1961

Inventory Valuations - An Analytic Technique

Harlan D. Mills

Follow this and additional works at: http://trace.tennessee.edu/utk_harlan

Part of the Business Administration, Management, and Operations Commons

Recommended Citation
http://trace.tennessee.edu/utk_harlan/30

This Article is brought to you for free and open access by the Science Alliance at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
Inventory Valuations-An Analytic Technique
Author(s): Harlan D. Mills
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/2627274

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
INVENTORY VALUATIONS—AN ANALYTIC TECHNIQUE*

HARLAN D. MILLS†

American Science Complex, Princeton, New Jersey

Recursive inventory decision processes, when formulated as dynamic programs, lead to functional equations. The unknown functions in these equations have arguments which range over the set of possible inventory conditions in the process, and values which represent the minimum possible expected present value of the costs of operating the process through the indefinite future. We call these functions "inventory valuations".

The realism of such formulations and the difficulties of solving for the implicitly defined functions lead to an alternative proposal: that approximate inventory valuations be induced more directly from the context of the recursive inventory process. Methods of developing such valuations are illustrated in sample analyses.

Introduction

The recognition of recursive structure in inventory problems leads to the implicit functional equation approach which is characteristic of dynamic programming [1]. But, as powerful a descriptive tool as these recursive decision structures are, they are extremely difficult to handle analytically. This difficulty is, in part, inherent in the very reality of the formulations. Simple analyses are not possible in highly nonlinear functional equations.

In view of these conflicting properties an alternative principle of analysis seems useful which is conceptually close to the functional equation approach of dynamic programming, but which incorporates many of its essential features in a more amenable framework of analysis. The idea is to ask slightly different questions of the realities of inventory problems. Instead of asking what identities certain unknown functions must satisfy, we ask directly what the functions must be. This leads to the construction of the unknown functions rather than to their implicit definition.

The alternate question we pose is not mathematically equivalent to the original. But it does not appear less realistic. There simply is no logical basis to favor one or the other on the basis of realism. That is a matter of the investigator’s intuition and taste in the final analysis. It is believed, however, that the questions are practically equivalent in many inventory problems, and the alternate question often brings the matter within analytical reach not otherwise available.

Section 1 formulates a class of recursive inventory decision problems which seems well suited for describing a wide variety of inventory models. It also provides the framework for stating the dynamic programming point of view. Section 2 develops a characteristic feature of dynamic programming, namely “state valuations,” or in the case at hand, “inventory valuations.” In dynamic

* Received March 1961.
† This research was sponsored by the Bureau of Supplies and Accounts, United States Navy, under contract No. Nonr 2928(00) with Mathematica, Princeton, New Jersey.
programming, inventory valuations are unknown functions (of inventory levels); our proposal is to construct similar inventory valuations directly from the knowledge of the real inventory situation. Section 3 then illustrates this approach in two specific problems.

1. Recursive Inventory Decision Problems

We formulate a recursive inventory decision problem as a mathematical system, $M$ of two random variables $R, S$, each functions of two other variables $s, d,$

$$M = [R(s, d), S(s, d)]$$

where we interpret

$s$ as a “state” of an operation at the beginning of an administrative time period—usually a vector, reflecting a more or less complex configuration of inventory in various locations, or conditions of availability

$d$ as a “decision” in the operation made during the time period—usually a vector representing a structure of more elementary actions of ordering, shipping, or disposing of inventory

$R(s, d)$ as the “return” to the operation during the time period when decision $d$ is employed in state $s$—the short term profit-cost (or cash flow) situation

$S(s, d)$ as the “successor state” following $s$ at the beginning of the succeeding time period if decision $d$ is employed—a new vector (possibly the same) reflecting the new configuration of inventory. As random variables, $R(s, d)$ and $S(s, d)$ represent returns and successor states subject to statistical uncertainties as is so often postulated in inventory problems. In order to express serially correlated relations, a state $s$ may be a “history” rather than a “snapshot” of the configurations of the operation.

In ordinary parlance, $M$ is the “model” of the situation under study; it contains all the kinematic necessary relations, such as material balances, disposition and evaluation of shortage conditions, costing of activities in the operation, etc.

To illustrate these ideas, consider a specific inventory model as follows. At each time period $t$, we assume the state $s$ is determined by inventory on hand and in transit to an inventory point—up to three periods—

$$s = (i_0, i_1, i_2, i_3),$$

where $i_k$ is inventory to arrive at $t + k$. For now we allow $i_0$ to be negative, to reflect back order conditions, but will require $i_1, i_2, i_3$ to be non-negative. During a period a certain demand, say $x$, occurs. This demand is filled out of $i_0$, if possible or if not, the remaining unfilled demand is added on to the present backlog of orders, if any. During the period, two decisions are to be made, ordering by a “fast” route, with 1 period of transit time, and ordering by a
“normal” route with 3 periods of transit time,
\[ d = (q_1, q_2). \]

Finally, we shall assume four linear costs in the operation

- \( c_1 \) cost per unit ordered over fast route
- \( c_3 \) cost per unit ordered over normal route
- \( h \) cost per unit inventory held over
- \( k \) cost per unit backlog held over

We can summarize the situation explicitly with regard to how new states and returns arise out of old states and decisions, as

\[
S(s, d) = (i_0 + i_1 - x, i_2 + q_1, i_3, q_3)
\]

\[
R(s, d) = -c_0q_1 - c_3q_3 - h \max(0, i_0 - x) - k \max(0, x - i_0)
\]

where \( x \) is a given real random variable (possibly dependent on time). Thus

\[ M = [S(s, d), R(s, d)] \]

completely describes our interest in the situation.

In order to hypothesize dynamical behavior in the situation under study, we adjoin a “decision policy” \( p \) to the model, relating states to decisions, in functional form as

\[ d = p(s, t), \]

where we allow the decision to depend on the time of the choice as well as the state. When \( p \) is employed in the model, dynamic behavior is determined in terms of a stochastic process \( P \), defined more precisely as follows. Beginning with an initial state, \( s_0 \), we define a stochastic process

\[ P = (s_0, d_0, r_0, s_1, d_1, r_1, \ldots) \]

by the relations, for \( t = 0, 1, 2, \ldots \)

1. \[ d_t = p(s_t, t), \]
2. \[ r_t = R(s_t, d_t), \]
3. \[ s_{t+1} = S(s_t, d_t). \]

Given \( s_0 \), it is clear that (1), (2), and (3) determine a random process \( P \) uniquely, since every partial sequence

\[ P_k = (s_0, d_0, r_0, \ldots, s_k, d_k, r_k) \]

has a probability distribution which can be constructed recursively from (1), (2), and (3).
2. Inventory Valuations

Ultimately, our interest in $P$ is centered on the subsequence

$$r_0, r_1, \cdots$$

of returns, generally on a discounted sum,

$$T = \sum_{j=0}^{\infty} \alpha^j r_j.$$ 

where $0 < \alpha < 1$. The random variable $T$ describes, in the present value sense, the performance of the operation. We will consider $T$ as an explicit function of $s_0$ and $p$, writing

$$T = T(s_0, p).$$

We define the "state valuations",

$$F(s) = \max_{p} E[T(s, p)].$$

The key relationship of dynamic programming is contained in the following theorem, given in more general form in [2].

Theorem. $F(s)$ satisfies (4) if and only if it satisfies

$$F(s) = \max_{d} E[R(s, d) + \alpha F(S(s, d))].$$

Proof. Notice, since

$$T(s, p) = r_0 + \alpha r_1 + \alpha^2 r_2 + \cdots = r_0 + \alpha(r_1 + \alpha r_2 + \cdots)$$

where $s = s_0$ and $r_0, r_1, \cdots$, is a subsequence of $P$, that

$$T(s, p) = R(s, d) + \alpha T(S(s, d), p'),$$

where

$$d = p(s, o), p'(s, t) = p(s, t + 1).$$

Now, let $F(s)$ satisfy (4). Then

$$F(s) = \max_{p} E[T(s, p)]$$

$$= \max_{p} E[R(s, d) + \alpha T(S(s, d), p')]$$

$$= \max_{d} E[R(s, d) + \alpha \max_{p'} E[T(S(s, d), p')]]$$

whence

$$F(s) = \max_{d} E[R(s, d) + \alpha F(S(s, d))],$$

which is (5).
On the other hand, let \( F(s) \) satisfy (5). Then

\[
F(s) = \max_d E[R(s, d) + \alpha F(s, d)]
\]

\[
= \max_d E[R(s, d) + \alpha \max_{d_1} E[R(S(s, d), d_1) + \alpha F(S(s, d), d_1)]]
\]

\[
= \max_{d_0, d_1, d_2, \ldots} E[R(s, d_0) + \alpha R(S(s, d_0), d_1) + \alpha^2 R(S(s, d_0), d_1) d_2 + \cdots]
\]

whence

\[
F(s) = \max_p E[T(s, p)]
\]

which is (4).

The central point of difference between (4) and (5) is that \( F(s) \) is described explicitly in (4) by means of a maximum operator on all future returns, over a policy space, while \( F(s) \) is described implicitly in (5) by means of a maximum operator on events of the next period only, over a decision space. Thus in (5) a much more elementary maximum operation is used to implicitly characterize \( F(s) \).

Equation (5) admits an appealing common sense interpretation by using the concept of a "valuation" on states, \( F(s) \). The prescription in (5) is to

maximize (immediate returns + discounted state valuation),

a process which most experienced decision makers do quite intuitively.

The major question in dynamic programming is finding the unknown function \( F(s) \) from equation (5), given the model \( M \) and discount factor \( \alpha \). However, the major operational question, and one usually answered by the previous one as a byproduct, is rather what policy \( d = p(s) \) achieves the equality of (5); that is, for what \( p \) does

\[
(6) \quad F(s) = E[R(s, p(s)) + \alpha F(S(s, p(s)))]
\]

given the model \( M \), discount factor \( \alpha \), and solution \( F(s) \) to (5)?

In practical terms, solving equation (5) usually presents major analytical difficulties; in most realizations (5) represents a highly nonlinear functional equation with both maximum and expectation operators. If the problem has an especially simple structure, an approximating series construction may be possible on high speed computers, but even so simple and direct an approach as this soon breaks down under the sheer weight of computation and memory requirements.

In view of these difficulties an alternative proposal suggests itself, namely, that the determination of the state valuation function \( F(s) \) be not regarded as a logical question arising from (5), but as an empirical question arising from the realities of the situation under study. This alternative reflects the fact that often, while we are at a complete loss to determine the precise form of \( F(s) \)
from (5), an examination of the realities of the situation under study suggests
the approximate form which \( F(s) \) should have almost immediately.

3. Two Illustrative Analyses

In support of the proposal above, we carry out two illustrative analyses. Situations similar to that described above will be convenient, though we will begin with a simpler case, and extend the analysis to a more complicated one. Consider, then, a model

\[
M = [R(s, d), S(s, d)]
\]

where \( s = (i_0, i_1), d = (q_2) \) and

\[
(6) \quad R(s, d) = -c_2 q_2 - h \max (0, i_0 - x) - k \max (0, x - i_0).
\]

\[
(7) \quad S(s, d) = (i_0 + i_1 - x, q_2)
\]

where \( x \) is a given real random variable (possibly dependent on time). On inspection (6) and (7) can be seen to represent conditions in an inventory model with one source of supply and a transit time of two periods, where costs of ordering, carrying and backordering inventory are taken to be linear.

We propose to build up a state and decision valuation, \( V(s, d) \), as a sum of three terms, representing the value of state \( s \) and decision \( d \) in terms of

- \( V_a(s, d) \): inventory acquisition considerations
- \( V_h(s, d) \): inventory holding considerations
- \( V_b(s, d) \): backlog considerations

so

\[
V(s, d) = V_a(s, d) + V_h(s, d) + V_b(s, d).
\]

Before proceeding to our task of inducing these functions, we restate our point of view to minimize possibilities of confusion. We are interested in determining the combined value of state \( s \) and decision \( d \), regardless of how the state and decision came into being, in terms of their contributions to the long run returns in the operation. We are not interested in "costing" or "appraising" the state, or decision, at the moment.

Case \( V_a(s, d) \)

A triple \( (i_0, i_1, q_2) \) represents inventory which will not have to be acquired in future operations. The alternative to having \( (i_0, i_1, q_2) \) in the operation is to eventually order that amount. Without discounting, this value is \( c_2 (i_0 + i_1 + q_2) \) but if \( (i_0 + i_1 + q_2) \) is large, the order may be put off some time, so that the cost of ordering should be discounted. On the average, the delay in ordering can be put off \( (i_0 + i_1 + q_2) / \mu \) periods, when \( \mu \) is the mean of \( x \). This has a present value of

\[
c_2 (i_0 + i_1 + q_2) \alpha^{(i_0+i_1+q_2)/\mu}
\]
or, approximately,

\[ V_a(s) = c_2(i_0 + i_1 + q_2) \left( 1 - \frac{\beta (i_0 + i_1 + q_2)}{\mu} \right) \]

where \( \beta = 1 - \alpha \) is small, so that terms of 2nd order and higher in the binomial expansion of \((1 - \beta)^2\) may be neglected where \( z = (i_0 + i_1 + q_2)/\mu \).

**Case \( V_h(s, d) \)**

A triple \((i_0, i_1, q_2)\) represents inventory which will be held over until required. This inventory will be held over \((i_0 + i_1 + q_2)/\mu\) periods on the average, and the average amount of this particular inventory in the operation will be \((i_0 + i_1 + q_2)/2\) for that time and an average of

\[ \frac{(i_0 + i_1 + q_2)^2}{2\mu} \]

unit periods

of inventory will be held over. Thus, the effective amount of chargeable holdover costs is taken to be (these are negative, being costs)

\[ V_h(s, d) = -h \left[ \frac{(i_0 + i_1 + q_2)^2}{2\mu} - i_1 - 2q_2 \right]. \]

The negative terms inside the brackets arise since material in \( i_1 \) will not be subject to holdover costs for one period, and material of \( q_2 \) for two periods.

**Case \( V_b(s, d) \)**

In the case of backlog valuations, we invoke a “horizon principle.” We do not consider possible backlogs past the longest in-transit-time in the operation, for later decisions may be used to diminish or eliminate such eventualities. Rather, we shall compute the expected number of backlogs over the horizon of the longest in-transit-time in the operation. In this case they become for the current, next, and second periods, respectively

\[ \int_0^\infty \max(0, x - i_0)f(x) \, dx, \]

\[ \int_0^\infty \max(0, y - i_0 - i_1)g(y) \, dy, \]

\[ \int_0^\infty \max(0, z - i_0 - i_1 - q_2)h(z) \, dz, \]

where the frequency distribution of demands \( x, y, z \) for the next, next two, and next three, periods are \( f(x), g(y), h(z) \), respectively. Discounting the resulting shortage costs linearly at rate \( \beta \), as above, we have then (and restating the
integrals)

\[ V_b(s, d) = -k \int_{i_0}^{\infty} (x - i_0)f(x) \, dx \]

(10) \[ - k(1 - \beta) \int_{i_0 + i_1}^{\infty} (y - i_0 - i_1)g(y) \, dy \]

\[ - k(1 - 2\beta) \int_{i_0 + i_1 + q_2}^{\infty} (z - i_0 - i_1 - q_2)h(z) \, dz. \]

Combining (8), (9) and (10), now, we obtain

\[ V(s, d) = c_2 i_0 + (c_2 + h)i_1 + (c_2 + 2h)q_2 \]

\[ - \left( \frac{h + 2\beta}{2\mu} \right) (i_0 + i_1 + q_2)^2 - k \int_{i_0}^{\infty} (x - i_0)f(x) \, dx \]

(11) \[ - k(1 - \beta) \int_{i_0 + i_1}^{\infty} (y - i_0 - i_1)g(y) \, dy \]

\[ - k(1 - 2\beta) \int_{i_0 + i_1 + q_2}^{\infty} (z - i_0 - i_1 - q_2)h(z) \, dz. \]

With this state and decision valuation we restate our dynamic operating problem as

\[ \max_{q_2 \geq 0} \left[ V(i_0, i_1, q_2) - c_2q_2 \right]. \]

We take this maximum value, a function only of \( s = (i_0, i_1) \), to be a good approximation to the inventory valuation \( F(s) \) of (5); i.e.,

(12) \[ F(s) = \max_{q_2 \geq 0} [V(i_0, i_1, q_2) - c_2q_2]. \]

Necessary conditions on \( q_2 \) for maximizing this value are [3]

\[ \frac{\partial V(i_0, i_1, q_2)}{\partial q_2} - c_2 \begin{cases} \leq 0 & \text{if } q_2 = 0 \\ = 0 & \text{if } q_2 > 0 \end{cases} \]

Differentiating, when \( q_2 > 0 \), these conditions reduce to

\[ 2h - \left( \frac{h + 2\beta}{\mu} \right) (i_0 + i_1 + q_2) + k(1 - 2\beta) \int_{i_0 + i_1 + q_2}^{\infty} h(z) \, dz = 0; \]

or

\[ \int_{i_0 + i_1 + q_2}^{\infty} h(z) \, dz = \frac{h}{\mu k(1 - 2\beta)} \left[ i_0 + i_1 + q_2 - 2\mu + \frac{2\beta}{h} (i_0 + i_1 + q_2) \right], \]

\[ \int_{\tilde{q}}^{\infty} h(z) \, dz = A(\tilde{q} - B), \quad \text{say, where } \tilde{q} = q_2 + i_0 + i_1 \]

The left side is the probability of a backlog at the end of the period \( t + 2 \) while the right side is linear in \( q_2 \) or \( \tilde{q} \): thus graphical solutions are easily constructed
from the graph of \( h(x) \), of the form shown in Figure 1. One picks \( \bar{q} \) so the areas graphed are equal. It is of interest to note that the only relevant demand statistic in this model is that of three period totals—no others enter into the decision.

As further illustration of the concept and use of inventory valuations, consider a second model

\[
M = [R(s, d), S(s, d)]
\]

where \( s = (i_0, i_1, i_2, i_3) \) \( d = (q_2, q_4) \) and

\[
R(s, d) = -c_2q_2 - c_4q_4 - h \max (0, i_0 - x) - k \max (0, x - i_0)
\]

\[
S(s, d) = (i_0 + i_1 - x, i_2 + q_2, i_3, q_4),
\]

and \( x \) is a given real random variable (possibly dependent on time). On inspection (13) and (14) can be seen to represent conditions in an inventory model with two routes of supply—2 period and 4 period in transit times—where cost of ordering either way, carrying and backordering inventory are taken to be linear. As before, we build up a valuation on the following basis.

\[
V_a(s, d) = (\alpha_2 c_2 + \alpha_4 c_4)(i_0 + i_1 + i_2 + q_2 + i_3 + q_4)
\]

\[
\cdot \left[ \left( 1 - \frac{\beta}{\mu} (i_0 + i_1 + i_2 + q_2 + i_3 + q_4) \right) \right]
\]

where \( \alpha_2 \) and \( \alpha_4 \) are assumed to be the (unknown optimal) fractions of material procured via the two routes \( (\alpha_2 + \alpha_4 = 1) \).

\[
V_h(s, d) = -h \left[ \frac{(i_0 + i_1 + i_2 + q_2 + i_3 + q_4)^2}{2\mu} - i_1 - 2i_2 - 2q_2 - 3i_3 - 4q_4 \right]
\]

\[
V_b(s, d) = -k \left[ \int_{z_0}^{\infty} (x_0 - z_0)f_0(x_0) \, dx_0 + (1 - \beta) \int_{z_1}^{\infty} (x_1 - z_1)f_1(x_1) \, dx_1 + (1 - 2\beta) \int_{z_2}^{\infty} (x_2 - z_2)f_2(x_2) \, dx_2 + (1 - 3\beta) \right.
\]

\[
\cdot \left. \int_{z_3}^{\infty} (x_3 - z_3)f_3(x_3) \, dx_3 + (1 - 4\beta) \int_{z_4}^{\infty} (x_4 - z_4)f_4(x_4) \, dy_4 \right]
\]

where

\[
\begin{align*}
z_0 &= i_0 \\
z_1 &= i_0 + i_1 \\
z_2 &= i_0 + i_1 + i_2 + q_2 \\
z_3 &= i_0 + i_1 + i_2 + i_3 + q_2 \\
z_4 &= i_0 + i_1 + i_2 + i_3 + q_2 + q_4 .
\end{align*}
\]

We consider, then, the dynamic operating problem

\[
\max_{q_2 \geq 0, q_4 \geq 0} \left[ V(i_0, i_1, i_2, i_3, q_2, q_4) - c_2q_2 - c_4q_4 \right],
\]
with necessary conditions
\[
\frac{\partial V(s, d)}{\partial q_2} - c_2 \begin{cases} 
 0 & \text{if } q_2 > 0 \\
 0 & \text{if } q_2 = 0
\end{cases}
\]
\[
\frac{\partial V(s, d)}{\partial q_4} - c_4 \begin{cases} 
 0 & \text{if } q_4 > 0 \\
 0 & \text{if } q_4 = 0
\end{cases}
\]

Now,
\[
\frac{\partial V(s, d)}{\partial q_2} - c_2 = -(1 - \alpha_2)c_2 + \alpha_4 c_4 + 2h
\]
\[
- \left[ \beta (\alpha_3 c_2 + \alpha_4 c_4) + \frac{h}{\mu} \right] (i_0 + i_1 + i_2 + i_3 + q_2 + q_4)
\]
\[
+ k \left[ (1 - 2\beta) \int_{x_2}^\infty f_2(x_2) \, dx_2 + (1 - 3\beta) \int_{x_3}^\infty f_3(x_3) \, dx_3
\]
\[
+ (1 - 4\beta) \int_{x_4}^\infty f_4(x_4) \, dx_4 \right].
\]
\[
\frac{\partial V(s, d)}{\partial q_4} - c_4 = \alpha_3 c_2 - (1 - \alpha_4)c_4 + 4h - \left[ \beta (\alpha_3 c_2 + \alpha_4 c_4) + \frac{h}{\mu} \right]
\]
\[
\cdot (i_0 + i_1 + i_2 + i_3 + q_2 + q_4) + k(1 - 4\beta) \int_{x_4}^\infty f_4(x_4) \, dx_4.
\]

When \( q_2 > 0, q_4 > 0 \) in a solution, these necessary conditions can be reduced to

\[
\int_{x_4}^\infty f_4(x_4) \, dx_4 = A(q_2 + q_4 + \beta) \tag{15}
\]
\[
\int_{x_2}^\infty f_2(x_2) \, dx_2 + C \int_{x_3}^\infty f_3(x_3) \, dx_3 = D(q_2 + q_4 + E) \tag{16}
\]

for some \( A, B, C, D, E. \) Then (15) can be solved for \( q_2 + q_4 \), graphically, in the manner above, so \( q_2 + q_4 = q_T \), and (16) becomes

\[
\int_{x_2}^\infty f_2(x_2) \, dx_2 + C \int_{x_3}^\infty f_3(x_3) \, dx_3 = F(q_2 + G) \tag{17}
\]
for some new $F$, $G$ depending on $D$, $E$ and $q_T$. Now, by casting the previous graphical methods into forms using cumulative rather than frequency probability functions, (17) can also be solved graphically for $q_2$.

It is interesting to note the sequential nature of this solution process: first, in effect, $q_T$ is determined, as though only the slower route were available; and with $q_T$ determined, the expedited shipment $q_2$ is then found. An examination of the structure of the problem, shows this sequential process is quite general, being valid in such situations regardless of the specific transit times, or even the number of ways of receiving shipments.

References