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Abstract

The recent advancements in communication technology, transportation infrastructure,

computational techniques, and artificial intelligence are driving a revolution in future

transportation systems. Connected and Automated Vehicles (CAVs) are attracting

a lot of attention due to their potential to reduce traffic accidents, ease congestion,

and improve traffic efficiency. This study focuses on addressing the challenges in

controlling future CAV-enabled transportation systems. The aim is to develop

a framework for the control of CAV-based traffic systems to improve roadway

safety, travel efficiency, and energy efficiency. The study proposes new methods

for vehicle speed control and traffic signal control at signalized intersections and

corridors as well as merging roadways, to increase the understanding of how traffic

elements interact and are impacted by individual actors. The vehicle speed control

method is based on sequential convex programming (SCP) algorithms, combining

the pseudospectral collocation method with line-search and trust-region techniques

for optimal solutions with real-time performance and efficient handling of multiple

constraints. In terms of on-ramp merging control, the study develops a new merging

control approach that balances computational efficiency, solution optimality, and real-

time performance for safe merging operations. The traffic signal control framework

uses deep reinforcement learning (DRL) with a novel convolutional autoencoder

network for a concise representation of traffic information to improve the learning

efficiency of the DRL algorithm. The proposed method extends the action space by
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including both phase duration and cycle length, allowing for more adaptability to

dynamic traffic flow.

This study presents a comprehensive framework for the control of CAV-based

traffic system that enhances the positive attributes of CAV technology while

minimizing negative effects. The framework will contribute to improving road safety,

travel, and energy efficiency while synchronizing CAV motion planning with traffic

signal optimization to reduce traffic congestion and idling as well as fuel consumption

with guaranteed collision avoidance. This study explores the interface of multiple

disciplines including control theory, optimization, machine learning, data analytics,

and real-time computation. The results of this study will inform future research in

the area of intelligent control of data-rich, interactive systems and will benefit the

development of intelligent transportation systems with CAV technologies.
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Introduction
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1.1 Background

The latest advances in communication technology, transportation infrastructure,

computational techniques, and artificial intelligence are breeding a revolution in

future transportation systems. There has been an acceleration in the research and

development efforts toward this transition in many countries Aziz et al. (2017).

Among the new technologies under development, Connected and Automated Vehicles

(CAVs) are the most frequently studied due to the great promise that they hold to

decrease traffic accidents, reduce congestion and improve vehicle efficiency. The term

“CAV technology” refers to the vehicle capable of navigating and self-driving without

intervention from a human driver, as well as communicating with other vehicles

and/or infrastructure and other devices Anderson et al. (2014). The U.S. Department

of Transportation is also actively preparing to lead the advance in CAV technologies,

and four main potential benefits of introducing CAVs to transportation systems have

been spotlighted US Department of Transportation (2020): road safety, economic and

societal benefits, efficiency and convenience, and public mobility.

With speculation of a substantial transformation toward an automated transporta-

tion system, a number of studies have been conducted to investigate the challenges and

opportunities involving CAV applications and implications Fagnant and Kockelman

(2015); Bagloee et al. (2016); Li et al. (2017); Taiebat et al. (2018); Guanetti et al.

(2018). Among the objectives of these studies, driving safety is a particular concern

for guiding the continuing evolution of automotive technology. According to the

World Health Organization, the number of deaths in traffic accidents has been

increasing since 2000 and reached 1.35 million in 2016 Organization (2018). Accidents

also cause traffic congestion, loss of productivity, medical costs, and property damage,

and human error is one of the critical reasons that cause accidents. By optimizing the

vehicle operations, CAV technology can not only improve safety but also enhances

the traffic efficiency. These benefits can be realized by solving vehicle trajectory

optimization problems with different goals, such as safety improvement Lee and
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Park (2012); Zohdy and Rakha (2016), travel efficiency Wei et al. (2016); Roncoli

et al. (2016); Chen et al. (2017), fuel economy Ozatay et al. (2012); Wan et al.

(2016); Jin et al. (2016); Jiang et al. (2017); Turri et al. (2017), and other objectives

Asadi and Vahidi (2010); Bai et al. (2017). As a legitimate speculation, in a fully

automated environment, CAV technologies can eliminate traffic accidents, relieve

traffic congestion, and reduce energy consumption through the optimized vehicle

operations. Moreover, human productivity can be improved by allowing vehicle

occupants to participate in more productive activities when they are relieved of the

driving task Taiebat et al. (2018).

In particular, CAV technologies create a new environment for drivers/vehicles

and traffic infrastructure to interact in real world. In this environment, connectivity

plays a critical role that wireless communication enables the vehicles to communicate

with each other (V2V) and with the infrastructure (V2I) about the real-time vehicle

location, speed, acceleration, and other data. On one hand, with the availability

of the real-time states of surrounding vehicles, it is possible for CAVs to coordinate

inter-vehicle interactions to minimize congestion, maximize fuel efficiency, and reduce

collisions Guanetti et al. (2018). On the other hand, the availability of these real-

time traffic data provides opportunities for traffic controllers to make better signal

phase and timing (SPaT) decisions to improve the mobility and reduce energy

consumption. For instance, the Oak Ridge National Laboratory Laclair et al. (2019) is

developing the Real-Time Mobility Control System (RTMCS) for CAVs applications

that include traffic data management, route planning, centralized communications

and visualization.

1.2 Motivation

The overall goal of this study is to establish a framework for the control of CAV-based

traffic system that accommodates the complex, data-rich traffic network and aims to

improve roadway safety, travel and energy efficiency. It is clear that CAV technology
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has a positive effect in road safety, fuel economy and emissions reduction on vehicle

level. However, on traffic network level, CAVs could create further burden to an

already congested network due to eco-driving operations. Since traffic congestion and

idling are the main causes of energy waste, an cooperative and interactive control

method is needed to minimize negative effects, enhance positive attributes and achieve

substantial net improvements. Therefore, the ultimate objective of this study is to

develop a cooperative control strategy for the CAVs at merging roadways and the

signalized intersections that synchronize CAV motion planning with traffic signal

optimization to reduce the traffic congestion and idling as well as the fuel consumption

with guaranteed collision avoidance.

1.2.1 Study I: Real-Time Control of Connected Vehicles

in Signalized Corridors using Pseudospectral Convex

Optimization

The use of traffic signal phase and timing (SPaT) information to coordinate vehicle

operations has been shown to improve vehicle fuel efficiency Misener et al. (2010).

The optimal speed scheme for a vehicle can be determined through the solution

of the corresponding optimal control problem Guanetti et al. (2018). Despite

numerous studies demonstrating the potential of using SPaT information to optimize

fuel economy, most have concentrated on enhancing the performance of individual

vehicles and signal timing control Wang et al. (2020a,b). Furthermore, previous

works primarily focus on creating viable trajectories for CAVs, overlooking real-

time execution considerations such as computational efficiency and guaranteed

convergence.

The onboard algorithms for the motion control system of CAVs play a crucial role

in ensuring safety and require real-time updates to respond to dynamic surroundings.

While previous efforts have aimed to optimize vehicle trajectories, these methods are

often computationally expensive, cannot guarantee optimal solutions, and struggle to

4



handle nonconvex motion constraints and dynamic environments Asadi and Vahidi

(2010); De Nunzio et al. (2016). This study seeks to overcome these limitations

by introducing a novel, convex optimization-based method for producing speed

profiles using SPaT information. With its advantages of efficient, polynomial solution

time and globally optimal convergence, convex optimization approaches have strong

potential for practical onboard implementation.

1.2.2 Study II: Pseudospectral Convex Optimization for On-

Ramp Merging Control of Connected Vehicles

Ensuring driving safety remains the paramount concern in the ongoing advancements

in automotive technology. On-ramp merging control, a critical aspect of highway

transportation and a complex traffic negotiation process, has garnered extensive

attention from researchers. With complex interactions and a limited time and distance

for assessment and decision-making, the merging process presents a high-risk scenario

where any misstep could result in a crash. The objective of on-ramp merging control

is to facilitate the safe and seamless passage of vehicles through the merging area, by

coordinating the vehicles on both roads.

A wealth of research has shown the benefits of coordinating and optimizing

the motion of CAVs for improved road safety, reduced travel time and energy

consumption, and increased capacity during on-ramp merging scenarios Rios-Torres

and Malikopoulos (2016b); Rios-Torres et al. (2021); Letter and Elefteriadou (2017);

Shi et al. (2022a). Despite this progress, current methods often neglect the real-time

execution of the generated merging trajectories, which is crucial in a safety-critical

system that requires continuous updates to react to dynamic and uncertain road

conditions.

Moreover, existing optimal control methods face significant challenges, such as

high computational cost, difficulty in handling nonlinear vehicle dynamics, and

nonconvex constraints, which limit their real-world applicability. This study aims

5



to overcome these challenges by presenting a new merging control approach that

strikes a balance between computational efficiency, solution optimality, and real-time

performance for safe and smooth on-ramp merging operations.

1.2.3 Study III: A Novel Deep Reinforcement Learning

Approach to Traffic Signal Control with Connected

Vehicles

With the availability of the real-time traffic data through V2I communication, traffic

controllers can potentially generate better signal phase and timing (SPaT) plans for

safer and more sustainable ground mobility. However, SPaT optimization is an NP-

Complete problemWünsch (2008); Al Islam and Hajbabaie (2017). The complexity of

the associated optimization problem increases with the number of vehicles and traffic

lights in the traffic network, especially when realistic driving/car-following behavior

and multiple optimization objectives are considered. As a consequence, designing

SPaT optimization and control methods for the traffic network is subject to the

“curse of dimensionality” and remains an open challenge.

Although many research and development efforts have focused on enhancing the

performance of individual vehicles and signal timing control Wang et al. (2020a,b),

relatively few studies address systematic, real-time, optimal vehicle control strategies

at signalized intersections. Nevertheless, the possibility of reducing red light

idling and fuel consumption through the intelligent use of upcoming traffic signal

information is very attractive.

By taking advantage of the large volumes of traffic data from CVs, it is possible to

characterize the inherent interacting relationships among vehicles and infrastructure

components, which can be used to develop data-driven traffic control schemes. Due to

the stochasticity and nonlinearity of traffic flow, non-parametric learning approaches

are particularly suitable for the signal controller to learn policies through observing

the transition of the traffic states.
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However, it is a challenging task to build and train a learning-based controller

directly from raw data. Without well-designed learning models and training

algorithms, the learning-based controller cannot acquire an effective control strategy.

Therefore, to address the “curse of dimensionality”, many researchers had to simplify

the training model by limiting the action and state space, which diminishes the

authenticity and optimality of the simulated controllers. This study aims to overcome

the limitation of the existing methods by redesigning the state space for better

learning performance, and defining the action space in a way that enables more

practical and flexible signal timings.

1.2.4 Study IV: Data-Driven Optimization Framework for

On-Ramp Merging Control with Connected and Auto-

mated Vehicles

Data-driven control approaches are ideal for learning policies to control merging

traffic, given the stochastic and nonlinear nature of the traffic system. These

approaches are different from model-based optimization methods, as they do not

require prior knowledge of the traffic system and are less computationally intensive

for generating merging sequences. Furthermore, data-driven methods can overcome

the complexity associated with rule-based methods by eliminating the need to build

complex decision-making models, and can offer better optimality and adaptability.

These benefits make data-driven approaches highly promising for addressing various

traffic control challenges associated with the merging scenarios.

By taking advantage of the learning ability and adaptability of deep reinforcement

learning (DRL), DRL-based merging control methods can potentially achieve more

efficient and safer merging operations in complex traffic environments, resulting in

improved overall traffic flow and reduced fuel consumption and emissions. DRL-based

methods can handle complex and uncertain traffic scenarios that rule-based methods

may struggle with, and adapt to changing traffic conditions in real-time. Furthermore,
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they can learn from experience and improve their performance over time, whereas

rule-based methods are typically static and require manual adjustments to improve.

Ultimately, DRL-based merging control methods have the potential to enhance the

efficiency and safety of the merging areas compared to rule-based methods.

Assisted by the optimal merging sequence generated by the DRL-based controller,

CAVs could merge more efficiently and safely, reducing traffic congestion and

improving the overall traffic flow. Incorporating optimal control into traffic control

systems can also reduce fuel consumption and emissions, making transportation more

sustainable. The primary objective of the research on DRL-based merging control

methods with CAVs is to develop a robust and efficient control framework that enables

CAVs to merge cooperatively and safely, resulting in improved traffic flow and reduced

fuel consumption and emissions in a real-world traffic environment.

1.3 Research Contributions

This study aims at addressing some open challenging topics in the control of future

CAV-enabled traffic systems. These topics are of key importance to advance the

knowledge that increases understanding of how the traffic elements interact and are

impacted by individual actors. In terms of vehicle control, this study aims to develop a

new method that is different from conventional approaches in three different key ways:

1) achieves optimal solutions using optimal control theory, 2) guarantees real-time

performance via convex optimization, and 3) efficiently handles multiple constraints

in dynamic traffic environments. These advancements in vehicle control are essential

for the successful integration of CAVs in future intelligent transportation systems.

To achieve these objectives, this study makes novel contributions to the vehicle

control problem primarily in the following three aspects. First, the proposed sequen-

tial convex programming (SCP) algorithms address the nonlinear and nonconvex

optimal speed control problem with guaranteed convergence and polynomial solution

time in solving a convexified problem in each step. Second, this study leverages the
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pseudospectral collocation method in combination with the line-search and trust-

region techniques to fundamentally improve the proposed SCP algorithms for higher

accuracy and better real-time and convergence performance. Third, thanks to the

advanced computational efficiency, the proposed method enables a real-time model

predictive control (MPC) framework with instant response to the dynamic traffic

environment for collision avoidance and vehicle coordination.

Considering the challenging on-ramp merging scenario, this study develops a new

merging control approach that balances the computational efficiency and solution

optimality while maintaining real-time performance and safe merging operations.

In particular, different methods of merging sequence determination are explored.

A pseudospectral convex optimization formulation with hard collision-avoidance

constraints is devised for the merging of CVs at roadway on-ramps. With advantages

of globally optimal solutions and polynomial solution time, the proposed sequential

convex programming (SCP) algorithms address the nonlinear vehicle dynamics and

nonconvex motion constraints with guaranteed real-time performance. Furthermore,

the performance of the merging control algorithm is enhanced by a line-search

technique and a trust-region method, thus leading to two improved SCP algorithms.

Moreover, the proposed algorithms are implemented under a model predictive control

(MPC) framework to deal with errors and uncertainties for better inter-vehicle

coordination.

In terms of traffic signal control, this study proposes a new traffic signal

control framework using deep reinforcement learning (DRL) by introducing a novel

convolutional autoencoder network to compress the dimensionality of the input traffic

states. This results in a concise representation of comprehensive traffic information

that is used to facilitate the learning of effective SPaT plans. Furthermore, the action

space is extended by including both phase duration and cycle length, allowing for more

adaptability to dynamic traffic flow. With a combinatorial action space of different

phase durations and cycle lengths, the proposed method can handle unbalanced traffic

flow with varying traffic volumes. Additionally, several state-of-the-art techniques
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such as target network Van Hasselt et al. (2016), dueling network Wang et al. (2015),

and experience replay Schaul et al. (2015) are employed to fundamentally improve the

learning efficiency of the DRL algorithm. Finally, the effectiveness and performance of

the proposed method are demostrated through cross-comparisons with several existing

traffic signal control methods based on simulations on the widely used Simulation of

Urban MObility (SUMO) traffic simulator. Both the signalized traffic intersections

and non-signalized merging areas are addressed by the proposed DRL method.

The research on DRL-based merging control with optimal control CAVs offers

a novel approach that combines the learning and adaptability of DRL with the

optimal control method, which strikes a balance between computational efficiency

and solution optimality while ensuring real-time performance and safe merging

operations. This method holds potential to achieve efficient and safe merging

operations in complex traffic environments, leading to improved overall traffic flow

and reduced fuel consumption and emissions than the rule-based methods. By

developing and validating the proposed DRL-based merging control method in a real-

world traffic environment could also provide valuable insights into the effectiveness

and feasibility of the method, and inform the development of future traffic control

systems. This research could also serve as a foundation for further investigations

into the applications of DRL and optimal control in traffic control systems, and

could potentially lead to the development of more advanced and sophisticated control

methods that can handle even more complex traffic scenarios.

In summary, this study makes novel use and explores the interface of multiple

disciplines including control theory, optimization, machine learning, data analytics,

and real-time computation. This study aims to contribute a new DRL-based traffic

signal control framework. The resulting contribution is significant as it is one of

the first key steps towards revolutionizing intelligent transportation systems with

CAV technologies. The insights gained from this research will provide a foundation

for further evaluation and deployment of these new techniques in real-world traffic

systems. Additionally, the results from this study will inform other problems that

10



require learning-based control methods and will benefit future research in the area of

intelligent control of data-rich, interactive systems.
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Chapter 2

Literature Review
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As technology advances in connectivity and sensing, CAVs have attracted more

and more attention from both academia and industry. There is a clear consensus

that introducing CAVs to transportation systems could offer substantial benefits

in terms of road safety, traffic mobility, and energy efficiency. This chapter will

explore previous work done in the area of optimal control of CAVs in the scenarios

of signalized intersections and on-ramp merging, as well as CAV-based traffic signal

control. The discussion will focus on control and planning architectures, specifically

on control objectives, problem formulation, optimization algorithms, real-time control

techniques, and coordination strategies for multiple vehicles.

2.1 Optimal Control of Connected and Automated

Vehicles

The primary goal of developing CAV technology is to improve transportation safety,

mobility, and efficiency US Department of Transportation (2017). An successful CAV

control method should be able to provide optimal control under a variety of scenarios

using interactive, real-time, robust algorithms in a safety-first paradigm Laclair et al.

(2019); Xin et al. (2022). Due to the complex interaction, nonlinear dynamics,

and large number of vehicles, achieving optimal speed control of CAVs in dynamic

scenarios requiring real-time response to traffic environments, where uncertainty is

always present, is a challenging task.

Specifically, the onboard control system of an automated vehicle typically has

a hierarchical structure Paden et al. (2016): the route planning module decides

the continuous path on a large scale map, the path planning module takes route

information and computes a reference trajectory towards the next waypoint while

considering local traffic conditions, the real-time motion planning module handles

the interaction with the traffic environment and ensures that the reference trajectory

is executed in a robust manner, and the powertrain control system executes the
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acceleration/deceleration and steering operations. The boundaries of these modules

are variable with different variations of the driving scenario. An optimal control

approach needs to be developed based on the specific application, including the type

of vehicle and the expected traffic environment. As a consequence, the variety of

related optimization problems and computational techniques is vast.

To improve energy efficiency, recent studies have formulated the fuel economy

optimization problem as optimal control problems and obtained the most economical

speed profiles by minimizing accelerating and braking events Katrakazas et al. (2015).

In the literature, this is also known as eco-driving Mensing et al. (2013), green light

optimal speed advisory Eckhoff et al. (2013); Wan et al. (2016), or speed trajectory

planning He et al. (2015); Huang and Peng (2017). For example, cooperative adaptive

cruise control takes advantage of V2V communications to enable improved energy

efficiency of traffic flow by reducing aerodynamic resistance via reduced inter-vehicle

spacing Wang et al. (2018). Considering the route cruising scenario, (Ozatay et al.,

2014) developed a dynamic programming-based optimization method to generate an

optimal speed trajectory by collecting road geographical and traffic information from

cloud platform. Similarly, (Sciarretta et al., 2015) formulated an eco-driving optimal

control problem and investigated three solution methods: Pontryagin’s minimum

principle, dynamic programming, and analytical solutions. In these studies, for which

the interactions with other vehicles and the infrastructure were not considered, the

concept of CAVs is more like an advanced cruise control system, where the uncertainty

and real-time performance were neglected.

2.1.1 Trajectory Optimization for Vehicles Passing Through

Signalized Intersections

When signalized intersections are taken into account for fuel economy optimization

problems, the vehicle’s trajectory can be planned to avoid frequent stops at traffic

lights to improve fuel efficiency and reduce travel time. To obtain the optimal
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speed profile, many optimization algorithms have been proposed. For example,

analytical solutions were derived in Ozatay et al. (2012) and Wan et al. (2016) for fuel

minimization at signalized intersections. The analytical methods are computationally

less expensive; however, the resulting two-point boundary value problems are difficult

to solve, and complicated mathematical derivations are needed. The lack of

generality and robustness hinders the application of analytical solutions for onboard

implementation.

Recently, numerical optimization methods received much attention for speed

control of vehicles at signalized intersections. For example, (Jiang et al., 2017)

formulated an optimal control problem for an isolated signalized intersection with

mixed traffic scenario and applied an iterative algorithm using Pontryagin’s minimum

principle to obtain the optimal speed profiles of the CAVs. (He et al., 2015) considered

each signalized intersection as one stage of a multistage optimal control problem

solved using the General Purpose OPtimal Control Software (GPOPS), which is

a pseudospectral method for multiple-stage optimal control problems. Dynamic

programming has been employed as a numerical approach in Mahler and Vahidi

(2014); Ozatay et al. (2014); Kamalanathsharma et al. (2015); Sun et al. (2020); Hao

et al. (2019) to obtain globally optimal trajectories. Unfortunately, since the dynamic

programming algorithm searches exhaustively in the solution space, it suffers from

the curse of dimensionality. Therefore, this method is computationally intensive and

usually cannot be executed in real time.

To address the curse of dimensionality, (Huang and Peng, 2017) applied an SCP

method to obtain the sub-optimal speed trajectory for multiple-vehicle and multiple-

intersection cases. However, only simplified dynamics and no V2V information were

considered in this work. For online implementation purposes, (De Nunzio et al.,

2016) used a pruning algorithm to reduce the optimization domain into a weighted

directed graph, where each node represents a feasible crossing time of the intersection’s

green phases. The number of nodes were determined manually as the fineness of

the graph approximation. The graph path with most efficient energy was found by

15



a shortest path algorithm, and the sub-optimal speed trajectory was obtained by

convex optimization using the selected path. For real-time applicability, (Canosa and

HomChaudhuri, 2019) modeled the solution of red-light idling avoidance problem as a

Gaussian distribution, however the feasible solution is not guaranteed. The sampled

control input was used as an initial guess of an MPC-based nonlinear controller.

In recent years, pseudospectral optimal control has emerged as a popular direct

numerical optimal control method that transforms the original continuous-time

optimal control problem into a finite-dimensional parameter optimization problem

by approximating the continuous trajectory through interpolating polynomials at a

set of collocation points characterized by state and control variables as parameters

Fahroo and Ross (2002). It has been proven to have many advantages such as fast

convergence, near-optimality, and lower sensitivity to the initial value in the aerospace

fields Ross and Karpenko (2012). In the area of ground transportation, only a few

studies involving energy management Sotoudeh and HomChaudhuri (2022a,b) have

adopted this method. Meanwhile, it has shown that the computational cost of the

direct method is unpredictable and the convergence of the algorithms cannot be

guaranteed if nonlinear programming (NLP) solvers are employed with or without

pseudospectral discretization.

Another promising approach to CAV speed control is the optimization-based MPC

framework Kamal et al. (2010); Asadi and Vahidi (2010); Kamal et al. (2012); Kim

and Kumar (2014); Cao et al. (2015); Yu et al. (2015); HomChaudhuri et al. (2016);

Zhou et al. (2019); Karimi et al. (2020); Shao and Sun (2021b,a, 2020), which is

suitable for potential real-time implementation. MPC is a general control design

methodology for dynamical systems. With MPC, the trajectory optimization problem

is solved iteratively over a short rolling time horizon. Specifically, only the first step

of optimal control command is applied to the vehicle, then the states and constraints

of the vehicle are sampled again and the optimization is repeated for the new time

horizon. Conceptually, MPC enables real-time vehicle control with instant response

to the maneuvering of preceding vehicles and traffic signal switching. However,
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when the interactions between vehicles are considered, a large amount of constraints

render a nonconvex solution space. Solving such a nonconvex optimization problem

is computationally expensive and may not converge to an optimal or even feasible

solution Asadi and Vahidi (2010). To enable fast yet optimal solutions for real-world

CAV applications, advances in optimization algorithms need to be made to MPC-

based approaches.

To summarize, despite the significant potential of reducing red light idling and

fuel consumption through intelligent use of upcoming traffic signal information, most

existing speed control approaches use either simplified models that fail to capture

the characteristics of vehicle dynamics or high-fidelity models that render complex

optimal control problems that cannot be solved in real time. Additionally, most

work didn’t consider the interaction among vehicles, which is inevitable in the real-

world driving scenarios. In the presence of multiple vehicles, speed coordination is

of key importance to the collision avoidance, platoon fuel efficiency, and passenger

comfort. Nevertheless, the imposed constraints result in a nonconvex solution space

to the optimization problem. Solving such complex and nonconvex problems is

computationally intensive and sensitive. To address these methodological challenges,

this study proposes a pseudospectral convex optimization formulation to balance the

solution optimality and computational efficiency. The combination of pseudospectral

discretization and convex optimization has recently been introduced to address

trajectory optimization problems in aerospace engineering Sagliano (2018); Wang

et al. (2019); Sagliano and Mooij (2021); Song et al. (2021), and shows great

performance in solution accuracy, convergence rate, and computational efficiency.

2.1.2 On-ramp Merging Control

In the merging scenario, vehicle coordination is of key importance to the collision

avoidance, fuel efficiency, and passenger comfort. In particular, the essence of the

on-ramp merging problem is to coordinate the speed of the vehicles on either or
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both mainstream or ramp roads to pass the merging area safely. In the CAV

environment, the vehicles are able to communicate with each other (V2V) and with

the infrastructure (V2I) about the real-time vehicle location, speed, acceleration,

trajectory, and other relevant information. With the help of these real-time data,

traffic controllers should be able to coordinate the vehicles to make smooth merging

maneuvers for safety, mobility, and fuel efficiency purposes. However, the imposed

constraints by vehicle interactions would result in a non-convex solution space to the

optimization problem.

Conventional methods for such problems are computationally intensive and

sensitive. Most existing optimization-based methods adopted the analytical solutions,

which are computationally less expensive. However, in consideration of nonconvex

constraints, such as nonlinear fuel consumption model and aero-resistance, the

resulting two-point boundary value problems (TPBVPs) are very challenging to solve

analytically. By comparison, numerical methods are often considered as a practical

tool of onboard implementation for trajectory optimization problems. For example,

dynamic programming (DP) has been employed as a numerical approach in Wu

et al. (2014); Pei et al. (2019) to obtain globally optimal trajectories. Detailed

implementation methodology of DP can be found in Sundström et al. (2010).

Unfortunately, since the DP algorithm searches exhaustively the solution space, it

suffers from the curse of dimensionality. Therefore, DP is computationally intensive

and usually not suitable for real-time implementation of large-scale, highly nonlinear

OCPs.

Many recent studies have formulated the on-ramp merging problem as optimal

control problems (OCPs) and obtained the speed profiles for individual vehicles by

minimizing specific performance measures Katrakazas et al. (2015). In Ntousakis

et al. (2016) and Ding et al. (2019), the optimal speed trajectory was obtained by

minimizing the acceleration or deceleration rates of vehicles with analytic solutions.

To improve road capacity, Rios-Torres and Malikopoulos (2016a) introduced the gap

between vehicles as a target to minimize into the objective function of the optimization
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problem. The optimization objective in Letter and Elefteriadou (2017) and Hu and

Sun (2019) was set to be maximizing the average speed of each vehicle travelling in

the control zone. The optimal control formulation in Zhou et al. (2018) minimized

both the control effort and travel time, and the solution was obtained in a recursive

manner using Pontryagin’s minimum principle. This work was then extended to

more congested scenarios by adding state constraints in Zhou et al. (2019). To

consider conventional human-driven vehicles, Karimi et al. (2020) divided the merging

process into three phases and investigated six scenarios of vehicle interaction. For

each scenario and phase, different control targets of CVs were defined, and the

respective OCP was formulated as a target speed tracking problem. Similar models

with analytical solutions were proposed in Jing et al. (2019) and Liu et al. (2021)

to minimize fuel consumption, travel delay, and passenger discomfort with a multi-

objective optimization functional of acceleration and its derivatives. In all these

studies, for which the interactions with other vehicles were not fully considered,

the motion planning methods did not find obvious advantages over an cooperative

adaptive cruise control strategy Wang et al. (2018), where the uncertainty and real-

time performance were neglected.

In summary, while many researchers have demonstrated the potential of using

optimal control to improve the performance of CAVs, most existing approaches

depend on either simplified formulations that fail to capture the characteristics of

vehicle dynamics and interactions or on complex optimization models that cannot be

solved in real time. For the merging scenario, vehicle coordination is of key importance

to collision avoidance, fuel efficiency, and passenger comfort. Nevertheless, the

constraints imposed by vehicle coordination result in a nonconvex solution space to the

optimization problem. Conventional methods for such problems are computationally

intensive and lack efficient means to achieve fast yet stable merging operations. This

study aims to address these challenges by developing and numerically demonstrating

a novel pseudospectral convex optimization framework and two enhanced SCP

19



algorithms for on-ramp merging compromising solution optimality and computational

efficiency for potential real-world implementation.

2.2 Traffic Signal Control

For the past 20 years, numerous studies has been conducted to tackle traffic signal

control issues in the presence of CVs. These studies primarily focus on improving the

performance of isolated intersections, with the goal of scaling the solutions to larger

networks and corridors. According to the mathematical models used, these methods

can be broadly categorized into two groups: optimization-based and machine learning-

based approaches Guo et al. (2019).

2.2.1 Optimization-based Approaches

Optimization-based approaches assume that the traffic model is known and the future

traffic flow states could be predicted accordingly. Next, certain optimization problems

are formulated and solved for the optimal SPaT control plans. The objectives of these

optimization problems are usually to minimize traffic performance measures, such as

traffic delay and queue length, which are estimated on the basis of predicted vehicle

arrivals Guo et al. (2019). However, this approach requires accurate predictions

of future traffic states, which can be challenging due to the complexity of the

optimization problem that involves traffic flow models and coupled with SPaT data.

Therefore, the key challenges in CV-based traffic controls are to predict the future

traffic states accurately, coordinate multiple intersections effectively by accounting

for the conflicts of traffic flows, and efficiently solve the underlying large-scale

optimization problem Guo et al. (2019). These challenges have led to the development

of three different groups of optimization methods: centralized, decentralized, and

hierarchical approaches.
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Centralized Methods

In comparison to conventional signal control methods, such as adaptive control

and coordinated control, the biggest challenge in implementing optimization-based

methods is the high complexity of optimization models. To overcome this, centralized

approaches reformulate the optimization problem by reducing the number of variables.

For instance, in He et al. (2012), individual vehicles were grouped into pseudo-

platoons based on the headways between them and a mixed-integer linear program

(MILP) was utilized to determine the optimal signal phase sequence and phase

initialization in real-time using platoon request data and traffic controller status.

This work also introduced a dynamic arterial coordination strategy to promote traffic

progression by taking into account platoon queue delay, signal delay in current

intersection, and possible delay at downstream intersections.

In Feng et al. (2015), a real-time adaptive phase allocation algorithm was proposed

that utilizes dynamic programming and optimization techniques to allocate signal

phase sequences and duration based on predicted vehicle arrivals. Zhao et al.

(2015) adopted an interactive grid search method to solve an optimization problem,

considering accumulated fuel consumption and travel time as the cost function, to

determine the optimal traffic light timing of for each cycle at an intersection.

Mohebifard and Hajbabaie (2019) used a cell transmission model Daganzo (1994)

to categorize the traffic network into cells and groups for higher-level representation

and then formulated an MILP to maximize network throughput, which was solved

using Benders decomposition technique BnnoBRs (1962). Bin Al Islam et al.

(2021) formulated an optimization problem to minimize network-level traffic delay,

considering the energy consumption as a constraint, and solved the resulting non-

convex problem using a stochastic gradient approximation algorithm. In Hong et al.

(2022), a linear dynamic traffic system model was built for a large-scale traffic network

and a linear-quadratic regulator was applied to minimize both traffic delay and
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control-input changes, allowing for an online update of the traffic model to be adaptive

to signal control outcomes.

Decentralized Methods

Decentralized approaches aim to simplify the model and lower the computational

demands of the traffic control problem by utilizing distributed control and optimiza-

tion techniques. These methods optimize objective functions for each intersection

individually and disregard coordination among neighboring intersections, leading

to sub-optimal, local solutions instead of globally optimal ones. These approaches

typically predict only traffic states, often just the arrivals, of the current intersection

over a specified time horizon. To address this challenge, Li and Ban (2017)

transformed the problem into a dynamic programming model by dividing the timing

decisions into stages with one stage for each phase, and minimizing the accumulated

fuel consumption and travel time by calculating the objective function for each phase.

Goodall et al. (2013) proposed a predictive microscopic simulation algorithm to

estimate future traffic conditions and objectives over a rolling horizon of 15 seconds,

assuming vehicles maintain heading and speed during this time. To account for the

impact of queue spillbacks, Noaeen et al. (2021) presented a decentralized method

to maximize global network throughput by maximizing the effective outflow rate of

each intersection locally and independently. This approach determines the minimum

saturated green time of all possible phases based on queue lengths, arrival flows, and

downstream queue lengths at each intersection to facilitate vehicle discharge at full

capacity.

In Al Islam and Hajbabaie (2017), a distributed, coordinated approach was

developed to tackle the network control problem through dividing it into a series

of local controllers that can exchange traffic data with each other. At each decision

time step, each controller collects data on queue lengths and incoming vehicle numbers

from neighboring intersections, and decides to whether to end or maintain the existing

signal phase for local signal timing till the next step. Moreover, Islam et al. (2020)

22



expanded upon this work by taking into account unconnected vehicles. Specifically,

they developed two algorithms to estimate the traffic states of unconnected vehicles

relying on the traffic information from fuse loop detectors and CVs using car-following

concepts. In Liang et al. (2020), both connected and identified non-connected

vehicles were grouped into platoons, resulting in the generation of all possible

platoon departure sequences. Rather than solving for optimal signal timing directly,

the platoon departure sequence that minimizes total vehicle delay was found by

enumerating all possible departure sequences. The optimal SPaT was then calculated

as the time needed to discharge all the vehicles in a platoon.

Hierarchical Methods

Hierarchical approaches address the complexities of traffic network optimization

problem by breaking it down into multi-level optimization problems with different

objectives for each level. The defining aspect of these approaches is to establish the

macroscopic and microscopic models for each level of control problem. For instance,

Beak et al. (2017) proposed a two-level adaptive signal control method for corridor

coordination. Two optimization problems with distinct objectives were formulated

at the intersection and corridor levels. At the corridor level, an MILP was developed

to optimize the offsets along the corridor while minimizing the platoon delay based

on the movement of vehicle platoons. The optimized offsets were then sent to the

intersection level as the coordination constraints. At the intersection level, individual

vehicle movements were computed using a dynamic programming method to minimize

individual vehicle delay and handle phase allocation for both coordinated and non-

coordinated phases.

In Qiao et al. (2019), a three-level multi-agent signal control system was proposed

for an urban traffic network, including an intersection agent, a regional agent, and

a central agent. Three corresponding objective functions were designed to minimize

total delay time, reduce the total green ratio-related delay, and find the optimal

signal cycle. The fireworks algorithm was employed in Tan et al. (2013) to solved the
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optimization problems, resulting in the optimal cycle length, offset, and green ratio

that minimizes the total delay time of all intersections.

2.2.2 Data-driven Approaches

The increasing availability of data and computation power has made machine

learning-based approaches more and more popular in traffic control. These approaches

offer the advantage of being model-free, eliminating the need to build complex

mathematical models to describe the traffic states and solve nonlinear optimization

problem. Without a need for prior knowledge of the traffic system, machine learning-

based approaches also reduce the likelihood of introducing errors to the estimation of

traffic states. Additionally, machine learning approaches are less computationally

intensive and have great potential for real-time applications, making them more

practical than traditional model-based optimization methods. Moreover, machine

learning-based controllers have the ability to continuously learn and adapt to changes

in the traffic pattern, leading to improved optimality. There have been efforts to

use machine learning techniques to model the complicated relationship between the

signal timing plans and traffic delays, as reported in Bala Subramaniyan et al. (2022).

Overall, machine learning-based approaches hold great potential for addressing the

various challenges in the field of traffic signal control.

The basic components to designing a machine learning-based approach include 1)

capturing the traffic state efficiently, 2) selecting an appropriate learning algorithm,

3) defining the learning objectives, and 4) designing the action space. For instance, in

Liang et al. (2019), the traffic state of a single intersection was captured as image-like

grids, represented using an n× n× 2 matrix which conveyed the position and speed

information of vehicles in the grids. This matrix served as the input to a convolutional

neural network (CNN) that calculated expected future rewards for selecting certain

actions from the action space, specifically the adjustment of the current signal phase

duration. The reward was defined as the reduction in cumulative waiting time between
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two consecutive signal cycles. By maximizing the expected reward with the double

Q-learning method, the neural network learned how to reduce the average waiting

time of vehicles at an intersection.

In Al Islam et al. (2018), the traffic state of an intersection was represented using

a set of normalized queue lengths in each lane, which were discretized through the

application of the k-means clustering algorithm. To optimize energy consumption

and mobility simultaneously, they utilized a RL algorithm with three different reward

functions. At each decision time step, the signal controller agent made a decision to

either end or continue the current signal phase. Similarly, Du et al. (2019) proposed

a reward function with respect to a fixed-time controller. The agent receives positive

rewards for better performance than the fixed-time controller, and negative rewards

for underperformance.

In Chen et al. (2019), the traffic state was characterized by a 2-D matrix consisting

of the number of stopped vehicles in each direction and the average speed measured in

each section. The action space comprised of two options: selecting signal phases and

adjusting phase offsets. The reward function was a combination of the total volume

that passed through the arterial network and the difference in queue lengths between

the two different directions. To increase the adaptability of the signal control model,

Yoon et al. (2021) proposed a graph-based method that depicts the traffic state as

graph-structured data, which was then input into a graph neural network to train

the signal control policy. The study focused on an isolated intersection with only

straight traffic flows and thus the SPaT was comprised of two green-red phases and

two yellow-red phases, and the action was defined as the ratio of green time over a

fixed signal cycle.

To improve the generalization capability of the RL-based algorithm, Zeng et al.

(2019) introduced the prior traffic knowledge. Specifically, a fully-connected network

was used to classify the demand pattern of the intersection states, and the results

were combined with outputs of a convolutional network to jointly generate Q-value

approximations. The intersection state was described by a discrete encoding matrix
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consisting of vehicle position, vehicle speed, and signal phase. The reward structure

combined the numbers of stopped vehicles and passed vehicles, phase change, and the

total waiting time of vehicles.

In the scenario of network-wide traffic control, many challenges arise when

applying a centralized RL method. For example, as the number of traffic lights

increases, the action space increases exponentially and it becomes difficult to find

an effective joint control policy. To overcome this issue, some previous studies,

such as Aslani et al. (2017) and Chu et al. (2019), trained each intersection as

an individual agent based on the observed local traffic states and the information

received from neighboring intersections, while the state and performance of the whole

traffic system were determined by the joint control actions of all the intersections.

Meanwhile, the reward distribution and environment dynamics are required to be

stationary in a Markov decision process. If the rewards of an intersection are also

affected by the actions of its neighboring intersections, it is difficult for the agent to

converge to a stationary policy. To mitigate this issue, Li et al. (2021b) designed

a knowledge sharing mechanism to improve cooperation and collaboration among

traffic signals. Specifically, the “knowledge” was a collective representation of the

traffic environment collected by all agents and used for learning individual policies of

each agent. Similarly, Wang et al. (2021) adopted a k-nearest-neighbor-based joint

state representation and combined a group of traffic signals into a single agent to

improve the learning convergence of the multi-agent RL algorithm.

In summary, the above reviewed works have demonstrated the potential of data-

driven methods to learn a signal control strategy that outperforms some conventional

controllers such as fix-timing and actuated controllers. However, the considered

scenarios were significantly simplified. Some studies limited the number of lanes

and traffic directions to have a smaller state space. For the action space, some

studies selected continuous space by fixing the sequence of signal phases and defining

the actions as phase splits. Other studies that chose discrete action space either

limited the options of both phases and duration or fixed the cycle/phase length with
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phase switching as the actions. All these simplifications were employed to reduce the

complexity of the data-driven model, which implies that the existing data-driven

methods have difficulties in learning a practical and truly optimal signal control

strategy.

2.3 Cooperative Control of Signals and Vehicles

As can be seen from the above discussion, extensive efforts have been devoted

by researchers to traffic signal optimization or vehicle control separately. Most

traffic signal control approaches rely on the estimation or prediction of the arrival

information of vehicles to make best SPaT plans. However, such predictions

are coupled with SPaT, which makes the optimization model more complex and

intractable. This complexity increases exponentially for corridor level or network level

optimization. Fortunately, with the cooperative control of CAVs and traffic signal,

the future traffic state could be more predictable. In the 100% CAVs environment,

the whole traffic system may be completely under control. Intuitively, the efficiency

of traffic network could be maximized in an active manner.

Research on signal-vehicle cooperative control has just received attention. For

example, Li et al. (2014) developed an optimization algorithm for optimizing the

CAVs’ trajectories and the traffic signal timing simultaneously. Since they only

considered a single intersection with single-lane, a simple enumeration method was

used for determining the optimal signal timing plan. Given a signal timing plan, they

first determined the trajectory of the first vehicle based on its speed and distance

to the intersection, then calculated the trajectories of the following vehicles one

by one, and finally assigned the vehicles that cannot pass the intersection to the

next iteration. Using a rolling horizon scheme, the overall planning horizon was

divided into overlapped stages. In the beginning of each stage, only signal timing

was optimized. At the overlapped period, the optimization of vehicle trajectories

were performed. As such, the overall optimization was implemented over the time
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horizon continuously. Compared to traditional actuated signal control, the approach

proposed in Li et al. (2014) was able to reduce the average travel time delay and

increase the throughput under different demand scenarios.

In addition, a CAV-based cooperative control method was proposed in Xu et al.

(2017) to concurrently optimize traffic signal and vehicles’ trajectories to improve

traffic efficiency and fuel economy. With the speed and position information from

CAVs as input, the SPaT information was optimized by minimizing the total travel

time of all vehicles. Then, the calculated arriving time was used as constraints to

minimize the fuel consumption of each vehicle. The traffic signal optimization was

conducted at the end of every traffic signal cycle, while the vehicle optimal control is

implemented onboard with the rolling horizon procedure. The main contribution of

this work was the investigation of how to achieve cooperation between traffic signal

and CAVs with consideration of multiple important objectives.

These studies could serve as a good starting point of intelligent control of signals

and vehicles, while a lot of issues need to be further investigated. For example,

how to handle non-connected vehicles in the network, how to improve the energy

efficiency on network level, how to extend the cooperative methods to control traffic

corridors and networks, and how to efficiently combine signal and vehicle control

for real-time implementation. The stochastic and non-linear nature of traffic flow

makes it difficult to build an optimal control model for signalized traffic systems.

Additionally, the dimensions of traffic state and action space increase exponentially

with the increasing number of participants in the traffic system. It makes the control

problem impractical to be solved analytically. With the machine learning methods, it

is possible to learn non-parametric models and control polices through observing the

transition of traffic states. However, as can be seen from the previous discussion, the

existing DRL-based methods suffer various issues in performing learning and control.

In particular, the reward structure and action space need to be modified to handle

dynamic traffic conditions and perform more efficient learning. As a summary, to
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develop a generic, scalable, data-driven optimization framework for network signal

control, much work need to be done.
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Chapter 3

Study I: Real-Time Control of

Connected Vehicles in Signalized

Corridors using Pseudospectral

Convex Optimization
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3.1 Abstract

Recent advances in Connected and Automated Vehicle (CAV) technologies have

opened up new opportunities to enable safe, efficient, and sustainable transportation

systems. However, developing reliable and rapid speed control algorithms in highly

dynamic environments with complex inter-vehicle interactions and nonlinear vehicle

dynamics is still a daunting task. In this chapter, a novel speed control method

is developed for CAVs to produce optimal speed profiles that minimize the fuel

consumption and avoid idling at signalized intersections. To this end, an optimal

control problem is formulated using the information of the upcoming traffic signal to

adapt vehicles’ speeds to avoid frequent stop-and-go driving patterns. By applying

the pseudospectral discretization method and the sequential convex programming

method, the computational efficiency is greatly improved, enabling potential real-

time on-vehicle applications. In addition, the algorithm is implemented under a

model predictive control framework to ensure online control with instant response

for collision avoidance and robust vehicle coordination. The proposed algorithm

is verified through numerical simulations of three different traffic scenarios. The

convergence and accuracy of the proposed approach are demonstrated by comparing

with a popular nonlinear solver. Furthermore, the benefit of the proposed method in

both traffic mobility and fuel efficiency is validated using the speed profile determined

from a traffic following model in a simulation software as the baseline.

3.2 Introduction

The recent advancements in communication technology, transportation infrastructure,

computational techniques, and artificial intelligence are driving a revolution in

future transportation systems. There has been an acceleration in the research and

development efforts toward this transition in many countries Aziz et al. (2017).

Among the new technologies under development, Connected and Automated Vehicles
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control cycle’s traffic state. To overcome this limitation, future investigation could

focus on incorporating temporal information into the traffic state inputs to achieve

optimal performance in various traffic scenarios.

5.5 Conclusion

In this Chapter, a novel DRL-based traffic signal controller is developed for a

typical four-way intersection. The proposed method leverages the use of CAE to

capture traffic states into compact representations, enabling a more flexible design of

the action space and increased responsiveness to dynamic traffic conditions. The

simulation results demonstrate the robust performance of the proposed method,

outperforming three baseline methods across five commonly used performance

metrics. The proposed DRL-based controller also exhibits more consistent training

results compared to existing DRL methods. To further validate the control policy

learned by the DRL algorithm, the traffic flows with different SPaT plans are

analyzed. Additionally, the proposed controller is tested for robustness against

varying traffic volumes and compared with controllers retrained for specific traffic

conditions. The results indicate that the proposed DRL agent is capable of handling

unseen traffic scenarios effectively.

The proposed method has a limitation in that it incurs a high training cost due

to the expanded action space. Additionally, it has only been tested on a single

four-phase intersection with 100% CV penetration rate. Future work will aim to

extend the method to more complex scenarios and scale it up for corridor/network-

level signal control with joint optimization of signal timing. This presents a greater

challenge as the traffic state and action space dimensions increase exponentially. One

potential solution to this challenge is to utilize the multi-agent reinforcement learning

approach, which addresses the control problem of multiple autonomous, interactive

agents in a common environment by distributing the global control to multiple local

RL control agents Bu et al. (2008). The sharing of information among intersections
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can help individual signal controllers to learn and work together to optimize the

overall performance of the traffic network.

Furthermore, the proposed method uses the position and speed information of CVs

at the end of a control cycle to construct the traffic state matrix as input, ignoring

the temporal information. Utilizing recurrent neural networks, such as Long Short-

Term Memory (LSTM), has the potential to capture the complex dynamics within the

temporal information. Integrating an LSTM-autoencoder into the Encoder-Decoder

network architecture can learn a representation for time series sequence data, enabling

the DRL controller to make more accurate traffic state estimations and improve

control strategies. These are promising avenues for future research.
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Chapter 6

Study IV: Data-Driven

Optimization Framework for

On-Ramp Merging Control with

Connected and Automated

Vehicles
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6.1 Abstract

In this Chapter, a Deep Reinforcement Learning (DRL) approach is proposed for

coordination of Connected and Autonomous Vehicles (CAVs) at merging roadways.

The method is designed to guide the merging of CAVs in a cooperative manner

with sufficient safe distance, aiming to improve traffic efficiency, road safety, and

reduce fuel consumption and emissions. The DRL network is trained with traffic data

obtained by simulating CAVs in a SUMO simulation environment. The simulation

results demonstrate that the proposed method effectively improves traffic efficiency

and reduces fuel consumption compared to the default Krauss model used in SUMO.

6.2 Introduction

As discussed above, on-ramp merging control has been a topic of interest for many

researchers as it presents a bottleneck challenge in highway transportation and is

considered one of the most difficult scenarios for human drivers. The merging process

involves complex traffic negotiations that require correct assessment of the traffic

situation and making merging decisions and vehicle operations within a very limited

time and distance. A single mistake can lead to a crash, which makes it a daunting

task for human drivers, particularly in bad weather or light conditions.

The objective of on-ramp merging control is to facilitate safe and smooth passage

of vehicles on two different roads through the merging area. Optimal on-ramp merging

involves creating a sufficient gap between the vehicles on the main road for the

on-ramp vehicles to merge, while minimizing or eliminating the braking operations

resulting from the merging maneuvers. With the use of CV technologies, such as V2I

and V2V communication, vehicles can share information about their location, velocity,

acceleration, planned trajectories, and other relevant data. This information can be

used to coordinate CVs to achieve safe and seamless merging maneuvers. Different

from the rule-based approach to speed control of merging vehicles that has been
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studied in Chapter 4, a data-driven method is investigated in this Chapter for the

traffic control of the merging scenarios.

As introduced previously, Deep reinforcement learning (DRL) has gained attention

due to its ability to effectively tackle complex control tasks by learning a high-level

decision making process Vinyals et al. (2019). DRL has been utilized for traffic

signal control Shi et al. (2023) and has shown superior performance in simulations,

compared to traditional model-based methods. By interacting with the environment

continuously, DRL employs a data-efficient approach to train a decision-making agent

through experience. As a step toward achieving the optimal merging controls of CVs

based on a data-driven method, this research adds add a virtual traffic signal at the

merging point to only manage the traffic flow on the ramp road, with the assumption

that the traffic on main road has priority.

The virtual traffic signal is controlled by the DRL controller. Ideally, when there is

a suitable gap between the vehicles on the main road, the signal will release vehicles

on the ramp road to merge, otherwise they have to wait for a clear merging gap.

It is similar to the idea of ramp metering Mizuta et al. (2014), but without the

requirement of building complicated mathematical models to characterize the highly

dynamic, nonlinear, stochastic traffic states.

The stochastic and nonlinear nature of traffic flow makes data-driven control

approaches particularly suitable for learning policies by observing traffic state

transitions. Unlike model-based optimization approaches, data-driven methods do not

require prior knowledge of the traffic system and are less computationally intensive

for generating merging sequences. In addition, compared to rule-based methods,

they eliminate the need for building complex decision-making models and offer

better optimality and adaptability. These advantages make data-driven approaches

promising for addressing various challenges in traffic control.
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6.3 Methodology

The aim of this research is to develop a DRL-based merging control method for CAVs.

As shown in Fig. 4.1, this study considers a typical single lane roadway merging

scenario with 100% penetration rate and a centralized controller placed within or

around the control zone. In general, the DRL-based signal controller collects traffic

data from the simulation environment and determines a sequence of merging windows

with a constant control cycle. After receiving the sequence information, CAVs decide

which merging window to pass through based on their own control strategy. Then,

each CAV is assigned with a reference speed based on the selected merging window.

Next, each vehicle solves an optimal control problem in real-time to determine the

speed profiles, regulating its movement with minimum acceleration and deceleration

operations. Additionally, the generated vehicle trajectories are assumed to be shared

with the surrounding vehicles through V2V communication to enhance road safety

and energy efficiency.

6.3.1 Deep Reinforcement Learning-based Merging Control

The DRL-based control approach typically consists of three fundamental components:

environmental perception, agent’s action space, and control objectives for the agent to

acquire Sutton and Barto (2018). The agent gathers traffic states and reward signals

from the simulation environment, and then takes action based on the present traffic

state. By maximizing the expected reward with an appropriate learning algorithm,

the agent learns how to generate the desirable control actions to achieve the traffic

control objectives. With the aid of vast traffic data from CAVs, the agent can

consistently train and identify the inherent relationships between vehicles, resulting

in the optimal control policy.
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Environmental Perception

At first, the traffic state is represented as a discrete traffic encoding, which consists

of position and speed information of vehicles around the merging zone Genders and

Razavi (2016). To be specific, each lane is divided into mesh grids with a length of

c, resulting in a 3×N matrix that represents the entire merging area. Each element

of the matrix contains two values: one is binary, indicating the presence of a vehicle,

and the other stores the speed of the vehicle. Figure 6.1 displays an example of the

traffic state matrix, where yellow grids represent vehicles, and the numbers indicate

their speeds in m/s. Blank grids signify the absence of vehicles at those positions. In

real-world scenarios, mobility information of each vehicle can be obtained through a

vehicular network or other devices Jeong et al. (2021).

Although using the position and speed information of vehicles to build a traffic

state matrix as input to the DRL training algorithm is convenient, the resulting space

of the traffic states is too large for the DRL algorithm to establish a direct relationship

between the traffic state and the control action. Therefore, an autoencoder neural

network (Baldi, 2012) can be used to compress the complex traffic states of the

entire merging junction into a concise representation. The control agent requires

a state representation with rich information to make better decisions while avoiding

the “curse of dimensionality”. Essentially, the solution is to reduce the dimension of

state representation while retaining as much of the remaining information as possible.

Furthermore, using a compressed state representation may enable the autoencoder

network to extract the underlying traffic pattern as features. Feature extraction has

proven to be an effective method for improving reinforcement learning in numerous

applications Hakenes and Glasmachers (2019).

An autoencoder is a type of neural network that can generate a compressed

representation of input data. Meanwhile, convolutional neural networks, such as the

Visual Geometry Group (VGG) neural networks, are capable of learning the intrinsic

features of the spatial information in input data. When the convolutional neural
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Figure 6.1: An example of traffic state matrix for on-ramp merging.
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network is arranged in an encoder-decoder architecture, it can encode a static traffic

state into a fixed-length vector, which serves as the compressed representation. This

compressed representation can be utilized for other tasks, such as serving as the input

to a reinforcement learning model.

The convolutional autoencoder (CAE) network used in this study has an

architecture consisting of an encoder and decoder, each with two pairs of convolution-

pooling layers followed by two fully-connected layers. The CAE is designed to

reconstruct the input data through a bottleneck layer, represented by H. The input

and output data for the CAE are the traffic state matrices, each with a shape of

3 × 100 × 2. The dimensions of the output at each layer are determined by the

number of notations in Fig. 6.2. The size of the hidden layer h is determined through

training experiments. Once the training is complete, the encoder network will be

used as a state representation compressor to generate the input vector for the DRL

neural network. The architecture of the CAE is illustrated in Fig. 6.2.

The CAE is trained using Tensorflow Abadi et al. (2015), with the Adam

optimization algorithm and Mean Squared Error (MSE) as the cost function. Various

hyper-parameters, such as the numbers of filters and neurons, are determined through

cross-validation training experiments. The size of the reduced representation vector

is chosen to be 64. Additionally, the input state matrix is normalized using a

normalization technique that scales the vehicle speed between 0 to 1 based on the

maximum allowable speed of the road.

To evaluate the performance of the CAE structure, a validation set consisting

of 10% of the total training dataset is used. The training dataset is generated by

continuously running simulations with randomly initiated vehicles at a specified flow

rate. Fig. 6.3 shows the training history using a dataset of eight million samples,

resulting in minimum reconstruction errors of 5.71e−4 and 5.52e−4 for the training

and validation errors, respectively. The purpose of using CAE is not only to reduce

the dimension of the traffic state but also to extract intrinsic features from the traffic

information. Increasing the size of the hidden layer can reduce the reconstruction loss
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Figure 6.2: The structure of the proposed Convolutional AutoEncoder (CAE) for
traffic state representation.

Figure 6.3: Training history of the proposed convolutional autoencoder.
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but may not be beneficial for the RL algorithm. Therefore, the effectiveness of the

trained CAE needs to be further validated by the RL control experiments.

Deep Reinforcement Learning Algorithm

Once the CAE has been trained, the next step is to integrate it with the DRL

algorithm. The DRL training algorithm structure is similar to the one shown in

Fig. 5.7. In this process, the encoder generates the compressed representation of

the traffic states, while the fully connected neural network approximates the Q-value

function. By using the compressed traffic representation as input, the neural network

calculates the Q-values for all possible actions. The agent then chooses the action

with the highest Q-value, indicating the maximum reward. After selecting the action,

a new control cycle begins. By continually interacting with the environment, the

agent learns to maximize the rewards. To improve learning efficiency and minimize

overestimation, target network Van Hasselt et al. (2016), dueling network Wang

et al. (2015), and prioritized experience replay Schaul et al. (2015) techniques are

implemented in this Chapter for the merging problem. Algorithm 5.1 provides the

pseudocode for the proposed DRL training algorithm.

Having a well-defined reward signal is crucial for RL-based signal control as it

guides the agent in learning the goal of control actions, which is to increase traffic

throughput and reduce vehicle waiting time. The reward signal serves as feedback

to the agent, evaluating the effectiveness of its prior actions. Unlike other RL-based

applications, traffic signal control has no terminal state, so the reward signal must

reflect the performance of every action the agent takes.

As discussed for the intersection scenarios, there is no deterministic rule for

selecting the most suitable performance index in RL-based traffic control methods.

Commonly used performance indices in this field include travel delay, queue length,

vehicle density, and average vehicle speed, as noted in previous studies Guo et al.

(2019); Wang et al. (2022); Hong et al. (2022). We conducted experiments with

various performance indices and their combinations, and discovered that if using the
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average vehicle speed as the reward signal, the agent can learn a policy to improve the

overall traffic mobility as well as the average travel delay. Moreover, higher average

vehicle speed is associated with better fuel efficiency, as fuel consumption is primarily

related to vehicle speed and idle time. Therefore, we compute the average vehicle

speed V̄ of the entire control zone as:

V̄ =
1

N

T∑
i=1

di
ti

(6.1)

where di is the distance traveled by vehicle i during the current control cycle of length

T , N is the total number of vehicles in the control zone, and t is the simulation time

step.

The second reward signal that we experimented with is the cumulative or average

waiting time between two control cycles. It measures the road congestion, and at

each time step, if a vehicle’s speed is lower than 0.1 m/s, the cumulative waiting time

gains +1. However, this reward signal has limitations in handling dynamic traffic

states. For instance, when the traffic condition is heavy or unbalanced, the agent

may receive a large punishment signal even if it has taken an optimal action, while

it could always receive positive rewards regardless of the decision it makes when the

traffic load is light.

The third reward signal that we experimented with is the average vehicle density of

the entire merging area. It can be calculated as the total number of vehicles divided by

the length of roads or directly using the number of vehicles. This signal is conceptually

similar to the metric of traffic throughput, but instead of being calculated over a

period of time, it can be a real-time measurement of traffic state. However, when the

traffic volume changes, it may not reflect the real performance of the DRL controller.

Merging Sequence Determination

The “first-in-first-out” (FIFO) rule is a popular and straightforward approach to

determine the merging sequence, which prioritizes vehicles based on their arrival
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time or distance to the merging zone. This approach is appropriate when travel-

time efficiency is the sole control objective, without considering fuel efficiency. Some

studies, such as Jing et al. (2019) and Chen et al. (2020), have introduced a merging

performance indicator and optimization techniques to optimize the merging sequence.

However, with the growing number of merging vehicles, the computational load of

finding the optimal merging sequence increases factorially, making it impractical

for real-time applications. To balance the computational efficiency and solution

optimality, we develop a series of cooperative rules in Chapter 4 and illustrated in

Algorithm 4.2. However, the rule-based method may not be able to achieve optimal

performance under different traffic conditions or handle complex and dynamic traffic

scenarios.

By leveraging the learning ability and adaptability of DRL, this study aims to

achieve more efficient and safer merging operations in complex traffic environments,

thereby improving the overall traffic flow and reducing fuel consumption and

emissions. Specifically, DRL-based merging control methods have the ability to

adapt to changing traffic conditions in real-time, and handle complex and uncertain

traffic scenarios that rule-based methods may struggle with. DRL methods can

also learn from experience and improve their performance over time, whereas rule-

based methods are typically static and cannot improve without manual adjustments.

Overall, DRL-based merging control methods have the potential to improve the

efficiency and safety of traffic flow in merging areas compared to rule-based methods.

To manage the merging process, we divide the time horizon into equally-sized

windows, each representing the duration that a single vehicle from different roads

can pass through the merging point. For instance, if the merging window is 3-second

long, the DRL agent generates a sequence of these windows for each control cycle.

The CAVs receive this sequence and choose which merging window to pass through

based on their availability and preference. To enable the CAVs to plan their speed

profiles more effectively, the sequence must be generated well in advance, when the

vehicles are still far from the merging point. Accordingly, we generate the sequence
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at the start of the previous control cycle and execute it when it ends. We determine

the merging window length and the number of windows in each sequence through

experimental training and cross-comparison. The latter determines the size of the

DRL agent’s action space, which increases exponentially with the number of windows

in a sequence. Since there are only two options for each merging window, the total

number of actions is the number of windows to the power of 2. For example, a

sequence of 10 consecutive merging windows makes 1,024 selections of action.

6.3.2 Optimal Merging Speed Control of CAVs using DRL

Results

After determining the merging windows using the DRL-based controller, the vehicles

need to choose which ones to pass through the merging point. Additionally, they

require reference speed profiles to guide them through the control zone. These

profiles can be obtained by solving a nonlinear OCP that minimizes a cost function

considering various driving requirements, such as fuel consumption, safety distance

with the preceding vehicle, desired speed, and passenger comfort. Instead of enforcing

a terminal constraint on the OCP, the merging window is transformed into a reference

speed for the vehicle to track. Thus, the optimal speed control problem can be

solved iteratively over a short rolling time horizon T for the implementation of model

predictive control (MPC), as discussed in detail in Chapter 4.

In this Chapter, we establish distinct control objectives for vehicles on the on-ramp

road and the mainline road. As the vehicles on the on-ramp road are required to yield

to those on the mainline road, merging maneuvers often result in reduced traffic flow

speed on the on-ramp road. To enhance the traffic efficiency and road capacity of

on-ramp roads, vehicles on the on-ramp road should attempt to merge into the first

available merging window, avoiding unnecessary deceleration. On the other hand,

vehicles on the mainline road should not be disrupted by merging vehicles, as it may

cause congestion, increased fuel consumption, and collisions. Therefore, the vehicles
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on the mainline road are supposed to travel at a desired speed unless they need to

accelerate to create voluntary gaps for the other vehicles to merge, if feasible.

There are two scenarios that vehicles must consider when selecting a merging

window. The first scenario occurs when vehicles enter the control zone, where they

must choose an available merging window. As shown in Algorithm 6.1, newly joined

vehicles on the mainline road should aim to travel at a desired speed to improve fuel

efficiency, while those on the on-ramp road must select the first available merging

window to enhance traffic efficiency and road capacity. If a merging window is not

allocated to a specific road, vehicles from either road may select it. The second

scenario arises after the traffic controller determines a new sequence of merging

windows, which must be allocated to vehicles without an assigned window. Similar to

the first scenario, vehicles on the on-ramp road will be assigned to the first available

window, while those on the mainline road must accelerate to the nearest available

window if they are on a window that is not allocated to them.

Algorithm 6.1 Pseudocode for the selection of merging window

1 function Select Merging Window
2 if New vehicle is on mainline road then
3 if The optimal merging window is available or can be made available then
4 Select the optimal merging window
5 else
6 Select the first available one after the optimal window

7 else
8 if The last vehicle in merging sequence is on ramp road then
9 Select the first available window

10 else
11 loop All the available merging windows i after the last on-ramp vehicle
12 if There is a vehicle v in front then
13 if There is enough space after vehicle v or able to make space

then
14 Select the window i
15 Break loop

16 else if Loop Ends then
17 Select the window i
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6.4 Preliminary Simulation Results

The preliminary simulations consider a typical three-legged highway junction, as

shown in Fig. 4.1. The parameters for the simulated junction are listed in detail

in Table 6.1. All vehicles are randomly initialized with a 20% probability of emitting

a vehicle per second. The slopes of both the mainline and ramp roads are assumed to

be constant at 0% throughout the simulation. All simulated vehicles have identical

parameters, which are listed in Table 4.1. The desired speed for each vehicle is

the fuel-optimal speed, which is obtained by solving Eq. (3.20) and is calculated as

v∗ = 13.46 m/s. The maximum speed limit and minimum allowable speed of both

roads are set to vmax = 30 m/s and vmin = 0 m/s, respectively.

6.4.1 Convergence of DRL-based Signal Controller Training

To validate the proposed methodology, the DRL network was trained with the traffic

simulated by SUMO (Simulation of Urban MObility) Lopez et al. (2018). The DRL

network is implemented using Tensorflow Abadi et al. (2015) and integrated with the

SUMO simulation environment via Python interface. The training was performed in

episodes, each comprising 3,600 time steps with a duration of 1 second, resulting in a

total of one hour per episode. The random seed for simulating vehicles was varied for

each episode. Important hyper-parameters are listed in Table 5.2, and their assigned

values were determined through trial and error.

The effectiveness of the proposed DRL training algorithm is assessed by examining

the received rewards, which are accumulated after each control cycle. As illustrated

in Fig. 6.4, the cumulative rewards sharply increase initially and then plateau as the

training progresses. The average vehicle speed and waiting time for each episode are

also plotted to demonstrate the traffic measurements’ improvement and convergence.

It should be noted that the average waiting time is not included in the optimization

objective due to conflicts with the signal control policy’s average vehicle speed. As
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Table 6.1: Adopted parameters of simulation environment.

Parameter Value
Lane length 500 m
Vehicle length 2.5 m
Maximum vehicle speed 30 (m/s)
Maximum vehicle acceleration 3 (m/s2)
Maximum vehicle deceleration 3 (m/s2)
Minimum gap between vehicles 4.5 m
Traffic volume 720 vehicles per lane and per hour

Figure 6.4: Convergence of the proposed DRL network.
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a result, the average waiting time slightly increases towards the end of the training

process.

6.4.2 Case Study: Merging with CAVs

To intuitively demonstrate the merging process, Fig. 6.5 shows the simulated

trajectories of CAVs controller by the optimal control method presented in Chapter 4.

Two simulation scenarios with different traffic volumes are examined using the

proposed SCP algorithm and the trained DRL-based controller. The rolling time

horizon of length T was set to 10 s. Each vehicle entered the simulation randomly

with a probability based on the traffic volume setting, starting from position 0. The

initial speed of the vehicle ranged from 10 to 20 m/s if there was no preceding vehicle

in a distance of 60 m. Otherwise, its initial speed was randomly selected from the

standard normal distribution around the speed of its preceding vehicle, with a 10%

standard deviation to avoid collision risks.

As seen in Fig. 6.5a, in a light traffic condition (360 vehicles per hour in each leg),

the ramp vehicles merge actively into the mainline road with minimal impact on the

existing vehicles on the mainline road. Conversely, in a saturated traffic condition

(720 vehicles per hour in each leg), as shown in Fig. 6.5b, some mainline vehicles

must adjust their speeds to create space for the ramp vehicles. In this case, vehicles

on both legs merge cooperatively to increase the road capacity. Overall, the results of

the DRL-based merging control method seem to be inferior to the rule-based merging

control method presented in Chapter 4. The most likely reason is that the DRL-based

controller was trained using SUMO simulation data, which does not perfectly align

with the optimal control strategy of CAVs. In future work, the DRL-based controller

will be trained using traffic data obtained by simulating CAVs with optimal control.
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(a) 360 vehicles per hour on each leg

(b) 720 vehicles per hour on each leg

Figure 6.5: Vehicles trajectories of case study with balanced traffic in control zone.
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6.4.3 Case Study: Continuous Simulation

The results above demonstrate the effectiveness of the proposed method in guiding

the merging of vehicles with sufficient safe distance. To quantitatively evaluate its

performance, the average vehicle speed and fuel consumption rate were compared

with those obtained from SUMO simulation, where vehicles are not controlled by the

optimal control method. The default Krauss model Krauß (1998) is used in SUMO,

which prioritizes driving as fast as possible while maintaining safety. Due to the

time limit and high computation cost, the merging simulation based on CAVs with

optimal control will be included in future work. The comparison results are presented

in Fig. 6.6, where each box plot represents the statistics of continuous simulations for

3,600 seconds.

As shown in Fig. 6.6, the DRL-based merging control results in lower vehicle

speeds due to regulations imposed on merging maneuvers. However, the fuel

consumption rate is significantly improved compared to the SUMO simulation.

This indicates that by resolving conflicts between merging vehicles, unnecessary

accelerations/decelerations can be avoided, leading to better fuel efficiency. Therefore,

it can be concluded that the DRL-based merging control is effective in improving

traffic efficiency and road safety, as well as reducing fuel consumption and emissions.

In future work, additional traffic scenarios and more rigorous comparisons will be

considered.

6.5 Conclusion

In this Chapter, the DRL method is extended to address the merging control problem,

and preliminary results showed that the DRL-based approach can successfully

improve the traffic efficiency at merging roadways. The compressed traffic states

have also shown to be helpful to improve the training performance. However,

more work needs to be done to further improve the merging performance for more
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complicated traffic scenarios. Currently, the DRL-based controller is trained with

SUMO simulations, which do not involve optimal control methods. However, the

goal of this study is to develop a DRL-based merging control method for CAVs.

CAVs with optimal control are able to merge cooperatively to resolve the conflicts

between merging vehicles, improve the traffic efficiency and road safety, and reduce

fuel consumption and emissions. Moreover, with the cooperative control of CAVs, the

future traffic state could be more predictable, which is also favorable to the training

of DRL agent. However, simulating traffic with CAVs controlled by real-time optimal

control is computationally expensive, and DRL agent training requires a large amount

of data. As a result, the DRL-based controller trained using traffic data obtained by

simulating CAVs with optimal control would probably be a promising direction in

the future work.
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Chapter 7

Conclusion and Future Work

In this study, a comprehensive control framework for CAVs in traffic systems was

proposed with the goal of enhancing road safety, improving traffic flow, and increasing

energy efficiency. The approach consists of four main components: (1) A CAV-based

optimal speed control approach to reduce idling at intersections, keep a safe inter-

vehicle distance, and minimize fuel consumption; (2) A real-time merging control

strategy for on-ramp merging; (3) A DRL-based traffic signal controller for a typical

four-way intersection; and (4) A DRL-based approach to control of virtual signals at

merging roadways.

The CAV-based optimal speed control approach adjusts the velocity of vehicles

based on SPaT information obtained through V2I communications, and V2V

information exchange among neighboring vehicles. The proposed method employs a

pseudospectral discretization method and sequential convex programming method to

develop a real-time, onboard algorithm with strong potential. The Model Predictive

Control (MPC) framework was used to generate speed control commands at each

time step, ensuring collision avoidance and improved inter-vehicle coordination. The

simulation results showed that the proposed method was effective in handling safety

constraints under dynamic traffic environments, with significant improvements in

traffic mobility and fuel efficiency.
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The real-time merging control method proposes a set of cooperative rules to

ensure the safe and efficient merging of vehicles on the on-ramp road and the

mainline road. These rules prioritize safety while taking into account different control

goals, such as minimizing deceleration and avoiding congestion. This study utilizes

sequential convex programming and pseudospectral discretization methods, with

the MPC framework used to continuously update vehicle maneuvers in response to

dynamic traffic situations. The results showed that the proposed method was effective

in handling safety constraints under dynamic traffic environments with significant

improvements in traffic mobility and fuel efficiency.

The DRL-based traffic signal controller leverages the use of CAE to capture traffic

states into compact representations, enabling a more flexible design of the action space

and increased responsiveness to dynamic traffic conditions. The simulation results

demonstrated the robust performance of the proposed method, outperforming three

baseline methods across five commonly used performance metrics. The proposed

controller also exhibited more consistent training results compared to existing DRL

methods. The results indicate that the proposed DRL agent is capable of handling

unseen traffic scenarios effectively.

Despite the promising results, the proposed methods have limitations, including

a high training cost and limited testing on a single four-phase intersection. Future

work will aim to extend the methods to more complex scenarios, scale them up for

corridor/network-level signal control, and utilize recurrent neural networks to capture

the complex dynamics of temporal information. The multi-agent reinforcement

learning approach may also be utilized to optimize the overall performance of the

traffic network. Going forward, the plan is to introduce a collaborative control

approach for both CAVs and signalized intersections. This will synchronize the

movement planning of CAVs with the optimization of traffic signals, aiming to reduce

congestion and increase energy efficiency. Overall, this study presents promising

avenues for future research to create a comprehensive control framework for CAVs in

traffic systems.
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