr>
<td>Staff (Emp-2)</td>
<td>28506</td>
</tr>
<tr>
<td>Patient QA Director</td>
<td>105878</td>
</tr>
<tr>
<td>Director of Research</td>
<td>203612</td>
</tr>
<tr>
<td>Compound Development</td>
<td>81445</td>
</tr>
<tr>
<td>Diagnostic Systems</td>
<td>81445</td>
</tr>
<tr>
<td>Nuclear Systems</td>
<td>81445</td>
</tr>
<tr>
<td>Medical Sys. and Pract.</td>
<td>81445</td>
</tr>
<tr>
<td>Director of Reactor Operations</td>
<td>179178</td>
</tr>
<tr>
<td>Nuclear QA Manager</td>
<td>105878</td>
</tr>
<tr>
<td>Reactor Operator (1)</td>
<td>81445</td>
</tr>
<tr>
<td>Reactor Operator (2)</td>
<td>81445</td>
</tr>
<tr>
<td>Reactor Operator (3)</td>
<td>81445</td>
</tr>
<tr>
<td>Staff (1)</td>
<td>52125</td>
</tr>
<tr>
<td>Staff (2)</td>
<td>52125</td>
</tr>
<tr>
<td>Director of Therapy</td>
<td>203612</td>
</tr>
<tr>
<td>Chief of Nursing</td>
<td>154745</td>
</tr>
<tr>
<td>Nursing Staff</td>
<td>195467</td>
</tr>
<tr>
<td>Therapy Scheduler</td>
<td>52125</td>
</tr>
<tr>
<td>Chief of Services</td>
<td>0</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td>407224</td>
</tr>
<tr>
<td>Thoracic Surgery</td>
<td>407224</td>
</tr>
<tr>
<td>Radiology</td>
<td>407224</td>
</tr>
<tr>
<td>Total Personnel Costs</td>
<td>4406163</td>
</tr>
</tbody>
</table>

Primary Brain Tumors

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telemedicine Software</td>
<td>1800</td>
</tr>
<tr>
<td>Linkage</td>
<td>1200</td>
</tr>
<tr>
<td>Prequalification</td>
<td></td>
</tr>
<tr>
<td>MRI (regular)</td>
<td>18000</td>
</tr>
<tr>
<td>MRI (boron)</td>
<td>42000</td>
</tr>
<tr>
<td>PET (boron)</td>
<td>48000</td>
</tr>
<tr>
<td>Neurosurgery</td>
<td></td>
</tr>
<tr>
<td>Operating Theater</td>
<td>300000</td>
</tr>
<tr>
<td>Recovery</td>
<td>60000</td>
</tr>
<tr>
<td>Hospital (other-2 days)</td>
<td>60000</td>
</tr>
<tr>
<td>Compound (Pharmacy)</td>
<td></td>
</tr>
<tr>
<td>MRI/PET</td>
<td>30000</td>
</tr>
<tr>
<td>Therapy</td>
<td>30000</td>
</tr>
<tr>
<td>BNCT</td>
<td>179892</td>
</tr>
<tr>
<td>Total Primary Brain Tumor Cost</td>
<td>770892</td>
</tr>
</tbody>
</table>
References

15. Flanagan, George F. “Radioisotopes Play a Crucial Role in Medicine” Section Head of the Reactor Technology Section of the Research Reactors Division of ORNL. Knoxville, TN. January 17, 1996.

33. Pevey, R.E. University of Tennessee Nuclear Engineering Professor: Personal Communications.

35. Ruggles, A.E. University of Tennessee Nuclear Engineering Professor: Personal Communications.

42. ORNL Operations Division Staff. "Operating Manual for the Tower Shielding Facility." Oak Ridge National Laboratory.

