Cell Biology of Regenerative Medicine

Madhu Dhar
mdhar@utk.edu

Follow this and additional works at: https://trace.tennessee.edu/v-pac

Part of the Veterinary Medicine Commons

Madhu Dhar, "Cell Biology of Regenerative Medicine" (July 12, 2014). Veterinary Partners Appreciation Conference (V-PAC).
https://trace.tennessee.edu/v-pac/proceedings2014/largeanimal/10

This Event is brought to you for free and open access by the Conferences at UT at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Veterinary Partners Appreciation Conference (V-PAC) by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
Stem cell research has the potential to substantially improve medical care. The prospective clinical use of adult mesenchymal stem cells holds enormous promise for improved treatment of a large number of diseases in humans and companion animals. Although the use of bone-marrow-derived mesenchymal stem cells appears to be a popular therapy; the therapy suffers from the donor-to-donor variation in the quality and quantity of harvested cells. This observation has been reported in humans, mice, dogs, and recently from our laboratory in horses. One critical biological factor that researchers and clinicians must take into account is this variability and how it may affect the clinical outcome in regenerative therapy. The focus of research in the Laboratory of Regenerative Medicine at the College of Veterinary Medicine is to understand this variation in large animals. Our research is focused on the study of equine mesenchymal stem cell biology prior to its use in the clinic. We have optimized in vitro molecular and cellular assays to isolate, characterize, and differentiate horse and goat adult mesenchymal stem cells; we can generate ex vivo and in vivo models of specific diseases; wounds, cartilage and tendon lesions, cortical and orthotropic bone defects to test their biological function in regeneration. Additionally, we are collaborating with the Nanotechnology Center (Arkansas) and a couple of private companies to assess the behavior of adult mesenchymal stem cells towards novel biomaterials or scaffolds generated for the treatment of musculoskeletal injuries. The goal of this three-step process is to improve clinical outcomes as well as increase our basic knowledge of stem cell function. With the progress made in the last 4 years, we are the only research laboratory in Tennessee to provide and use off-the-shelf equine allogenic mesenchymal stem cell stocks for immediate administration into clinical cases.