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Abstract

Multi-dimensional performance data analysis presents challenges for programmers, and users.

Developers have to choose library and compiler options for each platform, analyze raw

performance data, and keep up with new technologies. Users run codes on different platforms,

validate results with collaborators, and analyze performance data as applications scale up.

Site operators use multiple profiling tools to optimize performance, requiring the analysis

of multiple sources and data types. There is currently no comprehensive tool to support

the structured analysis of unstructured data, when, holistic performance data analysis can

offer actionable insights and improve performance. In this work, we present thicket, a tool

designed based on the experiences and insights of programmers, and users to address these

needs. Thicket is a Python-based data analysis toolkit that aims to make performance data

exploration more accessible and user-friendly for application code developers, users, and

site operators. It achieves this by providing a comprehensive interface that allows for the

easy manipulation, modeling, and visualization of data collected from multiple tools and

executions. The central element of Thicket is the ”thicket object,” which unifies data from

multiple sources and allows for various data manipulation and modeling operations, including

filtering, grouping, and querying, and statistical operations. Thicket also supports the use

of external libraries such as scikit-learn and Extra-P for data modeling and visualization

in an intuitive call tree context. Overall, Thicket aims to help users make better decisions

about their application’s performance by providing actionable insights from complex and

multi-dimensional performance data. Here, we present some capabilities extended by the

components of thicket and important use cases that have implications beyond the data

structure that provide these capabilities.
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Figure 4.2: Propagation of metadata filter onto performance data.
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Then, after observing the results, we can use the statistical filter to manipulate the

performance data table. This helps provide a more focused visualization or application of

statistical functions on a selected number of nodes of the customized performance data.

Fig. 4.3 shows an example of a thicket aggregate statistics table. Compared to the empty

stats table from Fig. 3.2, this table has appended results. The appended results are the

mean, median, and percentile of the exclusive run-time for each node from the performance

data table.

We provide a range of statistical and visualization functionalities as part of the thicket

API. One of these, is the ability to generate heat maps using a column from the appended

aggregate statistics table. The table in Fig.4.3 has multiple rows of information, and we

can generate the heat map of all these rows for the median exclusive time column. Before

we perform any visualization on this table, we sort this table on the basis of the average

(median) exclusive run-time for each node. We then have a resulting table as can be seen in

Fig. 4.4.

We will now use this sorted table to generate a heat-map of all the nodes present, based

on the average exclusive run-time to get a proper understanding of how the run-times are

distributed for each of these nodes on average. The sorting of table based on the median

column help with this visualization technique by allowing us to easily separate the longer

and shorter run-times.

Fig. 4.5 represents the heat map with this setting. The heat map is color coded, where

the lighter the color, the higher the average run-time, and the darker the color, the lower

the average run-time. The capability of generating heat maps help visualize the overall

distribution of the nodes and their corresponding average run-time. However, the data is

too large at this scale for proper analysis. This figure is much more helpful in getting an

overview of the data and then determining what nodes to focus on.

This is a case where filtering the statistics table is complimentary in combination with

the visualization. In Fig. 4.6, we present a much shorter table than the table in Fig. 4.4

with a chosen set of nodes. We achieve this using the statistics filter to filter down to just

the Basic TRAP INT, Basic REDUCE3 INT, Basic PI REDUCE, Stream TRIAD, and the

Stream TRIAD.block 128 nodes.
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Figure 4.3: An aggregate statistics table with the inclusive time metrics mean, median,
and percentile values.
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Figure 4.4: The aggregate statistics table from Fig. 4.3 sorted on the basis of the average
(median) exclusive run-time, or the third column from the referenced table.
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Figure 4.5: The heat map generated with respect to the time(exc) median metric from
Fig. 4.4
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Figure 4.6: The stats filter applied to Fig. 4.4, reducing the number of nodes to six.
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The filtering of nodes for this specific example is done to take a more concentrated look

at the nodes with the highest three average run-times and the lowest two run-times. As a

result of the filtering, we end up with a much more readable and precise heat map in Fig. 4.7.

The figure truly enables the EDA of performance data as a combination of manipulation and

visualization of the performance data.

We provide users with the flexibility to manipulate data with either of the three

components of the thicket. In practice, a user can append several other statistical calculations

to the statistics table. Then, generate heat maps based on those calculations, using them as

the metric for this visualization. The thicket’s several statistical and visualization capabilities

make exploring thicket performance data non-linear, where a user can either manipulate

performance data, perform statistical calculations, or visualize data in any order and any

number of times.

And as demonstrated in the last example, it can be used in combination to make

conclusions about performance. The capabilities of the thicket are extendable and can

include a wide variety of implications in the future. In the next chapter, chapter 5, we

provide an overview of current improvements being implemented by the PAVE team and

possible future avenues for thicket.
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Figure 4.7: The heat map generated with respect to the time(exc) median metric from
Fig. 4.6
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Chapter 5

Conclusion and Future Work

In this chapter, we summarize our thesis and provide insight into future work that can extend

the capabilities of thicket.

5.1 Summary

We provided an overview of four performance tools, HPCToolkit [1, 8], Score-P [7], TAU [9],

and Allinea MAP [6], that generate profiles for different programs runs. These tools from

chapter 2 also allow the analysis of performance data contained within the profiles.

We introduced thicket [5], a performance analysis tool that enables the analysis of an

ensemble of the program runs together. We established that thicket differs from the rest of

the performance tools in chapter 2 as it allows multiple profiles to be read into a single object

for a thorough analysis instead of a single profile at a time. The three components of thicket

were also introduced, providing the background necessary to understand our contributions

to thicket.

We identified our contributions to thicket, which include extending the capabilities

of two out of the three components of thicket: the metadata and aggregate statistics.

The capabilities mentioned in chapter 3 is the filtering and grouping functions concerning

the metadata table and the filtering function concerning the statistics table. We also

demonstrated the effect of these functions with simple examples of the metadata and

statistics tables.
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We provided the use case settings for two cases demonstrated in chapter 4. These use

cases helped us expand on the effects of the filtering and grouping functions from chapter 3

beyond the metadata and statistics tables. We displayed the visual representation of both

use cases with the help of metadata and statistics table examples, the performance data

table, and a heat map of the corresponding statistics table.

We found that the filtering and grouping capabilities are essential to the post-processing of

performance data and can be combined with several other thicket capabilities for meaningful

EDA.

5.2 Future Work

In the future, we are considering leveraging deep learning neural networks to take data from

the tables of a thicket object and deduce optimal settings for running a program. An example

of this would be using neural networks to provide users with a suggestion on what compiler

will result in optimal performance while executing a program.

Another extension to thicket’s capabilities is to export data stored in thicket objects

directly onto pre-existing visualization tools like Tableau. This opens up the opportunity for

scientists to visualize these data directly without and extensive knowledge of the code base.

We are expanding the accessibility of thicket by providing an open-access suite of Jupyter

notebooks demonstrating additional capabilities of thicket beyond the work of this thesis.

Easy-to-follow tutorials will also be provided as part of extensive documentation for thicket

in the Read the Docs format. The suite of Jupyter notebooks will also be executable with

the help of the Binder platform.
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