








Another reason could be that the rate constant for
decrystallization (or chain separation) of cellulose crys-
tals by the enzymes is based on the theoretical time-
scales for breaking of hydrogen bonds in an aqueous
environment, which is quite rapid.

Hydrolysis by exo-cellulases
The hydrolysis profile produced by exo-cellulases is
shown in Figure 10. The cellulose conversion is constant
over time, a feature that has not been observed in
experiments [16,50]. As expected, the time it takes to
convert a given percent of the substrate decreases as kon
increases (Figure 10, inset).
The effect of varying the initial [E]0 enzyme concentra-

tion upon conversion times is plotted in Figure 11a. In
contrast to Figure 8a, the substrate becomes saturated
by exo-cellulases at lower enzyme concentrations than
we observed in the case of endo-cellulases. This is be-
cause the number of free chain ends always remains
small compared to the number of enzyme particles in

solution. Figure 11b shows that the only sugar produced
by exo-cellulases is cellobiose. Experimental results,
however, report the production of both glucose and cel-
lotriose along with cellobiose, although cellobiose is the
major product [16,50]. The relatively constant processive
speed of exo-R cellulases along the glucan chain explains
the constant hydrolysis rate observed in Figure 10 and
the non-decreasing gap between the two curves in
Figure 11a.
The relatively constant processing time of the exo-

cellulases is the result of using a simple coarse-grained
description of processing time for exo-cellaloses since
no rates have been measured for specific events asso-
ciated with processivity. Values in these calculations are
set such that kon, koff >> 1/tmove for exo-cellulases. Thus
the binding of the enzyme to the substrate is at equilib-
rium. These parameters can be easily adjusted to match
up with any forthcoming experimental observations. In
addition, the total concentration of the substrate (redu-
cing ends for exo-R or non-reducing ends for exo-N)
does not change with time until the whole chain is pro-
cessed. This ensures that the concentration of enzyme-
bound substrate remains nearly constant with time for
the exo-cellulases resulting in a nearly constant rate of
processing until the end. We expect these effects to be
reduced in three-dimensional crystals of cellulose in
which multiple layers of cellulose chains have to be pro-
cessed by the exo–cellulases as the chains get hydrolysed
in a staggered fashion in these crystals. It has also been
reported [56] that cellulose-binding modules bind to in-
soluble non-crystalline cellulose with a 10-20-fold
greater affinity than to cello-oligosaccharides and/or sol-
uble polysaccharides. Future expansion of this model
will incorporate a non-constant adsorption rate of
enzymes that would depend on the length of the cello-
oligosaccharides; this will bring further complexity to
the model. In addition, incorporation of stochasticity
in the processing of the cellulose chain by the exo-
cellulases and better estimates for rates of decrystalli-
zation of the cellulose crystal could lead to better
agreement with experimental hydrolysis rates.

Hydrolysis by endo- and exo-cellulases
In order to test whether our model reproduces the ex-
perimentally observed endo-exo synergy, we used ex-
perimental data reported by Eriksson and colleagues (see
Figure 1A [50]) and modified the kinetic rate constants
for both types of cellulases by fitting the model single
enzyme hydrolysis curves to the experimental data. The
initial enzyme concentration was set to [E]0 = 1.5 μM
and the cellulose concentration to 10 g/L [50]. Numer-
ical results show the endo-exo synergy (Figure 12a) and
the time scale is the same as observed experimentally
[50]. It should be kept in mind that the substrate in that
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Figure 11 (a) Effect of initial concentration of exo-cellulases.
Change in convencion time as initial enzyme concentration is varied
(b) Sugar production over time. System parameters are: N= 25000
glucose units, kon= 105 1/(sM), koff= 100 1/s.
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experimental work is steam-pretreated spruce (lignocel-
lulose), not pure cellulose. However, it is encouraging
that we do observe similar behavior. Sugar production is
higher when exo-R cellulases hydrolyze the cellulose sur-
face in the presence of endo-cellulases when compared
to the sum of their conversions achieved alone.

The increase of free chain ends produced by endo-
cellulases is the primary source of the endo-exo synergy
observed in the model. Figure 12b illustrates how this ef-
fect contributes to a large increase in the percentage of
adsorbed exo-cellulases. This percentage is constant
when exo-cellulases degrade the substrate alone, while
in the presence of endo-cellulases it grows to higher
values, contributing to a fast and efficient degradation of
the substrate.

Results regarding synergism between pure Tricho-
derma cellulases [14,57] showed that the endo-exo syn-
ergy depends on the ratio of the concentrations of the
individual enzymes. Here, we tested whether our model
qualitatively reproduces this observation by comparing
conversion times—the time to degrade 5%, 25%, 50% or
80% of the substrate—for various exo-R/endo ratios.
Using the hydrolysis rates listed in Table 4, we consider
two cases: i) the overall hydrolysis of cellulose by endo-
cellulases takes place at a slower rate than the overall
hydrolysis of cellulose by exo-cellulases (Figure 13a); ii)
the overall hydrolysis by exo-cellulases is set to be
slower than that by endo-cellulases (Figure 13b). As the
rate-limiting step in the model is the adsorption of cellu-
lases onto the substrate, we attain this by varying the kon
adsorption rate constant while fixing the equilibrium
constant of each of the cellulases. In both cases the sub-
strate conversion time has a minimum at a specific ratio
of the concentrations of the individual enzymes. For the
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Figure 13 Effect of composition of endo-exo mixture. (a) kon
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first case (see Figure 13a) the optimal exo-R/endo ratio
is 2:1, while for the second case (see Figure 13b) this
ratio is 5:1. These minimum conversion times in both
cases are much smaller than the conversion times
obtained in single cellulase runs. These optimal ratios
were obtained for a perfectly regular cellulose substrate;
however, as pointed out earlier [14,57], the optimal ex-
perimental ratio is strongly dependent on the character-
istics of the substrate. For example, on filter paper [57]
the optimal exo-R/endo ratio was found to be 74:26
when the total enzyme concentration was 1 μM and
90:10 when the total enzyme concentration was 10 μM.

Sensitivity analysis
We have also carried out a sensitivity analysis to evaluate
the relative importance of some of the physical quan-
tities involved in the simulations. First, we studied the
volume dependence of the overall hydrolysis. The reac-
tion volume, V, determines the adsorption rate and
therefore it determines the amount of adsorbed cellu-
lases, affecting the rate of the overall hydrolysis. The
simulation behaves as expected: a smaller volume results
in higher adsorption rates, leading to faster hydrolysis
(Figure 14).
Next, the absolute size of cellulose surface was varied

to determine the effect of the size of the simulation cell
(Figure 15a). It is reassuring to see that the size of the
substrate does not have any effect on the oligomer distri-
bution. The amount of glucose, cellobiose and cellotriose
increases as the substrate becomes larger, but their rela-
tive concentrations are not affected by the substrate. A
larger substrate needs more time to be degraded by the
same amount of cellulases. The amount of adsorbed
endo-cellulases is plotted as function of time in
Figure 15b. The system size does not qualitatively
change the number of adsorbed cellulases, it only affects

the overall hydrolysis time, and as such the curves get
shifted towards larger time scales.

Conclusions
In an effort to complement both all-atom molecular dy-
namics and coarse-grained simulation tools, we have
developed a an agent-based the dynamical, functional
model capturing the surface chemical reaction of cellulose
hydrolysis by enzymes at the molecular level. This model
accounts for heterogeneous enzymatic hydrolysis reactions
occurring on the substrate surface (a reaction taking place
in dimensions less than three), and incorporates key fac-
tors controlling it that are different from those in an aque-
ous environment. The catalysis process is broken down
into distinct parts related to different kinetic events car-
ried out by individual particles. These events are essen-
tially chemical reactions taking place on the surface of
cellulose (adsorption, breaking inter-chain hydrogen
bonds, cleaving glycosidic bonds, desorption) and consti-
tute the main elements of this model. Reactions are moni-
tored by following and updating the state (based on a set
of predefined rules) of each individual particle in the
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Figure 14 Volume dependence of the time course of hydrolysis
by endo-cellulases (NE=10).
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Figure 15 The effect of varying the substrate size. (a) Time
course of sugar production and (b) of adsorbed cellulases when
cellulose is hydrolyzed by endo-cellulases (NE= 10).
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system. Simulation results showed good qualitative agree-
ment with experimental data.
The agreement with experimental data can be improved

by obtaining better experimental estimates of the para-
meters in Table 4 and by extending the current model to
three dimensions. Initial experiments that can greatly
benefit the model are those that probe the kinetics of dif-
ferent steps for the individual domains of the cellulases
(Carbohydrate Binding Domain and Catalytic Domain)
separately. These experiments need to quantify the bind-
ing affinities, kon and koff. Then similar measurements on
the entire cellulases for binding of the same substrate will
help to verify the role of individual domains and provide a
measure of productive and non-productive binding. These
measurements need to be carried out for pure cellulose
substrates of different shapes morphology, degree of
polymerization (DP) and partially digested states.
Finally, our model only simulates the degradation of a

single cellulose crystal layer, a feature that should be
extended to capture the degradation of a whole cellulose
crystal. The major effect from a three-dimensional
model is expected to be that the substrate would not be
completely accessible at the same time for the cellulases
to digest. Also, such a three-dimensional model can cap-
ture the possibility that floating sheets of detached sub-
strate may slow cellulases from reaching a larger surface
where more efficient digestion is possible. The current
model does not account for surface diffusion, which is
likely to be important based on results reported by Jervis
and colleagues [53], who showed that diffusion does not
limit enzyme activity. Fortunately, these deficiencies are
not of a fundamental nature because our model is easily
extendable and can incorporate them as well as add-
itional properties of various cellulase systems on differ-
ent types of cellulose surfaces. Importantly, this
approach could be broadened to other classes of cellu-
lases and even to cellulosomes as additional experimen-
tal data becomes available. For this reason we believe
that this model constitutes a significant contribution to
the ability to simulate the complicated reactions
involved in cellulose degradation.

Endnotes
aEach row corresponds to one of the seven parameters

characterizing one monomer while the columns repre-
sent numerical values the parameters can take. Each
entry of the table denotes a distinct condition of a glu-
cose unit. For a detailed explanation, please see text.
bSee reference [50]. cSee reference [22]. dSee reference
[49].
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