6-1981

Adaptation of the universal soil loss equation to complex slopes as a guide for soil conservation

Mohd Safiai Saad

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.
To the Graduate Council:

I am submitting herewith a thesis written by Mohd Safiai Saad entitled "Adaptation of the universal soil loss equation to complex slopes as a guide for soil conservation." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Plant, Soil and Environmental Sciences.

M. E. Springer, Major Professor

We have read this thesis and recommend its acceptance:

David Lietzke, Frank Bell

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)
To the Graduate Council:

I am submitting herewith a thesis written by Mohd Safiai Saad entitled "Adaptation Of The Universal Soil Loss Equation To Complex Slopes As A Guide For Soil Conservation." I recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Plant and Soil Science.

Dr. M. E. Springer, Major Professor

We have read this thesis and recommend its acceptance.

Accepted for the Council:

Vice Chancellor
Graduate Studies and Research
ADAPTATION OF THE UNIVERSAL SOIL LOSS EQUATION
TO COMPLEX SLOPES AS A GUIDE FOR SOIL
CONSERVATION

A Thesis
Presented for the
Master of Science
Degree
The University of Tennessee, Knoxville

Mohd Safiai Saad
June 1981
ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude and appreciation to:

* Dr. M. E. Springer for his guidance and encouragement as major professor throughout this study and the author's entire graduate program.

* Dr. David Lietzke and Dr. Frank Bell for their assistance as members of the author's graduate committee.

* Dr. Lloyd Seatz, Head, Department of Plant and Soil Science and the University of Tennessee Agricultural Experiment Station for providing the author with necessary materials.

* Dr. Don Tyler for teaching the author how to conduct erosion experiments.

* Mr. John Myer for teaching soil mapping in West Tennessee.

* Mr. Tom McCutchen and other experiment station personnel at Milan for their aid.

* Dr. James M. Anderson for his help at Ames Plantation.

* His fellow students Yunus Idris and Chris Banet for their friendship and assistance throughout this study.

* His father Saad Ismail, his mother Salmiah Ariffin and his grandmother Che Puteh for their patience, understanding and encouragement.

* The Government of Malaysia for providing financial assistance throughout this study.
ABSTRACT

Milan Field Station, Ames Plantation, and Knoxville Plant and Soil Science Farm were chosen for comparison of different methods of predicting the effect of length and steepness of slope on soil erosion.

Methods used to predict soil loss from a sample two segment slope were: old, addition, average LS, average slope, Fort Worth, substitute, and Wischmeier method. Predicted soil losses differed among methods because of the way length and steepness of slope were considered. The Wischmeier method is probably the most accurate because of the way it handles complex slopes. The substitute method is next best. Average slope, average LS and Fort Worth methods seem to predict close to Wischmeier method only on some situations. The old and addition method exaggerate the amount of soil loss.

Necessary cropping management systems and support practices (NCP) to keep soil loss within tolerance were used to estimate susceptibility of each piece of land to erosion. A set of NCP values of >0.32, 0.16-0.32, 0.08-0.16, 0.08-0.4, 0.02-0.04, and <0.02 were chosen as breaks between isoerodent classes. On slopes of average length, these values compared favorably with land subclasses I, IIe, IIIe, IVe, VIe and VIIe respectively.

Isoerodent maps by the old, average LS, and Wischmeier methods were drawn on a sample portion of Milan Field Station. Points of equal NCP were joined together to form isoerodent lines as a means of estimating erosion hazard. High NCP values suggest lower soil loss and low NCP values predict higher soil loss. Results showed that the old method predicted
higher soil loss and average LS predicted lower soil loss than the
Wischmeier method. For the first segment of the slope, all methods gave
identical results. Differences occurred because of the way the second
segment of the slope was handled.

Nomographs were developed for each location. The function of
these nomographs was to quickly determine NCP for a given length of slope,
and also to find length of a simple slope for a given NCP. Thus they
duplicate one function of a slide rule calculator.

For comparison with land capability subclasses & map (LCC2),
the Wischmeier method was chosen to draw isoerodent maps for the three
areas. These isoerodent maps are useful, because on complex slopes they
predict erosion more accurately than either the LCC2 map or the slide rule
calculator. Both isoerodent maps and slide rule calculator predict erosion
more accurately than LCC2 maps except on simple slopes of average length.
Since the maps are based on NCP, they are useful for designing conservation
plans.

The Wischmeier method of predicting soil erosion on complex
slopes and NCP isoerodent maps based on this method certainly are useful
tools for planning soil conservation. For complex slopes the predictions
are more precise than either LCC2 maps or the various methods which use the
slide rule calculator.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. SELECTED LITERATURE REVIEW</td>
<td>3</td>
</tr>
<tr>
<td>III. MATERIALS AND METHODS</td>
<td>8</td>
</tr>
<tr>
<td>Field Work.</td>
<td>8</td>
</tr>
<tr>
<td>Method of Calculating Necessary CP (NCP)</td>
<td>9</td>
</tr>
<tr>
<td>Methods of Determining NCP by Old Method, Average LS Method, and Wischmeier Method</td>
<td>10</td>
</tr>
<tr>
<td>Drawing of Isoerodent Map Using Wischmeier Method</td>
<td>16</td>
</tr>
<tr>
<td>IV. RESULTS AND DISCUSSION</td>
<td>17</td>
</tr>
<tr>
<td>Predicting Soil Loss From A Complex Slope by the Old, Addition, Average LS, Fort Worth, Average Slope, Substitute, and Wischmeier Method</td>
<td>17</td>
</tr>
<tr>
<td>Old Method</td>
<td>18</td>
</tr>
<tr>
<td>Addition Method</td>
<td>18</td>
</tr>
<tr>
<td>Average LS Method</td>
<td>18</td>
</tr>
<tr>
<td>Fort Worth Method</td>
<td>19</td>
</tr>
<tr>
<td>Average Slope Method</td>
<td>19</td>
</tr>
<tr>
<td>Substitute Method</td>
<td>20</td>
</tr>
<tr>
<td>Wischmeier Method</td>
<td>20</td>
</tr>
<tr>
<td>Comparison of the Old Method, Average LS Method, the Wischmeier Method, and Land Capability Subclasses</td>
<td>22</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>1.</td>
<td>Nomograph for determining NCP for use in selecting conservation practices and management levels.</td>
</tr>
<tr>
<td>2.</td>
<td>Comparison of land capability subclasses £ to NCP values by the (a) old, (b) the average LS, and (c) the Wischmeier methods.</td>
</tr>
<tr>
<td>3.</td>
<td>Comparison of (a) land capability subclasses £ to isoerodent maps based on NCP by the (b) old method, (c) average LS method and (d) Wischmeier method.</td>
</tr>
<tr>
<td>4.</td>
<td>Transects a, b, c and d on LCC£ map of Knoxville Plant and Soil Science Farm.</td>
</tr>
<tr>
<td>5.</td>
<td>Transects a, b, c and d on isoerodent map of Knoxville Plant and Soil Science Farm. (Remainder of the map is in Appendixes B and C).</td>
</tr>
<tr>
<td>6.</td>
<td>Transects a, b, and c on LCC£ map of Milan Field Station.</td>
</tr>
<tr>
<td>7.</td>
<td>Transects a, b, and c on isoerodent map of Milan Field Station.</td>
</tr>
<tr>
<td>8.</td>
<td>Transects a and b on LCC£ map of Ames Plantation.</td>
</tr>
<tr>
<td>9.</td>
<td>Transects a and b on isoerodent map of Ames Plantation.</td>
</tr>
<tr>
<td>10.</td>
<td>West part of isoerodent map of Knoxville Plant and Soil Science Farm.</td>
</tr>
<tr>
<td>11.</td>
<td>East part of isoerodent map of Knoxville Plant and Soil Science Farm.</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Soil is a basic resource that can be lost through erosion. Soil erosion occurs wherever rainfall strikes bare soil or runoff water flows over erodible and insufficiently protected soil. Conservationists have appreciated the importance of protecting surface soil and have searched for ways to reduce erosion of soil by water. Estimating the susceptibility of each piece of land to erosion is one part of any plan to control erosion.

Land capability 2 subclasses have been used for planning erosion control measures, but they give too little emphasis to length of slope on either simple or complex slopes. A Universal Soil Loss Equation (USLE) has been used widely to evaluate erosion. Length and steepness of slope are considered important elements in the equation. Foster and Wischmeier (7) introduced the effect of shape and irregularity of slope on erosion.

The objectives of this thesis were to:

1. Compare the predicted losses by the USLE on complex slopes by (a) old method, (b) average LS method, and (c) Wischmeier method.

2. Prepare maps showing lines of equal necessary cropping management systems and support practices on parts of Knoxville Plant and Soil Science Farm, Milan Field Station, and Ames Plantation.
3. Evaluate these maps as simple guides for planning erosion control.
CHAPTER II

SELECTED LITERATURE REVIEW

Erosion of soil by water is a major problem because it reduces productivity of cropland, degrades water quality and reduces the quality of aquatic life (4, 13). Row crop farming practices, particularly on steep slopes, have caused severe erosion (2, 4). The loss of surface soil by erosion has gained attention from various authors (1, 12, 26, 28). They reported that yields on uneroded soil are much higher than on eroded soil.

Soil scientists and other conservationists publish soil survey reports that aim to explain the nature of soils and how to improve the art of using soil (3, 6, 20, 24). Kellogg (14) reported that interpretations are made about the capabilities of soil for crop adaptation, and soil limitations such as slope, degree of erosion, and drainage conditions. Devasigamoney (5) listed the natural characteristics of soils, their limitations, and used the Universal Soil Loss Equation (USLE) to suggest improved soil management.

A Soil Loss Equation was started in 1940 in the corn belt states. This equation was simply known as a slope practice method. It dealt specifically with soil loss rates in relation to length and steepness of slope (19, 41). In later years various factors were added to this equation which was later called the Universal Soil Loss Equation (USLE) (31). It is stated as \(A = R \cdot K \cdot L \cdot S \cdot C \cdot P \), where \(A \) is annual soil loss in tons per acre per year, \(R \) is the rainfall and runoff factor (32, 34, 35), \(K \) is
the erodibility factor (38), L is the slope-length factor (39, 41),
S is the slope-steepness factor (39, 41), C is the cover and management
factor (31, 33, 37), and P is the support practice factor (31, 36). Other
factors are occasionally added to improve the accuracy of the equation
(8, 9).

The Universal Soil Loss Equation was designed primarily to
predict soil loss from sheet and rill erosion. This equation has its
limitations and should not be misused to predict other soil loss (40).
Mayer et al. (17) used the equation to find sediment yield from roadside
banks. Springer et al. (25) made use of this equation to find necessary
cropping management systems for farm situations. Devasigamoney (5) used
this equation to find necessary cropping management systems and support
practices to keep soil loss within tolerance on simple slopes. Both
authors (5, 25) tried to relate necessary cropping management systems
and support practices with the length and steepness of simple slopes.

The length of the slope and its steepness are indeed important
aspects to consider when determining soil loss (18, 31, 39, 41). Zingg
(42) in his study of the effect of length of slope on soil loss concluded
that soil loss per unit area varies as the 0.6th power of slope length.
Musgrave (19) proposed 0.35 as the average value for slope length exponent
for soil loss per unit area. Maddy and Thorenson (16) reported that if
length of slope is doubled the erosion increases 1.5 times; if the slope
steepness is doubled the erosion increases 2.5 times. Zingg also concluded
in his study that soil loss varies as the 1.4 power of percent slope.
Wischmeier (31) related soil loss and slope percentage by the equation
A = 0.43 + 0.30S + 0.04S^2 (S is the slope percentage).
Slope length and slope steepness when tied together are known as topographic factor (LS). Wischmeier (36) proposed the equation \[LS = \sqrt{\lambda} (S + 0.0053S + 0.00076S^2) \] (S is the slope percentage, \(\lambda \) is the slope length in feet) to relate the length and steepness of slope.

In a later paper (41) he proposed \[LS = (\lambda/72.6)^m (65.4 \sin^2 \theta + 4.56 \sin \theta + 0.065) \] where \(\lambda \) = slope length in feet, \(\theta \) = angle of slope; and \(m = 0.5 \) if percent slope is 5 or more, 0.4 on slopes of 3.5 to 4.5%, 0.3 on slopes of 1 to 3%. Determination of LS is important for evaluating erosion. Williams (29) stated that LS is one of the most important factors in the Universal Soil Loss Equation because it accounts for more variation in gross erosion than any other factor except possibly the cropping management factor. He further stated that LS is particularly sensitive to error in measuring average slope when slope is above 3%.

Roose (22) argued that this topographic factor LS is surely a weak point of Universal Soil Loss Equation because "the influence of slope is not independent of vegetal cover, cultural technique, soil, and probably climate."

For slopes that have uniform gradient, LS value for a given combination of length and steepness are given by published slope effect charts (41). When the slope is complex, its overall average gradient and length do not correctly give the LS of the slopes. Wischmeier (39) suggested two methods for determining LS to solve soil loss for complex slopes. For the first method, he proposed that when certain assumptions are made, complex slopes can be divided into a small number of equal length segments such that gradient within each segment could be considered uniform. He listed
adjustment factors to be multiplied with LS from the slope-effect chart to give LS for the entire slope. He then proposed another method (7) of dealing with irregular slopes by modifying LS in the Universal Soil Loss Equation where:

\[
LS = \frac{\sum_{j=1}^{n} (S_j\lambda_j^{1.5} - S_{j-1}\lambda_{j-1}^{1.5})}{\lambda(72.6)^{0.5}}.
\]

He published a chart which gave solutions to this equation for various slope lengths and steepness.

Mapping of erosion hazard is one way to improve soil management. Grose (11) mapped erosion hazard of an area by making measurements of the A horizon thickness. Richter (21) discussed a morphometric map which showed inclination of the area, and calculated erosion by assigning grades that took into account the main factors which influenced soil erosion. Williams et al. (30) used aerial photographs to map soil erosion hazard. He compared a direct stereoscopic image with ground survey to evaluate erosion. Grant et al. (10) mapped erosion hazard by calculating soil loss using the Universal Soil Loss Equation and dividing average annual soil loss into five classes, 0-3 tons, 3-10 tons, 10-25 tons, 25-50 tons, 50-100 tons per acre per year. Each of these classes is colored for easy recognition.

The soil Conservation Service (SCS) of the USDA has developed a land classification system by which lands have been categorized according to their potential or hazard (6, 15). The land capability classification is divided into eight land classes. Each class has its own limitation or hazard of about the same degree, but of different kind as shown by
subclasses. Limitations increase from class I to class VIII. There are four subclasses: e-erosion, w-water, s-root-zone limitation, c-climate. In this study only subclass C is emphasized. Usually an average length of slope is assumed in assigning land capability subclass C to given soils.
CHAPTER III
MATERIALS AND METHODS

Three methods of evaluating erosion were compared, namely the old method, average LS method, and Wischmeier method. The Wischmeier method was then used to draw isoerodent maps showing lines of equal necessary cropping management systems and support practices values as a contour map shows elevation. The maps were compared with maps of land capability subclasses.

Field Work

Three areas were selected: two in West Tennessee (parts of Milan Field Station and Ames Plantation) and one in East Tennessee (parts of Knoxville Plant and Soil Science Farm). The soil map for Ames Plantation was obtained from the soil survey of Fayette County (6). Detailed soil surveys of the Milan Field Station and Knoxville Plant and Soil Science Farm were used for soil information. These soil maps furnished necessary information such as soil mapping units, soil series, slope classes and erosion classes. Erodibility factors (K) and soil loss tolerance (T) of the soils, were obtained from a report of the Soil Conservation Service (23). In two cases exceptions to the values listed in (23) were made. For Memphis silt loam, K of 0.43 was used to give a T/K of 12. For Loring silt loam, T of 4 was used to give a T/K of 9. Thus for Memphis and Loring T/K values of 12 and 9 were used rather than 14 and 7.

As a first step in predicting erosion, the top of each ridge had to be determined. A ridge is defined as the line of high points from
which water will flow in both directions when it rains. To show
direction of water flow, arrows were drawn from the top of the ridge to
the area of deposition at the foot of the slope. Length of slope was
measured from beginning of overland flow (high point) to the point where
any sediment the water carried reached a defined drainageway (low point).
Observations were made to determine if there was a change in gradient.
Where there was a change in gradient, one slope gradient was determined
from the beginning of first segment to the beginning of the second
segment. Gradients of other segments were measured between the lower end
of the segment above to either the upper end of the segment below or to
the point where runoff is concentrated in a watercourse. The gradient
was determined with a hand-held Abney level.

One method of predicting soil loss is calculating the amount of
soil loss per acre per year for each combination of management systems
and practices. A second is selecting a value for cropping management
systems and practices necessary to keep soil loss within tolerance. Such
a necessary CP (NCP) predicts the susceptibility of each piece of land to
erosion.

Method of Calculating Necessary CP (NCP)

The Universal Soil Loss Equation is expressed as:

\[
A = R K LS CP
\]

when erosion is to be limited within a predetermined tolerance \(T \), the
term \(A \) in the equation is replaced by \(T \), the equation becomes:

\[
T = R K LS CP
\]

Dividing both sides by \(R K LS \)

\[
\frac{T}{R K LS} = CP
\]
Rearranging the equation (iii) it becomes:

$$\frac{T}{K} \times \frac{1}{R} \times \frac{1}{LS} = CP \quad \text{------------------------- (iv)}$$

Therefore, knowing T/K and R, from equation (iv) NCP could be found for any given LS. In other words, if length and steepness of slope were known, LS could be read from the slope effect chart published in Predicting Rainfall Erosion Losses - A Guide to Conservation Planning (41). Nomographs were developed for matching NCP and LS for several R values. Each consisted of a slope effect chart and NCP at various T/K values as shown in Figure 1. It related NCP to soil loss ratio LS, for specific R. This nomograph helps a farmer to determine alternative cropping systems for a slope or field. When steepness is known, this nomograph is also used to find length of slope for a given NCP.

NCP's of 0.32, 0.16, 0.08, 0.04, and 0.02 were arbitrarily chosen as breaks between NCP classes. These NCP classes were chosen for comparison with the land capability subclasses E. Points of equal NCP may be connected just like a contour line is drawn to show equal elevations.

Methods of Determining NCP by Old Method, Average LS Method, and Wischmeier Method

Old Method

Select a certain two segment slope, for example, first segment 340 feet at 2%, second segment 300 feet at 5%, and T/K of 12.

1. To determine the length of slope for NCP of 0.32 place a ruler on the chart at NCP of 0.32 and read length of slope where the ruler intersects the known steepness of slope.

(Read 30).
Fig. 1. Nomograph for determining NCP for use in selecting conservation practices and management levels.

Instruction for determining NCP using the nomograph in Fig. 1.

1. Determine the percent slope of the mapping unit.

2. Determine the length of slope.

3. Look up T/K for the mapping unit in appropriate table.

4. Read the LS where length of slope crosses the percent slope.

5. Place the ruler at that LS and read NCP opposite it. This is CP necessary to keep soil loss within tolerance T.

6. The cropping systems that appear above the line of a given T/K are the alternative cropping systems acceptable with that practice.

7. Select one that is suited to your farm.

Instructions for determining the length of slope when NCP is fixed.

1. Determine the slope steepness.

2. Look up T/K for the mapping unit in appropriate table.

3. Find the desired NCP on the right hand side.

4. Place a ruler on the desired NCP under T/K for the unit and read the length of slope at a point where slope percentage is crossed.
2. Begin at the ridge and locate this point on the slope arrow.

3. Then locate the point for NCP of 0.16 by placing ruler on the nomograph at 0.16 and the given slope gradient. Read the length of slope as stated in Step 1. (Read 340)

4. If segment one length has been covered, then locate total length for NCP of 0.08 using slope percentage of segment two. (For complex slope only)

5. For NCP of 0.04, locate the total length on the slope by using percentage of segment two. (Read 460)

6. Proceed with other isoerodent classes until the entire slope has been covered.

Average LS Method

1. Determine lengths and slope percentages of the first and second segments.

2. Use formula given:

\[
\frac{L_1 \times LS_1 + L_2 \times LS_2}{L_1 + L_2} = LS
\]

where,

- \(L_1\) = length of first segment
- \(LS_1\) = topographic factor for first segment length
- \(L_2\) = length of second segment
- \(LS_2\) = topographic factor for second segment length
- \(LS\) = average topographic factor
3. Use the slope effect chart (Fig. 1) to find LS1 and LS2 and fill the table below:

<table>
<thead>
<tr>
<th>L1</th>
<th>LS1</th>
<th>L2</th>
<th>LS2</th>
<th>L1*LS1</th>
<th>L2*LS2</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>340</td>
<td>0.29</td>
<td>300</td>
<td>0.925</td>
<td>89.6</td>
<td>277.5</td>
<td>0.59</td>
</tr>
</tbody>
</table>

4. Locate LS for one of the NCP classes by placing a ruler under the appropriate T/K on Fig. 1. (Example: for NCP of 0.16, LS is 0.29).

5. From formula at Step 2, L2 could be found by letting the equation equal LS for each of the NCP classes obtained in Step 4.

6. \[\frac{(L_1 \times LS_1) + (L_2 \times LS_2)}{L_1 + L_2} = LS \] for each of the NCP classes. Since L1, LS1, and LS2 are known, L2 could be found by solving the equation.

7. L2 obtained by the equation is then plotted on the slope at segment two.

8. Then proceed with other NCP classes.

Wischmeier Method

1. Determine the length and steepness of the first and second segments of the slope.
2. Use Foster and Wischmeier chart (7) (Appendix A) to find necessary values to fill the table below:

<table>
<thead>
<tr>
<th>segment</th>
<th>λ_j</th>
<th>λ_{j-1}</th>
<th>U_2</th>
<th>U_1</th>
<th>U_2-U_1</th>
<th>segment L</th>
<th>LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>340</td>
<td>0</td>
<td>110</td>
<td>0</td>
<td>110</td>
<td>348</td>
<td>0.31</td>
</tr>
<tr>
<td>2</td>
<td>640</td>
<td>340</td>
<td>800</td>
<td>300</td>
<td>500</td>
<td>300</td>
<td>1.67</td>
</tr>
<tr>
<td>Entire slope</td>
<td></td>
<td></td>
<td>610</td>
<td>640</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where:

$\lambda_j = \text{length of first segment}$

$\lambda_{j-1} = \text{length of segment above } \lambda_j$

$U_2 = \text{vertical axis of Foster and Wischmeier chart } \lambda_j$

$U_1 = \text{vertical axis of Foster and Wischmeier chart } \lambda_{j-1}$

$\text{segment L = length of segment}$

$$LS = \frac{U_2 - U_1}{L}$$

3. Locate LS for each NCP class by placing a ruler at the NCP under the appropriate T/K on Fig. 1 and reading LS.

4. When the LS for each NCP class has been determined, again use Foster and Wischmeier chart to estimate the length of the slope to correspond to required LS for each NCP class.

5. Locate the length obtained with a point on the slope arrow, since this is the length of slope within NCP class desired.
Drawing of Isoerodent Map Using Wischmeier Method

1. For all slopes having same ridge line, use the Wischmeier method to locate points between NCP classes on each slope arrow.

2. Connect points of equal NCP values.

3. Proceed for other ridge lines.

4. The result is an isoerodent map.
CHAPTER IV

RESULTS AND DISCUSSION

I. PREDICTING SOIL LOSS FROM A COMPLEX SLOPE BY THE OLD, ADDITION, AVERAGE LS, FORT WORTH, AVERAGE SLOPE, SUBSTITUTE, AND WISCHMEIER METHOD

A simple example shows how each method is used to find soil loss from Milan Field Station in West Tennessee under given cropping systems and practices.

Graph

<table>
<thead>
<tr>
<th>Vertical height in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slope length feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CP</th>
<th>0.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of first segment</td>
<td>231 ft.</td>
</tr>
<tr>
<td>Length of second segment</td>
<td>182 ft.</td>
</tr>
<tr>
<td>Slope steepness of first segment</td>
<td>2%</td>
</tr>
<tr>
<td>Slope steepness of second segment</td>
<td>6%</td>
</tr>
<tr>
<td>R for Madison County</td>
<td>260</td>
</tr>
<tr>
<td>K of Memphis silt loam</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Old Method

In the old method, use 413 ft for length and for steepness 6%. Refer to Fig. 1 for LS:

A = R K LS CP

= 260 x 0.43 x 0.25 x 0.16 x 1
= 4.47 tons/acre/yr

Addition Method

Find the soil loss from first segment. Then find soil loss from second segment by using steepness of second segment and total length of both segments. Add them together:

First segment:

A = R K LS CP

= 260 x 0.43 x 0.25 x 0.16 x 1
= 4.47 tons/acre/yr

Second segment:

A = R K LS CP

= 260 x 0.43 x 1.35 x 0.16 x 1
= 24.1 tons/acre/yr

Average soil loss from the entire slope:

= 4.47 + 24.1
= 28.6 tons/acre/yr

Average LS Method

Average LS = \[\frac{(L_1 \times L_{S1}) + (L_2 \times L_{S2})}{L_1 + L_2} \]
\[\frac{(231 \times 0.25) + (182 \times 0.92)}{231 + 182} \]
\[= \frac{57.8 + 167.4}{413} \]
\[= 0.55 \]

A = R K LS CP
\[= 260 \times 0.43 \times 0.55 \times 0.16 \times 1 \]
\[= 9.8 \text{ tons/acre/yr} \]

Fort Worth Method

Average soil loss from entire slope = \(\frac{(A_1 \times L_1) + (A_2 \times L_2)}{L_1 + L_2} \)

where:

- \(A_1 \) = average soil loss from first segment
- \(L_1 \) = length of first segment
- \(A_2 \) = average soil loss from second segment based on steepness and length of second segment
- \(L_2 \) = length of second segment

\[= \frac{(4.47 \times 231) + (16.5 \times 182)}{413} \]
\[= \frac{(1033) + (3003)}{413} \]
\[= 9.8 \text{ tons/acre/yr} \]

Average Slope Method

Average slope = \(\frac{(231 \times 2) + (182 \times 6)}{231 + 182} \)
\[= 3.8\% \]
LS for 413 ft at 3.8% = 0.62

\[A = R \times K \times LS \times CP \]
\[= 260 \times 0.43 \times 0.62 \times 0.16 \times 1 \]
\[= 11.1 \text{ tons/acre/yr} \]

Substitute Method

Average soil loss from the entire slope:

\[\text{Average soil loss from the entire slope:} \]
\[= \frac{(A_1 \times L_1) + (A_2 \times L_2)}{L_1 + L_2} \]

where:

- \(A_1 \) = average soil loss from first segment
- \(L_1 \) = length of first segment
- \(A_2 \) = average soil loss of second segment based on steepness of second segment and total length \((L_1 + L_2)\)
- \(L_2 \) = length of second segment

\[= \frac{(4.47 \times 231) + (24.1 \times 182)}{413} \]
\[= \frac{1033 + 4386}{413} \]
\[= 13.1 \text{ tons/acre/yr} \]

Wischmeier Method

<table>
<thead>
<tr>
<th>Segment</th>
<th>(\lambda_j)</th>
<th>(\lambda_{j-1})</th>
<th>(U_2)</th>
<th>(U_1)</th>
<th>(U_2 - U_1)</th>
<th>segment L</th>
<th>segment LS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>231</td>
<td>0</td>
<td>72</td>
<td>0</td>
<td>72</td>
<td>231</td>
<td>0.30</td>
</tr>
<tr>
<td>2</td>
<td>413</td>
<td>231</td>
<td>520</td>
<td>215</td>
<td>305</td>
<td>182</td>
<td>1.67</td>
</tr>
<tr>
<td>Entire slope</td>
<td>377</td>
<td></td>
<td>413</td>
<td></td>
<td></td>
<td></td>
<td>0.91</td>
</tr>
</tbody>
</table>
A = R K LS CP

= 260 \times 0.43 \times 0.91 \times 0.16 \times 1

= 16.3 \text{ tons/acre/yr}

These examples show how each method is used to examine soil loss on the whole slope. The old method used the length of the entire slope and steepness of the second segment to calculate soil loss. Addition of soil losses from both slope segments as done by some workers was also presented. The average LS method used the entire slope length and an average of LS from each segment. Average soil loss by the Fort Worth method (27) was obtained by dividing the sum of soil loss from the first segment plus soil loss from the second segment, based only on length of the second segment, by total length of both segments. The Wischmeier method used calculations based on length and steepness of both slope segments. Predicted amounts of soil loss from the same slope varied, depending on the method used. Soil loss from the sample slope is 24.1 tons/acre/yr by the old method, 28.6 tons/acre/yr by the addition method, 9.8 tons/acre/yr by both average LS and Fort Worth method, 11.1 tons/acre/yr by average slope method, 13.1 tons/acre/yr by substitute method and 16.3 tons/acre/yr by the Wischmeier method. Addition of soil losses from both slope segments exaggerates soil loss and was not used in this study. Since the Wischmeier method is based on the best available information, it is probably most accurate. The substitute method is next best in order of accuracy and may be adequate for many situations.
II. COMPARISON OF THE OLD METHOD, AVERAGE LS METHOD, THE WISCHMEIER METHOD, AND LAND CAPABILITY SUBCLASSES e

A sample slope of Milan Field Station Fig. 2 was chosen, in which the first segment was 2%, 231 feet long, and the second segment was 6%, 182 feet long on Memphis silt loam, having T/K of 12. These curves, based on NCP values, show that prediction of erodibility will vary if length and steepness of both segments of the slope are considered by different methods of evaluation.

NCP values are inversely related to soil loss from continuous fallow. The higher NCP values predict less soil loss from the given field. The lower NCP values predict more soil loss. It can also be interpreted that as NCP values increase, more choices of cropping systems are available to keep soil loss within tolerance. Fewer conservation measures are needed to protect the soil from loss.

For comparison of NCP with land capability subclasses e, breaks between NCP classes were arbitrarily chosen as given:

<table>
<thead>
<tr>
<th>NCP classes</th>
<th>Land capability subclasses e</th>
</tr>
</thead>
<tbody>
<tr>
<td>>0.32</td>
<td>I</td>
</tr>
<tr>
<td>0.16 - 0.32</td>
<td>IIe</td>
</tr>
<tr>
<td>0.08 - 0.16</td>
<td>IIIe</td>
</tr>
<tr>
<td>0.04 - 0.08</td>
<td>IVe</td>
</tr>
<tr>
<td>0.02 - 0.04</td>
<td>VIE</td>
</tr>
<tr>
<td><0.02</td>
<td>VIIe</td>
</tr>
</tbody>
</table>
Fig. 2. Comparison of land capability subclasses to NCP values by the (a) old, (b) the average LS, and (c) the Wischmeier methods.
For the entire slope, Fig. 2(a), the old method showed NCP of >0.32, 0.16-0.32, 0.04-0.08, and 0.02-0.04 which if expressed as land subclasses become 1, I1e, IVe, and VIe. The average LS method Fig. 2(b) had NCP of >0.32, 0.16-0.32, and 0.08-0.16, depending on distance from the ridge, which if expressed as land subclasses are 1, I1e and IIIe. The Wischmeier method Fig. 2(c) gave NCP of >0.32, 0.16-0.32, 0.08-0.16 and 0.04-0.08. When converted to land subclasses, these were 1, I1e, I11e and IVe. The standard land capability subclasses e showed subclasses I1e and I11e. For these slopes, standard land capability subclasses e pictured a less serious erosion hazard than the Wischmeier method and the old method, but more than the average method.

All methods except land capability subclass e showed a small part of NCP of >0.32 and mainly 0.16-0.32 for the first segment. They differed considerably for the second segment. The old method showed NCP of 0.04-0.08 (IVe) and 0.02-0.04 (VIe). The average LS method showed the second segment to have a little NCP of 0.16-0.32 (I1e) and much 0.08-0.16 (I11e). The Wischmeier method showed NCP of 0.08-0.16 (I11e) and 0.04-0.08 (IVe). The standard land capability subclasses e indicated subclass I11e.

Thus these examples show how combination of complexity with length of slope brings out differences in prediction of erosion. For the first segment of slope, the three methods produced identical results. For the second segment the old method showed NCP of 0.04-0.08 (IVe) and 0.02-0.04 (VIe). Thus, these low NCP values suggest more soil loss than the Wischmeier method. The NCP values of 0.16-0.32 (I1e) and 0.08-0.16
for average LS method suggest less soil loss than the Wischmeier method which showed NCP of 0.08-0.16 (IUg) and 0.04-0.08 (IVg). This shows that the Wischmeier method predicted soil loss between the old and the average LS methods. This agrees with calculation of soil loss in Part One. The Wischmeier method probably predicted erosion hazard more precisely than the other two methods since it effectively dealt with second slope segment. Both the old and average LS method recognized the importance of slope length but these methods are less precise than the Wischmeier in solving complex slope situations. Land capability subclasses also did not recognize the specific length of slope in any soil mapping unit delineation.

The Wischmeier method recognizes that slopes are concave, or convex or a series of concave-convex. The LS factor of such slope situations cannot be determined accurately by the average LS method. Each segment of irregular slope should not be treated as an independent slope when water flows from one segment to another. The old method does not consider the steepness of the first segment when evaluating erosion of the second segment of slope. Nevertheless, the entire slope length is considered.

The old method could be used to determine erosion easily and quickly with the use of Universal Soil Loss Equation Slide Rule Calculators, developed by Springer, et al. (25), and modified in 1978 by the Soil Conservation Service. These calculators can be used to find annual soil loss and NCP for any given slope. They can also be used to find slope length and steepness at a desired NCP. The slide rule calculator developed by Springer et al. (25) was based on an old LS chart, while the new
slide rule calculator was based on new LS chart (41). They gave similar results when used in simple slope situations, but neither was able to deal with complex slopes.

The average LS method recognizes that length and steepness of slope of two segments are important in predicting the overall effect of the entire slope on erosion. The main advantage of the average LS method is the ease of predicting erosion on the field. Its danger lies in minimizing the erosion problem. Both slide rule calculators can be used for the average slope method after average slope is calculated. The Wischmeier method could be used quickly and easily if a simple way could be found to read LS for complex slope. The slide rule calculator cannot do that.

III. COMPARISON OF ISOERODENT MAPS BY THE OLD, THE AVERAGE LS, AND THE WISCHMEIER METHOD TO LAND CAPABILITY SUBCLASS Z MAP

In earlier discussion, curves were used to show differences among old method, average LS method and the Wischmeier method on one slope transect. In this part of the discussion, isoerodent maps of Milan Field Station were drawn by the three methods to demonstrate the field differences among the methods.

Figure 3(a) shows that standard land capability subclasses Z (LCC2) map placed Memphis silt loam (11 B2) and Loring silt loam (12 B2) in land subclass IIe, while Memphis silt loam (11 C3) was placed in subclass IIIe. Slope measurements found slope segments of 2% and 6% on
Fig. 3. Comparison of (a) land capability subclasses to isoerodent maps based on NCP by the (b) old method, (c) average LS method and (d) Wischmeier method.
Memphis silt loam. The second segment on Loring silt loam was 5%. On the first segment the three methods had NCP of >0.32 (I) and 0.16 - 0.32 (IIe).

When slope steepness and length were measured, the three methods gave a different picture of erosion hazard. The differences occurred on the second segment of the slope. Results by the three methods differ from the LCCe map and also differ from each other. On the second segment, the old method Figure 3(b) indicated much of NCP class 0.04 - 0.08 (IVe) and NCP of 0.02 - 0.04 (Vie) but showed no NCP of 0.08 - 0.16 (IIIe). The average LS method Figure 3(c) classified a little of the second segment into NCP of 0.16 - 0.32 (IIe) and much into NCP of 0.08 - 0.16 (IIIe). A small part was 0.04 - 0.08 (IVe). In contrast to the other two methods, the Wischmeier method Figure 3(d) placed the second segment in NCP of 0.08 - 0.16 (IIIe) and 0.04 - 0.08 (IVe).

The old method exaggerated the amount of soil loss, and the average LS method predicted lower soil loss than the Wischmeier method which probably predicted erosion most precisely. The Wischmeier method is useful in predicting erosion on complex slopes.

IV. COMPARISON OF WISCHMEIER METHOD AND STANDARD LAND CAPABILITY SUBCLASSES ε

The Wischmeier method was chosen over the old and average methods for drawing isoerodent maps. These maps look like contour maps but show lines connecting equal NCP values. Isoerodent maps were then compared with land capability subclass ε maps.
The Wischmeier method was chosen because it probably represents the best prediction of soil loss. It deals more effectively with complex slopes since it takes into account various factors involving LS calculation of the entire slope (7). The land capability subclass map (LCCe) is a standard land classification based on steepness of slopes with average lengths (6, 13, 15).

Figure 4, transect a, on the LCCe map of Knoxville Plant and Soil Science farm, shows a simple C slope (5-12%) on Holston silt loam with a T/K of 16 (Table 1). LCCe shows only subclass IIIε. The Wischmeier method, Figure 5, transect a, shows NCP's of 0.16 - 0.32, 0.08 - 0.16, and 0.04 - 0.08 on 8% slope, depending on the distance from the ridge. These values if expressed as land subclasses would become IIε, IIIε, and IVε. On the same farm, Fig. 4, transect b, is a three segment slope having a top segment of B slope (2-5%), a middle segment of C slope (5-12%), and a lower segment D slope (12-20%) on Sequoia silt loam, T/K of 8 (Table 1). LCCe shows the slope to have subclasses IIIε, IIIε, and IVε. The Wischmeier method, Fig. 5, transect b, with measured slopes of 2%, 7%, 13% shows NCP's of >0.32 (I), 0.16 - 0.32 (IIε), 0.08 - 0.16 (IIIε) 0.04 - 0.08 (IVε), and 0.02 - 0.04 (VIε). NCP values are expressed as subclasses ε on page 22 for easy comparison. On the Knoxville Farm, Fig. 4, transect c, has a B slope (2-5%) and D slope (12-20%) on Sequoia silt loam, T/K of 8. LCCe shows subclasses IIε, and IVε, but with measured slopes of 3% and 13% the Wischmeier method Fig. 5, transect C shows NCP's of 0.16 - 0.32 (IIε), 0.08 - 0.16 (IIIε), 0.04 - 0.08 (IVε) and 0.02 - 0.04 (VIε). This clearly indicates that consideration of length and complexity of slope changed the prediction of erosion hazard. Evaluating erosion hazard by the Wischmeier method was responsible for changes in predicted erosion hazard.
Figure 4. Transects a, b, c and d on LCCe map of Knoxville Plant and Soil Science Farm.
Table 1. Soil mapping units and T/K's for the Knoxville Plant and Soil Science Farm

<table>
<thead>
<tr>
<th>Map Symbol</th>
<th>Soil mapping unit</th>
<th>Soil Series T/K</th>
<th>Land Capability Subclass</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Huntington loam</td>
<td>14</td>
<td>I</td>
</tr>
<tr>
<td>3Cl</td>
<td>Huntington clay loam, 5-8% slopes</td>
<td>14</td>
<td>IIE</td>
</tr>
<tr>
<td>4</td>
<td>Lindside loam</td>
<td>14</td>
<td>IIW</td>
</tr>
<tr>
<td>5</td>
<td>Melvin silt loam</td>
<td>12</td>
<td>IIIw</td>
</tr>
<tr>
<td>8AI</td>
<td>Sequatchie loam, 0-2% slopes</td>
<td>21</td>
<td>IIE</td>
</tr>
<tr>
<td>8BI</td>
<td>Sequatchie loam, 2-5% slopes</td>
<td>21</td>
<td>IIE</td>
</tr>
<tr>
<td>8B2</td>
<td>Sequatchie loam, 2-5% slopes, eroded</td>
<td>21</td>
<td>IIE</td>
</tr>
<tr>
<td>8CI</td>
<td>Sequatchie loam, 5-12% slopes</td>
<td>21</td>
<td>IIE</td>
</tr>
<tr>
<td>8C2</td>
<td>Sequatchie loam, 5-12% slopes, eroded</td>
<td>21</td>
<td>IIE</td>
</tr>
<tr>
<td>8C3</td>
<td>Sequatchie loam, 5-12% slopes, eroded</td>
<td>21</td>
<td>IIE</td>
</tr>
<tr>
<td>9AI</td>
<td>Sequatchie fine sandy loam, 0-2% slopes</td>
<td>21</td>
<td>I</td>
</tr>
<tr>
<td>9BI</td>
<td>Sequatchie fine sandy loam, 2-5% slopes</td>
<td>21</td>
<td>IIE</td>
</tr>
<tr>
<td>10</td>
<td>Whitwell loam</td>
<td>13</td>
<td>IIW</td>
</tr>
<tr>
<td>15BI</td>
<td>Etowah silt loam, 2-5% slopes</td>
<td>14</td>
<td>IIE</td>
</tr>
<tr>
<td>15B2</td>
<td>Etowah silt loam, 2-5% slopes, eroded</td>
<td>14</td>
<td>IIE</td>
</tr>
<tr>
<td>15C2</td>
<td>Etowah silt loam, 5-12% slopes, eroded</td>
<td>14</td>
<td>IIE</td>
</tr>
<tr>
<td>15C3</td>
<td>Etowah clay loam, 5-12% slopes, severely eroded</td>
<td>14</td>
<td>IIIe</td>
</tr>
<tr>
<td>15D2</td>
<td>Etowah silt loam, 12-20% slopes, eroded</td>
<td>14</td>
<td>IVE</td>
</tr>
<tr>
<td>15D3</td>
<td>Etowah silt loam, 12-20% slopes, severely eroded</td>
<td>14</td>
<td>IVE</td>
</tr>
<tr>
<td>16B1</td>
<td>Captina silt loam, 2-5% slopes</td>
<td>7</td>
<td>IIE</td>
</tr>
<tr>
<td>16B2</td>
<td>Captina silt loam, 2-5% slopes, eroded</td>
<td>7</td>
<td>IIE</td>
</tr>
<tr>
<td>Map Symbol</td>
<td>Soil mapping unit</td>
<td>Soil Series T/K</td>
<td>Land Capability Subclass</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>16C1</td>
<td>Captina silt loam, 5-12% slopes</td>
<td>7</td>
<td>IIIe</td>
</tr>
<tr>
<td>16C2</td>
<td>Captina silt loam, 5-12% slopes, eroded</td>
<td>7</td>
<td>IVe</td>
</tr>
<tr>
<td>17</td>
<td>Taft silt loam</td>
<td>7</td>
<td>IVw</td>
</tr>
<tr>
<td>20C2</td>
<td>Waynesboro loam, 5-12% slopes, eroded</td>
<td>21</td>
<td>IIIe</td>
</tr>
<tr>
<td>20C3</td>
<td>Waynesboro clay loam 5-12% slopes, severely eroded</td>
<td>21</td>
<td>IIIe</td>
</tr>
<tr>
<td>20D3</td>
<td>Waynesboro clay loam 12-20% slopes, severely eroded</td>
<td>21</td>
<td>IVe</td>
</tr>
<tr>
<td>20E3</td>
<td>Waynesboro clay loam 20-30% slopes, severely eroded</td>
<td>21</td>
<td>IVe</td>
</tr>
<tr>
<td>21B1</td>
<td>Holston silt loam, 2-5% slopes</td>
<td>16</td>
<td>IIIe</td>
</tr>
<tr>
<td>21C1</td>
<td>Holston silt loam, 5-12% slopes</td>
<td>16</td>
<td>IIIe</td>
</tr>
<tr>
<td>21C2</td>
<td>Holston silt loam, 5-12% slopes, eroded</td>
<td>16</td>
<td>IIIe</td>
</tr>
<tr>
<td>21D2</td>
<td>Holston silt loam, 12-20% slopes, eroded</td>
<td>16</td>
<td>IVe</td>
</tr>
<tr>
<td>21D3</td>
<td>Holston silt loam, 12-20% slopes, severely eroded</td>
<td>16</td>
<td>IVe</td>
</tr>
<tr>
<td>25B2</td>
<td>Sequoia silt loam, 2-5% slopes</td>
<td>8</td>
<td>IIIe</td>
</tr>
<tr>
<td>25C2</td>
<td>Sequoia silt loam, 2-5% slopes</td>
<td>8</td>
<td>IIIe</td>
</tr>
<tr>
<td>25C3</td>
<td>Sequoia silty clay loam, 5-12% slopes, severely eroded</td>
<td>8</td>
<td>IIIe</td>
</tr>
<tr>
<td>25D2</td>
<td>Sequoia silty clay loam, 12-20% slopes, eroded</td>
<td>8</td>
<td>IVe</td>
</tr>
<tr>
<td>26C2</td>
<td>Dandridge silt loam, 5-12% slopes, eroded</td>
<td>6</td>
<td>IIIis</td>
</tr>
<tr>
<td>26D2</td>
<td>Dandridge silt loam, 12-20% slopes, eroded</td>
<td>6</td>
<td>IVs</td>
</tr>
<tr>
<td>26D3</td>
<td>Dandridge shaly silty clay loam, 12-20% slopes, severely eroded</td>
<td>6</td>
<td>IVs</td>
</tr>
<tr>
<td>28D2</td>
<td>Tellico loam, 12-20% slopes, eroded</td>
<td>13</td>
<td>IVe</td>
</tr>
<tr>
<td>28E3</td>
<td>Tellico clay loam, 20-30% slopes, severely eroded</td>
<td>13</td>
<td>VIE</td>
</tr>
</tbody>
</table>
Figure 5. Transects a, b, c and d on isorerodent map of Knoxville Plant and Soil Science Farm. (Remainder of the map is in Appendixes B and C).
At Milan Field Station, Fig. 6 transect a, shows a simple slope segment, having B slope (2-5%) on Loring silt loam with T/K of 9 (Table 2). LCCε shows subclass IIε while the Wischmeier method with a slope of 2%, Fig. 7 transect a, shows NCP's of >0.32 (I), 0.16-0.32 (IIε) and 0.08-0.16 (IIIε) depending on length of slope. A short segment near the top of the slope has NCP equivalent to class I. As length increases the erodibility becomes worse. LCCε did not indicate any class I nor class IIIε. This shows that even with simple slopes, consideration of length changes the prediction of the erosion hazard. At Milan Field Station, Fig. 6 transect b, shows Memphis silt loam soil, T/K of 12 (Table 2), having a B slope (2-5%) and C slope (5-8%). LCCε indicated subclasses IIε and IIIε, but the Wischmeier method, Fig. 7 transect b, indicated NCP's of >0.32 (I), 0.16-0.32 (IIε), 0.08-0.16 (IIIε), and 0.04-0.08 (IVε) on the 2% and 6% slopes. LCCε overlooked the presence of the narrow strip of class I on top of the ridge. The big difference was that the Wischmeier method showed the NCP's of 0.04-0.08 (IVε) at the lower end that indicated a more serious erosion hazard.

Figure 6 transect c, of Milan Field Station with a B slope (2-5%) of Memphis silt loam, T/K of 12, and D slope (8-12%) Lexington silt loam having T/K of 7 shows subclasses IIε and VIε. The Wischmeier method, Fig. 7 transect c, shows NCP's of >0.32 (I), 0.16-0.32 (IIε), 0.08-0.16 (IIIε), 0.04-0.08 (IVε), and 0.02-0.04 (VIε).
Figure 5. Transects a, b, c and d on isoerodent map of Knoxville Plant and Soil Science Farm. (Remainder of the map is in Appendixes B and C).
Table 2. Soil mapping units and T/K's for the Milan Field Station.

<table>
<thead>
<tr>
<th>Map symbol</th>
<th>Soil mapping unit</th>
<th>T/K used for calculations</th>
<th>Land capability subclass</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Collins silt loam</td>
<td>12</td>
<td>IIw</td>
</tr>
<tr>
<td>3</td>
<td>Falaya silt loam</td>
<td>12</td>
<td>IIIw</td>
</tr>
<tr>
<td>4</td>
<td>Waverly silt loam</td>
<td>7</td>
<td>IVw</td>
</tr>
<tr>
<td>IIAI</td>
<td>Memphis silt loam, 0 to 2% slopes</td>
<td>12</td>
<td>I</td>
</tr>
<tr>
<td>IIIB1</td>
<td>Memphis silt loam, 2 to 5% slopes</td>
<td>12</td>
<td>IIE</td>
</tr>
<tr>
<td>IIB2</td>
<td>Memphis silt loam, 2 to 5%, slopes, eroded</td>
<td>12</td>
<td>IIE</td>
</tr>
<tr>
<td>IIB3</td>
<td>Memphis silt loam, 5 to 8%, slopes, severely eroded</td>
<td>12</td>
<td>IIIe</td>
</tr>
<tr>
<td>IIC3</td>
<td>Memphis silt loam, 5 to 8%, slopes, severely eroded</td>
<td>12</td>
<td>IIIe</td>
</tr>
<tr>
<td>12AI</td>
<td>Loring silt loam, 0 to 2% slopes, severely eroded</td>
<td>9</td>
<td>I</td>
</tr>
<tr>
<td>12BI</td>
<td>Loring silt loam, 2 to 5% slopes</td>
<td>9</td>
<td>IIE</td>
</tr>
<tr>
<td>12B2</td>
<td>Loring silt loam, 2 to 5% slopes, eroded</td>
<td>9</td>
<td>IIE</td>
</tr>
<tr>
<td>12C3</td>
<td>Loring silt loam, 5 to 8% slopes, severely eroded</td>
<td>9</td>
<td>IIIe</td>
</tr>
<tr>
<td>13AI</td>
<td>Grenada silt loam, 0 to 2% slopes</td>
<td>7</td>
<td>IIw</td>
</tr>
<tr>
<td>13A2</td>
<td>Grenada silt loam, 0 to 2% slopes, eroded</td>
<td>7</td>
<td>IIw</td>
</tr>
<tr>
<td>13B1</td>
<td>Grenada silt loam, 2 to 5% slopes</td>
<td>7</td>
<td>IIE</td>
</tr>
<tr>
<td>13C3</td>
<td>Grenada silt loam, 5 to 8% slopes, severely eroded</td>
<td>7</td>
<td>IVe</td>
</tr>
<tr>
<td>13C4</td>
<td>Grenada silt loam, 5 to 8% slopes, severely eroded</td>
<td>7</td>
<td>IVe</td>
</tr>
<tr>
<td>14</td>
<td>Calloway silt loam</td>
<td>12</td>
<td>IIIw</td>
</tr>
<tr>
<td>15</td>
<td>Henry silt loam</td>
<td>7</td>
<td>IIIw</td>
</tr>
<tr>
<td>16B2</td>
<td>Lexington silt loam, 2 to 5% slopes, eroded</td>
<td>7</td>
<td>IIE</td>
</tr>
<tr>
<td>16C2</td>
<td>Lexington silt loam, 5 to 8% slopes, eroded</td>
<td>7</td>
<td>IIIe</td>
</tr>
<tr>
<td>16C3</td>
<td>Lexington silt loam, 5 to 8% slopes, severely eroded</td>
<td>7</td>
<td>IVe</td>
</tr>
<tr>
<td>16D4</td>
<td>Lexington silt loam, 8 to 12% slopes, severely eroded</td>
<td>7</td>
<td>VIE</td>
</tr>
</tbody>
</table>
Figure 7. Transects a, b, and c on isoerodent map of Milan Field Station.
In this complex slope situation, LCC showed only subclass VIe land in the second segment, but the Wischmeier method with measured slopes of 2% and 9% indicated that the second segment had NCP's of 0.08-0.16 (IIIe), 0.04-0.08 (IVe) and 0.02-0.04 (Vie). Thus when slope is short in length, the Wischmeier method recognizes that erosion is less serious than predicted by LCC.

Soils on Ames Plantation are more seriously affected by erosion than the other locations because the rainfall and runoff factor (R) is the highest of the three areas studied. Figure 8 transect a, shows a two segment slope on Lexington silt loam C slope (5-8%), T/K of 7 (Table 3), and a second segment on Lexington-Ruston complex F slope (20-30%) T/K of 12. LCC shows subclasses IIIe and VIIe, but the Wischmeier method, Fig. 9 transect a, shows NCP's of 0.08-0.16 (IIIe), 0.08-0.04 (IVe), 0.02-0.04 (Vie), and <0.02 (VIIe). In other words, the Wischmeier method recognizes that within the second segment are subclass Vie at the short lengths before reaching subclasses VIIe. The main advantage of the Wischmeier method is its ability to evaluate erosion along the second segment slope.

Use of Isoerodent Maps for Soil Management

Comparison of isoerodent maps with the LCC maps clearly indicate that length and complexity of slopes change the prediction of erosion. The Wischmeier method demonstrated the importance of segment length and steepness in a complex slope situation in evaluating erosion. Without considering slope complexity, the erosion hazard would have been miscalculated. The isoerodent maps produced by the Wischmeier method are
Figure 8. Transects a and b on LCCe map of Ames Plantation.
Table 3. Soil mapping units and T/K's for the Ames Plantation.

<table>
<thead>
<tr>
<th>Map symbol</th>
<th>Soil mapping unit</th>
<th>T/K</th>
<th>Land capability subclasses a</th>
</tr>
</thead>
<tbody>
<tr>
<td>LbB</td>
<td>Lexington silt loam, 2-5%</td>
<td>7</td>
<td>IIe</td>
</tr>
<tr>
<td>LbC</td>
<td>Lexington silt loam, 5-8%</td>
<td>7</td>
<td>IIIe</td>
</tr>
<tr>
<td>LbD</td>
<td>Lexington silt loam, 8-12%</td>
<td>7</td>
<td>IVe</td>
</tr>
<tr>
<td>LcC3</td>
<td>Lexington silty clay loam, 5-8%, severely eroded</td>
<td>7</td>
<td>IVE</td>
</tr>
<tr>
<td>LcD3</td>
<td>Lexington silty clay loam, 8-12%, severely eroded</td>
<td>7</td>
<td>VIE</td>
</tr>
<tr>
<td>LeD</td>
<td>Lexington-Ruston complex, 8-12%</td>
<td>12</td>
<td>IVe</td>
</tr>
<tr>
<td>LeF</td>
<td>Lexington-Ruston complex, 12-30%</td>
<td>12</td>
<td>VIIe</td>
</tr>
<tr>
<td>LfD</td>
<td>Lexington-Ruston gullied complex, 8-12%</td>
<td>11</td>
<td>VIIe</td>
</tr>
<tr>
<td>LoB</td>
<td>Loring silt loam, 2-5%</td>
<td>9</td>
<td>IIe</td>
</tr>
<tr>
<td>LoC3</td>
<td>Loring silt loam, 5-8%, severely eroded</td>
<td>9</td>
<td>IIIe</td>
</tr>
<tr>
<td>MeB</td>
<td>Memphis silt loam, 2-5%</td>
<td>12</td>
<td>IIe</td>
</tr>
<tr>
<td>MfC3</td>
<td>Memphis silty clay loam, 5-8%, severely eroded</td>
<td>12</td>
<td>IIIe</td>
</tr>
<tr>
<td>Gs</td>
<td>Gullied land silty, (Lexington), severely eroded</td>
<td>9</td>
<td>VIIe</td>
</tr>
<tr>
<td>Gn</td>
<td>Gullied land sandy, (Ruston), severely eroded</td>
<td>11</td>
<td>VIIe</td>
</tr>
<tr>
<td>Cm</td>
<td>Collins fine sandy loam</td>
<td>12</td>
<td>I</td>
</tr>
<tr>
<td>CaB2</td>
<td>Calloway silt loam</td>
<td>12</td>
<td>IIIw</td>
</tr>
</tbody>
</table>
Figure 9. Transects a and b on isoerodent map of Ames Plantation.
more precise estimates of soil loss from a field or farm than LCCe maps. Isoerodent maps are useful for selecting the range of cropping systems and erosion control practices for a field or farm that will keep soil loss within tolerance. They can also predict soil loss under given C and P. On land having NCP of >0.32 means that a farmer could practice any cropping system with a CP of less than 0.32 and keep soil loss within tolerance. More selections are available for land that has NCP of >0.32 than for classes with lower NCP. For land that has NCP of <0.02 few selections are available to keep soil loss within tolerance. Such a value also means that more conservation measures are needed to protect against soil loss. A table showing C values of some of the cropping systems are available from conservationists of the area (13a, 25, 41). When the isoerodent map indicates that land has NCP of 0.08-0.16 all CPs less than 0.08 are acceptable. When land has NCP of 0.04-0.08, all CPs less than 0.04 are acceptable. Similar reasoning is true for other NCP classes.

Isoerodent maps by the Wischmeier method will tell the users of soils that all areas with the same isoerodent value have the same relative degree of erosion hazard or limitations for cropping systems and practices. The risk of soil damage by erosion or limitation in use becomes progressively greater as NCP values decrease. A farmer can practice similar cropping systems and management in the areas that have the same NCP values. An isoorodent map when superimposed on a soil map will tell a great deal about the physical condition of each mapping unit delineation. Thus, isoerodent maps can also be used as a single purpose map to predict erosion.
The aim of soil conservation is to obtain a maximum sustained level of production from a given area of land while maintaining soil loss below a tolerance level. The maps produced by the Wischmeier method are tools which may help achieve these objectives. A farmer can use these maps showing areas of equal NCP value to choose cropping systems for his farm. If he decides to use a more intensive cropping system than allowable then he has to put some conservation practices into effect. These maps are based on NCP. Thus when a farmer decides to construct a terrace on a slope of 5%, P become 0.5. His choice of cropping systems is greater, even though he operates within the same soil loss tolerance.

When the isoerodent map indicates NCP's of 0.32-0.16 (IIE), 0.08-0.16 (IIIe), and 0.04-0.08 (IVe) on a slope of 5%, 300 ft. length, and T/K of 12, a farmer could locate a terrace at 100 feet from the top of the ridge. He could farm the top part as subclass IIE and all the land below the terrace as subclass IIIe. Reducing slope length also decreases the amount of soil loss. Thus the lower part of the slope could be utilized more intensively without exceeding soil tolerance. Land that has NCP 0.08-0.16 (IIIe), 0.04-0.08 (IVe), and 0.02-0.04 (VIe) on the slope of 400 ft., 6% steepness, T/K of 7, might be used as C of 0.08-0.16 by practicing contour stripcropping, or used as C of 0.04-0.08 by practicing contour farming, whichever is applicable. Thus isoerodent maps are useful to a farmer for his conservation plan. A slide rule calculator is useful for evaluating erosion hazard on simple slopes, but isoerodent maps are better on complex slope situations.
A simple nomograph was developed for evaluating erosion. It consists of a slope effect chart (LS) and NCPs at various T/K for specific R. This nomograph, Fig. 1, page 12 can be used to determine NCP for various soils on simple slopes after R is given. Where steepness of a simple slope is known, it can also be used to determine length of slope for a given NCP. Instructions for use precede Fig. 1. This nomograph helps to select alternative systems of cropping and practices for a slope or field. Thus it has a function similar to the slide rule calculator. It can be designed for any R or any county.

An isoerodent map is more precise than an LCCε map or a slide rule calculator because it deals with complex slopes effectively. For simple slopes a slide rule calculator is an adequate tool for estimating erosion hazard. LCCε maps are less precise than the slide rule calculator or isoerodent maps for long simple slopes. Both isoerodent maps and the slide rule calculator indicated that with simple slopes of equal steepness, a long simple slope is more hazardous to erosion than a short one. This agrees with other researchers (13, 18, 25, 40) and the slide rule calculator that soil loss increases with slope length. For complex slopes, isoerodent maps by the Wischmeier method evaluate erosion more accurately than either LCCε maps or the slide rule calculator. For instance Fig. 4 transect d, page 30, shows a three segment slope on Etowah silt loam, T/K 14 and Captina silt loam T/K 7 (Table 2, page 36). LCCε indicated subclasses IIIε, IIε and IIIε. The Wischmeier method Fig. 5, transect d, page 33, showed it to have NCPs of 0.08-0.16 (IIIε), 0.04-0.08 (IVε) and 0.02-0.04 (VIε) on the measured slopes of 8%, 5% and 7%. This is probably true since water moved from one segment to another erodes more soil from the lower
segment of slope. Thus isoerodent maps by the Wischmeier method are useful for predicting erosion in this situation. Conservation plans could be based on the isoerodent maps. An LCCé map is useful for predicting erosion on simple slopes of average length. The slide rule calculator is a quick way to estimate soil loss for a simple slope but is less precise in dealing with a complex slope.

NCP values were chosen for comparison with land capability subclasses but other values could also be chosen for NCP classes when drawing isoerodent maps. In this study NCP of 0.16-0.32 seemed to approximate LCCé subclass IIé as shown in Fig. 5 transect b, page 33, of Knoxville Plant and Soil Science Farm. NCP of 0.02-0.04 also correlates well with LCCé subclass VIé as indicated in Figure 7 transect c, page 37, of Milan Field Station. NCP of <0.02 corresponds with LCCé subclass VIIé as reflected in Fig. 9 transect a, page 41. Thus these NCP values correspond fairly well with LCCé subclasses.

Both isoerodent maps and LCCé maps indicate the single limitation of erosion, but an isoerodent map by the Wischmeier method is much more precise, especially in an area that has complex slopes. The effectiveness of the Wischmeier method is reduced when dealing with miscellaneous land types such as gullied land as shown in Fig. 8 transect b, page 39, of Ames Plantation. Isoerodent maps lose some of their usefulness when other soil limitations are greater than erodibility.
CHAPTER V

SUMMARY AND CONCLUSION

The effect of length and steepness on erosion of soil was studied for both simple and complex slopes in three areas of Tennessee: Milan Field Station, Ames Plantation, and Knoxville Plant and Soil Science Farm.

Various methods were used to predict erosion for complex slopes, namely, the old, the addition, the average LS, the average slope, the Fort Worth, the substitute, and the Wischmeier method. Erosion hazard was determined by these methods on a sample two segment slope with measured slopes of 2% and 6% on Memphis silt loam from Milan Field Station. Since the Wischmeier method is the most precise, results indicate that the substitute method is probably next best.

Erosion hazard based on the USLE and measured as necessary CP (NCP) was predicted by old, average LS, and Wischmeier methods. Classes of NCP predicted by these methods were then compared with standard land capability subclasses (LCCc). The high NCP values suggest low soil loss and low NCP values suggest a high soil loss. For the simple part of the slope, the three methods produced identical results with NCP's of >0.32 (I) and 0.16-0.32 (IIe). When the second segment was included to give a complex slope, the results differed. The old method had NCP's of 0.04-0.08 (IVe) and 0.02-0.04 (VIIe) on the second segment. The average method showed the second segment to have a little NCP of 0.06-0.32 (IIe) and much of 0.08-0.16 (IIIe). The Wischmeier method probably was the most precise.
method for evaluating soil loss for complex slopes. The old method predicted greater soil loss and the average LS method predicted less soil loss than the Wischmeier method. Studies suggest that some workers have misused the old method and as a result exaggerated the amount of soil loss. Both old and new slide rule calculators can also be used to determine erosion hazard for simple slopes, but for complex slopes they are not precise.

This study developed a simple nomograph consisting of a slope effect chart (LS) and NCP of various T/K values. It related NCP to soil loss ratio LS for specific R. This device helps to find NCP at a given length and steepness of a simple slope. Thus, the function is similar to a slide rule calculator. When LS of a complex slope has been determined by the Wischmeier method, the nomograph can be used to find NCP for the entire slope.

Isoerodent maps based on NCP values were drawn for parts of the three studied areas. Values of >0.32, 0.16-0.32, 0.08-0.16, 0.04-0.08, 0.02-0.04, and <0.02 were compared with LCCe I, IIe, IIIe, IVe, Vle and VIIe respectively. These values were chosen for easy comparison but other values could also be used. NCP of 0.16-0.32, 0.02-0.04 and <0.02 correlated fairly well with LCCe, IIe, VIe and VIIe. Perhaps future studies could adjust NCP values to fit better with LCCe classes. These isoerodent maps are more precise than LCCe maps and slide rule calculators in predicting erosion for complex slopes. For simple slopes, a slide rule calculator is sufficient to determine erosion hazard. Both the isoerodent map and slide rule calculator predict erosion more accurately than LCCe maps for long simple slopes. The effectiveness of an isoerodent map is reduced when
dealing with miscellaneous land types such as gullied land because other soil limitations are greater than erodibility.

The isoerodent maps were designed as single purpose maps for predicting erosion. They are better than LCC2 maps and calculators in predicting erosion, especially in complex slope situations. By using these maps a farmer could choose among various cropping systems and kind of conservation measures available to him to fit his farm plans.

APPENDIXES
APPENDIX A

Foster and Wischmeier Chart

APPENDIX B
Figure 10. West part of isoerodent map of Knoxville Plant and Soil Science Farm.
Figure 10. West part of isorerodent map of Knoxville Plant and Soil Science Farm.
VITA

Mohd. Safial bin Saad was born in Nibong Tebal, West Malaysia on September 29th, 1953. He received his primary education in Kuala Lumpur. He completed his secondary education at Royal Military College in 1972. In June 1972 he entered the University of Agriculture, Malaysia and received his diploma in April 1975. He worked for Farmer's Association Organization upon graduation, until December 1975.

He came to the United States in January 1976 to study at Louisiana State University, Baton Rouge and received a Bachelor of Science in Agronomy in the fall 1977. In winter 1978 he entered the Department of Plant and Soil Science, The University of Tennessee, Knoxville to obtain a Master of Science degree.