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Abstract

As technology improves, the field of biology has increasingly utilized high performance

computing techniques to analyze big data and provide insights into biological systems. A

reproducible, efficient, and effective method is required to analyze these large datasets of

varying types into interpretable results. Iterative Random Forest (iRF) is an explainable

supervised learner that makes few assumptions about the relationships between variables

and is able to capture complex interactions that are common in biological systems. This

forest based learner is the basis of iRF-Leave One Out Prediction (iRF-LOOP), an algorithm

that uses a matrix of data to produce all-to-all predictive networks. This dissertation

includes a validation of the improved performance of iRF over the industry standard of

Random Forest, using synthetic and empirical data from various organisms. Additionally,

this dissertation includes the use of iRF to create a predictive model of COVID-19 outcomes

using environmental features at the county level in the U.S. This dissertation also includes

a whole systems biology study in which an improved iRF-LOOP pre-processing pipeline

Divide-Test-Integrate is used to produce new gene-to-gene predictive expression networks

for a multiplex network study of the model organism Saccharomyces cerevisiae using seed

genes of interest from Septoria musiva.
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applied to each group to produce intermediate networks, and the intermediate

networks are integrated into the final gene-to-gene network. This method

reduces the bias of housekeeping genes that is common in the traditional

method of concatenating all the samples into one matrix. The intermediate

networks may also be tested to determine the quality of the network and

determine if they are of a high enough quality to integrate into the final

network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 This figure depicts the method of using the Bray-Curtis dissimilarity measure

to evaluate whether samples for the same experiment clustered together

after applying iRF-LOOP on the samples and MCL clustering the resulting

network. If two clusters did not share samples from the same experiment,

the Bray-Curtis value between the two clusters would be zero. If the samples

from the same experiment were evenly divided among the two clusters, the

Bray-Curtis value would be zero. . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Figure 4.3a depicts the relationship between the quality of the divided group

and the number of samples included in the X matrix. The bottom five groups

were not included in the integrated final PEN, this cutoff is depicted by the

dotted red line. These groups also contained less than 200 samples. Figure

4.3b depicts the nDCG curves for the three gene-to-gene networks. The PCC

co-expression network had an AUnDCG score of 474.956, the traditional iRF-

LOOP PEN had an AUnDCG score of 1222.944, and the iRF-LOOP with

DTI PEN had an AUnDCG score of 1665.545. iRF-LOOP with DTI had the

highest AUnDCG score and is the best performing network. . . . . . . . . . 93

xx



4.4 Figure 4.4a depicts the relationship between the quality of the divided group

and the number of samples included in the X matrix. The bottom scoring

group was not included in the final integrated PEN, this cutoff is depicted

by the dotted red line. Like S. cerevisiae, this group also contained less than

200 samples. Figure 4.4b depicts the nDCG curves for the three gene-to-gene

networks. The PCC co-expression network had an AUnDCG score of 30.021,

while the traditional iRF-LOOP PEN had an AUnDCG score of 128.722, and

the iRF-LOOP with DTI PEN had an AUnDCG score of 169.776. iRF-LOOP

with DTI had the highest AUnDCG score and is the best performing network. 94

4.5 This figure depicts the Bray-Curtis dissimilarity measures between the 13

clusters of A. thaliana samples. All group pairs but one contain a dissimilarity

measure greater than 0.8. This shows that the samples from the same

experiment tend to cluster together, suggesting that the computationally

intensive unsupervised division of samples may not be as efficient as a less

computational intensive supervised method, such as text mining the abstracts

for biological tags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 This figure depicts the GO semantic similarity edges, the traditional iRF-

LOOP edges, and the iRF-LOOP with DTI edges between six A. thaliana

genes. The GO semantic similarity edges are those that contain a weight

above 0.5, which are associations that are more specific with the biological

system. For DTI to reduce the bias of housekeeping genes, the iRF-LOOP

with DTI PEN would capture more of these specific GO associations, which

is evident in the network on the right. Of the top 10,000 edges from each

PEN, traditional iRF-LOOP captures only 269 of these specific GO semantic

similarity associations, while iRF-LOOP with DTI captures 396 of these edges. 98

xxi



5.1 This figure represents all of the edges that exist in the multiplex between the

33 genes with the GO annotation GO:0006887. This network is connected,

meaning that there does not exist any edge that can be removed to result

in two disconnected networks. This depicts how sufficiently the multiplex

captures known biological truth between groups of genes. . . . . . . . . . . . 113

5.2 This figure depicts some of the metrics of RWR Cross Validation. The ROC

curves show how well RWR ranks the left-out genes for each of the five sets of

genes with the same GO annotation. It performed considerably better than

the random classifier. With PR however this observation is not as obvious

except for in the early Recall and for the set of GO annotations with the

fewest number of genes, GO:0006887 with 33 genes. . . . . . . . . . . . . . . 114

5.3 These venn diagrams showcase the lack of overlap of genes between sets that

are related to different traits. After GRIN filtering, the only overlap occurs

in number of cankers and cankers per centimeter, which is likely due to the

fact that these two traits are highly correlated. . . . . . . . . . . . . . . . . . 116

1 This figure depicts the nDCG scores for all of the DREAM4 and DREAM5

networks for both GENIE3 and iRF-LOOP as the number of edges scored,

k, increases. The maximum k for each network depends on the number of

true positive values in the corresponding gold standard network, ranging from

176 to 249 edges for the DREAM4 networks and 2,066 to 4,012 edges for

the DREAM5 networks. For all networks except the DREAM5 Network 4,

the AUnDCG for iRF-LOOP is higher than the AUnDCG for GENIE3, this

suggests that iRF-LOOP outperforms GENIE3. . . . . . . . . . . . . . . . . 149

2 This figure depicts the true signal-to-noise ratio for each iteration of iRF-

LOOP for the DREAM challenges as the blue line. The orange line is the

corresponding GENIE3 network thresholded to match the same number of

edges as the iRF-LOOP network, used to confirm that the unsupervised

thresholding contributes to the improvement in signal-to-noise ratio. Unlike

the larger empirical networks shown in Figure 2.3, these DREAM networks

are too small to make a considerable difference when thresholding the networks.150

xxii



3 This figure depicts the Precision-Recall curves and the corresponding AUPR

values for each iteration in the networks used in this analysis. For many of

the synthetic DREAM networks, the improvement in AUPR plateaus after

2 or 3 iterations, which may be due to the size of the networks. This may

suggests that iterations improve RF, but larger networks are needed to verify

this. The Precision-Recall curves themselves show minimal improvement after

the second iteration for the empirical networks. However, the AUPR value

increases as the number of iterations increases, even after the second iteration.

Thus this shows that the addition of iterations to RF improves the AUPR

values for the two empirical data sets used in this study. . . . . . . . . . . . 151

4 This figure depicts the AUnDCG score for the integrated final PEN in DTI

iRF-LOOP for varying values of D in the WS formula. The optimal value for

D in both organisms is D = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5 This figure shows how the threshold for the STRING PPI network was

decided. The elbow visibly at the experimental score threshold of 800 shows

that the edges over 800 are of higher quality, and should be included in the

multiplex network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xxiii



Nomenclature

AUnDCG Area Under the normalized Dicounted Cumulative Gain curve

AUPR Area Under the Precision-Recall curve

AUROC Anrea Under the Receiver Operating Characteristic curve

BECA Batch Effect-Correction Algorithm

CART Classification and Regression Tree

CFR Case Fatality Ratio

CPU Computational Processing Unit

DCG Discounted Cumulative Gain

DREAM Dialogue for Reverse Engineering Assessment and Methods

DTI Divide-Test-Integrate

FPR False Positive Rate

GENIE3 GEne Network Inference with Ensemble of trees

geTMM gene length corrected Trimmed Mean of M-value

GO Gene Ontology

GPU Grapahical Processing Unit

GRIN Gene Refinement using Interacting Networks

xxiv



GRN Gene Regulatory Network

GWAS Genome-Wide Association Study

HCS Highly Connected Subgraphs

HPC High Performance Computing

IDCG Ideal Discounted Cumulative Gain

IFR Infection Fatality Ratio

iRF iterative Random Forest

iRF-LOOP iterative Random Forest-Leave One Out Prediction

KEGG Kyoto Encyclopedia of Genes and Genomes

LOE Lines of Evidense

LOOP Leave-One-Out-Prediction

MAE Mean Absolute Error

MCL Markov Clustering algorithm

MPI Message Passing Interface

nDCG normalized Discounted Cumulative Gain

OLCF Oak Ridge Leadership Computing Facility

PCC Pearson’s Correlation Coefficient

PEN Predictive Expression Network

PPI Protein-Protein Interaction Network

RF Random Forest

RF-LOOP Random Forest-Leave One Out Prediction

xxv



RIT Random Intersect Trees

RWR Random Walk with Restart

SGD Saccharomyces Genome Database

SNP Single Nucleotide Polymorphism

STRING Search Tool for the Retrieval of Interacting Genes

TAIR The Arabidopsis Information Resource

TPR True Positive Rate

WS Weighted Sum

X-AI Explainable Artificial-Intelligence

xxvi



Chapter 1

Background

1



1.1 Introduction

Since the turn of the century, the field of biology has increasingly utilized high-throughput

measurement techniques to provide insights into biological systems. These systems contain

various types of ’omics data, including the genome, transcriptome, proteome, metabolome,

microbiome and others that create the ”ome-ome.” Reproducible, efficient, and effective

methods are required to integrate and analyze these varying large datasets into interpretable

results. Thus, High Performance Computing (HPC) is becoming more common in the field

of biology in order to analyze these larger datasets.

A common method to explore new biological relationships is to represent these

relationships as networks, where the biological features, such as genes or proteins, are

represented as nodes and the edges between nodes represent the presence of the relationship

between the two features. There are multiple tools that can be used to infer these networks

based on observations across multiple samples, such as correlation-based methods like

Pearson’s Correlation Coefficient and Random Forest-based methods like GEne Network

Inference with Ensemble of trees (GENIE3) [84]. A collection of individual networks derived

from different types of information can be used to create a multiplex network that can be

traversed with network exploration algorithms such as Random Walk with Restart [172].

The algorithm that will be the focus of this dissertation is iterative Random Forest (iRF)

[9]. The iRF algorithm is a tree-based method that has many applications. It can function

as a network inference tool through iRF-LOOP [27], and can also predict unknown values of

the chosen dependent variable to produce accuracy metrics through k -fold cross validation.

Before a network inference tool can be applied to a biological dataset, there are pre-

processing steps that must be taken to prepare the data appropriately. For example,

highly correlated features must be removed, batch effects from different experiments must be

corrected, and outliers must be handled appropriately. Furthermore, once the networks have

been created, they must be post-processed before use in downstream analyses. The quality

of the network is determined using a known gold standard network, or a known network of

experimentally validated edges. Usually, thresholds are applied to the edges of a network

before further use to capture the highest quality edges. Network clustering may also be used

2









Figure 3: This figure depicts the Precision-Recall curves and the corresponding AUPR
values for each iteration in the networks used in this analysis. For many of the synthetic
DREAM networks, the improvement in AUPR plateaus after 2 or 3 iterations, which may
be due to the size of the networks. This may suggests that iterations improve RF, but larger
networks are needed to verify this. The Precision-Recall curves themselves show minimal
improvement after the second iteration for the empirical networks. However, the AUPR
value increases as the number of iterations increases, even after the second iteration. Thus
this shows that the addition of iterations to RF improves the AUPR values for the two
empirical data sets used in this study.
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Table 5: This table depicts a sample fourth order gene set that were discovered using
RIT on the resulting paths from iRF-LOOP on A. thaliana expression data. This set had
a prevalence of 0.331. This set contains a mix of both known and unknown gene to gene
relationships.

Gene ID Function Target Target
Function

Relationship

AT3G10040
—
AT5G39890
—
AT1G12805
—
AT5G15120

Hypoxia
Response
Attenuator
1 (HRA1)
— Plant
Cysteine
Oxidase 2
(PCO2),
Hypoxia
Response
Unknown
Protein 43
(HUP43)
—
Nucleotide
binding
protein
— Plant
Cysteine
Oxidase 1
(PCO1),
Hypoxia
Response
Unknown
Protein 29
(HUP29)

AT3G27220 Hypoxia
Response
Unknown
Protein 6
(HUP6)

HUP43, HUP29,
and HUP6 are
all Hypoxia
- Responsive
Unknown
Proteins
(HUPs). HRA1
interacts with
RAP2.12,
RAP2.12
binds to PCO1
promoters in
the Hypoxia-
Responsive
Promoter
Element
regions, which
includes HUP6.
RAP2.12 also
binds to HUP29
and HUP43
[130, 61, 83].
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Table 6: This table depicts a sample fifth order gene set that were discovered using RIT
on the resulting paths from iRF-LOOP on A. thaliana expression data. This set had a
prevalence of 0.153. This set contains a mix of both known and unknown gene to gene
relationships.

Gene ID Function Target Target
Function

Relation-
ship

AT4G3860
—
AT3G50370
—
AT1G80070
—
AT3G02260
—
AT1G55860

Ubiquitin-
Protein Ligase
3 (UPL3) —
Hypothetical
protein —
Encodes a factor
that influences
pre-mRNA
splicing and
is required
for embryonic
development
— Calossin-like
protein required
for polar auxin
transport —
Ubiquitin-
Protein Ligase 1
(UPL1)

AT1G70320 Ubiquitin-
Protein
Ligase 2
(UPL2)

UPL1,
UPL2,
UPL3
are all
ubiquitin
protein
ligases
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B Chapter 3 Supplementary Information
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Table 7: Static climate features details.

Description Calculation
Actual evapotranspiration Average actual Evapo-

transpiration, 50 year
average

Global elevation None
Irrigated cultivated land via GMIA See [48] for details
Irrigated cultivated land See [48] for details
Rain-fed cultivated land See [48] for details
Percent desert scrubland See [48] for details
Excess salt concentration See [48] for details
Percent forest based on tree cover See [48] for details
Slope east (high resolution) See [48] for details
Slope north (high resolution) See [48] for details
Slope north (low resolution) See [48] for details
Undefinable slope/dense topographical changes (high resolution) See [48] for details
Undefinable slope/dense topographical changes (low resolution) See [48] for details
Slope west (high resolution) See [48] for details
Slope west (low resolution) See [48] for details
FAO’s global median elevation estimate See [48] for details
Number of 3 arc second grid cells that belong to the land mask
and fall into 5 minutes grid cells

See [48] for details

Percent grassland based on tree cover See [48] for details
Barren/very sparsely vegetated land See [48] for details
Rooting conditions based on soil compaction and particle size See [48] for details
Oxygenation estimates of soil See [48] for details
Soil salt concentration estimation See [48] for details
Soil characteristics (soil texture, soil organic carbon, soil pH,
total exchangeable bases)

See [48] for details

Soil organic carbon, soil texture, base saturation, cation exchange
capacity of soil and of clay fraction

See [48] for details

Soil drainage and soil phases affecting soil drainage See [48] for details
Soil acidity based on hydrogen released in solution See [48] for details
Soil textures, bulk density, coarse fragments, vertic soil
properties and soil phases affecting root penetration and soil
depth and soil volume

See [48] for details

Calcium carbonate and gypsum See [48] for details
Percent urban cover based on population density See [48] for details
Percent water availability based on natural and synthetic water
mechanisms

See [48] for details
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Table 8: Monthly climate features details.

Description Calculation
Monthly aridity and wind speed Aridity (scaled 0-1)×WindSpeed (Scaled

0-1)
Monthly percent cloud cover Weather station and satellite interpola-

tion
Monthly soil water concentration as a
percent of max capacity

Thornthwaite-Mather water balance

Monthly average precipitation Weather station and satellite interpola-
tion

Monthly solar radiation in watts/m2/s−1 Weather station and satellite interpola-
tion

Monthly average temperature Weather station and satellite interpola-
tion

Monthly average maximum temperature Weather station and satellite interpola-
tion

Monthly average minimum temperature Weather station and satellite interpola-
tion

Monthly average vapor pressure Tetens vapor pressure calculation
Monthly wind speed in meters/second Weather station and satellite interpola-

tion
Monthly potential evapotranspiration Hargreaves PET Method
Monthly light spectrum vitamin D ab-
sorption range

Integral of watts/m2/s−1 between 280nm
and 315 multiplied by fractional ozone
cover and cloud density
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Table 9: Census features details (table one of four).

Number of
Category Features Calculation
Total population 1 None
Sex by age by ethnicity and race 252 Normalized by total population
Ancestry reported 108 Normalized by total population
Nativity and citizenship status 5 Normalized by total population
Period of naturalization 7 Normalized by total population
Geographical mobility in the past
year by age

90 Normalized by total population

Means of transportation to work by
sex

32 Normalized by total population of
each sex

Whether place of work is in state, in
county, or neither by sex

8 Normalized by total population of
each sex

Commute length in minutes by sex 24 Normalized by total population of
each sex

Number of workers in household by
vehicles available

20 Normalized by number of workers

Whether a household received Sup-
plemental Security Income (SSI),
cash public assistance income, or
food stamps/SNAP in the past 12
months

12 Normalized by total population

Breakdown of relationships between
householder and child (own child,
grandchild, etc.)

7 Normalized by total population

Breakdown of whether adults live
with relatives, spouse, alone, or with
non-relatives by age

24 Normalized by total population of
each age group

Children who live with their grand-
parents by age

3 Normalized by total population

Whether or not a household contains
relatives or non-relatives

2 Normalized by total households

Breakdown of martial status by age
by sex

184 Normalized by total population of
each sex

Breakdown of woman who have given
birth in the past 12 months by
marital status and age

18 Normalied by total population

Breakdown of school enrollment by
level of schooling, type of schooling,
and sex

46 Normalized by total population of
each sex

Disability status by sex and age 24 Normalized by total population of
each sex
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Table 10: Census features details (table two of four).

Number of
Category Features Calculation
Hearing difficulty status by sex and
age

24 Normalized by total population of
each sex

Vision difficulty status by sex and
age

24 Normalized by total population of
each sex

Cognitive difficulty status by sex and
age

20 Normalized by total population of
each sex

Ambulatory difficulty status by sex
and age

20 Normalized by total population of
each sex

Self-care difficulty status by sex and
age

20 Normalized by total population of
each sex

Independent living difficulty status
by sex and age

16 Normalized by total population of
each sex

Breakdown of household income in
the last 12 months in USD

16 Normalized by total households

Gini Index of income inequality 1 None
Veteran status of the civilian popu-
lation by sex by age

26 Normalized by total population of
each sex

Breakdown of veterans vs. non-
veterans by educational attainment

8 Normalized by either the number of
veterans or number of non-veterans

Breakdown of work status by age 28 Normalized by total population of
each age bracket

Total number of housing units 1 None
Household occupancy status (occu-
pied vs. vacant)

2 Normalized by total number of hous-
ing units

Household tenure status (owner vs.
renter)

2 Normalized by total number of hous-
ing units

Household vacancy status (for rent,
for sale, sold, etc)

7 Normalized by total number of hous-
ing units

Whether the current resident of the
vacant household resides elsewhere

2 Normalized by total number of hous-
ing units

Race of householder 9 Normalized by total number of hous-
ing units

Tenure by age of householder 18 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Tenure by household size 14 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units
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Table 11: Census features details (table three of four).

Number of
Category Features Calculation
Tenure by educational attainment 8 Normalized by either the total num-

ber of owner occupied or renter
occupied housing units

Tenure by occupants per room 10 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Tenure by plumbing facilities by
occupants per room

4 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Median number of rooms in a
household

1 None

Tenure by number of rooms 18 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Median number of rooms by tenure 2 None
Breakdown of households by number
of units in structure

10 Normalized by total number of hous-
ing units

Mortgage status by age of house-
holder

16 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Median gross rent in USD 1 None
Tenure by units in structure 20 Normalized by either the total num-

ber of owner occupied or renter
occupied housing units

Breakdown of year structure was
built

10 Normalized by total number of hous-
ing units

Median year structure was built 1 None
Breakdown of year structure was
built by tenure

20 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Median year structure was built by
tenure

2 None

Year householder moved into the unit
by tenure

12 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Median year householder moved into
the unit by tenure

2 None

Breakdown of heating fuel used in
households

9 Normalized by total number of hous-
ing units
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Table 12: Census features details (table four of four).

Number of
Category Features Calculation
Breakdown of number of bedrooms 6 Normalized by total number of hous-

ing units
Breakdown of number of bedrooms
by tenure

12 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Breakdown of telephone service avail-
ability by tenure

16 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Breakdown of vehicles available by
tenure

12 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Breakdown of kitchen facilities
present by tenure

4 Normalized by either the total num-
ber of owner occupied or renter
occupied housing units

Whether meals were included in rent
by age

8 Normalized by total population in
each age bracket

Breakdown of gross rent of units in
USD

26 Normalized by total number of renter
occupied units

Whether utilities are included in rent 2 Normalized by total number of renter
occupied units

Breakdown of gross rent as a percent-
age of household income in the past
12 months

10 Normalized by total number of renter
occupied units

Breakdown of home value in USD 26 Normalized by total housing units
Mortgage status of owner occupied
units

7 Normalized by total owner occupied
units

Monthly owner costs in USD by
mortgage status

36 Normalized by total owner occupied
units

Monthly housing costs in USD 16 Normalized by total occupied units
Health insurance coverage status by
sex and by age

36 Normalized by sex and age

Breakdown of health insurance cov-
erage type by age

61 Normalized by total population of
each age bracket

Breakdown of computer presence and
internet availability by age

15 Normalized by total population of
each age bracket

Breakdown of Bachelor’s degrees
types for the adult population

5 Normalized by total population over
25 years old

Breakdown of language spoken at
home for the population over 5 years
old

37 Normalized by total population over
5 years old
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Table 13: Policy features details (table one of two).

Description Binary or
nonbinary

Religious gatherings exempt from stay at home and safer at home
orders

Binary

Mask mandate enforced by fines Binary
Mask mandate enforced by criminal charge or citation Binary
No legal enforcement of mask mandate Binary
Attempt by state government to prevent local government from
implementing mask mandate

Binary

Alcohol/liquor stores open Binary
Firearms sellers open Binary
COVID-19 not an acceptable reason to request application mail-
in ballot

Binary

Witness or notary signature required for mail-in ballot Binary
Automatic mail-in ballot system in response for COVID-19 Binary
Stay at home order Non-binary
Safer at home order Non-binary
Closure of K-12 schools Non-binary
Closure of day cares Non-binary
Banned visitors from nursing homes Non-binary
Closed nonessential businesses Non-binary
Closed restaurants Non-binary
Closed gyms Non-binary
Closed movie theaters Non-binary
Closed bars Non-binary
Closed casinos Non-binary
Closed bars for a second time Non-binary
Closed movie theaters for a second time Non-binary
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Table 14: Policy features details (table two of two).

Description Binary or
nonbinary

Closed gyms for a second time Non-binary
Closed restaurants for a second time Non-binary
Closed casinos for a second time Non-binary
Public mask mandate Non-binary
Business mask mandate Non-binary
Quarantine mandate for some travelers Non-binary
Quarantine mandate for all travelers Non-binary
Overall eviction moratorium Non-binary
Second overall eviction moratorium Non-binary
Third overall eviction moratorium Non-binary
Freeze initiation of evictions Non-binary
Second freeze initiation of evictions Non-binary
Suspend court hearings for evictions Non-binary
Second suspend court hearings for evictions Non-binary
Freeze enforcement of evictions Non-binary
Second freeze enforcement of evictions Non-binary
COVID-19 hardship policy Non-binary
Second COVID-19 hardship policy Non-binary
CARES act pleading Non-binary
Open with CDC guidance Non-binary
Utilities shutoff moratorium Non-binary
Utilities re-connection Non-binary
Stopped personal visitation in state prisons Non-binary
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Table 15: Number of samples in each iRF model and number of features in each class used.

Climate Census Policy Total
Model Features Features Features Features (Columns) Samples (Rows)

Overall 63 1351 47 1461 3112
Monthly 29 1316 46 1391 23870
March 29 1119 47 1195 793
April 27 1255 45 1327 1769
May 29 1272 47 1348 1860
June 28 1289 46 1363 2123
July 31 1320 46 1397 2637

August 31 1304 44 1379 2718
September 30 1321 43 1394 2833
October 29 1328 44 1401 3001

November 29 1340 45 1414 3073
December 28 1339 46 1413 3063

Total Possible 185/531 1608 48 1841/17091 —

1 Features in overall model/Features in monthly models
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C Chapter 4 Supplementary Information

Table 16: Number of samples and genes in each group of samples in S. cerevisiae. (Table
one of two)

Biological Tag Number of Samples Number of Genes
Amino Acid Metabolism 39 5052
Amino Acid Utilization 495 6166
Carbon Utilization 2331 6576
Cell Aging 51 4815
Cell Cycle Regulation 343 5724
Cell Morphogenesis 26 5998
Cellular Ion Homeostasis 99 6222
Chemical Stimulus 2347 6687
Chromatin Organization 602 6430
Cofactor Metabolism 44 4869
Diauxic Shift 110 6212
Disease 47 4729
DNA Damage Stimulus 509 6460
DNA Replication Recombination
and Repair

37 5704

Evolution 710 6370
Fermentation 846 6463
Filamentous Growth 163 6258
Flocculation 25 4314
Genetic Interaction 287 5581
Genome Variation 20 5008
Heat Shock 938 6314
Histone Modification 417 6607
Lipid Metabolism 81 6314
mRNA Processing 176 6296
Mating 117 6167
Metabolism 13 5615
Metal or Metalloid Ion Stress 127 6437
Mitotic Cell Cycle 425 6069
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Table 17: Number of samples and genes in each group of samples in S. cerevisiae. (Table
two of two)

Biological Tag Number of Samples Number of Genes
Nitrogen Utilization 871 6414
Nutrient Utilization 727 6217
Organelles Biogenesis Structure and
Function

24 3567

Osmotic Stress 828 6880
Oxidative Stress 1069 6874
Oxygen Level Alteration 547 6451
Phosphorus Utilization 561 6461
Ploidy 155 5678
Protein Dephosphorylation 79 6229
Protein Modification 35 4577
Protein Phosphorylation 562 6521
Protein Trafficking Localization and
Degradation

27 5655

Proteolysis 59 5862
QTLs 131 6167
Radiation 95 6183
Respiration 814 6361
Response to Unfolded Protein 380 6329
RNA Catabolism 406 6211
Sporulation 334 6242
Starvation 447 6256
Stationary Phase Entry 191 6335
Stationary Phase Maintenance 689 5710
Sulfur Utilization 392 6382
Synthetic Biology 31 5581
Transcription 1597 6639
Transcriptional Regulation 229 4981
Translational Regulation 36 4767
Ubiquitin or ULP Modification 93 6236
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Table 18: Number of samples and genes in each group of samples in A. thaliana.

Group Label Number of Samples Number of Genes
Group1 1152 21678
Group2 914 21678
Group3 689 21678
Group4 594 21678
Group5 554 21678
Group6 328 21678
Group7 325 21678
Group8 213 21678
Group9 193 21678
Group10 124 21678
Group11 122 21678
Group12 103 21678
Group13 746 21678
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(a) AUnDCG for the integrated S. cerevisiae PEN as D varies.

(b) AUnDCG for the integrated A. thaliana PEN as D varies.

Figure 4: This figure depicts the AUnDCG score for the integrated final PEN in DTI
iRF-LOOP for varying values of D in the WS formula. The optimal value for D in both
organisms is D = 1.
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D Chapter 5 Supplementary Information

Figure 5: This figure shows how the threshold for the STRING PPI network was decided.
The elbow visibly at the experimental score threshold of 800 shows that the edges over 800
are of higher quality, and should be included in the multiplex network.
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Table 19: GO Enrichment for GRIN retained S. cerevisiae genes for the trait number of
cankers.

GO Biological Process S.
cerevisiae
Genes

S. musiva
Retained
Genes

Expected Fold
Enrich-
ment

FDR
P-Value

thiamine diphosphate
biosynthetic process
(GO:0009229)

8 4 .08 49.59 2.16E-02

thiamine diphosphate
metabolic process
(GO:0042357)

8 4 .08 49.59 1.08E-02

thiamine biosynthetic pro-
cess (GO:0009228)

12 4 .12 33.06 1.54E-02

thiamine metabolic process
(GO:0006772)

13 4 .13 30.52 1.66E-02

thiamine-containing
compound biosynthetic
process (GO:0042724)

13 4 .13 30.52 1.43E-02

primary alcohol
biosynthetic process
(GO:0034309)

14 4 .14 28.34 1.59E-02

thiamine-containing
compound metabolic
process (GO:0042723)

15 4 .15 26.45 1.60E-02

alcohol biosynthetic process
(GO:0046165)

70 7 .71 9.92 1.66E-02

organic hydroxy compound
biosynthetic process
(GO:1901617)

92 7 .93 7.55 2.36E-02

alcohol metabolic process
(GO:0006066)

115 8 1.16 6.90 1.48E-02

small molecule biosynthetic
process (GO:0044283)

312 12 3.15 3.81 2.86E-02

small molecule metabolic
process (GO:0044281)

712 20 7.18 2.79 1.90E-02
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Table 20: GO Enrichment for GRIN retained S. cerevisiae genes for the trait cankers per
centimeter (table one of two).

GO Biological Process S.
cerevisiae
Genes

S. musiva
Retained
Genes

Expected Fold
Enrich-
ment

FDR
P-Value

thiamine diphosphate
biosynthetic process
(GO:0009229)

8 4 .04 > 100 7.68E-04

thiamine diphosphate
metabolic process
(GO:0042357)

8 4 .04 > 100 3.84E-04

thiamine biosynthetic pro-
cess (GO:0009228)

12 4 .05 74.69 9.30E-04

thiamine metabolic process
(GO:0006772)

13 4 .06 68.95 9.09E-04

thiamine-containing
compound biosynthetic
process (GO:0042724)

13 4 .06 68.95 7.27E-04

primary alcohol
biosynthetic process
(GO:0034309)

14 4 .06 64.02 7.77E-04

cellular response to salt
stress (GO:0071472)

11 3 .05 61.11 1.09E-02

thiamine-containing
compound metabolic
process (GO:0042723)

15 4 .07 59.75 8.41E-04

phospholipid translocation
(GO:0045332)

15 3 .07 44.81 1.96E-02

lipid translocation
(GO:0034204)

16 3 .07 42.01 2.07E-02

primary alcohol metabolic
process (GO:0034308)

23 4 .10 38.97 3.25E-03

regulation of membrane
lipid distribution
(GO:0097035)

23 3 .10 29.23 3.76E-02

response to salt stress
(GO:0009651)

25 3 .11 26.89 4.53E-02

pyrimidine-containing com-
pound biosynthetic process
(GO:0072528)

34 4 .15 26.36 9.62E-03

pyrimidine-containing com-
pound metabolic process
(GO:0072527)

42 4 .19 21.34 1.63E-02
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Table 21: GO Enrichment for GRIN retained S. cerevisiae genes for the trait cankers per
centimeter (table two of two).

GO Biological Process S.
cerevisiae
Genes

S. musiva
Retained
Genes

Expected Fold
Enrich-
ment

FDR
P-Value

vitamin biosynthetic pro-
cess (GO:0009110)

51 4 .23 17.57 2.44E-02

water-soluble vitamin
biosynthetic process
(GO:0042364)

51 4 .23 17.57 2.32E-02

lipid transport
(GO:0006869)

69 5 .31 16.24 8.74E-03

alcohol biosynthetic process
(GO:0046165)

70 5 .31 16.01 8.41E-03

water-soluble vitamin
metabolic process
(GO:0006767)

56 4 .25 16.01 3.11E-02

vitamin metabolic process
(GO:0006766)

56 4 .25 16.01 2.97E-02

lipid localization
(GO:0010876)

77 5 .34 14.55 1.08E-02

cellular response to
environmental stimulus
(GO:0104004)

62 4 .28 14.46 3.95E-02

cellular response to abiotic
stimulus (GO:0071214)

62 4 .28 14.46 3.80E-02

organic hydroxy compound
biosynthetic process
(GO:1901617)

92 5 .41 12.18 1.96E-02

alcohol metabolic process
(GO:0006066)

115 5 .51 9.74 3.52E-02

phosphorus metabolic pro-
cess (GO:0006793)

661 11 2.95 3.73 2.08E-02
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Table 22: GO Enrichment for GRIN retained S. cerevisiae genes for the trait disease
severity.

GO Biological Process S.
cerevisiae
Genes

S. musiva
Retained
Genes

Expected Fold
Enrich-
ment

FDR
P-Value

phytochelatin biosynthetic
process (GO:0046938)

2 2 .00 > 100 7.55E-02

phytochelatin metabolic
process (GO:0046937)

2 2 .00 > 100 3.77E-02

secondary metabolite
biosynthetic process
(GO:0044550)

2 2 .00 > 100 2.52E-02

zymogen activation
(GO:0031638)

2 2 .00 > 100 1.89E-02

secondary metabolic pro-
cess (GO:0019748)

6 2 .01 > 100 3.51E-02

mitochondrial electron
transport, succinate to
ubiquinone (GO:0006121)

7 2 .01 > 100 3.76E-02

mitochondrial ATP synthe-
sis coupled electron trans-
port (GO:0042775)

39 3 .06 46.54 3.69E-02

ATP synthesis coupled
electron transport
(GO:0042773)

39 3 .06 46.54 3.08E-02

aerobic electron transport
chain (GO:0019646)

39 3 .06 46.54 2.64E-02

respiratory electron trans-
port chain (GO:0022904)

43 3 .07 42.21 3.04E-02

oxidative phosphorylation
(GO:0006119)

45 3 .07 40.33 3.08E-02

electron transport chain
(GO:0022900)

51 3 .08 35.59 3.59E-02
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Table 23: GO Enrichment for GRIN retained S. cerevisiae genes for the trait plant height
(table one of two).

GO Biological Process S.
cerevisiae
Genes

S. musiva
Retained
Genes

Expected Fold
Enrich-
ment

FDR
P-Value

maltose transport
(GO:0015768)

3 3 .01 > 100 1.97E-04

mRNA localization result-
ing in posttranscriptional
regulation of gene expres-
sion (GO:0010609)

2 2 .00 > 100 8.16E-03

oligosaccharide transport
(GO:0015772)

4 3 .01 > 100 2.76E-04

disaccharide transport
(GO:0015766)

4 3 .01 > 100 2.30E-04

negative regulation of Rho
protein signal transduction
(GO:0035024)

5 2 .01 > 100 1.90E-02

maltose metabolic process
(GO:0000023)

14 4 .03 > 100 6.56E-05

regulation of Rho protein
signal transduction
(GO:0035023)

9 2 .02 > 100 4.24E-02

carbohydrate
transmembrane transport
(GO:0034219)

31 5 .07 75.06 3.54E-05

glucosamine-containing
compound biosynthetic
process (GO:1901073)

19 3 .04 73.48 5.42E-03

chitin biosynthetic process
(GO:0006031)

19 3 .04 73.48 4.96E-03

aminoglycan biosynthetic
process (GO:0006023)

19 3 .04 73.48 4.58E-03

disaccharide metabolic pro-
cess (GO:0005984)

27 4 .06 68.95 2.85E-04

amino sugar biosynthetic
process (GO:0046349)

21 3 .05 66.48 5.58E-03

oligosaccharide metabolic
process (GO:0009311)

30 4 .06 62.05 3.66E-04

carbohydrate transport
(GO:0008643)

43 5 .09 54.11 7.93E-05

chitin metabolic process
(GO:0006030)

27 3 .06 51.71 8.64E-03
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Table 24: GO Enrichment for GRIN retained S. cerevisiae genes for the trait plant height
(table two of two).

GO Biological Process S.
cerevisiae
Genes

S. musiva
Retained
Genes

Expected Fold
Enrich-
ment

FDR
P-Value

aminoglycan metabolic pro-
cess (GO:0006022)

27 3 .06 51.71 8.19E-03

glucosamine-containing
compound metabolic
process (GO:1901071)

28 3 .06 49.86 8.60E-03

amino sugar metabolic pro-
cess (GO:0006040)

30 3 .06 46.54 9.92E-03

proton transmembrane
transport (GO:1902600)

99 5 .21 23.50 8.89E-04

inorganic cation
transmembrane transport
(GO:0098662)

164 5 .35 4.19 5.84E-03

cellular carbohydrate
metabolic process
(GO:0044262)

139 4 .30 13.39 3.56E-02

inorganic ion
transmembrane transport
(GO:0098660)

180 5 .39 12.93 7.99E-03

cation transmembrane
transport (GO:0098655)

207 5 .44 11.24 1.14E-02

ion transmembrane trans-
port (GO:0034220)

260 6 .56 10.74 4.59E-03

cation transport
(GO:0006812)

246 5 .53 9.46 2.35E-02

ion transport (GO:0006811) 344 6 .74 8.12 1.01E-02
transmembrane transport
(GO:0055085)

459 6 .99 6.08 4.04E-02
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Table 25: GO Enrichment for GRIN retained S. cerevisiae genes for all four traits (table
one of two).

GO Biological Process S.
cerevisiae
Genes

S. musiva
Retained
Genes

Expected Fold
Enrich-
ment

FDR
P-Value

maltose transport
(GO:0015768)

3 3 .02 > 100 5.09E-03

oligosaccharide transport
(GO:0015772)

4 3 .03 98.64 5.06E-03

disaccharide transport
(GO:0015766)

4 3 .03 98.64 4.72E-03

aminophospholipid translo-
cation (GO:0140331)

5 3 .04 78.91 7.05E-03

sterol import (GO:0035376) 6 3 .05 65.76 9.35E-03
thiamine diphosphate
biosynthetic process
(GO:0009229)

8 4 .06 65.76 3.46E-03

thiamine diphosphate
metabolic process
(GO:0042357)

8 4 .06 65.76 2.30E-03

aminophospholipid
transport (GO:0015917)

7 3 .05 56.37 1.14E-02

thiamine biosynthetic pro-
cess (GO:0009228)

12 4 .09 43.84 4.97E-03

thiamine metabolic process
(GO:0006772)

13 4 .10 40.47 5.39E-03

thiamine-containing
compound biosynthetic
process (GO:0042724)

13 4 .10 40.47 4.62E-03

maltose metabolic process
(GO:0000023)

14 4 .11 37.58 4.59E-03

primary alcohol
biosynthetic process
(GO:0034309)

14 4 .11 37.58 4.13E-03

thiamine-containing
compound metabolic
process (GO:0042723)

15 4 .11 35.07 4.73E-03

phospholipid translocation
(GO:0045332)

15 4 .11 35.07 4.34E-03
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Table 26: GO Enrichment for GRIN retained S. cerevisiae genes for all four traits (table
two of two).

GO Biological Process S.
cerevisiae
Genes

S. musiva
Retained
Genes

Expected Fold
Enrich-
ment

FDR
P-Value

lipid translocation
(GO:0034204)

16 4 .12 32.88 4.98E-03

regulation of membrane
lipid distribution
(GO:0097035)

23 4 .17 22.87 1.19E-02

primary alcohol metabolic
process (GO:0034308)

23 4 .17 22.87 1.13E-02

phospholipid transport
(GO:0015914)

27 4 .21 19.48 1.80E-02

disaccharide metabolic pro-
cess (GO:0005984)

27 4 .21 19.48 1.72E-02

oligosaccharide metabolic
process (GO:0009311)

30 4 .23 17.54 2.39E-02

carbohydrate
transmembrane transport
(GO:0034219)

31 4 .24 16.97 2.58E-02

pyrimidine-containing com-
pound biosynthetic process
(GO:0072528)

34 4 .26 15.47 3.43E-02

lipid transport
(GO:0006869)

69 7 .52 13.34 6.60E-03

lipid localization
(GO:0010876)

77 7 .59 11.96 3.27E-03

sulfur compound
biosynthetic process
(GO:0044272)

76 6 .58 10.38 9.08E-03
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