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Figure 16: Screenshot of Labview program, demonstrating the output 
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 Figure 18: Residue of fit vs. measured data from Figure 16 

Figure 17: Fit (gray) vs. measured mixture (red) from Labview program.  In this figure, 
results for 12 μL of Texas Red and 8 μL of Alexa 633 are shown. 
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In order to find the contribution of a dye to a mixture consisting of an equal volume of all 

3 dyes in a sample, the equation is simply the count rate for the specific dye divided by 

the sum of the count rates for all the dyes. For example,  

 

 contribution 1 = count rate 1 / (count rate 1 + count rate 2 + count rate 3) 

 

The same proportional method of analysis can be applied to the mixtures consisting of 

various quantities of each fluorophore.  It can be assumed that the 10 μL of water in 

each run is negligible for the following reason.  If water is present, it further dilutes the 

individual dyes equally in ratio.  As only the ratios of the numbers of photons from each 

of the dyes are of interest, and these ratios are the same within the mixture with lesser 

concentrations, additional consideration is unnecessary.  It can then be assumed that 

only the dyes are present in the mixture for this purpose.  In this case, the contribution 

of a specific dye in a sample would be equal to its fraction of volume in the sample 

(without the water present) times its count rate.  This is then divided by the total dyes in 

the sample, with respect to their individual fractions.  An example to see the fractional 

contribution of Alexa 610 in a sample with 4μL of Alexa 610 and 16μL of Alexa 633 

would be as follows: 

 

 contrib. 610 = 4/20*count rate 610 / (4/20*count rate 610 + 16/20*count rate 633) 
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Figure 19: Calculated and fitted contributions for various quantities of Texas Red and 
Alexa 610 in a solution 
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Figure 20: Calculated and fitted contributions for various quantities of Texas Red and 
Alexa 633 in a solution 
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Figure 21: Calculated and fitted contributions for various quantities of Alexa 610 and 
Alexa 633 in a solution 
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Figure 22: Equal volume contributions from each dye, showing calculated and fitted 
fractions of each in solution 
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Figure 17 clearly shows that the fit found by the ML algorithm is very close to that of the 

measured data.  The fractional contributions found in Figures 19-22, however, indicate 

that for some of the mixtures it is not perfect with respect to accuracy.  As the fit is 

almost identical to the measured data, one may conclude that the errors in the MLE 

analysis are random and possibly due to the level of shot noise present in the data. 

 

Also, two distinct reasons for systematic errors come to mind.  One involves an excess 

of shot noise.  The MLE analysis assumes that the calibration curves are without noise.  

If there is any variance in the calibration curves, the MLE analysis is less likely to find 

accurate results.  In this case, Poissonian shot noise could be enough to skew the 

pureness of the calibration curves.  In order to alleviate this effect, collection times for 

the calibration runs should be increased to 3 or 5 minutes, to minimize the influence of 

shot noise. 

 

Another possibility for systematic error is equipment malfunction.  When doing these 

experiments, the dye laser was fluctuating in power, most probably caused by a change 

in humidity and temperature in the laboratory.  These laser power fluctuations could 

cause inaccuracy in the calibration curves and, as above, lead to inaccurate MLE 

predictions. 
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Chapter VI 

Conclusion 

 

As each problem that occurred in this research brought a new knowledge, the final state 

came to be a solid and valid form.  A confocal microscope for multiple wavelength time-

resolved fluorescence detection with high throughput was built and a successful 

procedure was developed for unmixing the signal contributions of multiple fluorophores 

with overlapping spectral signatures.  As expected, the precision of the unmixing 

becomes poorer for lower numbers of photons. Nevertheless, Figure 16 shows that the 

fit is accurate in comparison to the measured data. The number of counts per spectral 

band was in the range of 102— 103, which was the target requirement for a low photon 

count, as stated in the application for the grant to the National Institutes of Health, which 

provided partial support for this research.  The results prove the usefulness of 

maximum-likelihood based unmixing for ultra-sensitive experiments.   

 

The unmixing algorithm also proves useful when trying to conserve time for data 

analysis.  Besides the general experimental set up, which accounts for approximately 5 

minutes to create a slide, apply the wanted mixture, focus the laser into the sample, and 

record the data, the unmixing analysis is very quick.  By simply loading the files into a 

Labview program and pressing Run, the process takes less than a second to analyze 

and unmix the species as well as graph out the findings and individual data curves. This 
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allows for many acquisitions to be taken and analyzed in a short period of time. 

 

It is important to consider what can be done in the future to extend these methods.  One 

of the first things that should be examined is how to apply rigorous error analysis.  This 

will provide error bars for the fitted data, and thereby give insight as to how accurate the 

method performed. For the same purposes, studies using the Monte Carlo simulation 

should be extended to find the errors for particular combinations of dyes and the limits 

for unmixing in the ultrasensitive regime. However, simulation results should be 

compared to what is experimentally found. 

 

Generalization of the method to other experimental configurations should be considered. 

One possibility is to bypass the use of an external counter and time-correlated single 

photon counting module and use the “smart” pixel 32x1 SPAD array developed by Tisa 

et al. [26].  They have created a detection head with internal electronics that time-tag 

single photons down to 3.2 μs.  It combines ultra-sensitive detection (45% quantum 

efficiency) and high-speed acquisition (up to 312.5 kframe/s using a 10 MHz system 

clock).  As the entire system is integrated, the pixel counts can be added from all 

channels to form one large SPAD, capable of viewing and entire spectra at once.  This 

can prove useful as it cuts down optical components in the experimental layout. On the 

same lines, an EMCCD camera can provide fast frame rate acquisition for single-photon 

sensitivity experiments.  The fluorescence can be focused onto a single line of pixels on 
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the camera, making it possible to take very fast frame rate measurements of the spectra 

by shifting the image to adjacent pixels as the new image is being acquired (the “fast 

kinetics” mode of data collection).  A great advantage here is that the quantum 

efficiency is 95%, compared to the ~65% QE from the modified SPADs.  The same 

maximum-likelihood data analysis method can be used, and the spectra can then be 

unmixed into the corresponding fractions of each species involved. 

 

Another experimental option is to use two or more excitation wavelengths, as was done 

in reference [1].  A second excitation wavelength applied to the sample at ~630 nm will 

provide for another reference point in the data as the dyes are excited differently at each 

wavelength.  This can further aid in distinguishing between the species as the emission 

peaks are more distinct than the emission tails. 

 

Finally, an option to potentially add to the system is the phasor approach developed by 

Grattonʼs group [27].  It builds up decays from vectors created by the image.  Provided 

the modulation and phase of the emission with respect to the excitation can be found, 

the lifetime of each sample can be plotted onto a semicircular graph.  As each dye has a 

unique lifetime, the possibility arises to use these as calibration plots for unmixing for a 

sample solution with multiple dyes present.  This method could be coupled with the 

current ML method to possibly allow for greater accuracy, or to provide a check for 

consistency. 
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