October 2013

Modal Tonicization in Rock: The Special Case of the Lydian Scale

Brett Clement
Ball State University

Follow this and additional works at: https://trace.tennessee.edu/gamut

Part of the Music Theory Commons

Recommended Citation

Available at: https://trace.tennessee.edu/gamut/vol6/iss1/4

This Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Gamut: Online Journal of the Music Theory Society of the Mid-Atlantic by an authorized editor. For more information, please visit https://trace.tennessee.edu/gamut.
MODAL TONICIZATION IN ROCK:
THE SPECIAL CASE OF THE LYDIAN SCALE

BRETT CLEMENT

Most analysts of popular music have identified modality as one among several important tonal resources in rock harmony.\(^1\) While these authors have acknowledged to varying degrees the use of Ionian, Aeolian, Mixolydian, and Dorian modes, they have largely balked at embracing the idea of Lydian centricity.\(^2\) For example, Walter Everett has demonstrated that most instances of the Lydian II chord, in the 1959–69 rock era, are the result of “chromatic process” within the Ionian mode.\(^3\) Some authors have taken matters a bit further by suggesting theoretical models that advise against—or in some cases prevent—consideration of Lydian as a viable modal option.\(^4\) David Temperley’s concept of the “supermode,” for example, favors scales other than Lydian and Phrygian when analyzing rock progressions, leading him to characterize Lydian as “an impossible tonal center” in most circumstances.\(^5\)

---

\(^1\) Walter Everett identifies “diatonic modal systems” as one of six possible approaches to tonality found in rock; see “Making Sense of Rock’s Tonal Systems,” *Music Theory Online* 10/4 (2004), accessible at <http://www.mtosmt.org/issues/mto.04.10.4/mto.04.10.4.w_everett.html>.


\(^3\) Everett, *The Foundations of Rock*, 255.


Of course, the study of rock harmony is not unique in its disavowal of Lydian harmony; the scale has long been seen as a poor resource for tonality, even from its beginnings as a member of the Medieval church modes. John Vincent cites several defects of the scale, including “the detrimental effect of the tritone” and the poor placement of the “dominant” seventh chord, both of which contribute to “the weakness of the tonality of this mode.” Even self-conscious attempts to compose Lydian tonal music have proven unconvincing to the ears of some observers. For example, a study of the Lydian slow movement of Beethoven’s String Quartet in A Minor, op. 132 (1825), led Heinrich Schenker to conclude happily that the major scale is “a higher force of nature.” In fact, the Lydian scale did not find a passionate advocate until the 1950s, when jazz composer/theorist George Russell sought to rebalance this historical neglect in his “Lydian chromatic concept.”

In this article, I will argue that the Lydian scale plays a larger role in rock music than has been previously acknowledged, particularly in songs of the 1970s and ’80s. Although this task will involve some discussion of music that has received little treatment from analysts, I will also be offering counterviews on passages that have been analyzed by others as being expressly non-Lydian. I will maintain throughout that the recognition or rejection of Lydian patterns is highly contingent upon the theoretical framework in which one is working. That is, the analysis of (potential) Lydian passages requires the analyst to confront directly many important theoretical

---

6 In fact, the compositional use of B♭ in the place of B♮ provided impetus for Heinrich Glarean’s recognition of Ionian and Aeolian modes in his Dodecachordon (Basel, 1547); translated with commentary by Clement A. Miller (s.l.: American Institute of Musicology, 1965).


9 George Russell, The Lydian Chromatic Concept of Tonal Organization for Improvisation (New York: Concept Publishing, 1959). All subsequent references are to this original edition, except where specifically noted.
questions about modal harmony. First among these questions is how a mode such as Lydian, which would appear to have inherent “weaknesses” when compared to common-practice tonal structures, can be manifested as a distinct “tonality.”

To answer this question as it pertains to rock music, I have divided the following discussion into several parts. First, I will outline a general theory of the Lydian scale—specifically, a modal theory based on relative scale properties. That is, as opposed to theories based on parallel scale relationships, which generally transfer scale-degree function between parallel scales, a relative-scale theory holds that the function of each scale degree is determined by the unique structure of the scale, as well as by the relative placement of the scale within the diatonic collection. This theory will establish a hierarchy of pitches, chords, and progressions in the scale, which will later aid in the recognition of Lydian patterns in rock. Second, I will turn to a more direct discussion of the distinct contextual functionality of the Lydian mode in rock music, including a list of “Lydian tonal stability rules” and a discussion of various techniques of modal tonicization. Here, I will address some of the controversies that naturally arise from attempting to analyze certain rock progressions from a modal standpoint. Finally, three analytical case studies will be offered, detailing a range of both small- and large-scale manifestations of Lydian tonality.

---

THEORETICAL FUNDAMENTALS AND HARMONIC FUNCTIONS

Figure 1 provides some simple fundamentals of Lydian tonality, beginning by realizing the mode in three different ascending patterns.\(^{11}\) The scalar representation (Figure 1a) locates two leading tones in scale degrees \(4\) and \(7\), which resolve as tonicizing agents by ascending semitone to \(1\) and \(5\), respectively.\(^{12}\) Supporting this view is the fifth-cycle arrangement (Figure 1b), which offers a general model for pitch stability in the scale, showing the most stable pitches at the bottom and the unstable leading tones at the top. (This arrangement is notable already for the fact that only the Lydian scale can be generated from its tonic entirely by ascending perfect fifths.)\(^{13}\) The final Lydian structure, a stack of thirds above the tonic pitch (Figure 1c), is characterized by its euphony, as only consonant major and minor triads are formed from adjacent trichords of the stack.\(^{14}\)

Contrasting these structures with those commonly associated with the major (Ionian) scale, we find some noteworthy distinctions. For example, the Lydian leading tones are comparable to the tritone-forming “tendency tones” of the major scale (also \(4\) and \(7\)), save for their unified ascending trajectory and relative lack of dissonance. The ascending fifths of the Lydian scale, on the other hand, contrast with the characteristic descending fifths of major-scale tonality; this difference is reflected in the way that Lydian progressions are often generated upward from the tonic, whereas major-scale progressions generally fall in the direction of the tonic. Finally, the Lydian scale is easily experienced by listeners as a single unified sound, whereas the major

\(^{11}\) These three representations of the Lydian scale are also offered in Russell, *The Lydian Chromatic Concept*, 4th ed. (Brookline, MA: Concept Publishing, 2008), 2. The theoretical principles outlined above are adapted in part from the discussion found in Russell, which are also described in Clement, “A Study of the Instrumental Music of Frank Zappa.”


\(^{13}\) For a musical realization of this property, see the opening of Ravel’s *Daphnis et Chloé* (1912).

\(^{14}\) The only other diatonic mode sharing this property is Dorian.
scale is better put to use in discrete functional units that resolve into a stable tonic triad. George Russell described the distinction as follows: “The major scale resolves to its tonic chord. The Lydian scale is the sound of its tonic chord.”

Given the inherent stasis of Lydian structures, one may understandably question its potential as a resource for functional harmony. Figure 1c begins to consider this “problem” by parsing the three potential “primary triads” of the mode: I, V, and II. While the high ranking of the tonic triad requires no comment, V and II gain their status here as a result of their inclusion and placement of the Lydian leading tones; that is, each triad couches its leading tone in the strong chordal third position. The advantageous intervallic location of leading tones in V and II impels them resolve to the tonic chord in service of tonicization, thereby realizing the half-step voice-leading indicated in Figure 1a.

---

15 Russell, The Lydian Chromatic Concept, iv.
16 This intervallic location has also been privileged by Harrison (Harmonic Function in Chromatic Music, 94) and Bates (“Generalized Diatonic Modality,” 34).
In practice, however, the II chord is clearly a stronger tonicizing harmony than V. Although this statement may appear counterintuitive, one will recall that the leading tone of II (↑) has the distinction of being the most unstable pitch of the scale (as seen in Figure 1b), a status that equips the semitonal voice-leading of II–I with greater charge. Additionally, ↑ forms the important position-finding tritone interval with ↓, allowing the II–I progression to define the position of Lydian tonality within the diatonic scale system. These attributes suggest that Lydian II–I may be likened to Ionian V–I. Indeed, these chords may serve as “structural” points of departure and return in Lydian music. For example, in the opening verse of Frank Zappa’s “Village of the Sun” (1974; see Figure 2), the phrase commences with the tonic chord in F Lydian, while the II chord is employed for cadential effect at the end of the phrase: a type of

---

17 As will be discussed below, the modal theory developed by Ian Bates is largely contingent upon the each mode’s positioning in relation to the tritone interval. Not surprisingly, Bates’s proposed Lydian progression is II–I. (See Bates, “Generalized Diatonic Modality,” 11.)
Lydian “half cadence.” Observe that here the cadential II chord performs the important function of bringing the music firmly back into the orbit of F Lydian, as it occurs after a digression into the parallel Dorian scale and a two-measure scalar transition.

However, in other important ways, the Lydian II–I progression is markedly different from Ionian V–I. In rock music, the succession is typically encountered in the form of a repeated oscillation, creating textures that often effect harmonic stasis (see Figure 3). The full progression (Figure 3a) is employed in certain circumstances (and is particularly common in the music of Zappa), but more characteristic is the realization of Figure 3b, where the I–II progression occurs above the tonic pedal. Figure 3c is not properly a progression at all, but rather a single

---

18 See, for example, the guitar solo vamp of “Inca Roads” (1975). Additional examples of this progression in Zappa’s music are given in Clement, “A Study of the Instrumental Music of Frank Zappa.”
chord structure constructed with a superimposed II chord above the tonic pedal.\textsuperscript{19} Compared with the tension–resolution pattern associated with Ionian V–I, all three of these options tend to sound and function as a composing-out of the scale. Some additional details of the I–II progression are fleshed out in Figure 4, which realizes II as a prolongational chord within the three-chord progression I–II–I. The associated upper-voice structure for the progression is the passing motion \( \hat{3}–\hat{4}–\hat{5} \) (or the reverse). Importantly, this reveals the often-encountered lack of a melodic cadence on \( \hat{1} \). The ascending passing motion (Example 4a) will be considered the stronger of the two options shown, given that it achieves semitonal voice-leading into \( \hat{5} \), the second most stable Lydian pitch.

Although identified above as a Lydian primary triad, the functionality of the V chord is somewhat ambiguous in practice. Its tonicizing potential, though real, is lessened by the weaker charge of its leading tone, \( \hat{7} \). And while Lydian V–I is intervallically identical to Ionian V–I, the lack of an implied “essential dissonance” of a seventh above Lydian V robs the chord of much palpable tension. George Russell posits a more subordinate role for V, assigning to it the function of an “inversion” of the Lydian tonic chord, as its apparent root (\( \hat{5} \)) may be related back as the supporting fifth of the more fundamental Lydian tonic.\textsuperscript{20} Such factors indicate that the utility of the Lydian V–I progression is primarily in its potential for smooth voice leading and tonic prolongation.

Figure 5, which illustrates the primary chord progression from Todd Rundgren’s “Don’t You Ever Learn?” (1974), demonstrates the experienced difference between Ionian and Lydian V chords. Here, a succession of Lydian segments occurs, each realized in the form of Example 3c. With the exception of the bookending C-Lydian segments, each statement of this chord

\textsuperscript{19} Jeff Beck’s jazz-fusion instrumental “Scatterbrain” (1975) extensively exploits this Lydian chord structure.
\textsuperscript{20} Russell, The Lydian Chromatic Concept, 1.
structure is preceded by descending-fifth root motion. However, the V–I bass gestures in D♭ and E♭ occur within their respective Lydian scales, whereas the F-Lydian statement “borrows” a dominant-ninth chord from its parallel Ionian mode. This borrowing is likely utilized to create a stronger harmonic articulation for the arrival of the second half of the progression. The Lydian V–I motions, on the other hand, merely act to prepare the upcoming tonic arrivals through bass arpeggiation.\footnote{21}

Further evidence of the demotion of V in the Lydian scale is the progression shown in Figure 6: the ascending-fifths progression I–V–II.\footnote{22} Here, the V chord acts as an intermediary harmony between the harmonic pillars of I and II, in a composing-out of the major triads of the

\footnote{21} Another factor weakening these Lydian V chords is that they lack the full triad above, containing instead the notes of the following superimposed II chord. Therefore, the leading tone resolution of ♯7 to 1 is not present.

\footnote{22} This progression is not to be confused with the “double plagal” progression (VII–IV–I), which happens to feature the same root motion.
FIGURE 6. The Lydian ascending-fifths progression

FIGURE 7. Frank Zappa, “Strictly Genteel” (1971)

(a) verse

(b) coda
Lydian fifth stack (see Figure 1c). One can hear this progression serving as the foundation of the chorus from Kate Bush’s “Wow” (1978). A more extensive employment is found in Zappa’s “Strictly Genteel” (1971). Figure 7a shows the music used for the repeated verse of this latter song. One interesting feature here is the clearly differentiated root motions Zappa employs when setting the parallel modes D Lydian and D Ionian. The opening D-Lydian segment is realized through the ascending-fifths progression. Then, at m. 4, an interpolation of Ionian harmony occurs, utilizing traditional descending root motions (by fifth and third) before landing on a predominant IV chord. The arrival on Ionian V feigns a half cadence, but in fact this V chord functions within a phrase-spanning Lydian ascending-fifths progression, as it is followed by a II chord for the true cadence. The subordinating view of the interpolated Ionian passage is supported by the coda of the song (Figure 7b), wherein these Ionian measures are deleted, leaving only framework of the Lydian ascending fifths pattern. “Strictly Genteel” also confirms our hearing of V as an intervening stage between I and II: its instrumental interlude (4:10–4:30) is entirely based on the oscillating progression I–II in D Lydian, and is thereby produced by excising the connective V chord of the verse.

This discussion of the V chord brings us to what might seem to be a “problem” with Lydian harmony: the hegemony of the tonic and supertonic chords. This problem is further evident when we consider the remaining “secondary” Lydian triads. Figure 8 places the six dia-
tonic major and minor triads of the scale into two basic functional categories: (1) those closely related to tonic harmony, and (2) tonicizing chords. Within these categories, chords are listed in order of their strength. (Naturally, I and II represent the strongest tonic and tonicizing chords, respectively.) The rank and function of the secondary triads are determined according to two criteria: (1) the number of common tones the given triad has with a primary triad (I or II), and (2) the given triad’s inclusion and placement of the Lydian leading tones (shown by filled-in noteheads). Following the work of Daniel Harrison and Ian Bates, the strongest intervallic placement for a leading tone is considered to be the chordal third, followed by the root, with the fifth being the weakest position.

Because vi and iii share two common tones with the tonic triad, they express a weak tonic function that might give rise to tonic prolongations and/or substitutions. The complete lack of leading tones in vi supplies it with a degree of stability shared only by the tonic triad. This stability is reflected in the status of the vi chord, and its implied Dorian mode, as the “relative minor” of Lydian tonality. In substituting the vi chord for I, for example, we arrive at some common progressions, such as the Dorian i–IV shown in Figure 9, which treats the Dorian IV as the primary tonicizer of its mode. Due to its weak intervallic placement of the leading tone, 7, the iii chord is placed firmly in the tonic category. Its function as a tonic-prolonging sonority is demonstrated in the progression shown in Figure 10: a passing progression in which II connects I and iii, supporting the same passing melodic gestures shown in Figure 4. When the progression is superimposed above the Lydian tonic (Figure 10b), the iii chord will naturally sound as the upper structure of a tonic major-seventh chord. This precise texture is used in the introduction to Fleetwood Mac’s “Sara” (1979).

---

23 See, for example, Bates’s algorithm for the function of modal triads, which also considers the role of common tones (Bates, “Generalized Diatonic Modality,” 36).
The only remaining tonicizing chord to discuss is vii (see Figure 8). The inclusion of both leading tones in this chord would suggest strong tonicizing potential, but the weaker intervallic placement of both leading tones (root and fifth) ranks it clearly below the II chord, yet higher than the V chord. In fact, vii may be used as a substitute for either II or V, with vii7 most convincing as a substitute for II. One may hear Zappa putting this substitution to use in the guitar-solo vamp of “Any Kind of Pain” (1988), in which vii7 replaces II in his trademark chord oscillation (I–II).

**Ambiguities Associated with Lydian Tonality**

Having covered the basic harmonic grammar of Lydian tonality, we may now begin to address some important interpretive issues that arise when Lydian is employed in specific musical contexts. Although my general aim is to demonstrate the benefits of embracing Lydian as a
viable modal option in rock, here it will be important to consider the reasons that some authors have been reluctant to acknowledge this possibility. I believe this aversion is partly due to ingrained biases of established tonal theories; that is, considering the fact that Lydian tonality is inherently different than major-key (Ionian) tonality, analysts conditioned to common-practice methods of tonicization are inclined to find Lydian structures to be lacking. Nevertheless, as we will see, denials of Lydian tonality may also be based on significant contextual events, and these factors will ultimately require some theoretical compromises.

First, it is necessary to provide three simple “tonal stability rules” for Lydian tonality. Conformance to these rules will generally strengthen the claim for Lydian pitch centricity (although in certain contexts other factors may overrule its potentiality). Conversely, violations of the tonal stability rules may weaken or undermine Lydian structures.

**TSR1.** Lydian pitch centricity is best established through contextual assertion and/or through resolutions of the tonicizing II chord.

This rule recognizes the tonicizing power of the II chord, but also acknowledges that, due to the novelty of the I–II progression, additional contextual reinforcement is often necessary. For example, as we have seen, this support is often found in the form of a tonic pedal: an important idiom of the mode when used in rock.

**TSR2.** The II–V progression should be generally avoided.

---

Besides allowing II to perform its tonicizing role, conformance to this rule avoids two types of centric ambiguity that might result from the succession II–V. The first type would interpret the Lydian II chord as a chromatic harmony in the major mode (V of V), tonicizing the V chord. The second type would consider both chords to be diatonic, but would recast the pitch center as the tonic of the relative Ionian mode. The latter ambiguity is exemplified in the chorus of Kate Bush’s “Wuthering Heights” (1978), where the pattern of harmonic emphasis would suggest G♭ Lydian, as the G♭-major chord occurs at the beginning and ending and is sounded for half of the total beats of the excerpt. However, the heavy use of descending-fifth progressions in the chorus results in a violation of TSR2, creating a stronger case for D♭ Ionian being the true key.25

**TSR3.** The diatonic tritone should be realized with the tonic pitch as the lower note.

This rule is necessary in order to avoid undermining the contextual stability of the Lydian tonic in its role as a pitch center. That is, if ì is set above 4 in such a way as to emphasize the tritone—either through melodic outlining or chordal voicing—our tendency will be to hear the tritone as a dissonance in need of its traditional resolution. Hence, ì would be reinterpreted as a tendency pitch with a downward trajectory of resolution, countering its expected status in Lydian tonality. Figure 11 shows that TSR3 results in the general banning of several important structures, including the seventh chord on II (Figure 11a) and the diminished ♯iv chord (Figure 11b).

25 Interestingly, live performances of this song from Bush’s *Tour of Life* (1979) ended on the G♭ chord. In the discussion below, we will see that Lydian is often used to create floating effects or suggestions of the otherworldly. Considering that the character “Cathy” is a ghost, the emphasis here on the Lydian tonic chord is an appropriate representation of Cathy’s ethereal presence (even though the Lydian effect is more compromised in this setting than in some of the passages to be discussed below).
Additionally, melodies should avoid emphasizing or outlining the tritone-related pitches in this registral configuration. TSR3 may partly explain an idiosyncratic feature of many Lydian melodies, which is that they often do not feature the tonic pitch. This practice allows composers to use the mode’s characteristic without fear of violating tritone constraints.

All three tonal stability rules come to bear in arguments that have been made against Lydian interpretations of rock progressions. They are particularly relevant to views of the progression shown in Figure 12: a succession of two major triads a whole step apart, which we have up to this point identified as Lydian I–II. This is a particularly versatile harmonic motion, as its spanning of the tritone marks it an important tonal gesture in several different modes. The example interprets the progression in its most common modal environments in rock. The first three readings are placed under a bracket due to the fact that in each mode the second of these chords (here G major) has a tonicizing status: V in Ionian, VII in Aeolian, and II in Lydian. Taking a “relative” view, the tonicizing third of this chord features an ascending resolution to ï

\[ \text{Figure 11. Violations of Lydian tritone restrictions} \]

\[ \text{Figure 12. Modal interpretations of the whole-step progression} \]
in Ionian, to 3 in Aeolian, and to 5 in Lydian. The different resolution destinations associated with this pitch provide important qualitative distinctions. That is, most will judge the Ionian resolution to be the strongest of the three and the Lydian resolution to be the weakest. One could hypothesize that these rankings are reflected in the modal preferences of rock (and other repertoires), as Ionian and Aeolian modes are far more common than Lydian.

Of course, these preferences also color analytical interpretations, especially when some degree of centric ambiguity is experienced. A useful example is Fleetwood Mac’s “Dreams” (1977), which features the alternating whole-step progression throughout (F–G). Assuming we hear this music as being tonal, one is confronted with two broad choices regarding pitch centricity. The first choice is to hear one of the two chords containing, as its root, the pitch center of the music, leading us to the potential hearings of Lydian I–II or Mixolydian VII–I. If the two chords alternate at regular intervals, then an analyst’s decision between these two modes must rely on contextual factors such as hypermetrical stress or melodic emphasis. Because the F-major chord clearly receives greater stress in “Dreams,” particularly in its use as the first and last chord of the song, most listeners inclined towards the first strategy will hear “Dreams” as featuring Lydian I–II.

Employing an opposing strategy, a pitch center may be located outside of the whole-step progression, leading the analyst to hear the music functioning within the more conventional Ionian or Aeolian modes. This approach has been proposed (in different terms) by Ken Stephen-

---

26 This reading reveals some differences between my approach and “parallel” conceptions of modal functionality. That is, a parallel interpretation would likely identify the Aeolian seventh as a substitute for the traditional leading tone in explaining the tonicizing role of the VII chord. See Doll, “Listening to Rock Harmony,” and Biamonte, “Triadic Modal and Pentatonic Patterns in Rock Music.” The idea of the third of Aeolian VII being a tonicizer can be compared to explanations of the “deceptive” progression in major (V–vi).
son, David Temperley, and Mark Spicer. After Spicer, I will refer to this as the “absent tonic” strategy. What factors might contribute to this view? First would be modal norms, as analysts appear to be more inclined towards absent-tonic readings when the Lydian tonic is more strongly suggested than that of the more common Mixolydian mode. In Stephenson’s discussion of “Dreams,” for example, he agrees that the song “begins as if it were in the Lydian mode,” but cautions against this reading due to the fact that “the vast majority of clear cases use an Ionian, Aeolian, or Mixolydian scale.”

Stephenson’s comments also suggest that melodic analysis can provide decisive evidence for absent-tonic interpretations, as the “F-Lydian hypothesis suggested by the harmonies must be abandoned once the melody begins.” The disqualifying factors cited by Stephenson include the avoidance of the Lydian tonic in the melody, and its emphasis on the notes C and A. However, considering the discussion of Lydian structures given above, none of these factors are particularly damning. As explained above, TSR3 often encourages the avoidance of the Lydian tonic melodically, resulting in the use of 3 and 5 as common points of rest (the A and C identified by Stephenson). The melody of “Dreams” is in fact primarily pentatonic (A–C–D–E–G), thereby avoiding the tritone interval entirely. When the tritone-forming notes do occur (in the chorus), they uphold TSR3, as the pitch F occurs in a lower register than B. Additionally, we must question whether such an improvisatory pentatonic melody could override the assertive centricity of the accompaniment. Some authors have discussed the “melodic–harmonic divorce” in rock music, in which the coordinated tonal centricity between melody and accompaniment associated

---

28 Stephenson, *What to Listen For in Rock*, 42.
29 Stephenson, *What to Listen For in Rock*, 42.
with common-practice music is lacking. Such “divorces” are most often encountered in modal vamp-like textures similar to that of “Dreams.” Therefore, while I do not wish to deny the possibility of other modal hearings of “Dreams,” there is nothing in its pitch structures that should automatically eliminate Lydian as a strong option.

Although the whole-step progression comprises the complete harmonic content of “Dreams,” it is more often encountered within a single section of a song (or a shorter segment). A notable scenario, to which I will return in the following section, places such a section in immediate proximity to one that features the Ionian or Aeolian pitch center of the same diatonic scale. An example of this phenomenon is found in Tom Petty’s “Here Comes My Girl” (1979), in which the opening verse features the whole-step progression (over Lydian pedal A), while the chorus utilizes an unambiguous E-major tonality. Temperley, who cites several additional songs that follow the same basic strategy, considers these events to be indicative of an absent-tonic technique at work in the verse. The likely theoretical appeal of this hearing is that it allows one to consider the music as fundamentally monotonal, hence making it amendable to established tonal theories (such as Schenkerian analysis). But is a monotonal theory truly appropriate for this music, or does one experience “sectional centricity,” as discussed by Guy Capuzzo? The absent-tonic reading suggests that the whole-step segment of the song is heard as unstable, and that such instability, coupled with the use of a single diatonic scale throughout, would naturally favor the familiar Ionian tonality of the chorus. But if the Lydian section is heard as being locally

---

stable, should it be automatically subordinated to the Ionian/Aeolian section?33

A counter example is found in the Blue Öyster Cult’s “I Love the Night” (1977). Here, the formal disposition of modes is opposite that of “Here Comes My Girl,” with E Aeolian tonality in the verse and C Lydian in the chorus. Given that these are “relative” modes of the 1♯ diatonic scale, some may be tempted to assert a single tonic pitch for the entire song. At first, such a strategy seems appropriate, especially when considering the modal events of the introduction (Figure 13). As shown, the opening C-Lydian segment, realized with characteristic tonic pedal below the I–II progression, immediately gives way to a prolongation of E minor that leads into the verse. Viewed in isolation, the opening Lydian harmony may be subsumed by the following E Aeolian as a type of “off-tonic” beginning. However, this same C-Lydian music later serves as accompaniment to the chorus: a texture sustained for over half the song’s duration, including the fade out. Yet it is unlikely that an analyst would suggest that the tonality of the Aeolian verses should be subordinated to the Lydian chorus. Rather, a more appropriate reading would acknowledge two distinct modes, which are unified mainly by the governing 1♯ diatonic scale. The separation between the two modally distinct sections is aided by both musical and

---

33 In fact, “Here Comes My Girl” does end in A Lydian, which suggests that the idea of the verse being unstable is not entirely accurate.
textual factors. For example, the tonicization of E Aeolian in the verse is never achieved through the modal tonicizer VII (identical to Lydian II), but rather through the traditional “chromatic” V chord. Regarding the narrative of the song, the E-Aeolian verses describe a process of searching, whereby a protagonist walking alone eventually finds comfort in the dark. The attainment of this goal is celebrated in the chorus with the move into “bright” Lydian tonality. Here, Lydian takes on otherworldly associations (to be discussed in more detail below), representing a breaking free from the confines of earthly sorrow.

The examples of “Here Comes My Girl” and “I Love the Night” have served to help us identify several of the interpretive questions that may be posed when confronted with a (potential) Lydian segment of music. Such inquiries will consider the status of the segment as stable or unstable, its relative length, and its coordination with other events in the song. Thus far, I have discussed the modal reading and absent-tonic interpretation as being essentially at odds. However, there is some room for compromise between these two viewpoints, and I will now turn to consider how both concepts may be integrated, resulting in a broader understanding of some common modal techniques in rock.

**DIATONIC MODAL TONICIZATION**

Walter Everett, in discussing the music of the Beatles, describes an alternative tonal system found in certain songs:

> These songs do not seem to adhere to a tonal system in which scale degrees with specific functions may be prolonged through momentary alteration to the scale of the home key as much as they resemble vagrant medieval modal systems, in which different tones (*finalis* and *confinalis*) alternate priority, without necessary alteration to the original scale.34

---

Although Everett is perhaps merely describing the use of two “stopping places” in a diatonic scale, I believe the technique outlined is indicative of what I will term diatonic tonicization, which allows different modal tonic pitches/chords to be tonicized without recourse to chromaticism. While the modal pairing described by Everett involves Ionian and Aeolian modes, the procedure carries the potential for modes besides Ionian to be similarly tonicized. I assert that, at least by the 1970s, certain rock artists began to employ these other modes (including Lydian) in similar pairings.

Two factors will generally be required for us to invoke the idea of diatonic tonicization, both of which are familiar from Lydian TSR1: (1) strong assertion of the modal tonic pitch/chord; and (2) a coupling of this pitch/chord with one or two chords having a tonicizing function in the given mode. Ian Bates theorizes that the presentation of the diatonic tritone interval is crucial in determining these tonicizing chords.\(^{35}\) As Figure 14 (a reproduction of Bates’s Table 1.3.1) shows, Ionian and Aeolian modes are unique in that their tonic triads do not include either of the tritone-forming notes; hence, they often utilize two chords that together project this interval prior to the arrival of their tonic triads. This fact makes possible the double function of

tonicizing chords in the Ionian/Aeolian pairing, whereby Aeolian VI–VII may pivot at will into the relative Ionian as IV–V. The remaining modes, which have tonic triads that include one of the two tritone-forming notes, will naturally require only one additional chord to outline the tritone interval and tonicize the mode. This partially explains why modes other than Ionian and Aeolian are often represented by vamp-like chord oscillations (such as Lydian I–II, Mixolydian VII–I, and Dorian i–IV).

When analyzing songs featuring diatonic tonicizations of two (or more) relative modes, the manner and degree of the tonicization will need to be taken into consideration. Three general approaches will be defined here, though certain examples may defy easy categorization. The first scenario, exhibiting the most extensive modal effect, is a primary tonicization. Here, an entire song or an entire large section of a song is governed by an asserted modal tonic pitch and its tonicizing chord(s). Regarding Lydian tonicizations of the primary category, those utilized throughout entire pieces are quite rare, but complete formal sections of Lydian emphasis are not uncommon (a small sampling has already been cited above).

On the opposite end of the spectrum from the primary category are secondary tonicizations. These are perhaps best compared to “secondary dominant” effects in tonal music. That is, they serve to emphasize or prolong particular (non-tonic) chords in the context of a prevailing mode (usually Ionian or Aeolian), making use of the tonicizing motions of the mode associated with the particular chord. For example, in the context of an Ionian phrase (or section), one may speak of a “secondary Mixolydian tonicization of V” or a “secondary Dorian tonicization of ii.” Such comments imply that the analyst hears the given chord asserting itself as a small-scale “tonic” or “pitch center” and that the nature of this assertion achieves the tonal color and

---

36 A few (of the countless) examples of this procedure include Fleetwood Mac’s “Rhiannon” (1975) and “Go Your Own Way” (1977), Blue Öyster Cult’s “Burning for You” (1981), and Guns N’ Roses’ “Don’t Cry” (1991).
harmonic/melodic structure characteristic of the mode in question. Like “secondary dominant” tonicizations, however, the listener continues to hear the music functioning within a deeper-level mode. Given the lack of chromaticism associated with secondary modal tonicizations, such effects are easily overlooked, but I believe this technique represents an important innovation in the history of rock music, as it allowed artists to enact different levels of tonal emphasis in phrases/sections while avoiding the tension/release effects of chromatic tonicization.

The Lydian mode is especially amenable to secondary diatonic tonicizations, as its potential for large-scale employment is somewhat limited, yet, at the same time, its tonal color is instantly recognizable, making it quite useful for expressive purposes. Lydian secondary tonicizations will thus usually involve prolongations of Ionian IV or Aeolian VI. Among the many examples of secondary Lydian tonicizations from the late 1970s to the middle ’80s, one may look to the Fleetwood Mac songs “Everywhere” and “Little Lies” (both 1987). Even though different home modes are used (E Ionian in “Everywhere,” and F♯ Aeolian in “Little Lies”), these songs are nearly identical in their secondary tonicizations, as in each the Lydian effect, realized with the familiar tonic pedal accompanying the I–II progression above, is reserved for the instrumental introduction and interlude sections. The band highlights these brief tonicizations through notable changes in orchestration, emphasizing ethereal synthesizer sounds; the result is that each return to the home mode creates a “back to reality” effect.

Most important in the rock repertoire, however, are those tonicizations that fall between the primary/secondary poles discussed thus far, which I will therefore categorize as hybrid. This

37 The album from which these songs are taken, Tango in the Night (1987), is a compendium of Lydian techniques. One may view this album, alongside Emerson, Lake, and Powell’s self-titled album from 1986, as marking a historical culmination in the use of Lydian effects in rock music.

38 Fleetwood’s Mac’s associating the Lydian mode with dreamlike states is clearly evident throughout their career. Consider the earlier-discussed “Dreams” as well as the song “Straight Back” (1982), in which a secondary Lydian tonicization accompanies the line “the dream has just begun.”
option is most applicable in the scenario outlined above in relation to “Here Comes My Girl” and “I Love the Night,” where a primary tonicization is featured throughout a large discrete formal section of a song, but where a shift to a different mode of the same scale (usually Ionian or Aeolian) in an adjacent section allows the listener to hear a strong tonal relationship between the two sections. The interpretation of this relationship, however, will need to be addressed on a case-by-case basis. Analysts wishing to highlight the distinctness of each section (e.g., Lori Burns)\(^{39}\) may choose to address each section as its own independent tonal region, while analysts inclined towards an “absent tonic” viewpoint (e.g., Stephenson, Spicer, and Temperley) may prefer to view certain tonicizations as serving a prolongational function at a deeper level of tonal structure (i.e., to hear it as a large-scale “secondary” tonicization).

Several factors may sway an analysis of a given hybrid tonicization toward one of the two poles, but the concept itself shows the two views as being not mutually exclusive. The formal distribution of modes in a given song is one important consideration. When the tonicization of a non-Ionian mode occurs in a subsidiary section, such as a short introduction or bridge section, the inclination to view this section as a large-scale secondary tonicization is strengthened. For example, the Lydian tonicization that occurs throughout the bridge section of Rick Springfield’s “Jessie’s Girl” (1981; see 1:40) is best considered to be a large-scale Lydian tonicization of IV (in reference to the Ionian mode of the verse/chorus). Conversely, a Lydian tonicization utilized throughout a chorus section (such as in “I Love the Night”) would be heard to possess stronger tonal independence. But what of the most common option, involving a Lydian-tonicized verse progression and a shift to the relative Ionian (or, occasionally, Aeolian) in the chorus? Trevor de Clercq theorizes that arrivals on the Ionian tonic for the chorus generate

\(^{39}\) Burns, “Analytic Methodologies for Rock Music.”
a “focal quality” characteristic of this section.\textsuperscript{40} That is, as discussed above, tonicizations of the Ionian triad (and, to a slightly lesser degree, the Aeolian triad) are inherently stronger than those of the other modes; therefore, the formal placement of such a tonicization at the beginning of the chorus can produce the effect of tonal arrival.

Whether such an effect leads analysts to “demote” the modality of the verse is a separate question. The general recommendation here is to explore the benefits of the modal reading, as much insight can be gained by embracing this option. For example, modality can account for the distinctiveness of each section, yet simultaneously clarify the way the tonal structures of the different sections interrelate. As a case in point, consider Temperley’s “loose verse/tight chorus” model, which addresses the often-encountered dichotomy between verse sections featuring a “melodic-harmonic divorce” and chorus sections that exhibit a greater coordination between melody and harmony.\textsuperscript{41} Though Temperley cites pentatonicism as the primary means for creating a loose-knit verse, the non-Ionian modes are also well suited for creating melodic structures that do not obey traditional rules of harmonic embellishment.

But such differing textures also help define the expressive makeup of a given song. Consider REO Speedwagon’s “Keep On Loving You” (1981), a song cited by Temperley and one that provides a blueprint for such treatment.\textsuperscript{42} This song reveals three commonly found stages: (1) the establishment of Lydian harmony through simple chord progressions (I–II or I–II–i, often above a tonic pedal) that accompany lyrics of an introspective, questioning nature; (2) a destabilizing passage, often marked by dynamic and textural increase, wherein the previously stable Lydian tonic chord changes its local function; and (3) an affirmative chorus in a relative

\textsuperscript{40} Trevor de Clercq, “Sections and Successions in Successful Songs: A Prototype Approach to Form in Rock Music” (Ph.D. dissertation, Univ. of Rochester, Eastman School of Music, 2005), 50.

\textsuperscript{41} Temperley, “The Melodic-Harmonic ‘Divorce’ in Rock,” 335.

\textsuperscript{42} Temperley, The Cognition of Basic Musical Structures, 264; and “Scalar Shift in Popular Music,” 2.4.
mode (Ionian in “Keep On Loving You”), the clarity and strength of which may suggest a large-scale indebtedness of the Lydian verse. However, this pattern of events should not lead one to deny the Lydian tonality of such verses. Rather, the mode performs a double function, being stable in the context of its formal section but also prolongational in the larger scheme of the song. One might compare this idea to the Schenkerian view on modulation, which interprets locally stable keys as serving the purpose of creating large-scale prolongations of scale steps.

Asia’s song “The Last to Know” (1983) demonstrates some of the musical and expressive potential in the scenario outlined above. This song is, in many ways, a re-write of the formula
established in “Keep On Loving You.” But rather than locating Lydian harmony within a prolongation of IV, “The Last to Know” establishes the scale through a large-scale borrowing of the submediant ($\flat$VI) from the parallel minor scale. Figure 15, which provides a summary of the song’s main tonal events, shows that all three stages outlined above are present, including an introductory A$b$-Lydian verse, a destabilizing passage produced through a thickening of the texture and an abandonment of the A$b$ pedal, and a soaring chorus in C major. The Lydian prolongation of $\flat$VI seems to carry with it a darker undercurrent than did the corresponding prolonged IV of “Keep On Loving You.” While “Keep On Loving You” hinted at infidelity (“and though I know all about those men”), “The Last to Know” depicts a scene involving a guilty but repentant lover (“holding your head in your hands”) being rebuked in the thoughts of the narrator (“how could I offer sympathy, when all I feel is pure rejection?”). When the chorus shifts to C major/Ionian, the narrator nostalgically recalls their first meeting. In furthering the correlation between scale type and expressive content in song, chords “borrowed” from C minor are introduced at the title line (“I was just the last to know”), depicting the deception felt by the narrator. These borrowed harmonies also allow an important musical parallelism between verse and chorus. As shown in Figure 15, the A$b$-Lydian harmonies of the verse support the standard passing melodic formula $5\rightarrow4\rightarrow3$. These same three pitches (E$b$–D–C) recur in the same order at the end of the chorus as the cadential $\flat3\rightarrow2\rightarrow1$.

**CONCLUDING ANALYSES**

These final analyses will further address some of the stylistic and expressive dimensions of Lydian modality in rock. Considering the examples presented thus far, the Lydian mode has clearly revealed aspects of “markedness” (to use Robert Hatten’s term), as its expressive range is
somewhat circumscribed by its unique structural properties—particularly its ascending directionality, its stasis, and its general intervallic consonance. For example, we have seen Lydian used to conjure up the otherworldly (Blue Öyster Cult’s “I Love the Night”), to create dreamlike or floating effects (several Fleetwood Mac songs, Bush’s “Wuthering Heights”), and to express inner dialogues (REO Speedwagon’s “Keep On Loving You,” and Asia’s “The Last to Know”). These expressive and musical outcomes are also indicative of certain stylistic trends in rock during the period in which Lydian music is most commonly encountered, especially in the styles of jazz rock and soft rock. To address these factors, the songs are discussed in an order of increasing Lydian influence.

Todd Rundgren, “Love of the Common Man”

Todd Rundgren’s use of the Lydian scale begins to appear gradually in the music following his album Something/Anything? (1972), which represents a culmination of his involvement in the soft-rock/blue-eyed soul styles characteristic of influences such Burt Bacharach, Carole King, and Laura Nyro. The more personal style he forged following this album, though still largely consistent with his earlier music, is often infused with intense spiritual imagery. The following discussion will reveal that Rundgren often uses the Lydian mode as a musical representation of spiritual transcendence.

Before beginning, we might wonder if there is any direct correlation between the soft-rock style and Rundgren’s use of the Lydian scale. I believe one important element to consider is

---

43 For a discussion of the markedness of minor modality in classical tonality, see Robert Hatten, Musical Meaning in Beethoven: Markedness, Correlation, and Interpretation (Bloomington: Indiana Univ. Press, 1994).
the role of the major-seventh chord, a recognized hallmark of much soft-rock music. In Rundgren’s October 2010 concert/lecture at Indiana University, he describes the importance of this chord in his musical development, noting its ability to function as an emotional signifier (he jokingly describes this as “oh, I feel melancholy all of a sudden.”)\textsuperscript{45} He observes that the major tonic triad merely harmonizes the tonic pitch (“okay, we start here”) while the major-seventh chord is immediately expressive (“feel this!”). Because he also cites the minor-seventh chord in this regard, we can conclude that the structural properties of these chords that are likely responsible for Rundgren’s reaction are their intervallic symmetry and their construction by conjoining major and minor triads. These properties are significant in that the “other” major-seventh chord in the diatonic scale is found at the position of the Lydian tonic (or Ionian IV). In fact, as shown above, the Lydian scale allows for a continuance of conjoined major and minor triads, making the scale a type of magnified version of the major-seventh chord. In Rundgren’s music, this “other” major-seventh chord, and its attendant Lydian mode, is sometimes employed in such a way as to represent a transcending of the established (or implied) Ionian or Aeolian mode.

“Love of the Common Man” (1976) is particularly saturated with major-seventh chords; in fact, nearly every phrase in the song ends with one of the two diatonic major-seventh chords. Almost entirely comprised of chords of the $4\#$ diatonic scale, this song well represents the concept of a “vagrant modal system” described by Everett, although here the two modes in play are Ionian and Lydian. Figure 16 provides a few key moments in the song where ambiguities between pitch centers on A and E come to a head.

In the song’s beginning (Figure 16a), Rundgren establishes two Lydian textures to which he will often return, both of which harmonize the passing melodic succession 5–4–3: (1) a tonic

\textsuperscript{45} This footage can be viewed on video-sharing websites such as YouTube. My thanks to Walter Everett for bringing this material to my attention.

(a) introduction and beginning of verse

(b) end of verse, beginning of chorus (0:55–1:09)

(continued on next page)
pedal (A) with primary triads above (I–II–I), occurring at the opening of the song; and (2) the passing progression iii–II–I, which concludes the opening phrase. The first suggestion of E tonality occurs between these two segments, specifically with the bass E at the beginning of the first vocal phrase. However, the brevity of this event, as well the failure to accompany the bass E
with its full triad/seventh chord above, downplays the Ionian hint. More convincing tonicizations of E Ionian occur in the following sections of the song. The strongest is found the end of the verse and the beginning of the chorus (Figure 16b). Here, Rundgren exploits the tonicizing function of the B-major triad in both modes; first, the chord is resolved characteristically as II in A Lydian, concluding with a restatement of the passing melodic motive. Then, in violation of TSR2, a second attempt at the same progression treats this chord as a tonicizing V chord in E Ionian. This Ionian emergence is furthered by preceding the B-major triad with a chord acting as ii7 in E, thereby creating a functional ii7–V–I progression. Observe that Rundgren immediately usurps this Ionian feint with a restatement of the Lydian passing progression, ultimately cadencing on A. Finally, the bridge features a slightly weaker breach of TSR2, with the B-major triad over Lydian pedal A momentarily resolving as a V2 chord into a first-inversion E triad (Figure 16c). This tonicization is weaker due to the inverted position of the E chord, as well as the immediate use of the E triad as a tonicizing V6 in A Lydian.46

Thus far, I have described the suggestions of E Ionian as aberrations within a predominantly Lydian song, as each Ionian tonicization has been supplanted by a return to one of the characteristic Lydian textures. However, the opposite view could reasonably be taken; that is, the song could be considered one with a largely “absent tonic” E major, with extensive diatonic Lydian tonicizations of IV. Rather than choosing between one of these two readings, more insight can be gained by viewing the two relative modes as working in conjunction throughout the song. In fact, the cadential gestures, with emphasis on melodic pitch E, are equally characteristic of both modes.

46 In fact, Rundgren leads the E above the bass to D♯, so that the chord becomes the stronger Lydian tonicizer vii.
More importantly, the competition between modal centers A and E is integral to the narrative of the song, which preaches the possibilities of transformation through reconnecting with the “simple things” in life—particularly the sense of shared community that the protagonist has lost in modern life. This transcending of the state of “living in your pocket” is represented at key moments by tonicizations of A Lydian. For example, the strongest Ionian tonicization (Figure 16b) accompanies the title line of the song. Perhaps in response to the “common” nature of this tonal gesture, the return to a Lydian texture coincides with the lyrics “turn the world around,” suggesting that embracing a “love of the common man” allows one to overcome life’s obstacles. In the bridge (Figure 16c), the unexpected Ionian tonicization emphasizes the word “dive” in the line “take a dive from your ivory tower,” and the effect of falling is produced by pulling down the Lydian tonic in the bass from its stable position. Here, the reestablishment of Lydian harmony coincides with a description of one being rescued from falling by “everyone.”

Most striking is the final cadential progression of the song, where we find a hummed restatement of the “love of the common man” melody from the chorus (Figure 16d). Although this gesture had been previously associated with Ionian tonicizations, Rundgren replaces the expected E major-seventh chord with the competing A major-seventh chord, ending the song conclusively on Lydian harmony.

_Tears for Fears, “Head over Heels”_

The music of Tears for Fears is representative of many of the trends in mainstream pop/rock in the early to mid 1980s. As we have seen in some of the examples discussed above, music of this period most commonly exploits the Lydian scale for “secondary” or “hybrid” tonicizations. The Tears for Fears song “Pale Shelter” (1983), for example, features the F-Lydian I–II progression in its verse, which functions to prolong VI of the relative Aeolian through a hybrid
modal tonicization. In their music, the association of Lydian tonality with transcendence (also witnessed in Todd Rundgren’s music) is often directed towards the expression of freedom or a triumph over hardship. A model for this usage is found in Robert Wyatt’s “Sea Song” (1974)—a track covered by the band in 1985—in which a Lydian coda, following the words “we’re not alone,” indicates the overcoming (or acceptance) of the dysfunctions of a relationship.

“Head over Heels” (1985) follows “Sea Song” in several important ways, but before discussing text/music relationships in this song, let us consider some of its essential tonal aspects. It is divided into three distinct sections, each utilizing a different pitch center and mode (see Figure 17). Interestingly, the most salient of these are relative modes of the 1♯ diatonic collection. Although the sharing of a diatonic collection might previously have lead us to explain some of these modes as arising from secondary/hybrid modal tonicizations, there is little support for such an idea here. Instead, each section is tonally distinct, often creating its modal effect through repeated two-chord progressions. Not surprisingly, the Lydian music, found in the introduction and coda (Figure 17a), alternates between I and II. This accompaniment supports a two-part melodic counterpoint, with both lines confirming the Lydian tonic C by exploiting the leading tones of the scale and by emphasizing pitches of the C-major triad. The primary mode of the verse (Figure 17b) is A Dorian, asserting its pitch center through bass pedal, while the chorus (Figure 17c) features the alternation between G Ionian I and vi. Both verse and chorus produce temporary shifts in scale (by one sharp or flat), which serve further to delineate the sections. In the verse, the opening A-major triad produces a sharp-wise shift to the 2♯ system, creating a consistent cross-relation between the C♯ of A Mixolydian and the C♯ of A Dorian. In the chorus, the surprise cadential D minor-seventh chord enacts a flat-wise shift to the white-note collection.

---

47 The chords in the chorus are all major triads, but the roots of these chords suggest the A-minor scale.
FIGURE 17. Tears for Fears, “Head over Heels” (1985)

(a) introduction/coda

(b) verse

A Mixolydian / Dorian

(c) chorus

Don't take my heart...
These scale resources are closely allied with the song’s narrative, which describes the internal conflicts of the protagonist, particularly referencing his childhood and his troubled romantic relationship. The C♯/C♯ cross-relation of the verse is the clearest musical expression of these struggles. His succumbing to being “head over heels” is accompanied by the simple G-Ionian harmony (I–vi) of the chorus, but the stark shift to the white-note collection reveals lingering fears and doubts (“don’t break my heart,” etc.). The Lydian music, occurring at the beginning and end of the song, performs an important framing function. In the coda, it accompanies the important (but ambiguous) line “this is my four leaf clover.” Therefore, as in “Sea Song,” the framing Lydian tonality appears to suggest an escape from the protagonist’s worldly hardships.48

Steely Dan, “Here at the Western World”

Our final example, Steely Dan’s “Here at the Western World” (1976), manifests a more extensive Lydian tonal environment than we have encountered to this point. This may be a result of the band’s occasional jazz harmonic leanings. In particular, we might look to George Russell’s seminal book The Lydian Chromatic Concept of Tonal Organization (1953), which advocates for the use of the Lydian scale as the primary scalar representative of major tonality. (As an aside, it should be noted that Steely Dan have expressed knowledge of Russell’s theory,49 and that Russell himself singled out their song “Aja” [1977] for praise.)50 In fact, the technique of pairing the

---

48 The “gun in your hand” reference in the lyrics has led some to conclude that the “four leaf clover” is the act of suicide. Lyricist Roland Orzabal’s description of the ending as being “a bit perverse” may lend some credence to such dark interpretations.


50 Ben Young, broadcast devoted to George Russell in celebration of his seventy-fourth birthday, WKCR Radio, New York (23 June 1997). Not surprisingly, the song “Aja” makes use of the Lydian scale.
major (tonic) triad with the Lydian scale constitutes an important means of articulating the various pitch centers throughout “Here at the Western World.” In the following analysis, the jazz concept of chordSCALE equivalence, which has been lurking in the background throughout the discussion above, will need to be given greater consideration, even while we recognize some ambiguous interplay between this concept and the more traditional view of functional harmonic behavior.

There are several fundamental tonal conflicts that are explored throughout the five main sections of the song (introduction–verse–pre-chorus–chorus–solo). These involve four different tonicized pitches—A, D, G, and F♯—and the three closely related scales A Lydian (4♯), D Lydian (3♯), and G Lydian (2♯). The introduction of the song presents these conflicts as a type of musical question that subsequent sections will help us untangle. As shown in Figure 18a, the opening gesture tonicizes A (the primary pitch center of the song) with the strong Lydian passing melodic motive ♯–♭–♮, establishing the 4♯ scale as an important point of reference. A disturbance from the 4♯ collection is introduced in m. 4, where a surprise D-major triad briefly marks a shift to the 2♯ system. A cadence on F♯, the relative minor (vi) of A, follows, and is analyzed here as a possible return to the 4♯ scale. At the end of the introduction, the remaining scalar resource of the song is presented (3♯), apparently in the guise of a tonicized D Lydian, though lacking the strong Lydian motive of the opening. As shown, this segment may also be analyzed in A Ionian—a reading that will receive further confirmation in subsequent sections.

The verse (Figure 18b) does little to clarify the picture, being almost entirely “absent tonic” in its chord progressions, perhaps befitting the narrator’s description of a quest for fulfillment. The minor chords that occur on the strong hypermetrical beats (C♯ and F♯) had previously

---

51 Later events will support this analysis. This same cadence is used to end the song.
**FIGURE 18.** Steely Dan, “Here at the Western World” (1976)

(a) introduction

(b) verse, 0:17–0:37

(c) pre-chorus, 0:39–1:00

(continued on next page)
functioned as tonic substitutes in A Lydian, though here they may also be heard as “pivoting” into the 3♯ collection of A Ionian, which is also present as a descending melodic sequence. However, the weak hypermetrical beats of the verse feature an alternation between the chords G major and B minor, enacting brief shifts to the “disruptive” 2♯ collection. With the presence of
the G-major chord, some degree of G-Lydian tonality is experience here, but the local function of this scalar shift is to create a Mixolydian tonicization of A via the VII–I progression at the end of the section, allowing the arrival of the tonic A major to fulfill the narrator’s quest.

The pre-chorus begins to answer some of our lingering questions about the large-scale functionality of some of these primary scales, particularly that of D Lydian. As shown in Figure 18c, this section is constructed as an alternation between bass pitches D and A, both of which receive Lydian tonicizations through the $3\text{--}4\text{--}5$ motive established in the introduction. Although this configuration can easily be described as an alternation between two of the primary scales of the song (3# and 4#), it is also possible to hear aspects of the music as being grounded in the 3# system of A major. That is, the D-Lydian segment may function as a secondary diatonic tonicization of IV in A major, thereby imitating the D–A bass motion of the 3# segment of the introduction. The shift to A Lydian, then, allows for Russell’s “preferred” scalar coupling with the major triad, and continues the contextual emphasis on the 4# system.\footnote{The interested reader may refer to Todd Rundgren’s song “Hideaway” (1982) for a very similar process, utilizing the exact same two chords.}

The music of the chorus (Figure 18d) continues the process of clarification, and involves reorganizing some of the chord progressions of the verse. It begins with a recalling of the two “pivot” sonorities of the verse, C# minor and F# minor, which now alternate without the 2# scale interruptions. This alternation breaks at the climax of the chorus (“we got your skinny girl”) with a striking tonicization of D Lydian (and a restatement of the passing motive), achieved through an additional pivot chord E major, which resolves locally as II of D Lydian. Considering the pre-chorus, we again understand the larger function of this D-Lydian music to be a secondary tonicization of IV. The cadential gesture, however, strongly recalls the 2# progressions that ended the
verse (G–Bm–A). Therefore, A-major is tonicized yet again by its Mixolydian VII chord, with G Lydian yet to receive strong confirmation.

With the pre-chorus and chorus clarifying the role of D Lydian, the music of the guitar solo (Figure 18e) is assigned the task of resolving the lingering tension between (and within) the 4♯ and 2♯ collections. Three different chord oscillations serve to accompany the solo. The first and last of these take place in the 4♯ system, with F♯ Dorian (i-IV) answered at the end by A Lydian (I–II). Therefore, both of the 4♯-scale tonics which were established in the introductory phrase (Figure 18a) are confirmed, with the previously latent F♯ Dorian now fully realized. The middle segment, on the other hand, provides the long-awaited arrival of G Lydian, which receives its own I–II alternation. The dramatic shift to the 2♯ system allows the music of this section to imitate the same scalar succession from the introductory phrase (4♯–2♯–4♯). However, this moment also represents a culmination of the gradual growth of G Lydian in reference to the 2♯ scale. That is, the initial arrival of the 2♯ collection in the introduction had little or no Lydian implications. Thereafter, its appearances in the verse and chorus were under the guise of Mixolydian tonicizations of A (VII–I). Only here, in its final statement, is G Lydian convincingly confirmed.

The growth of G Lydian further demonstrates the unique techniques of local tonicization and large-scale prolongation employed throughout the song. The 4♯ collection can be seen as the most primary tonal resource here, as nearly every arrival on the tonic pitch A in the bass necessitates a shift into the Lydian scale. Additionally, A Lydian’s relative minor F♯ Dorian is employed at important points to further the influence of this collection. However, F♯ also pivots into the closely-related 3♯ scale of A major, which itself has an important role in the song. The 3♯ scale acts as a mediator between the more distant 4♯ and 2♯ scales, and allows for the second-
ary tonicizations of D Lydian (IV). It is also primary to our experience of the “borrowed” G-major chords of the verse and chorus. However, we also observe that Ionian tonicizations are entirely lacking in the song, being replaced instead by modal tonicizations of Lydian, Dorian, and Mixolydian scales. Therefore, this song appears to reverse the roles of Ionian and Lydian modes as seen in previous songs, with Lydian usurping the traditional position of Ionian.

While this study has focused on one of the least encountered modes in rock music, it has nonetheless revealed several important considerations for the analysis of rock progressions and the styles in which they arise. In fact, the very scarcity of Lydian passages makes these concerns all the more obvious. The most fundamental of these is the question of the usefulness of established tonal theories for understanding such music. Lori Burns has cautioned against evaluating modal patterns with theories of common-practice tonality, particularly when such systems may automatically devalue any elements not in conformance the system. Lydian tonality serves as an interesting case study in this respect, due to the difficulty one naturally encounters in attempting to transfer to it the functional relationships of major-scale tonality. For example, even though the Lydian scale is uniquely rich in tonic functionality, it is lacking anything directly comparable to the major scale’s dominant and pre-dominant functions. Rather, its intervallic structure is determinative of modal function, requiring the “relative” theory proposed here.

In other crucial respects, however, traditional tonal theories—including even those of Schenker—have proven useful to our discussion. In the simplest terms, we can understand what is unique about Lydian tonality through comparison with tonal norms, and we have observed that these differences are directly reflected in relationships played out in the music. More signifi-

cantly, recourse to concepts such as prolongation (both small- and large-scale) has been necessary to explain the unique functionality of Lydian tonality in commonly encountered contexts. That is, while Lydian exhibits its own prolongational structures, these may be coordinated with the characteristic features of other modes. The technique of secondary/hybrid modal tonicization demonstrates this well, as a segment/section of Lydian tonality may prolong a local scale degree while also, at a different level of structure, complementing the prolongational spans of a relative mode. Ultimately, analysts will need to negotiate the tension between the traditional model and those aspects unique to the mode at hand.

---

54 Walter Everett has discussed how Schenkerian theory may be used to clarify how a given piece distorts normative structures; see Everett, *The Beatles As Musicians: The Quarry Men through Rubber Soul*. 
WORKS CITED


Abstract

This article reexamines modal techniques in rock music, using the “problematic” Lydian mode as a test case. I argue that the Lydian scale plays a larger role in rock music than has been previously acknowledged, particularly in songs of the 1970s and ’80s. First, I outline a hierarchy of pitches and chords in the scale, which will aid in recognition of Lydian patterns in rock. Then, I address existing controversies surrounding Lydian interpretations of chord progressions, which will be viewed in light of three “tonal stability rules” necessary for convincing Lydian centricity. This will lead to a general theory of “modal tonicization” in rock music, also relevant to the remaining diatonic modes. Finally, I offer a series of analyses of songs by Todd Rundgren, Tears for Fears, and Steely Dan, which will demonstrate some of the musical and expressive potential of Lydian tonality.
HOW TO CITE THIS ARTICLE
(An example based on a humanities-style note citation)


ABOUT THE AUTHOR

Brett Clement is an Assistant Professor at Ball State University, where he acts as Coordinator of Aural Skills. He received his Ph.D. in Music Theory from the University of Cincinnati in 2009. His research focuses on post-tonal music, with an emphasis on repertoires that fuse elements of popular and art music. He has presented papers at the Society for Music Theory, Music Theory Midwest, Music Theory Southeast, the Texas Society for Music Theory, and the Rocky Mountain Society for Music Theory.

This article uploaded to the *Gamut* site on 14 October 2013.