11-1-2006

Update Newsletter November 2006

Department of Forestry, Wildlife and Fisheries

Follow this and additional works at: http://trace.tennessee.edu/utk_updatenews

Recommended Citation
http://trace.tennessee.edu/utk_updatenews/82

This Newsletter is brought to you for free and open access by the Forestry, Wildlife, and Fisheries at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Monthly Extension Update Newsletter by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
In This Issue

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife Management Calendar for December</td>
<td>2</td>
</tr>
<tr>
<td>Feeding the Birds</td>
<td>4</td>
</tr>
<tr>
<td>Soil Test Now for Spring Wildlife Plantings</td>
<td>5</td>
</tr>
<tr>
<td>Return of the Firewood Season</td>
<td>5</td>
</tr>
<tr>
<td>Home Heating with Wood</td>
<td>6</td>
</tr>
<tr>
<td>Success With a Living Christmas Tree</td>
<td>7</td>
</tr>
<tr>
<td>Effects of Chip Meals on Our Forests</td>
<td>8</td>
</tr>
<tr>
<td>Sustaining Forests</td>
<td>8</td>
</tr>
<tr>
<td>Considerations for Pruning Black Walnut</td>
<td>9</td>
</tr>
<tr>
<td>Hardwoods Analysis and Trends - November</td>
<td>10</td>
</tr>
<tr>
<td>Timber Tax Workshops</td>
<td>11</td>
</tr>
</tbody>
</table>

Dates to Remember

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec. 5</td>
<td>Dickson County Forestry Association Meeting, “Crop Release” Program</td>
</tr>
<tr>
<td>Dec. 5</td>
<td>Timber Tax Workshop, Cookeville</td>
</tr>
<tr>
<td>Dec. 6</td>
<td>Timber Tax Workshop, Fayetteville</td>
</tr>
<tr>
<td>Dec. 7</td>
<td>Timber Tax Workshop, Selmer</td>
</tr>
<tr>
<td>Jan. 4</td>
<td>Joint CFA Meeting, Henry County et. al.</td>
</tr>
<tr>
<td>Feb. (tentative)</td>
<td>Tennessee 4-H Shooting Sports State Volunteer Training, location TBA</td>
</tr>
</tbody>
</table>
WILDLIFE MANAGEMENT CALENDAR FOR DECEMBER
Craig Harper, Associate Professor, Wildlife Management

Habitat Management

DO NOT bushhog (mow) old-fields if you have any interest in wildlife
 1. mowing destroys much needed winter cover
 2. mowing accumulates thatch, limits mobility, and suppresses the seedbank
 3. wait until late winter and burn and/or disk the field
 4. if you just can’t burn or disk, at least wait until early April before mowing

Disk strips in old-fields for brood habitat
 - will stimulate forb growth next spring
 - will reduce grass dominance where nwsg have become too dense
 - will reduce woody encroachment by sweetgum, elms, and other non-desirable woody saplings in the field

Disk firebreaks around fields and woods (if it’s not too wet) before the ground freezes
 - disking now will stimulate forbs next spring

Native warm-season grasses can be planted during the dormant season
 - don’t plant too deep – no more than ¼ inch!
 - don’t forget pre-emergence weed control next April/May; it is critical!

Continue to strip-mow or silage chop dove fields to provide seed and hunting opportunities
 - don’t mow it all – leave some for January/February
 - strips can be disked and top-sown with winter wheat (2 bushels per acre) to provide additional forage opportunities
 - migrating doves appreciate your efforts and the late dove seasons can offer great shooting

Spray perennial forage food plots for weed control if necessary
 - refer to Growing and Managing Successful Food Plots for Wildlife in the Mid-South, PB 1743, for specific information

Fertilize winter forage plots containing oats, wheat, and/or rye
 - 30 pounds of N per acre

Soil test now for spring plots
 - applications of lime require about 6 months before full effect on pH is realized

Plant trees/shrubs for wildlife
 - establish hedgerows across fields with soft-mast bearing trees and shrubs
 - hedgerows can be used to break up fields into sections
 - also plant trees/shrubs in blocks at end of fields or in “odd” areas
 - crabapple, persimmon, wild plum and others are good choices
 - refer to Improving Your Backyard Wildlife Habitat, PB 1633, for a list of other trees and shrubs to consider

Fertilize/prune trees/shrubs for increased soft mast production
 - this is for trees out in the open, not those in woods
 - fertilizing oaks in woods is a waste of time and money; to increase mast potential for trees in the woods, refer to TSI activities
Continue Timber Stand Improvement (TSI) activities
- stimulate growth among oaks, beech, cherry, persimmon, and other mast producers by killing surrounding competitors
- girdle unwanted trees and spray wound with a mixture of Garlon and Arsenal AC
- use 2 quarts Garlon 3A and 12 ounces Arsenal AC filled to 1 gallon of water

Build brushpiles from thinned trees and pruned limbs
- put large stems on bottom, small stems on top

Erect boxes for wood ducks and bluebirds
- 1 box per 100 yards of shoreline is adequate for wood ducks
- clean out old wood duck boxes and put in fresh wood shavings (about 4 – 6 inches)
- screech owls and squirrels may use the boxes through winter
- repair/install predator shields if necessary
- bluebird boxes should be no closer than 80 yards apart
- up to 9 or more bluebirds may roost in a single box on cold nights

Put out bird feeders and keep them full
- it’s not too early
- refer to Improving Your Backyard Wildlife Habitat, PB 1633, for information on specific feeders and seed for birds

Flood waterfowl impoundments
- a depth of 8 – 12 inches is ideal for dabbling ducks

Duck numbers should be rising – watch the weather!

Wildlife Damage/Population Management

Close crawl spaces under the house and check for openings in the attic
- helps keep snakes, skunks, and squirrels from getting into places where they are not welcome
- rodents are beginning to cache food for the coming winter; take action now to keep them out of your house
- glueboards are very effective in trapping mice, snakes, and lizards looking for a warm place inside your basement or garage

Blackbirds and starlings have gathered into large winter flocks
- don’t allow them to roost in your trees; if they start, they’ll form a habit
- repel them with noise makers (shotguns, firecrackers, banging metal pans together)
- be persistent
FEEDING THE BIRDS
Craig Harper, Associate Professor, Wildlife Management

It is time to fill up your bird feeders, if you have not done so already. Birds are particularly attracted to feeders during mid- to late winter as other foods can be tough to come by. By knowing the type of feeder and seed (or other food) that different birds prefer, you can cater to several different species.

Feeder design is less important, especially if you use a fly-through feeder, which will accommodate most bird species. More selective feeders include the tube-type or cylindrical feeders used to offer thistle seed to goldfinches and pine siskins. The table below lists different seeds and other types of food that may be offered to attract different birds.

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>PREFERRED FOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>mourning doves</td>
<td>black oil-type sunflower seed, white proso millet</td>
</tr>
<tr>
<td>woodpeckers, chickadees, titmice, nuthatches</td>
<td>black-oil type sunflower seed, cracked nuts, shelled and broken peanuts, bread crumbs, suet</td>
</tr>
<tr>
<td>blue jay</td>
<td>sunflower seed (all types), peanuts, cracked nuts, shelled and cracked corn, suet</td>
</tr>
<tr>
<td>mockingbirds, brown thrashers, robins, thrushes, catbirds</td>
<td>cut apples, oranges, raisins, bread crumbs</td>
</tr>
<tr>
<td>cardinals</td>
<td>sunflower seed (all types), cracked corn, shelled and broken peanuts</td>
</tr>
<tr>
<td>Eastern towhees</td>
<td>white proso millet, sunflower seed (all types), cracked corn, shelled and broken peanuts</td>
</tr>
<tr>
<td>evening grosbeak</td>
<td>sunflower seed (all types), cracked corn, shelled and broken peanuts</td>
</tr>
<tr>
<td>goldfinches</td>
<td>niger thistle, hulled sunflower seed, black oil-type sunflower seeds</td>
</tr>
<tr>
<td>house finch</td>
<td>black oil-type sunflower seeds, niger thistle</td>
</tr>
<tr>
<td>purple finch</td>
<td>sunflower seed (all types)</td>
</tr>
<tr>
<td>sparrows, juncos</td>
<td>white proso millet, black oil-type sunflower seed, wheat, bread crumbs</td>
</tr>
<tr>
<td>grackles</td>
<td>hulled sunflower seed (all types)</td>
</tr>
</tbody>
</table>

Don’t forget to try suet feeders, fruit halves nailed to a tree or post, peanut butter smeared into pine cones or onto the side of a tree, and old breads and cakes. Offering several types of foods will ensure a diversity of birds visiting your backyard. Remember to clean feeders periodically with hot, soapy water fortified with a capful of bleach. Bottoms of platform feeders (and others that might hold water) should have small holes drilled into the bottom to allow water to drain after a rain.

Finally, beware of cats. House cats are extremely efficient predators and can severely reduce the number of birds and small mammals visiting feeders, especially during winter when birds may be concentrated around feeders. If you care about wildlife, you should keep your cat indoors.
SOIL TEST NOW FOR SPRING WILDLIFE PLANTINGS
Craig Harper, Associate Professor, Wildlife Management

It’s not too early to think about spring planting. Getting soil samples tested now and applying amendments as necessary will pay dividends come spring.

Most sites need liming to adjust soil pH. However, it is not until 5 – 6 months after liming before the full effect is realized. Therefore, if you plan to plant food plots or native warm-season grasses (nwsg) for livestock next spring, you should apply lime as recommended by your soil test soon.

Most food plot plantings do best when the pH is 6.0 – 7.0. At this range, nutrients are most available to plants and bacterial activity is high. This allows rapid decomposition of organic matter for nutrient cycling and increased nitrogen fixation for legumes. Nwsg grow relatively well even when the pH is 5.0 – 6.0, especially when managed for wildlife habitat. However, when nwsg are grown for livestock, pH should be adjusted to 6.0 – 6.5 to promote additional growth and nutrient availability.

Lime applications are most effective when incorporated into the soil by plowing and/or diskng, especially when liming relatively acid soil that has not received lime in many years. This ensures adjustment through a grater portion of the root zone. Surface applications may not improve soil pH several inches down into the soil column. If the site requires a heavy lime application (3 tons or more per acre), it is best accomplished with a split application, up to 2 tons initially and the remainder 6 months to 1 year later.

Existing cool-season forage plots containing oats, wheat, and rye will benefit from a winter application of nitrogen (30 – 60 pounds per acre). Nitrogen is very short-lived and the effects of fall fertilization are gone by mid-winter. Phosphorus and potassium remain in the soil longer and their application should follow recommendations from a soil test.

For more information contact: Craig Harper @ 865-974-7992 or charper@utk.edu.

THE RETURN OF THE FIREWOOD SEASON
Adam Taylor, Assistant Professor, Wood Products Management

As cooler weather sets in, many of us start thinking of getting some wood ready for our fireplace or woodstove. A wood fire can provide a pleasant, inexpensive and environmentally-friendly way to heat your house. Here are a few tips for getting the most from your firewood:

1. Be safe. Have your wood burning system cleaned and inspected before use. A small fire that you might burn at the beginning of the season can actually be dangerous: “cooler” fires can result in increased formation of creosote. Creosote is a black residue from wood smoke that can accumulate on the inside of chimney pipes. Eventually this creosote layer may ignite and burn at dangerously high temperatures. Dirty chimneys should be cleaned before use. Using dry firewood and burning hot fires periodically can help to keep your chimney clean.

2. Dry firewood is the best. Ideally, your firewood should have been cut to length and split no later than in the spring. This allows the heat of the summer to dry out (‘season’) the wood. Dry wood is easier to get burning and ensures that the heat from the fire goes to heating the house and not to evaporating water. Stacking and covering your firewood pile in an area where the sun and wind hits it can help to speed the seasoning process.

3. Hard wood provides more heat. Tennessee is lucky to be home to many tree species that produce hard (dense) wood, so finding good firewood species here is pretty easy. Oak, hickory and hard maple are all dense woods. Keep in mind that any tree species, including those with softer wood (e.g. yellow poplar, gum and pine), will burn well if dry. The difference is that, for a given size piece, harder woods provide more fuel. The means you don’t have to fill the stove as often.

4. Relax and enjoy! Besides the heat and the attractive flames, you can take comfort in the knowledge that wood is an abundant, local, inexpensive, renewable and carbon-neutral (doesn’t lead to climate change) source of fuel.

For more information, contact Adam Taylor at 865-946-1125 or AdamTaylor@utk.edu.

#
HOME HEATING WITH WOOD
Wayne K. Clatterbuck, Associate Professor, Forest Management and Silviculture

Wood is a renewable resource that has been used by man since prehistoric times. In the United States, it was the major energy source well into the 20th century. Since the cost of other energy has risen rapidly, wood has gained favor, at least as a supplementary heat source.

There is considerable variation among different species of wood in their heat value. Wood varies in its weight from about 2 tons per cord for the heavier, more dense hardwoods to as little as 1 ton per cord for less dense woods. A cord is a stack of wood that measures 4 feet high x 8 feet wide with sticks of wood 4 feet in length totaling 128 cubic feet. Because stacked cords contain both wood and air, the amount of solid wood content in a cord usually averages 80 cubic feet.

Heat content is measured in BTUs or British Thermal Units, defined as the amount heat required to raise the temperature of one pound of water, one degree Fahrenheit. The energy content of one cord of dense wood produces 22 million BTU. Compared to other energy sources, one cord of dense wood is equivalent in its heat content to one ton of anthracite coal, 220 gallons of fuel oil and 28,000 cubic feet of natural gas.

Not all species of wood burn the same. Dense woods from species such as beech, white oak, hickory, black locust, dogwood, osage orange and hop hornbeam produce the greatest heat (> 22 million BTUs per cord), while ash, birch, sugar maple, walnut, cherry and red oak have from 19 million to 22 million BTUs per cord and elm, soft maple, sycamore, sweetgum and yellow-poplar have less than 18 million BTUs per cord. Pines, spruce, firs, hemlock, aspen, and basswood have roughly half the BTUs of the hotter burning hardwoods. A cord of less dense poplar or pine will yield far less warmth than a cord of hickory or oak.

It takes heat to evaporate moisture from wood. Dry wood is a much better heat source than green or partially seasoned wood. A cord of green wood can contain more than 300 gallons of water. When burned, more than 8,000 BTUs are needed to evaporate a gallon of water. Thus, more than 4.5 million BTUs are required to remove all moisture before burning. It is not practical to remove all moisture before burning, but a reduction to 20 percent moisture content is considered air dried. Air dry wood will release 15 to 30 percent more heat than green wood.

Wood pieces should be stacked perpendicular to each other so air can pass through freely. Stack wood at least 10 feet from the exterior of your home. The closer the firewood is to the house, the greater chance that insects will invade your home. The wood stack should be raised a few inches above the ground and covered with a plastic sheet or tarp to shield the wood from weather.

For best burning efficiency, dry the wood for 4 to 6 months in areas with good air circulation. Cut the wood as short as can be conveniently used in fireplaces or wood stoves. Split all sticks 5 inches in diameter. Split wood will lose moisture through the split surfaces and the ends, while round wood does not lose moisture as fast through the protective bark. Use woods of higher densities for fuel to obtain the greatest heat content.

For more information contact Wayne Clatterbuck at 865.974.7990 or wclatterbuck@utk.edu

#
SUCCESS WITH A LIVING CHRISTMAS TREE
Wayne K. Clatterbuck, Associate Professor, Forest Management and Silviculture

Living Christmas trees are becoming more popular, despite that they cost 25 to 50 percent more than a traditional cut tree. Many owners would rather spend more to have a tree that they can plant and enjoy throughout the year rather than one that is thrown away at the end of the season.

A tree should be purchased that has enough of a root ball to allow the tree to survive after planting. The root ball should be 10 to 12 inches wide per caliper inch of the tree trunk. For example, a tree with that is two inches in diameter should have a 20- to 24-inch root ball. We recommend buying a smaller tree with a large root ball rather than a large tree with a small root ball. The size of the root ball is often reduced to make the tree easier to transport and for customers to carry, but this decreases the survivability of the tree. Trees with root balls can easily weigh more than 100 pounds. Buy ball and burlapped (B&B) trees from established nurseries and garden centers. They deal in landscape plants year round and know how to water, handle and buy trees with properly-sized root balls.

Buy a tree species that is native to your area. White pine and Virginia pine are evergreen natives in Tennessee that stand the best chance of surviving after the holidays. The species that do not fare as well are blue spruce and Douglas-fir which are from higher and cooler elevations in the western United States. Fraser fir is native to Tennessee, but is best adapted to the cooler climates in the mountains. Plant Fraser fir at elevations above 2,500 feet. Leyland cypress is a non-native tree that is not recommended as a live Christmas tree because of its susceptible to several fungi in humid and wet conditions.

Most mistakes with live Christmas trees are made after purchase. The tree is not stored correctly, left inside too long or not watered properly. If the tree is purchased before bringing it indoors, the tree should be stored in a cool location, such as an unheated garage, basement or cellar, where the tree is sheltered from wind, sun and freezing temperatures.

Once indoors, the most important task is keeping the root ball moist. The root ball should be placed in a plastic bag. When watering the tree, the plastic bag prevents the water from draining away and allows the water to be soaked up by the root ball. Too much water is as bad as too little. The roots should not be in standing water.

Normally, living trees should not be kept indoors for more than 10 days. The longer the tree is kept in the house, the greater the possibility that the tree will break dormancy and begin to grow with the warmer indoor temperatures. Once the tree is taken back outdoors, place the tree back in a cool location again to allow the tree to get acclimated to the cooler temperatures. Do not plant when temperatures are below freezing or when the soil is frozen. Outplant the tree as soon as favorable weather conditions permit.

The tree should be planted in a hole about twice the diameter of, but no deeper than the root ball. Once the tree is in the hole, cut the burlap away leaving about the lower third of the burlap in the hole. Removing the lower burlap may injure the roots. Fill the hole with native soil, do not use soil amendments.

When the tree breaks dormancy in the spring, some needle drop probably will occur. This tends to be a normal reaction of the tree for its temporary stay indoors. As long as new shoot growth is also occurring, this needle loss is of little consequence.

A layer of mulch should be placed around the tree to reduce moisture loss. The tree should be watered every 7 to 10 days, especially during drought periods. The roots of the transplanted tree should not dry out during the year following the reestablishment period. However, too much water can also cause tree death.

In summary:

1. Buy a healthy tree that is native to your area
2. Put tree in a protected area until you move it indoors
3. Limit the tree’s stay indoors to no more than 10 days
4. Check the soil moisture daily; add water if necessary
5. Keep tree away from heat sources
6. Move your tree outdoors in stages
7. Plant the tree as soon as possible after acclimation to cooler temperatures and when planting conditions are favorable
8. Pay special attention to watering the tree during its reestablishment period

For more information contact Wayne Clatterbuck at 865.974.7990 or wclatterbuck@utk.edu.

###
EFFECTS OF CHIP MILLS ON OUR FORESTS
Adam Taylor, Assistant Professor, Wood Products Management

A few years ago there was discussion of opening new wood chip mills in Tennessee. After much debate those chip mills were not opened, but one wonders what the mills would have meant for the economy and forests of our state. Now, with increasing interest in using woody biomass for energy and products, we should reconsider what increased harvest of low-value trees might mean for Tennessee.

North Carolina provides an interesting example. The number of chip mills in North Carolina expanded from 2 to 18 in the 1980’s and 1990’s. Despite this dramatic increase, a new study by North Carolina State University suggests that the effects of these chip mills were small overall. The new markets created by the chip mills tended to increase pulpwood cutting levels in existing harvests, or to increase harvesting of small stands. Small private landowners in particular received increased payments from the increased harvesting. However, the presence of chip mills did not appear to lead to clearcutting of valuable sawtimber, or to changes in forest management practices.

Tennessee’s forests are growing much more quickly than they are being cut. However, some of this growth consists of small or deformed trees that will never grow to be large, valuable sawtimber. In some cases, the lack of markets for these low-value trees has led to “high-grading”, a poor forest management practice whereby the valuable trees (sawlogs) are cut and the poor timber (pulpwood) is left behind. Chip mills, providing raw materials for pulp mills or biomass for energy production, may be a way to provide useful markets for Tennessee’s landowners and improve the health of our forests.

For more information, contact Adam Taylor at 865-946-1125 or AdamTaylor@utk.edu

#

SUSTAINING FORESTS
Wayne K. Clatterbuck, Associate Professor, Forest Management and Silviculture

The following article is adapted from an essay in the Sacramento Bee on July 11, 2006 by Jack Ward Thomas, former Chief of the USDA Forest Service.
http://www.sacbee.com/content/opinion/story/14276666p-15085993c.html

Recent dramatic declines in forest management have brought some undesirable consequences for forest health and wildlife. Public concerns over retention of biodiversity have thrust concerns for wildlife front and center in forest management debates.

A total preservationist approach to management --- standing back and letting nature take its course --- has become increasingly prevalent. While appealing on the surface, this is not tenable in the long term because it will not protect forests, retain biodiversity and provide some wood products over time.

A return to a totally economic-driven forestry is also not viable. Public reaction to past forest management practices, e.g., the visual impacts of clearcutting, precludes harvesting at “economic maturity” from being the dominant factor in forest management decisions.

Today, most old-growth stands on public lands are protected and provisions exist for recruiting additional old growth over the next decades and centuries. Many stands are in or moving into mid-successional forest condition --- the least productive stage for enhancing biodiversity. The key to overall biodiversity, therefore, will be creating and maintaining both younger early successional and late-successional forest stands.

Adding to the challenge of establishing the full spectrum of forest conditions essential to supporting the full spectrum of biodiversity is unprecedented wood consumption in the United States. Our per-capita wood consumption is the highest in the world and rising. Increasingly, we depend on places beyond our borders to provide our wood --- places with far less resources and knowledge as how to manage forests responsibly. When we import wood products, we export not only environmental consequences, but jobs and dollars.
The idea of “letting nature take its course” is seductive in its simplicity but has significant downsides. First, the timing, extent and results of stand-replacing events are only marginally under human control. With human populations increasing in forested areas, forest health already degraded, and the ability to use controlled burns limited, “hands off” management --- even for public lands --- seems untenable in the long run. Additionally, depending on “elsewhere” for our wood is morally bankrupt, economically unfeasible and wasteful.

Clearly there is work to be done in our forests. However, using taxpayer dollars for habitat alterations to provide for biodiversity associated with early successional forests and protect structures in the wildland/urban interface against large-scale fires will prove cost prohibitive. Once such actions are begun, they must be maintained with ever mounting costs and not offsetting returns.

Forest management must focus on the private lands and their influence on the landscape and accept the need to provide myriad values including biodiversity, wood products, clean air and water, and recreation. By doing so, and harvesting more trees, our nation can enhance biodiversity and lessen the impact of our consumption on forests around the world. If the most fertile lands (usually in private ownership) were intelligently managed more intensely for wood production, pressure could be relieved on less productive lands. Those lands then could be managed with more emphasis on such things as biodiversity, scenic values and watershed integrity.

We have the know-how, technology and trained professionals to do the job. The basis of forest management is sustainability. Then the question becomes how it will be accomplished in a sustainable, yet socially acceptable fashion.

For more information contact Wayne Clatterbuck at 865.974.7990 or wclatterbuck@utk.edu

#

CONSIDERATIONS FOR PRUNING BLACK WALNUT
David Mercker, Extension Specialist, Forest Management

We prune trees in plantation settings to create better form and grade of lumber. Form refers to the straightness of the main tree trunk; grade refers to the frequency and size of defects on the main trunk. In the case of black walnut, the finest quality trees are sold for veneer, potentially having 10 to 15 times more value than lower quality lumber trees. Pruning can increase the likelihood of having more veneer quality trees in a shorter time period, thus improving net revenue.

In most cases the pruning of any live branches from walnut will cause some temporary stunting of growth. Live branches, specifically their leaves, produce carbohydrates that serve as a tree’s food source. Removing too many branches when pruning walnut not only stunts growth, but it causes trees to respond by producing sprouts along the main stem. These sprouts, as many as 10 or more six years following pruning, negate the purpose of pruning. Further, pruning creates open wounds that allow entry of disease organisms that can discolor wood.

Knowing when and how to prune walnut is somewhat of an art. Pruning can be an improvement practice, but it can also lower market value if done incorrectly. Two different methods of pruning are practiced: corrective pruning and lateral pruning. Corrective pruning helps produce trees with a single, straight stem. It seeks to eliminate multiple stems in attempt to create one single leading stem. In cases where no high-quality stems are present, trees can be “coppiced” (or cut flush at ground level), then allowed to sprout from the stump. The sprout with the best characteristics, is then favored over the others. Research has shown, however, that stands of walnut trees treated for corrective pruning actually had fewer potential crop trees based on both size and quality than untreated stands. The conclusion is that corrective pruning has little or no value in intensive culture. Instead, growers should allow trees to straighten on their own, then remove the poor-quality trees in future thinnings.

Lateral pruning shows more benefit in creating clear wood and high value trees in a shorter period of time than if stands are allowed to self-prune naturally. Lateral pruning removes the lower side branches from the main tree trunk. Growers should be careful not to remove excessive branches. The rule is to maintain 33 to 50
percent of the total tree height with live branches. Pruning should begin when trees are 12 to 15 feet tall, removing a little each year or two, and continuing until the main trunk has approximately 17 feet of clear length. Prune in late winter or very early spring, after the spores of disease organisms have been dispersed but before sap flow begins in the spring. Saw blades should be kept sharp and disinfected. Do not prune flush with the main trunk; rather prune up to the branch collar (the swelling between the base of the limb and the main trunk). This will encourage more rapid healing.

For more information contact David Mercker at 731.425.4703 or dmercker@utk.edu

#

HARDWOOD ANALYSIS AND TRENDS – November 2006
(Comparing Hardwood Lumber Values: Which species are worth the most?)

David Mercker, Extension Specialist, Forest Management

Landowners and land managers are often interested in the value of hardwood trees. Forest management decisions are frequently based on growing trees that have high market value. Traditionally in Tennessee white and red oaks have dominated the market, and these will likely to continue to be the species of choice. In growing oaks we often prejudice against other species. But there is some evidence that growing diverse species is advantageous, and a hedge against periodic downturns that occur in oak prices.

Consider the following graph. It shows relative values of 10 common hardwood species for both average (#1 Common) and superior (FAS) lumber. Note the following observations:

1. For average quality lumber, five species have higher price than red and white oak, including soft maple and hickory;
2. In almost all cases, superior quality lumber for each species yields a price premium, except for beech and hickory;

Cherry, maple, and walnut lumber currently have the highest value of the ten species analyzed. However, one should be careful not to draw the conclusion that all forests could grow these three species. The site requirements for these are very specific - not common throughout much of Tennessee. Landowners are advised to match the best trees to their site, and first, see a forester.

Summarized with permission from the Hardwood Market Report, Memphis, TN. Price unit was intentionally omitted from the graph, to show relationships only.

For more information contact David Mercker at 731.425.4703 or dmercker@utk.edu

#
Timber Tax Workshops
Larry Tankersley, Extension Forestry Specialist

This workshop is designed to explain the Federal income tax as it pertains to timber. Landowners, managers, attorneys, accountants and other professionals who work with timber and timberland are encouraged to attend.

Federal taxes are second only to reforestation costs affecting returns from growing timber. In certain instances they are the greatest cost to growing timber. Effective management of taxes are important for profitable forest management. The Internal Revenue Code contains a number of incentives designed to encourage timber production. It is our responsibility to know how to take advantage of these opportunities.

Discussions will include claiming casualty losses to damaged timber, reforestation incentives, cost-saving ways to report timber sales and more.

Workshops will be offered in three different areas across the state of Tennessee for convenience. December 5th at the Putnam County Extension Office in Cookeville; December 6th at the Lincoln County Extension Office in Fayetteville; and December 7th at the McNairy County Extension Office in Selmer.

Registration fee is $125 which includes instruction materials, refreshments and lunch. For more information or to register contact TFA 615-883-3832 or fax the attached registration form to 615-883-0515.

The workshop is being hosted by the Tennessee Forestry Association and The University of Tennessee Extension Service.

For more information contact Larry Tankersley @ 865-974-7977 or ltanker1@utk.edu.

###