Jul 12th, 11:45 AM - 12:05 PM

Theories for Hyperbaric Therapy in Tissue Regeneration

Dennis Geiser
DGeiser@utk.edu

Follow this and additional works at: http://trace.tennessee.edu/v-pac

Part of the Veterinary Medicine Commons

Dennis Geiser, "Theories for Hyperbaric Therapy in Tissue Regeneration" (July 12, 2014). Veterinary Partners Appreciation Conference (V-PAC).
http://trace.tennessee.edu/v-pac/proceedings2014/largeanimal/9

This Event is brought to you for free and open access by Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Veterinary Partners Appreciation Conference (V-PAC) by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
I. Beneficial Effects of Hyperbaric Therapy
 - Reduction in tissue hypoxia (hyperoxia, hyperoxemia)
 - Vasoconstriction
 - ↓ edema
 - Stem cell release from the bone marrow
 - Growth factor stimulation and synergism
 - Collagen deposition
 - Vascular neogenesis
 - Enhanced white blood cell microbial killing
 - Bacteriostatic/cidal activity
 - ↓ cerebral blood flow

II. Tissue regeneration and HBOT

III. Hypoxia
 - Types of hypoxia
 - Hypoxic hypoxia – all types where insufficient oxygen reaches the alveoli
 - Anemic hypoxia – not enough O$_2$ can be transported
 - Circulatory Hypoxia – inadequate delivery of O$_2$ to the tissues
 - Histotoxic hypoxia – Tissues cannot utilize the O$_2$ delivered
 - HBOT – Primary Physiologic Effect
 - Increasing inspired oxygen concentration as much as 1-1.5 times normal
 - Arterial O$_2$ rises 12-15 times normal
 - Tissue O$_2$ diffusion → concentration gradient + distance
 - 20x increase in PaO$_2$ → 4 fold ↑ in diffusion distance
 - < 30 mmHg tissue O$_2$ stops or significantly delays healing

IV. Tissue salvage
 - The ability of HBOT to save those cells that are on the verge of dying by reversing the intracellular hypoxia, these cells can then participate in repair.
V. Tissue Repair and Replacement

- **Goal** – “Functional tissue replacement”
 - O2 tension in tissue of 30 mmHg required for cell division and healing
 - Mitochondria require minimum tension of .5-3 mmHg
 - Required for oxidative phosphorylation
 - Required for cytochrome c activity
 - 50-100 Hg is optimal for healing in wounds

- **Oxygen’s Role**
 - Hypoxia is good and bad
 - Initial stimulus
 - Eventual deterrent
 - Oxygen required for hydroxylation of proline and lysine necessary for release of collagen from fibroblasts
 - 10m mHg or < fibroblasts do not migrate
 - Collagen production is stimulated by lactate ↑ from hypoxia, but raising tissue O2 to 40 mmHg increases collagen production 7 fold.
 - Lactate increase from hypoxia → increases angiogenic factor production by macrophages (not inhibited by O2 administration)
 - Compromised tissue is most responsive to HBOT
 - Hypoxia and ischemia → non-healing, difficulty healing
 - ↑ metabolic requirements and energy needs at a time when circulation is impaired
 - Energy crisis in tissue

- **Summary – Oxygen’s Role in Tissue Regeneration**
 - Reduction of hypoxia, maintenance of energy requirements
 - Synergistic with growth factors
 - Stimulation of matrix production
 - Neoangiogenesis
 - Stem cell release and support
 - Cellular proliferation and differentiation

Vi. Supportive Effects

- **Reduction of edema**
- **Decrease inflammatory response**
- **Support of leukocyte capabilities during an infection**