Stochastic Properties of Elementary Logistic Components

Harlan D. Mills

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation

https://trace.tennessee.edu/utk_harlan/50

This Report is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
STOCHASTIC PROPERTIES OF ELEMENTARY LOGISTIC COMPONENTS

Harlan D. Mills

Econometric Research Program
Research Memorandum No. 9
27 February 1959

This study was partially supported by Market Research Corporation of America and partially by the Office of Naval Research

Princeton University
Econometric Research Program
92-A Nassau Street
Princeton, N. J.
Many problems encountered in logistics are those of "organized complexity" [12] — problems of moderately large, but heterogeneous systems. These systems are often too complex for modern analytic techniques. New concepts seem to be in order. Our current shortcomings have more to do with the quality than with the quantity of information produced. As a rule, we develop more detail and less perspective than we would like — the problem is how to trade one for the other in an effective way.

We consider the operation of certain elementary logistic components as stochastic processes. By transforming questions about inventory levels and ordering or production rates into questions about their statistical properties, we seek new sources of macroscopic relationships and perspectives in problems of production and inventory smoothing. This approach parallels that of Simon [10], Vassian [11], and Pinkham [9] in seeking servo-statistical properties of logistic operations. Another approach of great promise, dynamic programming, has been formulated by Bellman [7] with antecedents in classic papers of Arrow, Harris and Marschak [1] and Dvoretsky, Kiefer and Wolfowitz [5].

ELEMENTARY LOGISTIC COMPONENTS

Consider an operation engaged in storing, shipping (in response to external demand), and requisitioning (on an external source) a single commodity. The operation is described, for our purposes, by a set of

---

This work was supported initially by the General Electric Company, and more recently by the Econometric Research Project, Princeton University, and Mathematics. I am grateful and indebted to referees in the formulations that follow.
measurements (nonnegative numbers) at, or between, an ordered set of
 discrete time points, as indicated:

\[ d_t \] - demands for the commodity during period \( t \)
\[ i_t \] - inventory level of the commodity at the beginning of
 period \( t \)
\[ r_t \] - requisition for the commodity made during period \( t \)
(requisitions are filled \( c \) periods later, \( c \)
 being called the "requisition cycle")
\[ s_t \] - shipments of the commodity made during period \( t \).

Shipments are not allowed to exceed demands in any given period — if
the commodity may be backordered, we redefine a "cumulative" demand to
include that condition. Abstractly, we characterize such an operation
as a logistic component as follows.

A logistic component \( L \) is the set of sequences

\[ \{(\ldots, d_{t-1}, i_{t-1}, r_{t-1}, s_{t-1}, d_t, i_t, r_t, s_t, \ldots) \} \]

such that for each \( t \),

\[ i_{t+1} = i_t + r_{t-c} - s_t, \]
\[ s_t \leq \min(d_t, i_t + r_{t-c}) \]
\[ s_t \geq 0, \quad i_t \geq 0, \quad r_t \geq 0 \]

and \( d_t, t > 0 \), is an outcome of a random experiment.

We assume the random experiments leading to the \( d_t \) are independent and
identical, and for some number \( b \), and each \( t \), \Prob{d_t > b} = 0
(we say the demand is bounded by \( b \)). We also take the requisition
cycle \( c \geq 1 \) — otherwise there is no problem.

At each discrete point in time, given a history \( h_t = (\ldots, d_{t}, i_{t},
\ldots, d_{t}, i_{t}, r_{t}, s_{t}) \), \( d_{t+1} \) and \( i_{t+1} \) are determined by the definitions above,
while \( r_{t+1} \) and \( s_{t+1} \) (the requisition and allocation decisions) need
to be determined by the agency operating the component. While no natural
requirement rules out complete caprice, we shall only consider these
decisions as consistently based on past information. This, briefly, is
what we mean by a decision policy, defined as follows:

A decision policy $P$ is a function, mapping the set

$$\{h_{t-1}, d_t, l_t\}$$

into the set

$$\{(r, s)| r \geq 0, 0 \leq s \leq \min(d_t, l_t + r_{t-1})\}.$$

As a function of past information, $P$ has access to sample statistics associated with the demand, but does not have access to the population statistics of the demand. For example, we do not allow a policy which requisitions "mean demand" etc.

The rules of a logistic component $L$, a fixed history $h_0$, and decision policy $P$ select one sided subsequences, $(d_1, i_1, s_1, d_2, i_2, s_2, \ldots)$, from $L$ with definite probabilities, i.e., they determine a stochastic process, which we denote by

$$\{(D_1, I_1, R_1, S_1, D_2, I_2, R_2, S_2, \ldots)\}$$

where $D_t, I_t, R_t, S_t$ are random variables. For convenience, we transfer the specifications of $L$ into this process, writing

$$I_{t+1} = I_t + R_{t+1} - S_t$$

$$D_t \geq S_t \geq 0, I_t \geq 0, R_t \geq 0$$

to mean the relations hold for every possible realization in the process; if $D_t$ is bounded by $b$, we write $D_t \leq b$. If

$$\text{D}_b = \text{E}(D_t), \text{I}_b, \text{S}_b, \text{R}_b;$$

$$\text{S} = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \text{D}_t, \text{I}_t, \text{S}_t, \text{R}_t;$$

$$\sigma^2 = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \text{D}_t^2, \text{I}_t^2, \text{S}_t^2, \text{R}_t^2;$$

$$\sigma^2 = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \text{D}_t, \text{I}_t^2, \text{S}_t^2, \text{R}_t^2;$$

$$\text{E} = \frac{1}{N} \sum_{t=1}^{N} \text{D}_t^2, \text{I}_t^2, \text{S}_t^2, \text{R}_t^2, \text{D}_t, \text{I}_t, \text{S}_t, \text{R}_t;$$

$$\text{N} \to \infty$$
exist we say the process is stable. Other moments may be of interest — these are sufficient for our present development. In a stable process, we have, directly from the material balance

\[ \begin{align*}
   \check{I}_{t+1} &= \check{I}_t + \check{R}_{t-c} - \check{S}_t \\
   \check{R} &= \check{S}
\end{align*} \]

We use such moments to characterize the performance of a given decision policy. For example,

- \( D - \check{S} \) indicates unsatisfied demands,
- \( \check{I} \) indicates inventory levels,
- \( \sigma_I \) indicates inventory variability,
- \( \sigma_R \) indicates requisition (production) variability.

These indicators must be used judiciously. Generally they measure about what they seem to. However, the very simple process given by

\[ h_0 = (..., 0, 0, 0) \]
\[ d_t = 1, \quad r_t = d_{t-k}, \quad s_t = \min(d_t, s_{t-1}), \quad t > 1 \]

gives \( D - \check{S} = 0 \), but \( k \) can be chosen to give as large an unsatisfied demand as we please.

Our general program for studying a logistic component is to search for

1) ultimate boundaries of performance — necessary conditions on measures of performance imposed by the specifications of the logistic component itself,

2) decision policies which approach these ultimate boundaries in performance.

Theorem 1, below, is directed toward task 1), establishing an ultimate boundary in the moment space which characterizes certain contradictory elements in the multifold objectives of minimizing \( D - \check{S}, \check{I}, \sigma_I \), and

*This example was kindly supplied by a referee.
Theorem 2, devoted to task 2), establishes the completeness and optimality of a certain class of decision policies in an asymptotic sense (to be defined) for these objectives. Theorem 3 develops a relationship between requisition cycles and the measures $\sigma_I$, $\sigma_R$.

THEOREM 1. (Smoothing Capacity). For any decision policy $P$ which determines a stable stochastic process

$$(D_t, I_t, R_t, S_t)$$

in a logistic component $L$, it is necessary that

$$\sigma_I \geq \frac{1}{2} \left( \sigma_R + \frac{\sigma_D^2}{\sigma_R^2} \right), \text{ where } a^2 = \sigma_D^2 - (D - \bar{D})(2b + 2\bar{l} - D + \bar{D}).$$

Proof. Since

$$I_{t+1} = I_t + R_{t-\bar{D}} - S_t, S_t \leq D_t$$

we have

$$I_{t+1} \geq I_t + R_{t-\bar{D}} - D_t, b \geq 0.$$

We square both nontrivial expressions (preserving the inequality) and take expectations, using the hypothesis that the $D_t$'s are uncorrelated, to obtain

$$\sigma_I^2 + (b + \bar{l})^2 \geq \sigma_R^2 + \sigma_D^2 + 2\sigma_D \sigma_R + \sigma_D \sigma_R + (b + \bar{l} + \bar{R} - \bar{D})^2$$

for some $\nu, 1 \leq \nu \leq 1$ (the correlation between $I_t$ and $R_{t-\bar{D}}$). This can be restated, using $\bar{R} = \bar{S}$ as

$$\sigma_I^2 \geq -\nu \sigma_I + \frac{1}{2} \left( \sigma_R + \frac{\sigma_D^2}{\sigma_R^2} \right), \text{ where } a^2 = \sigma_D^2 - (D - \bar{D})(2b + 2\bar{l} - D + \bar{D})$$

as was to be shown. This completes the proof of the theorem.

The boundary
of Theorem 1 involves $\tilde{D}$, $\hat{S} = \bar{S}$, $\tilde{I}$, $\bar{I}$, $\sigma_I$, $\sigma_R$, $\sigma_D$ but has been stated in this particular form because we are primarily interested in the relation between $\sigma_I$ and $\sigma_R$, all other moments being fixed. For example, with $\hat{D}$, $\sigma_D$ given in advance, $\bar{S}$ and $\sigma_R$ fixed, Theorem 1 relates $\sigma_I$ and $\tilde{I}$ in the form

$$\sigma_I \geq A - B\tilde{I} \quad B \geq 0$$

that is, at the boundary $U$, inventory level can be "traded" for inventory stability. We shall be motivated to a large extent by the one displayed initially; when $a^2 > 0$, the region

$$\sigma_I \geq \frac{1}{2} \left( \sigma_R + \frac{a^2}{\sigma_R} \right)$$

has a boundary $U$ at which inventory stability can be traded for requisition (production) stability (when $a^2 < 0$, no effective boundary exists). This boundary has a convenient parametric form, for stating Theorem 2, using a parameter $\alpha$, where,

$$\sigma_R = (1 - \alpha)\sigma_I$$

Then $U$ is given in parametric form by

$$\sigma_I^2 = \frac{1}{1 - \alpha^2} a^2, \quad \sigma_R^2 = \frac{1 - \alpha}{1 + \alpha} a^2$$

This boundary is indicated in the diagram below, when $a^2 > 0$, $0 \leq \alpha \leq 1$. 

![Diagram](image-url)
Theorem 1 states that any policy \( P \) (determining a stationary process) will lead to a point \((\sigma_I, \sigma_R)\) on or above the curve. Theorem 2 shows that an "optimal" class of decision policies, in a certain asymptotic sense, sweeps out this curve; given any policy, then, a member of this optimal class can do at least as well in minimizing both \( \sigma_I \) and \( \sigma_R \).

**THEOREM 2.** (Optimal Policy Class). Let \( L \) be a logistic component with unit requisition cycle \((c = 1)\). Define a decision policy \( P(\alpha, B) \) by the relations

\[
P(\alpha, B) : s_t = \min(d_t, 1_t + r_t) \quad t = 1, 2, \ldots
\]

\[
\begin{align*}
P_1 &= 0 \\
r_t &= \begin{cases} r_{t-1} + (1 - \alpha)d_{t-1} & \text{if} \quad 1_t < B, \\ \frac{1_t}{\alpha} & \text{if} \quad 1_t > B. \end{cases} \\
B &\geq 0, \quad 0 < \alpha < 1.
\end{align*}
\]

Then, if \( \sigma_I \leq I_t \) it is necessary that

a) \( \sigma_R^2 \leq \frac{1}{\alpha^2} \sigma_D^2 + (\bar{B} - \bar{S})(\bar{B} + \bar{S}) \)

b) \( \sigma_I^2 \leq \frac{1}{\alpha^2} \sigma_D^2 \).

**Proof.** a) Let \( T(t) \) (a random variable) be the least number of periods ago for which either \( I_t > B \) or the process began \((t = 0)\). Then, referring to \( P(\alpha, B) \), we find

\[
R_t = (\frac{1 - \alpha}{\alpha}) \sum_{j=1}^{T(t)} \alpha^j D_{t-j}
\]

whence

\[
0 \leq R_t \leq (\frac{1 - \alpha}{\alpha}) \sum_{j=1}^{\infty} \alpha^j D_{t-j}.
\]

where we take \( D_t, t \leq 0 \) to be replicates of the independent, identical random variable \( D_t, t > 0 \). We square both nontrivial expressions (preserving the inequality) and take expectations, to obtain
\[ \sigma_R^2 + R^2 \leq \sum_{j=1}^{\infty} \frac{(1 - \alpha)^2}{\alpha^2} \sum_{j=1}^{\infty} \alpha^2 D_j \]

This can be restated in the form (using \( \tilde{R} = \bar{S} \))

\[ \sigma_R^2 \leq \left( \frac{1 - \alpha}{1 + \alpha} \right) \sigma_D^2 + (\bar{D} - \bar{S})(\bar{S} + \bar{D}) \]

as was to be shown for case a).

b) Let \( S(t) \) (a random variable) be the least number of periods ago for which \( D_t \geq I_t + R_t \). Then

\[ I_t = \sum_{j=1}^{\infty} \left( -D_{t-k} + \left( \frac{1 - \alpha}{\alpha} \right) \sum_{j=1}^{\infty} \alpha^j D_{t-k-j} \right) \]

and

\[ 0 \leq I_t \leq \sum_{j=1}^{S-1} \alpha^j D_{t-1-j} + \sum_{j=0}^{\infty} (1 - \alpha^3) \alpha^j D_{t-S-j-1} \]

I.e., for each \( t \), this relation holds for some \( S \). But squaring both nontrivial expressions, we find that

\[ 2\sigma_I^2 \leq \sigma^2 + \bar{I}^2 \]

\[ \leq \sum_{j=1}^{\infty} \alpha^2 D_j \left( 1 - \alpha^3 \right)^2 + \sum_{j=0}^{\infty} \alpha^2 D_j \left( 1 - \alpha^3 \right)^2 \]

\[ = \frac{1 - \alpha^2}{1 - \alpha^3} \sigma^2 \]

\[ = \frac{2(1 - \alpha^3)\sigma_D^2}{1 - \alpha^2 \sigma_D^2} \]

and, hence

$$\sigma_{D}^{2} \leq \frac{1}{1 - \alpha^{2}} \sigma_{D}^{2}$$

for all $S$, as was to be shown for case b). This completes the proof of the theorem.

Theorem 1 and Theorem 2 combine to "box in" the point $(\sigma_{I}, \sigma_{R})$ induced by a policy $P(\alpha, B)$ to a point on the curve $U$, as $S \rightarrow D$. To see this, notice the three inequalities

$$\sigma_{I} \geq \frac{1}{2}(\sigma_{R} + \frac{\sigma_{D}^{2}}{\sigma_{R}}), \quad a^{2} = \sigma_{D}^{2} - (\tilde{D} - \tilde{S})(2b + 2 \bar{D} - 2b + 2 \bar{S})$$

$$\sigma_{R}^{2} \leq \frac{1 - \alpha^{2}}{1 + \alpha} \sigma_{D}^{2} + (\tilde{D} - \tilde{S})(\tilde{D} + \tilde{S})$$

$$\sigma_{I}^{2} \leq \frac{1}{1 - \alpha^{2}} \sigma_{D}^{2}$$

describe a curvilinear triangle which degenerates to a point on $U$ as $S \rightarrow D$, as shown in the diagram.
Whereas we took $c = 1$ (unit requisition cycle) in Theorem 2, we study the very effect of $c$ in Theorem 3. On reflection it is clear that a requisition cycle and an information delay are logically equivalent — a decision maker with a requisition cycle of $c$ and an information delay $d$ (at time $t$, no data more recent than $t - d$ is known) has the same problem as one with a requisition cycle of $c'$ and an information delay of $d'$ if $c + d = c' + d'$ (they make their decisions at different points in time, but each has the same effective information and prospects). For this reason, we can convert requisition cycles into information delays for convenience.

**THEOREM 3.** (Information Delay). Let $L$ be a logistic component with unit requisition cycle ($c = 1$). Suppose $P$ is a decision policy independent of $I_t$ (inventory levels) and determines a stable stochastic process

$$(D_t, I_t, R_t, S_t)$$

with moments denoted $D, \sigma_D, \rho_D$, etc. Let $L(c)$ be the logistic component with the same demand as $L$ and requisition cycle $c \geq 2$. Then, if

$$I_{t-1} - \sum_{k=1}^{c-1} S_{t-k} \geq 0,$$

the decision policy $P$ will determine the process

$$(D_t, I_{t-c+1}, \sum_{k=1}^{c-1} S_{t-k}, R_t, S_t)$$

in $L(c)$. Furthermore, if $S_t = D_t$, and $\sigma_I(c)$, etc. refer to $L(c)$, then,

$$\sigma_I^2(c) = \sigma_I^2 + (c - 1)\sigma_D^2, \quad \sigma_R(c) = \sigma_R.$$

**Proof.** If $P$ determines $((D_t, I_t, R_t, S_t)$ with unit requisition
\( I_{t+1} = I_t + R_{t-1} - S_t \)

and this can be rewritten as

\[ (I_{t+1} - S_{t+1}) = (I_t - S_t) + R_{t-1} - S_{t+1} \]

using the transformation \( I_t^2 = I_{t-1} - S_{t-1} \), we write

\[ I_{t+1}^2 = I_t^2 + R_{t-1} - S_t. \]

If \( I_t^2 \geq 0 \), the process

\[ \{(I_t, I_t^2, R_t, S_t)\} \]

will satisfy all conditions of \( P \), and hence will be determined by \( P \) in \( L(2) \). Continuing, we obtain, in \( c-1 \) steps, a sequence of transformations,

\[ I_t, I_{t-1}^2 - S_{t-1}, \ldots, I_{t-c+1}^2 = \sum_{k=1}^{c-1} S_{t-k} \]

Thus, if

\[ I_{t-c+1}^2 - \sum_{k=1}^{c-1} S_{t-k} \geq 0 \]

then \( P \) will, in fact, determine the process

\[ \{(D_t, I_{t-c+1}^2 - \sum_{k=1}^{c-1} S_{t-k}, R_t, S_t)\} \]

in \( L(c) \) as was to be shown.

If \( S_t = D_t \), then \( \sigma^2_{I}(c) \) is the variance of

\[ I_{t-c+1}^2 - \sum_{k=1}^{c-1} D_{t-k} \]

(when the \( D_t \)s are independent of \( I_{t-c} \)). Then, we have, simply,

\[ \sigma^2_{I}(c) = \sigma^2_{I} + (c - 1)\sigma^2_D \]
as was to be shown. This completes the proof of the theorem.

Theorem 3, again, gives asymptotic results — most policies will
depend in some way on inventory levels — $P(a, B)$ depends on them,
though, it would seem, relatively innocuously. In practical problems
of logistic system design the results of all three theorems may be
more effectively employed as "rules of thumb" than as exact relation­
ships. Perhaps the most important information contained in them is the
general fact that classes of relatively simple "almost linear" policies
of the type $P(a, B)$ perform "very well" according to criteria such as
$\sigma_T$ and $\sigma_R$, and at any balance between them desired. While the
hypotheses of Theorem 3 are restrictive, it would seem that the general
relationship between information delay and inventory variance is near
what is described in the Theorem. These last remarks are predicted on
the fact that in most logistic problems, $\delta$ is to be 90%, 95%, or
even 99% of $B$.

BIBLIOGRAPHY

policy", Econometrica 19 (July 1951).


1956.


[7] Magee, J., Production Planning and Inventory Control. McGraw-Hill,
New York, 1953.

[8] Morse, Phillip M. Queues, Inventories, and Maintenance. Wiley,


[10] Simon, Herbert A. "On the application of servomechanism theory


Mathematica and Princeton University