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Abstract

Artist Marcel Duchamp once said, “The painter is a medium who doesn’t realize

what he is doing. No translation can express the mystery of sensibility, a word,

still unreliable, which is nonetheless the basis of painting or poetry, like a kind of

alchemy” (Moffitt, 2012, p. 7). Just as there is a puzzling aspect of creating art

or writing poetry, the aesthetic quality of mathematical proofs is a mysterious and

ill-defined concept. Like many other subjective terms, it can be difficult to reach

a consensus on what elegance means in a mathematical context. In this thesis, I

try to better understand faculty and graduate students’ perceptions of elegance in

mathematical proofs. To do this, I conducted an international cross-case analysis that

involved participants from three groups: graduate students studying mathematics

in the United States, graduate students studying mathematics in Ghana, Africa,

and research faculty of mathematics in the United States. My goals in this thesis

were to learn how participants perceive elegance in proofs, better understand how

participants’ perceptions of elegance compare to their perception of other constructs,

such as surprise, creativity, and rigor, and determine which proof constructs our

participants seem to value most. I gathered data from each group and compared

these three goals amongst all three groups.

vi



Table of Contents

1 Introduction 1

1.1 The Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims of This Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The R.E.P.S. Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Review of Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Literature: Culture and Mathematics Education . . . . . . . . 7

2.1.2 Literature: Mathematical Proofs . . . . . . . . . . . . . . . . . 13

2.1.3 Literature: Elegant Proofs . . . . . . . . . . . . . . . . . . . . 17

2.2 Theoretical Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Methodological Theoretical Framework . . . . . . . . . . . . . 23

2.2.2 Substantive Theoretical Framework . . . . . . . . . . . . . . . 26

3 Methods 30

3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Results 40

4.1 Results: Trustworthiness . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Pilot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



4.1.2 Reliability Interviews . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 Member Checking . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Results: Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Ghana, Africa Graduate Student: Nyarko Mystery . . . . . . . 46

4.2.2 U.S. Graduate Student: Taylor Illusion . . . . . . . . . . . . . 55

4.2.3 U.S. Faculty: Dr. Pseudonym . . . . . . . . . . . . . . . . . . 64

4.2.4 U.S. Faculty: Dr. Alias . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Results: Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 Ghana Graduate Students: Survey Results . . . . . . . . . . . 86

4.3.2 U.S. Graduate Students: Survey Results . . . . . . . . . . . . 88

4.3.3 U.S. Faculty: Survey Results . . . . . . . . . . . . . . . . . . . 95

4.4 Results: Take-Home Tasks . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.1 Proving the R.E.P.S. Problem . . . . . . . . . . . . . . . . . . 101

4.4.2 Responding to Proofs . . . . . . . . . . . . . . . . . . . . . . . 108

4.4.3 Correcting Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Results: Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.5.1 RQ1: Perceptions of Elegance in Mathematical Proofs . . . . . 122

4.5.2 RQ2: Elegance Compared to Other Constructs . . . . . . . . . 129

4.5.3 RQ3: Constructs Valued . . . . . . . . . . . . . . . . . . . . . 133

5 Discussion 137

5.1 Discussion of Elegance and Aesthetics . . . . . . . . . . . . . . . . . . 137

5.2 Implications for Communicating Mathematics Across Cultures . . . . 140

5.3 Implications for the Teaching and Learning of Proofs . . . . . . . . . 141

5.4 Implications for Broadening Participation in Mathematics . . . . . . 143

5.5 Implications for Further Educational Research . . . . . . . . . . . . . 144

Bibliography 145

A Supplementary Tables 159

viii



B Mathematical Background 161

B.1 Cartesian Coordinate System . . . . . . . . . . . . . . . . . . . . . . 161

B.1.1 Slopes of Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 162

B.1.2 Perpendicular Lines . . . . . . . . . . . . . . . . . . . . . . . . 162

B.1.3 Equations of Lines . . . . . . . . . . . . . . . . . . . . . . . . 162

B.2 Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.2.1 Similar Triangles . . . . . . . . . . . . . . . . . . . . . . . . . 164

B.2.2 Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . 164

B.2.3 Trigonometric Ratios . . . . . . . . . . . . . . . . . . . . . . . 164

B.2.4 Law of Cosines . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.2.5 Sum-of-Angles Identities . . . . . . . . . . . . . . . . . . . . . 166

B.3 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.3.1 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.3.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.4 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.4.1 Vector Projections . . . . . . . . . . . . . . . . . . . . . . . . 167

B.4.2 Dot Products . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.5 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.5.1 Euler’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.5.2 Solving Complex Equations . . . . . . . . . . . . . . . . . . . 169

C Instruments 171

C.1 Content of Informed Consent . . . . . . . . . . . . . . . . . . . . . . 171

C.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.1.2 Purpose of Study . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.1.3 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C.1.4 Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C.1.5 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

C.1.6 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . 173

ix



C.1.7 Contact Information . . . . . . . . . . . . . . . . . . . . . . . 174

C.1.8 Voluntary Participation . . . . . . . . . . . . . . . . . . . . . 174

C.1.9 Consent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.1.10 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

C.2 Meeting 1 Interview Protocol . . . . . . . . . . . . . . . . . . . . . . 175

C.3 Take-Home Task 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.4 Meeting 2 Interview Protocol . . . . . . . . . . . . . . . . . . . . . . 179

C.5 Take-Home Task 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.5.1 Proof A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.5.2 Proof B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

C.5.3 Proof C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

C.5.4 Proof D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

C.5.5 Proof E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

C.6 Meeting 3 Interview Protocol . . . . . . . . . . . . . . . . . . . . . . 197

C.6.1 Rating Questionnaire . . . . . . . . . . . . . . . . . . . . . . . 198

C.7 Take-Home Task 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

C.7.1 Responding to Instructor Questionnaire . . . . . . . . . . . . . 203

C.8 Meeting 4 Interview Protocol . . . . . . . . . . . . . . . . . . . . . . 204

C.9 Reliability Interview Protocol . . . . . . . . . . . . . . . . . . . . . . 205

Vita 207

x



Chapter 1

Introduction

1.1 The Landscape

Everyone has experienced amazement or wonder. An elementary school student may

see a science experiment that completely baffles them. How did that volcano just

explode? Where did the lava come from? What is it made out of? This curiosity

and awe may appear naive to the science teacher, whose experiences, in science and

in life, have demystified this volcanic chemical reaction. This scenario is a type of

alchemy, with the teacher playing the starring role of the alchemist. Perhaps alchemy

can be deceitful in a purposeful and positive way, creating an urge within the student

to ask why, leading them to want to learn more. Within mathematics, when students

see a particular argument or proof method for the first time, they may feel similar

wonder and curiosity. A particularly elegant proof may seem magical. However, as

these students grow in mathematics and see more and more proofs, will they become

immune to alchemy? Will they still see and appreciate proof elegance in the same

way? To reveal more about what phenomena surround perceptions of proof elegance,

this study investigates how graduate students and faculty describe proof elegance and

to what extent they value it.

1



As students become more familiar with the field of mathematics, professors often

strive to pass the role of the alchemist on to their students. As they pass this torch,

they may use terms such as elegance, rigor, and creativity. As a result, outside-

the-box thinking may gain favor over brute-force proof techniques, encouraging

students to consider innovative and nontraditional solution paths (Inglis and Alcock,

2012). However, graduate mathematics students may not understand or agree with

what their professors mean by elegance in proofs (Tjoe, 2015). This unintentional

contrast could confuse or misguide students, ultimately hinder their learning and

development of proof-writing expertise (Clark, 2022). In addition, there may be

barriers of privilege. For instance, international learners may face more challenges

with subjective descriptive language when it is used without an explicated concensus

on meaning. As global citizens, greater knowledge could better support mathematics-

specific cross-cultural values and descriptors.

As a step toward better understanding human perceptions of proof aesthetics,

this study will investigate what graduate math students and faculty value in proofs.

Some mathematicians consider certain values to be well-known and canonical for proof

writing, but these may not be clear for all mathematics learners, making proof writing

more enigmatic than it needs to be (Dawkins and Weber, 2017). Little research has

been conducted on the nature of how students and faculty members value various

qualities of proofs, such as elegance and rigor. Knowledge of what they value in

proofs could be key for motivating students to persist in mathematical fields.

1.2 Aims of This Study

For this study, I conducted an embedded type-4 case study (Yin, 2009), which has

both multiple cases and multiple units within each case, which are shown in Figure 1.1.

The participants included eight mathematics graduate students, three from a large

public research institution in Ghana, Africa, and five from a large research

2



Context: Ghana 
Graduate Students in 

Mathematics

Context: United States 
Graduate Students in 

Mathematics

Context: United States 
Research Faculty in 

Mathematics

Case: Perceiving and 
Judging Proof Elegance

Case: Perceiving and 
Judging Proof Elegance

Case: Perceiving and 
Judging Proof Elegance

Perceptions of Elegance 
in Mathematical Proofs

Comparisons of 
Perceptions of Elegance 
to Perceptions of other 
Constructs, like Rigor

Value Placed on 
Elegance or other 

Constructs, like Rigor

C
ross-C

ase A
nalysis

Perceptions of Elegance 
in Mathematical Proofs

Comparisons of 
Perceptions of Elegance 
to Perceptions of other 
Constructs, like Rigor

Value Placed on 
Elegance or other 

Constructs, like Rigor

Perceptions of Elegance 
in Mathematical Proofs

Comparisons of 
Perceptions of Elegance 
to Perceptions of other 
Constructs, like Rigor

Value Placed on 
Elegance or other 

Constructs, like Rigor

Figure 1.1: This study is an embedded type-4 design case study (Yin, 2009), which
has both multiple cases and multiple units within each case.
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institution in the United States and three mathematics research professors from a

large public research institution in the United States. Each participant engaged in

four interviews, and completed three take-home tasks, which asked them to perceive

and judge elegance in mathematical proofs. After each participant discussed their

mathematical background and described what elegance and rigor meant to them,

they were presented with the R.E.P.S. Problem, shown in Section 1.3, which involves

proving the sum of the areas of two quadrilaterals is equal to the area of another

quadrilateral. Each participant attempted to construct their own proof before seeing

five sample proofs, presented as work of five fictional students. Participants gave

feedback on these proofs and rated them based on elegance and various other

descriptive constructs such as rigor and creativity. In another task, they responded,

as students, to comments from a fictional professor. In all, each participant played

roles of professor, judge, and student.

In this study, I aim to inform the following questions:

• Research Questions within each Case:

– RQ1: How do participants perceive elegance in mathematical proofs?

– RQ2: How do participants’ perceptions of elegance compare to their

perceptions of other constructs, such as surprise, creativity, and rigor?

– RQ3: Which proof constructs do participants seem to value most?

• Cross-Case Analysis: How do the results from RQ1, RQ2, and RQ3 compare

and contrast across three contexts:

– Graduate students studying mathematics in Ghana, Africa

– Graduate students studying mathematics in the United States

– Research faculty of mathematics in the United States

4



1.3 The R.E.P.S. Problem

The R.E.P.S. (Rigor and Elegance in Proof Strategies) Problem is a mathematics

problem written by Jeneva Clark. The R.E.P.S. problem, shown in Figure 1.2,

provides three equalities of side lengths, AB = AF , FJ = AI, and AL = IE, and

also provides information about right angles shown. The problem asks the reader to

prove that Area(ABCD) = Area(ALMG) + Area(FGKJ).

5
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D

G

Given:

AB = AF

FJ = AI

AL = IE

Prove that Area(ABCD) = 
Area(ALMG) + Area(FGKJ)

Figure 1.2: The R.E.P.S. problem gives that AB = AF , FJ = AI, and
AL = IE and the right angles shown in this diagram, and asks readers to prove
that Area(ABCD) = Area(ALMG) + Area(FGKJ).
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Chapter 2

Background

This chapter will first present a review of current related literature and then the

theoretical perspectives for this study. In addition, for a summary of the mathematical

foundation for the R.E.P.S. problem, see Appendix B.

2.1 Review of Literature

This section first discusses the cultural contexts relevant to this study, such as how

Ghana and United States graduate students study geometry and proofs. This section

also describes the current literature on proofs, including their significance, research

about how they are learned, and research about how they are taught. Finally, this

section discusses the aesthetics of mathematical proofs.

2.1.1 Literature: Culture and Mathematics Education

What we consider to be mathematics did not develop overnight; many humans worked

and shared ideas to grow the field. Understanding origins of theorems and proofs

makes learning mathematics richer. Cultural contexts elucidate the motivation of

ideas, and we are able to dive deeper into the effects culture has had in mathematics

over time (Grabiner, 2012).

7



Awareness of diverse mathematical practices and values has progressed mathemat-

ics as a discipline. For instance, the ancient Greeks started with a set of visual proofs,

but they also wanted to prove ideas that were not apparent only in pictures (Grabiner,

2012). These mathematicians’ ideas were influenced by others’, such as the Babylo-

nians’ and the Egyptians’ (Aczel, 2011) and were also influenced by contemporary

philosophers’ argumentation strategies. Connecting ideas from different people and

different areas allowed the Greeks, such as Euclid, Pythagoras, and Thales, to form

logical proofs in geometry, founding two-dimensional geometry (Grabiner, 2012; Aczel,

2011). By studying their own culture’s mathematics, as well as that of the cultures

around them, they developed fundamental ideas of geometry still quoted in secondary

classrooms around the globe.

In essence, mathematics was not formed in a “cultural or intellectual vac-

uum” (Grabiner, 2012). In his article “Aesthetics for the working mathematician,”

Borwein (2006) emphasizes that mathematics “is part of and fits into human culture”

(p. 39). Just as culture has influenced mathematical discovery, it also influences

mathematics education curricula. In particular, mathematics students may learn

math differently depending on where they are from as well as the culture around

them. To better understand how learning mathematics may have looked different

for United States participants and Ghanaian participants in this study, the following

sections will present some known differences and similarities in relevant mathematics

education.

United States Education

The U.S. has a longer history of compulsory education than Ghana. Common schools

were introduced in the United States in the 1830’s as schools that would be freely

available to all children and operated with government funds. Advocates for common

schools connected this to broader literacy, morality, and productivity among citizens

and national economic strength (Kaestle, 1983). Since then, the U.S. states have

gradually taken on the responsibility for providing free and accessible education for

8



all, and degree completion rates have steadily increased. In 1940, 24.1% of adults

age 25 and over had completed a high school degree, whereas, by 2017, this had risen

to 89.6% (Jordan, 2017). The secondary curriculum has progressed toward more

standards and uniformity throughout the decades with national education reform

movements. The most recent curricular unification effort in the U.S., the 2010

Common Core standards (NGACBP-CCSSO), which was adopted by many states,

is a backdrop for what geometry concepts and proof strategies may be considered

common knowledge among U.S. faculty and graduate students, such as those who

participated in this study.

Beyond secondary curriculum and undergraduate curriculum, graduate work in

mathematics also has standards upheld within the academic community. No uniform

expectations have been set for what mathematics graduate programs require as

background knowledge for their incoming students; however, The Math Alliance, a

consortium of over 60 institutional members, has agreed upon some recommendations

for what mathematical content undergraduate students should learn before beginning

graduate school in mathematics (NADSMS, 2022). Those recommendations do list

undergraduate proofs courses, but to not list geometry. Thus, the knowledge elicited

by the R.E.P.S. problem is most related to the geometry learned in U.S. secondary

curriculum and the proof strategies learned in U.S. undergraduate curriculum. For

this reason, I will more closely examine the secondary U.S. geometry curriculum,

rather than the tertiary, in Subsection 2.1.1. Although I am studying U.S. graduate

students’ perceptions of elegance in proofs, here I am reviewing elements of secondary

curriculum because this U.S. geometry curriculum was most likely to have been the

standards used in the classrooms where this study’s graduate student participants

learned geometry.

The current context for United States research institutions’ mathematics depart-

ments is one of great support. Most U.S. graduate students seeking mathematics

graduate degrees are awarded funding and tuition waivers and fulfill research

and/or teaching responsibilities. Teaching assistant positions benefit institutions

9



by providing inexpensive teaching power to meet general undergraduate education

demands. Also, the National Science Foundation provides funding for many U.S.

math graduate students through the Division of Graduate Education (Alongi, 2022).

Other nations, especially those still under development, may not see comparative

levels of support for developing mathematics researchers.

The Carnegie Foundation for the Advancement of Teaching and the American

Council on Education maintains three classifications for U.S. institutions that

grant doctoral degrees: those with ‘highest,’ ‘higher,’ and ‘moderate’ research

activities (IUCPR, 2021). Those institutions with ‘highest’ research activities are

commonly referred to as “research institutions” and its tenure-track faculty are

“research faculty,” such as those who participated in this study.

Ghana, Africa, Education

In 1957, Ghana gained independence from British Colonial rule, and in 1996, Ghana

implemented the Free Compulsory Universal Basic Education (Akyeampong, 2009).

Since compulsory education is young for Ghana, educational resources and the

workforce of teachers are limited. Some classes even convene outdoors due to a

shortage of classrooms (Korvey, 2021). Ghana’s most recent curricular document

from the Ministry of Education for secondary mathematics is a very detailed document

and is being implemented in current Ghanaian classes (CRRD-MOE, 2010). Their

curriculum includes similar geometry theorems as are seen in the U.S. Common Core

curriculum, but instead of proving the theorems, Ghana’s students are led to discover

the theorems through constructions with straight edges and compasses. Such a

radically hands-on pedagogical approach, focusing on concrete rather than abstract,

seems amenable to many hands-on components of Ghanaian culture and has been

documented to support teacher practices in Ghana (Sitabkhan and Ampadu, 2021)

and in the U.S. (Clark and Clark, 2020). Africa-based mathematics education research

is growing, but the growth is primarily in lower grades. Bonyah and Clark assert

that, “Mathematics educators should take ownership as stakeholders and identify the
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missing links needed to connect the ideal reformed mathematical classroom to the

immediate needs in Ghana” (2022, p. 8). In the mission to broaden mathematics

research to developing nations like Ghana, more studies should examine mathematics

education in Ghana at higher levels, such as in graduate schools.

In Ghana, finding funding for graduate studies in mathematics is more difficult

than in the U.S. After a Ghanaian student earns an undergraduate degree from a

public university, they must devote one year to national service, and this service can

be fulfilled by serving as a teaching assistant in mathematics. A very small monthly

stipend barely pays for food, and universities do not offer housing or funding to

national service workers. Because of this, graduate teaching assistants in Ghana

have been known to live on the streets or on cots inside their university’s office

space (Brown, 2011).

U.S. to Ghana Curricular Comparisons

This section will present a comparison of curricular documents and standardized

exam from Ghana and from the United States to summarize some salient differences

and similarities between the teaching of geometry proofs in these two nations. For

example, in U.S. secondary schools, some theorems about lines, angles, triangles, and

parallelograms are proven using deductive reasoning (NGACBP-CCSSO, 2010). In

Ghana, however, geometry is primarily taught using constructions with a straight edge

and a compass (CRRD-MOE, 2010). Nevertheless, formal proofs in Ghana appear on

the university entrance exam, the West African University Entrance Exam (WAEC,

2022), indicating that the students who go on to become graduate students in

mathematics have likely encountered formal geometry proofs in their background.

In Appendix A, Table A.1 shows two side-by-side lists of the U.S. and Ghana proofs

that the participants in this study likely encountered in their secondary education.

Figure 2.1 shows a comparison-contrast Venn diagram for the theorems this

study’s participants likely encountered, which are listed in more detail in Appendix A

Table A.1. Figure 2.1 shows that three of the theorems’ proofs were likely seen
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Figure 2.1: Each of the proofs mentioned in Table A.1 is represented by a symbol
according to its geometric topic. See the legend in Figure 2.2.
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by all participants, regardless of national origin. The shapes of the icons in

Figure 2.1 indicate whether the theorems are primarily statements about circles

(circular icons), angles (wedge icons), triangles (triangular icons), quadrilaterals

(parallelogram icons), or lines (intersecting lines icons). Thus, one can see from

this comparison that Ghanaian mathematics graduate students may have had

more experience proving theorems about circles and angles, while United States

mathematics graduate students may have had more experience proving theorems that

are primarily statements about quadrilaterals, triangles, and lines. Of course, these

proofs are not all equivalent in factors such as complexity; for more detail, Figure 2.2

shows a legend to this Venn Diagram, illustrating which theorems are shown in

overlapping and non-overlapping regions. In summary, the types of geometry proofs

likely to have been seen by U.S. versus Ghanaian mathematics graduate students

seem to be diverse; however, whether such divergences would influence students’

perceptions of mathematical proofs’ elegance or rigor is unknown. More studies, like

this cross-case analysis, need to be conducted to inform the degree to which culture

influences mathematical perceptions and judgments.

2.1.2 Literature: Mathematical Proofs

Significance of Proofs

Although exposure to mathematics is practically universal, not everyone may read

or write a mathematical proof in their lifetime. This has led some to question and

investigate the purpose of mathematical proofs in education (Weber, 2012; Hemmi,

2010). Philosophers and mathematicians agree that proofs are a crucial part of

mathematics (Hanna and Barbeau, 2008), but the rationale for that importance is

disputable. Some believe that the only purpose of a proof is to provide evidence that a

claim is true. However, many argue that proofs provide more than just an indication

of truth for their readers (Hanna and Barbeau, 2008). For instance, proofs can

provide their readers with thorough explanations of theorems and claims
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(Weber, 2012). Also, by considering different perspectives and approaches,

readers can make connections with other mathematical concepts and form a deeper

understanding of the ideas (de Villiers, 2020; Zaslavsky et al., 2012). Making

connections amongst mathematical concepts can be enlightening when learning how

to write proofs, and instructors often emphasize connections when teaching students

how to write proofs (Cabassut et al., 2012). Indeed, the value of a proof is multifacted,

but more research is needed to inform the field of mathematics education about what

value in proofs is perceived by students and by faculty.

Learning Proofs

Learning to write proofs is a landmark for mathematics students, which can resemble

a rite of passage, especially for those interested in mathematics as a career (Clark

and Lovric, 2008; Yopp, 2011). When students begin seeing proofs and learning how

to write them, mathematics can become a more powerful and insightful subject to

them (Weber, 2001). During this transition, the main focus of mathematics changes

from a more computationally heavy arena, where the goal is to simply solve a problem,

to a more formal place that requires deep understanding of definitions and theorems

as well as logical reasoning skills (Seldon, 2012). This is often a significant leap

for students, and learning to understand and write proofs can present challenges for

students at all levels.

In the United States, most students first see proofs in high-school geome-

try (NGACBP-CCSSO, 2010). Although some secondary education tasks are not

formal proofs, the inclusion of proofs in the curriculum gives students a taste of

what future mathematics courses may involve, while providing guidance appropriate

for their grade level. Exposure to the concept of a mathematical proof can ignite

students’ curiosity about why other principles in mathematics may be true and how

students might justify them.

For students who go on to study mathematics at the undergraduate level, they

often learn proof-writing skills in an introduction to proofs course, learning to write
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more formal arguments based on definitions and theorems (Melhuish et al., 2022;

Weber, 2010; Miller et al., 2018; Seldon, 2012). Prior research has examined how

students learn to recognize validity of proofs (Powers et al., 2010; Selden and Selden,

2003; Shongwe, 2021) to use strategies in proof construction (Weber, 2001; Zazkis and

Zazkis, 2016), to be aware of proof writing norms (Dawkins and Weber, 2017), to read

and comprehend proofs (Demeke, 2010; Roy et al., 2017; Mejia-Ramos et al., 2012;

Davies et al., 2020; Inglis and Alcock, 2012; Sowder and Harel, 2003), to use diagrams

in proofs (Samkoff et al., 2012), and to discuss and critique proofs (Bleiler-Baxter and

Pair, 2017; Kim and Ju, 2012). Viholainen et al. explains that in undergraduate-level

proof classes, “creative reasoning and the invention of new ideas are often required

instead of building on imitative reasoning or ready-made examples or step-by-step

algorithms” (2019, p. 148). Mathematics education researchers have made some

progress in establishing rubrics for such creativity (Savic et al., 2017); however,

more research needs to be done to inform how such innovation in proving can be

developed within students, and whether creativity in proving is a reasonable aim for

undergraduate or graduate learners of mathematics (Regier and Savic, 2020).

Teaching Proofs

Many students find learning to write proofs challenging because they are funda-

mentally different from the computationally-focused courses students have taken

before (Weber, 2001). During this time, students are not only learning the basics

of proof writing, but they are also often learning new mathematical concepts and

forming connections with concepts learned in the past (Yan, 2019). Professors must

take great care when considering how to present this material to their students.

Students’ knowledge of proof is greatly influenced by the math classes they attend

and the lectures they hear (Lai and Weber, 2013). With this in mind, professors

plan how they will teach their courses to make theoretical ideas approachable for

beginning students, which is a nontrivial task (Quinn, 2012). Some instructors suggest

focusing on proof comprehension instead of proof construction (Hodds et al., 2014) or
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presenting multiple methods or arguments to a particular problem in class (Dreyfus

et al., 2012). Finding ways to help students develop proof writing skills is a critical

aim for mathematics education.

In the process of teaching proofs, instructors impact their students’ understanding

of proofs through their feedback. Following instructor feedback and learning from

mistakes is an instrumental part of learning proof writing (Kontorovich, 2022). Some

professors believe students should learn that making mistakes is an acceptable part

of the process of writing proofs. Leron and Ejersbo (2021) believe that there are

“good errors in mathematics” (p. 753). They explain that some of the best teaching

methods for these courses are those that take these mistakes and transform them

into new questions to consider or new topics to study. Since mistakes in proofs

are unavoidable, educational researchers and instructors must also consider how

professors score students’ work. Whether the instructor decides to focus only on

developing arguments or more on correct notation and wording, these choices will

impact their students. The scores they assign and comments they give shape how

students see what is right or wrong in a proof, and it also conveys to them what

their instructors, as well as other mathematicians, value in proofs (Miller et al.,

2018). The education of graduate students, which is initial molding of proof-writing

mathematicians, can impact how they think about and write proofs throughout their

careers.

2.1.3 Literature: Elegant Proofs

In Terrance Tao’s piece “What is Good Mathematics?”, he describes the concept of

mathematical quality as a construct with many dimensions. He states, “the problem

of evaluating mathematical quality, while important, is a hopelessly complicated one”

(2007, p. 626). This lead us to a few questions. First, what does Tao mean by

mathematical quality? What are its many dimensions? Why is it so difficult to
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evaluate? These are some questions I hope to inform in this section and through this

study.

Aesthetics

With aesthetics, viewpoints vary widely. For instance, two colleagues may disagree

about the appeal of a painting. Multifarious factors, such as upbringing, education,

and past experience, influence each individual’s art appreciation. These coworkers

might also find common ground as they admire the painting, without pressure to be

right or wrong. The subjective nature of decor preferences may be harmless, but

in academic fields where ideas are assessed based on subjective terms, ambiguity of

meaning could bring dilemmas. However, if aesthetic aspects of proofs were the topic

of squabbles, perhaps it would heighten engagement and provoke discussion. Using

a subjective descriptor, such as elegant, to describe a mathematical proof, may bring

both constraints and affordances to graduate education in mathematics.

One possible way of describing mathematical quality is by considering the

aesthetic properties of mathematics. Similar to what Tao asserts above, others have

noted that relating mathematics to aesthetic features can be a tough task (Goffin,

2019). The term aesthetic stems from the Greek terms aisthanomai, which means

“to perceive,” and aisthesis, which means “sensorial perception” (Pimm, 2006).

Mathematicians often find themselves reviewing their work based on such perceptive

qualities (Montano, 2012), whether they realize it or not. This has led to some

controversy, especially for those who believe that aesthetics are subjective (Goffin,

2019).

Part of this controversy arose from the ways of thinking that pervade Western

culture (Montano, 2014). More specifically, in The Two Cultures, Snow (2012)

denounces the dichotomous separation of the sciences versus the arts and argues that

the stereotypical divide hinders problem solving, but nonetheless many acknowledge

that this arts/sciences split still greatly influences western thought and implications

for aesthetics in mathematics (Massey, 2019; Montano, 2014). Using either-or logic

18



with regards to arts and sciences is a symptom of a one-dimensional perspective of

mathematical quality. Thinking back to its origins, ancient Greek philosophers often

classified inquiries concerning aesthetics as those concerning axiology, or the theory of

values or appreciation (Sinclair, 2009), and artists and scientists may value different

qualities in their own work. False dichotomies often arise from over-simplifications

of multi-dimensional constructs. Many believe that the ideas of artists and scientists

rarely mingle (Montano, 2014), and this common way of thought influences the

cultures of mathematics communities. Whether common Western perspectives are

naive or well-founded, their inescapable influence leaves us to wonder: Do aesthetics

actually belong in mathematics?

The work of a mathematician can be far-reaching and impel advancement of the

field while also being described as messy or ugly (Waxman, 2021). Others agree

that a proof can completely lack aesthetic value, but still hold supreme mathematical

value (Harré, 1958). These positions stress that proofs do not have to be aesthetically

pleasing to be valuable in mathematics. However, some mathematicians do appreciate

aesthetics in their work, but prefer to focus on the aesthetics of their journey rather

than the aesthetics of their results. What is meant by an aesthetic journey is not clear,

just as the specific meaning of aesthetics within mathematics. To clarify, Sinclair

(2002) provides the example of the proof of Fermat’s Last Theorem by Andrew Wiles.

Many would agree that his proof lacks elegance and simplicity, yet anyone who has

spoken to him about the process he experienced to show this result would recognize

its fulfilling, aesthetic value (Sinclair, 2002). Beyond this famous existence proof of

an aesthetic mathematical journey, there is minimal research about this phenomenon,

and more studies should be conducted to harness any motivational power aesthetics

may lend to the field of mathematics.

Aesthetic experiences may play a starring role in the work of mathematics, with

proofs specifically, in a manner that guides mathematicians in their work. Johnson

and Steinerberger (2019) claim that these experiences lead mathematicians to truth.

Such viewpoints are reminiscent of three stated roles of aesthetics: evaluative,
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generative, and motivational (Chen, 2017). This framework of three roles provokes the

idea that evaluation, looking back on a work, is not the only function of aesthetics in

mathematics. Generation and motivation are more about looking toward the future

than toward the past. As Sinclair (2002) says, aesthetics may be used to prompt

students to choose certain problems, lead them to results, and help them discover the

results’ importance within mathematics. More research needs to be conducted about

these forward-gazing functions of aesthetics in mathematics.

Pleasure

The often heard phrase aesthetically pleasing describes experiences that yield

satisfaction to human senses, such as art satisfying the eyes or music satisfying the

ears. As human beings, we long for pleasure (Pimm and Sinclair, 2006). Some see this

inborn drive for pleasure as an evolutionary advantage that has persisted within our

species. Our human survival and reproductive instincts often influences our aesthetic

partiality (Johnson and Steinerberger, 2019). Something, even a mathematical proof,

that possesses aesthetic properties may be more satisfying to our senses because of its

historical adaptability for survival, or possibly its similarity to some other adaptable

trait.

Everyone can think back to a time when they solved a problem or met a goal.

They put in time and effort, and they finally completed the task at hand. This is often

a satisfying and pleasurable moment for the person finally experiencing completion.

Pimm and Sinclair (2006) compare this to what painters often feel, described as a

“pleasure alarm” (p. 81), a sensation arguably similar to what mathematicians sense

when they find a solution. When this alarm sounds, it signals that “what’s been

found works, is coherent and, one might even say, aesthetically pleasing” (p. 81).

For the average person, mathematics might not be seen as satisfying or pleasurable,

but for many mathematicians, it can be. These aesthetic experiences are often

described as moments where mathematicians uncover results, feel pleasure and

satisfaction, and gain new appreciations for the tools they used (Sinclair, 2002). There
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seem to be self-intersecting relationships between pleasure, aesthetics, and human

sensory perceptions, and the roles they play in motivating, generating, and evaluating

mathematical work. Adding to this web of ideas, mathematicians in particular often

use the adjectives beautiful and elegant to describe mathematics. More studies need

to be conducted to develop theories that make connections among these ideas more

explicit.

Beauty

Beauty is an attribute that some believe sets mathematics apart from other sciences

(Sigler et al., 2016). Hardy (1941) famously said,

The mathematician’s patterns, like a painter’s or the poet, must be

beautiful; the ideas, like the colors or the words, must fit together in

a harmonious way. Beauty is the first test: there is no permanent place

in this world for ugly mathematics.

This topic of mathematical beauty has been discussed by many, but it still remains

fuzzy (Montano, 2014).

Many mathematicians have called Euler’s identity, eiπ +1 = 0, the most beautiful

equation in mathematics (Montano Juarez, 2020). Mullins (2006) explains that

this equation intertwines the contrasting subjects of geometry and algebra using

foundational ideas in mathematics. Ideas that make connections between different

branches of mathematics are described by Montano as enlightening (2012, p. 22),

and are possibly perceived as beautiful through in a cognitive sense, rather than

a physical sense such as sight, sound, smell, taste or touch. Ernest (2015) argues

that mathematical beauty “must be experienced cognitively, through reason, the

intellect, intuition, and affect (feelings), rather than as something by the senses”

(p. 23). Thus, there could be a false dichotomy between cognition and affect. Su

adds that experiencing beauty in mathematics is “a unique and sublime experience

that everyone should demand” (2020, Ch. 1). Educational research should become
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open to perception studies that blur the lines between thinking and feeling, given

indicators that they might not be mutually exclusive.

Questions about beauty are rarely met with agreement. Some believe that

mathematical beauty is objective (Inglis and Aberdein, 2014), while others call it

subjective Johnson and Steinerberger (2019). Some equate beauty to enlighten-

ment (Rota, 1997), while others equate it to truth (Johnson and Steinerberger, 2019).

According to David Hume (1910), everyone has their own unique view of beauty and

disagree with the views of others. However, Johnson and Steinerberger (2019) call

this a paradox since mathematicians can subjectively perceive different concepts as

beautiful, yet they use these ideas to look for an objective truth. Perhaps these ideas

only seem paradoxical because beauty is a multi-dimensional construct that we are

attempting to view on a one-dimensional scale.

Elegance

A translation of Gauss’ writings says, “We know, from the writings of a few great

mathematicians, that proofs should be elegant” (1863), and this adjective elegant is

often used by other members of the mathematical community as well. For example,

mathematicians Alsina and Nelsen (2010) compiled proofs they deem elegant into a

book called Charming Proofs: A Journey into Elegant Mathematics. However, just as

mathematical beauty is a nebulous phrase in mathematics, the meaning of elegance

in mathematics is also cloudy. Some consider beauty and elegance to be similar

ideas (Mullins, 2006). Others consider elegance to be a dimension of beauty (Ernest,

2015). However, elegance does not seem to be discussed as often as beauty in

prior research. According to Mowshowitz and Dehmer (2018), mathematicians who

frequently write proofs often have an good understanding of the term elegance, but it

is rare to see a formal definition for the term in mathematics. Perhaps this is because

some assume it to be akin to beauty, and others forgo the awkwardness of asking for

clarification of terminology.
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Prior essays and research contain hints about what elegance in mathematics may

mean, but the collection of descriptors is quite heterogeneous. Ernest (2015) aligns

elegance with terms such as economy, simplicity, brevity, and succinctness (p. 23).

Others describe an elegant proof as using unexpected tools, as using only essential

assumptions and as giving new understanding that brings about new ideas (Sigler

et al., 2016; Mullins, 2006). Rota (1997) suggests that the elegance of a proof relates

more to the way proofs are presented to their readers rather than the actual content.

In summary, elegant may mean simple, brief, succinct, pleasing, effective, surprising,

insightful, provocative, clever, and well-communicated. More research is needed to

clarify the most common shared meanings held in mathematical communities.

2.2 Theoretical Perspectives

As a researcher, my own worldviews, perspectives, and beliefs about theories may

influence this study. For trustworthiness, I disclose these below in two categories. My

methodological theoretical framework will describe the paradigms and perspectives

that underlie the research methods in this study. My substantive theoretical

framework will describe how my views and beliefs about specific topics, such as

teaching and learning of geometry, may interact with how this study is carried out

and how results are interpreted.

2.2.1 Methodological Theoretical Framework

The paradigm of pragmatism (Hall, 2013) influences this study because I let the

research questions guide my methodological choices, especially those in research

design. Pragmatism supposes that there may be multiple types of reality to

investigate when doing educational research, such as subjective experiences that

are lived out by participants (Husserl, 1931) or quasi-objective truths about the

nature of learning mathematics (Lincoln and Guba, 1985). Pragmatism focuses
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on Dewey’s (1938) ideas of inquiry in a general sense, which enables a researcher to

pursue whichever investigation methods make the most sense to use in order to learn

what is aimed to learn. This study is primarily qualitative in methodology, which

allows me to see myself as a component of the research instrument, having a hand in

generating data instead of simply collecting it with objectivity (Mertens, 2019), but

I also make use of some questionnaires, such as Likert-type (1932) rating scales, and

pragmatism enables a researcher to toggle between such somewhat subjective and

somewhat objective methods, guided by inquiry.

When researchers change paradigms, some may characterize this as a change in

the researcher’s lens; however, Thomas Kuhn said, “Scientists do not see something as

something else; instead, they simply see it” (1970, pg. 85). Similarly, as I claim to take

a pragmatist approach that embraces both qualitative and quantitative perspectives,

I do not claim to be looking through lenses that are drastically different in paradigm.

While I cannot be a truly objective observer, as a qualitative researcher, I do see this

study as a postpositivistic attempt to learn something about perceptions of elegance

in proofs, but with natural limitations that come with qualitative research. Trying

to view learning strictly as an objective science would be like trying to measure the

length of a wiggly worm with a straight ruler. Instead, it can be approximated in

other ways using other tools.

Among those who volunteered to participate in this study, I selected participants

who had been at their institution for the highest number of years. This choice was

made in keeping with situated learning theory (Lave and Wenger, 1991). Learning

happens in a time and place, not in a vacuum. The social, psychological, and material

environments serve as a platform on which learning sits. Participation in a community

helps learners make meaning, as ideas are exchanged. Students and faculty who have

been in their particular community of practice longer would be more likely to be

representative of their community and are more likely to have taken up the linguistic

norms of their shared environments. Another supposition of situated learning theory

sees the influence of language and metaphor on culture. When I look at word choices
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in this study, such as elegance and rigor, I will view language as an element of both

the domain and the range (input and output) of mathematical learning.

As I incorporated design-based interviews (diSessa and Cobb, 2004; Bakker

and van Eerde, 2015), interlaced with questionnaires and mathematical tasks, I

chose a lens of phenomenology and took inspiration from Greasley and Ashworth’s

(2007) descriptions of how they created profiles for each participant and how they

analyzed noetic and noematic distinctions (Husserl, 1931) within their interview

data, trying to uncover the essence of each individual’s experience. I also borrowed

a research perpective from Simon (1995) as he defined a hypothetical learning

trajectory, which includes “the learning goal, the learning activities, and the

thinking and learning in which the students might engage” (p. 133). Hypothetical

learning trajectories, developed by examining pilot study data and by reflecting on

activity-effect relationships (Simon and Tzur, 2004), aided in the creation of the

instrument and in the analysis of data, specifically anticipating typical responses to

all mathematical tasks in this study.

After the first interview with each participant, they were given a take-home task

to try to prove the R.E.P.S. problem on their own, before being shown any sample

proofs. Thus, participants were able to independently try the problem from scratch

without any hints. This choice was made to encourage participants to not only

become familiar with the problem, but also feel a sense ownership of the problem,

in turn, eliciting more significant input on later survey and interview tasks. This

research design choice is influenced by the theory of self-directed learning (Knowles,

1975; Clark and Clark, 2022) and by the IKEA effect, which customers experience

when they take part in the creation of the products they buy. After building their

own furniture, folding origami, or building their own teddy bear at Build-a-Bear,

consumers see the final product as having greater value (Norton et al., 2011). Since

this study’s participants had a chance to attempt the R.E.P.S. problem before seeing

solutions, they were better able to appreciate the problem and appreciate the sample

proofs as products created by others, in order to more authentically evaluate them.
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Flyvbjerg (2006) argues that disciplines in the social sciences, including those

that study the experience of human learning, may be strengthened by more case

studies being executed. Yin, a father of case study research, describes that a

case is some phenomenon, which lives in the here and now, that may have fuzzy

boundaries over which the researcher has little control (2009). This study indeed fits

this description, as an individual’s perception of the elegance of a proof could bleed

beyond the boundaries of mathematics and could borrow from cultural backgrounds

and aesthetics. The researchers do have some control over the situation, providing the

same math problem and proofs to all participants. However, there is also an open-

ended nature to this study, with phenomenological semi-structured interviews that

invite participants to reveal notions about elegance in mathematics, fuzzy boundaries

and all.

This study investigates how graduate students and faculty value various descrip-

tive constructs, such as elegance and rigor, in proof strategies. How I perceive value is

similar to the model presented by Egan et al. (2013), which is based on Karl Popper’s

(1972) three worlds. World 1 is the physical world with an objective nature. World 2

is the subjective realm of thoughts and ideas, inside a human mind. World 3 contains

intangible constructs that may have originated in a human mind but now exist beyond

those bounds, such as abstract concepts and theories. Egan et al. (2013) present a

theory of how value is created through iterations of interactions in these three worlds.

I also see that participants’ experiences, participants’ perceptions, physical differences

in those experiences, and abstract concepts within mathematics all may contribute

to the creation of value in this study.

2.2.2 Substantive Theoretical Framework

In this study, I view a mathematical proof as an argumentation, with chains of

logical claims, warrants, backings, and refutations, as considered by Toulmin (1958).

However, because this study requires participants to follow the logic of multiple proofs
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presented to them, my focus on proofs as argumentation is similar to that of Knipping

and Reid (2015) who reconstructed sequences and meaning of proofs and compared

argumentation structures of multiple proofs.

This study is informed by Tall et al.’s (2012) learning theory called the broad

maturation of proof structures. The theory establishes multiple layers and levels of

learning proofs and proving, including embodied, symbolic, and formal development

of thinking, levels which mature within learners from childhood to adulthood and from

concrete to abstract proof comprehension. In this study, mathematical backgrounds

of participants, along with considerations of where the participants are in their own

mathematical thinking development will be interpreted while keeping in mind Tall

et al.’s (2012) statement that

Proof involves a lifetime of cognitive development of the individual that

is shared within societies and is further developed in sophistication by

successive generations of mathematicians (p. 46).

This perspective also has implications for how proofs are situated in cultural contexts

and have norms and values that have been established by the discipline’s academic

community.

Another learning theory, one specific to learning Euclidean geometry, that

influences this study is Van Hiele’s (1986) levels of geometric thinking. It presents

a hierarchy beginning with figure recognition, progressing through describing and

categorizing figures, to constructions of shapes, and finally to the highest level, called

‘rigor’, which involves proofs. The way in which the Ghanaian curriculum leads

students through these levels informs the ways in which some of the data may be

interpreted.

Some researchers have studied multiple proof tasks (Leikin, 2009; Dreyfus et al.,

2015) and the affordances to learning that are provided when there is one theorem

encountered, along with multiple different proofs, which can be generated by or

evaluated by the learners. Because the instrument in this study includes a multiple
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proof task, this research informs this study’s views of the data and participants’

thinking. Dreyfus et al. (2015) also highlight visual, verbal, and dynamic

representations that may be used in proofs and articulate different degrees of detail

that may be provided in proofs, which are factors that align with this study’s

examination of descriptive constructs of proofs, such as rigor or completeness.

In Lewis Carroll’s (1871) Through the Looking-Glass, Humpty Dumpty says,

“When I use a word, it means just what I choose it to mean − nothing more nor

less.” Humpty Dumpty then provides convoluted definitions of several of his words,

and Alice says, “That’s a great deal to make one word mean,” to which Humpty

Dumpty replies, “When I make a word do a lot of work like that, I always pay it

extra.” In my view, some mathematicians have poised themselves as Humpty Dumpty,

confident in their own understandings of ambiguous words and willing to use words,

such as elegant, that mean so many different things that they deserve extra pay.

As Clark (2022) points out, this can propagate a perception that mathematics is an

elitist discipline. Clark encourages descriptive, rather than prescriptive, conversations

about the ambiguous meanings of words used in mathematics.

Miller (2018) questions whether minimal and concise definitions are more or less

useful than more detailed definitions that explain more about meaning and may be

more accessible to learners. This study seeks to provide such a description of perceived

elegance in proofs, in a non-minimal, descriptive, and accessible way. This case study

seeks to inform a concept image (Tall and Vinner, 1981) for proof elegance, rather

than a formal definition.

In the words of Rota (1997), “If mathematics were formally true but in no way

enlightening, this mathematics would be a curious game played by weird people”

(p. 132). This implies a value in enlightenment, more specifically, value in that it

motivates humans to do mathematics. I view enlightenment as a motivating and

guiding factor that could be experienced as an aesthetic but non-perceptible object,

which Goffin (2019) contends to be non-paradoxical. I view elegance as a similar

trait, which is detected by humans through a mechanism more closely approximated
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by an emotional experience than by a sensory perception. Older traditions in

aesthetics (Baumgarten, 1750) had limited aesthetics only to be perceived by the

five senses. In fact, Kant (1987) argued against the consideration of intellectual

satisfaction, such as the feeling a mathematical proof might yield, as any sort of

beauty. Later traditions (Siegel, 2012) considered the possibilities that emotions

could influence the measurements collected via the senses, such as a wolf’s teeth

looking bigger if one is scared. Consistent with an even more contemporary view,

Goffin (2019) argues that affects, such as emotions, should be considered more like

senses themselves, contributing to traits of aesthetics. In this study, I am rejecting the

Kantian separation of intellect from aesthetics and are open to considering intellectual

experiences, which may be entangled with emotions, as possible contributors to

aesthetics. This study of human perceptions of elegance considers perceptions to

not be limited to only five senses, nor to five senses plus emotions, but rather, to all

senses plus emotions plus factors that may live in the intersection of cognition and

affect.
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Chapter 3

Methods

3.1 Participants

Participants included three research mathematics faculty in the United States (one

woman and two men), five mathematics graduate students in the United States (one

woman and four men), and three mathematics graduate students in Ghana (three

men). All 11 participants had jobs with teaching responsibilities, such as professors

or teaching assistants.

The number of years the U.S. faculty had been at their current institution ranged

from 8 years to 30 years, and their areas of research included, geometry, algebra, and

number theory. The three Ghanaian graduate students had been at their institution

for 2, 3, and 8 years, and all three specialized in mathematics education research.

The five U.S. graduate students had all been at their institution 2 or 3 years, and

their research interests included computational statistics, machine learning, algebra,

number theory, analysis, probability, and mathematical ecology.

All participants volunteered to participate in the study after two email invitations.

Among those who volunteered, I selected participants who had been at their

institution for the most years. This study, which used human subjects, was approved
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by the University’s Institutional Review Board, and all participants provided informed

consent.

3.2 Procedure

This study is an embedded Type 4 Design Case Study (Yin, 2009), which has both

multiple cases and multiple units within each case. The three cases are as follows:

(a) A case of three Ghanaian mathematics graduate students, (b) A case of five U.S.

mathematics graduate students, and (c) A case of three U.S. mathematics research

faculty. Within each case, there was an embedded mixed method design of semi-

structured interviews, open-ended questionnaires, and surveys.

Each of the 11 participants was interviewed four times, either in person or online,

and was given three take-home tasks, one after each of the first three interviews. In

addition, one interview had two written surveys embedded within it. If a participant

approved, then the interviews were audio or video recorded, after which they were

transcribed. Section 3.3 will present the instruments in chronological order, in the

sequence that the data was collected. However, in this section, I present how the data

sources map to the purposes of the study.

As Yin (2009) suggests, I continually considered construct validity, internal

validity, external validity, and reliability as aims throughout the study. Some data was

collected to establish trustworthiness within the study. For example, a pilot study and

follow-up interviews were conducted to establish the reliability of the instrument and

to inform my data analysis. Also, to reveal participant positionality, they were asked

about their mathematical background during Interview 1. This helped reveal any

extreme beliefs that particular participants may have had in mathematical philosophy

or experience, in addition to helping me position their experiences within their

mathematical identities. Also, to ensure participants’ familiarity with the R.E.P.S.

problem and with the sample proofs to the R.E.P.S. problem, participants were asked

about the problem in interviews and were given written tasks to complete related to
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the problem. Table 3.1 shows how these study purposes of trustworthiness map onto

the specific data sources in this study.

In this embedded design, strands of data that inform different research questions

were woven in and out of interviews and interventions. Table 3.2 shows the

components of data collection that informed the research questions about perceptions

of elegance. Some data sources informed how participants (graduate students or

faculty) perceived elegance in mathematical proofs, in a general sense. Other data

sources more specifically elicited information about how those perceptions of elegance

compare to their perceptions of other constructs, such as surprise, creativity, and

rigor.

In order to inform the research question asking what constructs (elegance, rigor,

creativity, validity, etc.) participants seem to value the most in mathematical proofs,

I collected both questionnaire and interview data. First, in some cases, participants

shared their values in the first interview when they were invited to talk about their

mathematical background. Then, when they completed the take-home questionnaire

on which they responded in writing to the five fictional students who authored the

proofs, what they valued in proofs could be seen. After completing that take-home

assignment, they were asked in an interview what they had hoped the fictional

students might gain from their feedback. Because all participants hold teaching roles

in their departments, this activity is likely to connect to what they value in their

instructor capacity. After they rated the proofs based on various constructs, their

awareness of the nuances between them was heightened, and then, in Interview 4,

they were asked to consider all the different roles they had played, teacher, student,

and judge, and all the different constructs. They were asked which constructs they

valued the most and which ones they think were valued most by other stakeholders

in their department. Table 3.3 shows these data sources which informed the research

question about what participants value.
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Figure B.3: The x and y component vectors of v⃗ are parallel to the x and y axes
and also sum to v⃗.
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The vector that is parallel to −→w , as seen in Figure B.4, is the projection of −→v onto

−→w , which can be denoted as proj−→w
−→v .

B.4.2 Dot Products

The dot product is an operation on vectors that results in a real number. There are

two definitions of the dot product, one algebraic and one geometric. Suppose one

were to find the dot product of two two-dimensional vectors, say −→a and
−→
b , who have

terminal points (a1, a2) and (b1, b2). The algebraic definition of the dot product yields

−→a ·
−→
b = (a1)(b1)+(a2)(b2), and the geometric definition yields −→a ·

−→
b = |−→a ||

−→
b | cos θ,

where θ is the angle between −→a and
−→
b .

B.5 Complex Numbers

Proof D, found in Appendix C.5.4, uses complex numbers and Euler’s formula.

B.5.1 Euler’s Formula

Euler’s formula connects complex exponential functions to trigonometric ratios in a

specific way. For any real number, call it θ, the following equation is true:

eiθ = cos θ + i sin θ.

B.5.2 Solving Complex Equations

Every complex number has the form a + bi, where a and b are real numbers and i

represents the solution to the equation i2 = −1. Every complex number has a real

part and an imaginary part. In the example a+bi, the real part is a and the imaginary

part is b. If two different complex numbers are equal, their real parts must be equal

and their imaginary parts must be equal. Suppose c1 = a1 + b1 and c2 = a2 + b2. If

c1 = c2, then it must also be true that both a1 = a2 and b1 = b2.
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Figure B.4: To determine the projection of v⃗ onto w⃗, consider two orthogonal vectors
that sum to v⃗, one of which would be parallel to w⃗ and would be the projection.

170



Appendix C

Instruments

C.1 Content of Informed Consent

Welcome to the Rigor & Elegance in Proof Strategies (R.E.P.S.) study!

C.1.1 Introduction

You are being invited to take part in a research study. Before you decide to participate

in this study, it is important that you understand why the research is being done and

what it will involve. Please read the following information carefully. Please ask the

investigators if there is anything that is not clear or if you want more information.

C.1.2 Purpose of Study

We are interested in understanding perceptions of rigor and elegance in proof

strategies. In particular, we want to see how faculty perceptions may differ from

student perceptions. We also want to see how perceptions may differ for students

from various backgrounds.
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C.1.3 Procedures

Using the information you provide on this consent form, we will choose participants.

If chosen, we will contact you by email. For this study, if you are selected, then you

will be presented with one Euclidean geometry problem. To complete the study, you

will be interviewed on four separate occasions about this problem and will also be

given three take-home tasks about the problem, one to complete between each of the

four meetings. Your responses will be kept confidential.

If you are selected to participate, each of the four interviews will take approx-

imately 30 minutes. Each of the three take-home tasks may take you 1-2 hours.

The interview meetings will be scheduled at your convenience, ideally allowing about

one week between each of the four interviews. Meetings will be audio recorded in

an effort to capture sentiments as accurately as possible. The recordings will be

promptly transcribed, and your name will be removed from the transcriptions. Then,

the recordings will be deleted, and the meeting transcriptions will be used in the

study. Your written submissions for the three take-home tasks will also be used in

the study.

You will receive no incentive for your participation. Your participation in this

research is voluntary. You have the right to withdraw at any point during the study.

C.1.4 Risks

Risks in this study are minimal. To preserve confidentiality, we will take measures to

prevent your identity from being discernible in research reports. For example, we will

use pseudonyms or describe responses in aggregate for groups of people. Moreover,

the content will be mathematical and would pose no serious threat in the unlikely

instance of a confidentiality breach.

One reasonably foreseeable risk is that one could opt to participate, but then

discover that they do not have enough time in their schedule to participate

comfortably. To mitigate this risk, we will welcome you to schedule interviews and
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tasks according to your convenience. Also, you may decline to answer any questions,

and you may terminate your involvement at any time.

About 13 people will take part in this study. Because of the small number of

participants in this study, it is possible that someone could identify you based on

the information we collect. If you have any concerns about this during the data

collection process, please contact the researchers and special care can be taken to

omit identifiable information when possible.

C.1.5 Benefits

There will be no direct benefit to you for your participation in this study. However,

we hope the information obtained from this study helps the growth of students

specializing in mathematics.

C.1.6 Confidentiality

We will make every effort to prevent anyone who is not on the research team from

knowing that you gave us information or what information came from you, including:

• Assigning you a code name to use in notes.

• Keeping identifying information in password-protected digital files only acces-

sible by us.

• Using pseudonyms in interview reports.

If information from this study is published or presented at scientific meetings,

your name and other personal information will not be used.

Although it is unlikely, there are times when others may need to see the

information we collect about you. These include:

• People at the University of Tennessee, Knoxville who oversee research to make

sure it is conducted properly.
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• Government agencies (such as the Office for Human Research Protections in

the U.S. Department of Health and Human Services), and others responsible

for watching over the safety, effectiveness, and conduct of the research.

• If a law or court requires us to share the information, we would have to follow

that law or final court ruling.

We will keep your information to use for future research. However, your name and

other information that can directly identify you will be deleted from your research

data collected as part of the study. We may share your research data with other

researchers without asking for your consent again, but it will not contain information

that could directly identify you.

C.1.7 Contact Information

If you have questions at any time about this study, or you experience adverse effects

as the result of participating in this study, you may contact the researchers whose

contact information is provided on the first page. If you have questions regarding

your rights as a research participant, or if problems arise which you do not feel you

can discuss with the Primary Investigators, please contact the University of Tennessee

Institutional Review Board at (865) 974-7494.

C.1.8 Voluntary Participation

Your participation in this study is voluntary. It is up to you to decide whether or

not to take part in this study. If you decide to participate, you should complete this

consent form. After you complete this form, you are still free to withdraw at any

time and without giving any reason. Withdrawing from this study will not affect the

relationship you have, if any, with the researcher. If you withdraw from the study

before data collection is completed, your data will be destroyed.
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C.1.9 Consent

I have read and I understand the provided information and have had the opportunity

to ask questions. I understand that my participation is voluntary and that I am free

to withdraw at any time, without giving a reason and without cost. I understand

that I will be given a copy of this consent form. I am at least 18 years of age, and I

voluntarily agree to take part in this study.

• Participant’s signature, and date

• Investigator’s signature, and date

• Investigator’s signature, and date

C.1.10 Questions

If you signed the consent above, please answer two questions so that we may select

participants. If you are not chosen to participate in this study, this data will be

deleted/destroyed.

1. How many years have you been at your current institution?

2. What type(s) of mathematics do you specialize in?

C.2 Meeting 1 Interview Protocol

Thank you for participating in this study.

I’d like to remind you of the procedures of audio recording. Meetings will be audio

recorded in an effort to capture sentiments as accurately as possible. The recordings

will be promptly transcribed, and your name will be removed from the transcriptions.

Then, the recordings will be deleted, and the meeting transcriptions will be used in

the study. Is it OK if I begin recording now? [Researcher begins recording after

participant agrees.]
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Tell me about your experiences with math.

• Type of schools? Majors? Minors? Classes? Type of math studied?

• Family support? Community support?

• Best or worst experiences?

For each adjective, answer the questions. Don’t google these words though. We

want to know what conceptions you are bringing with you from your experiences.

• “Elegant.” Have you ever heard it used to describe math? How? Where? By

whom? What do you think was meant?

• “Rigorous.” Have you ever heard it used to describe math? How? Where? By

whom? What do you think was meant?

Here’s a geometry problem. Without trying to prove it right now, what strategies

come to mind that one might use to prove this? [Researcher delivers math problem,

shown in Figure C.1 to the participant via an animated slideshow, via a pdf, and/or

via paper copy.]

C.3 Take-Home Task 1

Before our next meeting, give this proof a try. Any techniques are allowed. Using

this log sheet, keep track of how long you try each of your strategies before making

any moves to other strategies. It’s OK if you don’t prove it. But do try. [Researcher

delivers the log sheet as a pdf, as a paper, copy, and/or as an electronic form. The

log sheet has three columns, type of strategy, time spent, and comments, as shown in

Table C.1]
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C
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A L

M

KJ

F

D

G

Given:

AB = AF

FJ = AI

AL = IE

Prove that Area(ABCD) = 
Area(ALMG) + Area(FGKJ)

Figure C.1: For this problem given to the participants, the written information
says, “Given: AB = AF , FJ = AI, and AL = IE. Prove that Area(ABCD) =
Area(ALMG) + Area(FGKJ).”

177



Table C.1: A log sheet was given to participants, with the instructions, “Keep a
record of what strategies you tried and for how long. We are interested in how long
you work on various strategies and when you decide to change strategies as you are
working.”

Type of Strategy Time Spent Comments
1
2
3
4
5
6
7
8
9
10
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C.4 Meeting 2 Interview Protocol

I’d like to remind you of the procedures of audio recording. Meetings will be audio

recorded in an effort to capture sentiments as accurately as possible. The recordings

will be promptly transcribed, and your name will be removed from the transcriptions.

Then, the recordings will be deleted, and the meeting transcriptions will be used in

the study. Is it OK if I begin recording now? [Researcher begins recording after

participant agrees.] Do you have any proofs to share/submit? [Researcher delivers an

electronic form to the participant that allows the participant to upload an electronic

version of their work. If in-person, the researcher may collect written work from the

participant.]

Can you walk me through what you recorded on the log sheet? [Researcher

retrieves log sheet, hard copy of digital copy.]

• Say more about your decision to move from this strategy to that one?

• What encouraged you to persist so long with this particular strategy?

• Was there a moment where you were surprised by something?

• Did you talk to anyone else about this problem? If so, whom? How?

C.5 Take-Home Task 2

Imagine you are teaching undergraduate math majors. You have asked them to

animate their proofs using a slideshow. Before the next meeting, draft responses to

the fictional students who have submitted the five proofs you will see. [The researcher

delivers the link to the participant. After presenting Proof A, the questionnaire asks,

“How would you respond to Student A?” After Proof B, it asks, “How would you

respond to Student B?” and so on.]
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C.5.1 Proof A

First, Student A embedded the image onto a Cartesian coordinate plane such that

the point originally labelled as Point A was the origin and that the points originally

labelled G and K were on the y-axis. Then, Student A flipped the picture about the

y-axis. Next, Student A asserted that two of the rectangles won’t be needed, those

two rectangles identified in Figure C.2. So Student A removed those two rectangles.

Next, the Student A assigned letters A, B, C, X, Y , and Z to lengths on the diagram

and letters P and Q to points on the diagram, as shown in Figure C.3.

Student A labelled the line containing the origin and Point P with the equation

l1(x) =
X
Y
x after they used the definition of slope and equations of lines. The slope

could be seen as X
Y
by looking at the right triangle with leg lengths X and Y . Because

its y-intercept was (0, 0), the equation for this line was l1(x) =
X
Y
x. Student A labelled

Point P as equal to C
Z
(Y,X). A reader could verify this claim by considering that the

distance from the origin to Point P was C
Z

the length of Z, which had coordinates

(Y,X). Next, Student A claimed that the line containing Points P and Q had the

equation l2(x) = − Y
X

(
x− C

Z
Y
)
+ C

Z
X. Although the student did not explain this,

it could be verified by the reader because it follows the point-slope form of linear

equations. The line went through Point P , which had coordinates
(
C
Z
Y, C

Z
X
)
, and

since the product of the slopes of two perpendicular lines is −1, the line’s slope must

have been − Y
X

because it was perpendicular to a line of slope X
Y
. Figure C.4 shows

the image with these added labels.

Student A then wrote, “What are the coordinates of Point Q?” and also observed

that Q lies on l2. Because the x-coordinate of Q is B, Student A stated that Q =

(B, l2(B)) and followed with the observation, “But Q = (B,A),” which implied A =

l2(B). This led to the following:

A = l2(B) = −Y

X

(
B − C

Z
Y

)
+

C

Z
X
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Figure C.2: For Proof A, the image has been embedded in Cartesian coordinate
system and reflected about the y-axis. The two rectangles indicated were deemed to
be unnecessary.
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Figure C.3: For Proof A, certain distances have been labelled A, B, C, X, Y , and
Z, and two points have been labelled P and Q.
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Figure C.4: For Proof A, certain distances had been labeled A, B, C, X, Y , and
Z, and two points had been labelled P and Q.
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A = −Y

X
B +

C

Z

Y 2

X
+

C

Z
X

A = −Y

X
B +

C

Z

(
Y 2

X
+X

)

A = −Y

X
B +

C

Z

(
Y 2 +X2

X

)
Then, near the right triangle with sides of lengths X, Y , and Z, appeared the

statement X2 + Y 2 = Z2, an apparent implication of the Pythagorean Theorem.

Student A used this equality as a substitution and also divided the quantity Z by Z,

arriving at the following:

A = −Y

X
B + C

Z

X

Student A then multiplied this equation by X and rearrange the terms to get the

following:

AX +BY = CZ

Each of the three terms in this equation also represents an area in the original diagram.

Student A pointed to each term and reminded the reader of this. AX was the area

of rectangle ALMG, BY was the area of rectangle FGKJ , and CZ was the area of

rectangle ABCD.

C.5.2 Proof B

Student B first turned the image clockwise 90◦ and embedded the image on a

Cartesian coordinate plane with the origin at Point A. Student B then animated

a vector from the origin to Point E and labelled it −→a . They then showed a vector

from the origin to Point F and labelled it
−→
b . They labelled the angle between these

two vectors θ, as shown in Figure C.5.

Student B labelled the distance from Point A to Point D as |−→a | cos θ. This could

be viewed as the vector projection of −→a onto
−→
b , The definition of cosine, applied to
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Figure C.5: The image was rotated, embedded in a Cartesian plane, and labelled
with vectors a⃗ and b⃗ and angle θ.
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△EDA, is sufficient to verify that AD = |−→a | cos θ. The distance from Point A to

Point B was then labelled as |
−→
b |, and this was due to the assumption that AB = AF .

Next, Student B showed the rectangle ABCD shaded yellow, as shown in Figure C.6.

The area of this shaded region, calculated as length times width, would then be

|−→a ||
−→
b | cos θ, which is also −→a ·

−→
b by the geometric definition of the dot product.

Next, Student B put labels on the sides of the rectangles that were the same lengths

as the x and y component vectors of −→a and
−→
b . By assumptions, the distances from

Points A to L and from Points G toK were the magnitudes of the x and y components

of vector a⃗, respectively. Also, the distances from Points L to M and F to G were the

magnitudes of the x and y components of vector
−→
b , respectively. Thus, the areas of

the two smaller shaded rectangles, ALMG and FGKJ could be written as products

of these component vectors’ magnitudes, as shown in Figure C.7. Then, Student B

noted that these two area sum to axbx + ayby =
−→a ·

−→
b by the algebraic definition of

the dot product.

C.5.3 Proof C

Student C connected Points E and F with a straight line and stated, “Construct right

triangle, with hypotenuse EF with legs parallel to AG and AI.” This triangle is shown

in Figure C.8. (Note: This student assumes that such a triangle can always be drawn

and will always be positioned in the same way, and this leads to an incompletion in

this proof.) The student then labelled the lengths of the sides of the newly created

triangle. The hypotenuse was labelled EF , the horizontal leg was labelled FG−AI,

and the vertical leg was labelled AG− IE. Using these distances in the Pythagorean

Theorem, Student C then stated the following:

EF =
√
(FG− AI)2 + (AG− IE)2
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Figure C.6: Rectangle ABCD was shaded and its side lengths were labelled |⃗a| cos θ
and |⃗b|.
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Figure C.7: The area of the large rectangle was equal to the geometric definition
of the dot product, while the sum of the two smaller rectangles was equal to the
algebraic definition of the dot product, which proved the area of the larger rectangle
equals the sum of the areas of the smaller two.
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Figure C.8: Student C connected Points E and F and constructed a right triangle
with hypotenuse EF and with legs parallel to AG and AI.
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=
√

(FG)2 − 2(FG)(AI) + (AI)2 + (AG)2 − 2(AG)(IE) + (IE)2

In order to simplify this expression, Student C highlighted two different right triangles

in the diagram for which Pythagorean Theorem could be used. Because of right

triangle △IEA, it followed that (AE)2 = (IE)2+(AI)2, and because of right triangle

△FGA, it followed that (AF )2 = (FG)2 + (AG)2. The EF equation was then

simplified to the following:

EF =
√

(AF )2 + (AE)2 − 2 ((FG)(AI) + (AG)(IE)).

Student C then highlighted the triangle △EAF and used Law of Cosines with the

angle at vertex A, call it θ. This yielded the following:

EF =
√
(AF )2 + (AE)2 − 2(AF )(AE) cos θ.

These two equations for EF were similar looking, but they were not quite identical;

the part following the coefficient of 2 is the only part that seemed to differ. Then,

Student C circled the parts of these equations that were different and then set those

two parts equal to each other. This gave the following:

(FG)(AI) + (AG)(IE) = (AF )(AE) cos θ.

Using the given equalities FJ = AI and AL = IE, Student C then made some

substitutions and rewrote this as the following:

(FG)(FJ) + (AG)(AL) = (AB)(AE) cos θ.

Student C then highlighted right triangle△FEA and labelled the distance from Point

A to Point D as (AE) cos θ. Substituting AD into the previous equation yielded the
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following:

(FG)(FJ) + (AG)(AL) = (AB)(AD).

This proved that sum of the areas of rectangles FGKJ and ALMG equaled the area

of rectangle ABCD.

C.5.4 Proof D

The first step of Proof D is to point out to the reader that the measures of angles

∠IAE, ∠EAD, and ∠DAG summed to 90◦. Student D labelled these r, θ, and α,

respectively. Then, the following statements were made:

i = cos (90◦) + i sin (90◦),

which was apparently true because cos(90◦) = 0 and sin(90◦) = 1. Then, Student D

substituted (90◦) with (θ + r + α) in both terms, leading to the following:

= cos (θ + r + α) + i sin (θ + r + α).

Because this expression fit the form of Euler’s formula, Student D then rewrote it as

the following:

= ei(θ+r+α)

= eiθ · eir · eiα

Employing Euler’s formula again, Student D wrote the following:

= (cos θ + i sin θ)(cos r + i sin r)(cosα + i sinα)

By replacing some of these trigonometric ratios with their ratios based on the right

triangles the angles were a part of within the diagram, Student D then wrote the
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following:

= (cos θ + i sin θ)

(
AI

AE
+

IE

AE
(i)

)(
AG

AF
+

FG

AF
(i)

)
=

cos θ + i sin θ

(AE)(AF )
((AI · AG− IE · FG) + i(AI · FG+ IE · AG))

As the student rearranged this long expression, attempting to separate its real part

from its imaginary parts, the following two-line expression for i emerged:

=
cos θ

(AE)(AF )
(AI · AG− IE · FG)− sin θ

(AE)(AF )
(AI · FG+ IE · AG)

+(i)

[
sin θ

(AE)(AF )
(AI · AG− IE · FG) +

cos θ

(AE)(AF )
(AI · FG+ IE · AG)

]
.

Recall that because this entire expression was equal to i, the real part would be 0 and

the imaginary part would be 1. First, Student D formed an equation corresponding

to the real part.

Re(i) = 0 ⇒ cos θ(AI · AG− IE · FG) = sin θ(AI · FG+ IE · AG).

The student then rewrote this equation by dividing by cos θ, yielding the following:

(AI · AG− IE · FG) =
sin θ

cos θ
(AI · FG+ IE · AG).

Next, Student D created an equation corresponding to the imaginary part, and wrote

the following:

Im(i) = 1 ⇒ AE · AF = sin θ(AI · AG− IE · FG) + cos θ(AI · FG+ IE · AG).

Student D then circled part of the earlier equation and drew an arrow, signifying a

substitution. Because (AI · AG − IE · FG) was equal to sin θ
cos θ

(AI · FG + IE · AG),

192



the student made this substitution, yielding the following equation:

AE · AF = sin θ

(
sin θ

cos θ
(AI · FG+ IE · AG)

)
+ cos θ(AI · FG+ IE · AG)

The student then multiplied the entire equation by cos θ and arrived at the following:

AE · AF cos θ = sin2 θ(AI · FG+ IE · AG) + cos2 θ(AI · FG+ IE · AG).

By using the identity sin2 θ + cos2 θ = 1, Student D then simplified this equation to

the following:

AE · AF cos θ = AI · FG+ IE · AG.

The student then substituted (AE cos θ) with AD and AF with AB to arrive at

AB · AD = AI · FG+ IE · AG, each term of which expressed the area of one of the

rectangles in the diagram.

C.5.5 Proof E

The first step of Proof E was to extend the line segment AI until it intersects the

line segment whose endpoints are C and D. (Note: The notation used here was for a

line segment, not a line. This leads to an incompletion in this proof.) Student E then

labelled the intersection Point P . Then, Student E highlighted two triangles, △PEI

and △PAD, as shown in Figure C.9.

Student E then stated that these two triangles were similar by the Angle-Angle

Similarity Theorem. Then they set up the following proportion:

EI

PE
=

AD

PA,

which can be rearranged to the following:

AD =
EI · PA

PE
.
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Figure C.9: After extending AI to intersect CD at Point P , the student examined
△PEI and △PAD.
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Because PA = PI + AI, this is equivalent to the following:

AD =
EI(PI + AI)

PE
.

Next, another pair of triangles were highlighted, △PEI and △AFG, as shown

in Figure C.10. Again by Angle-Angle Similarity Theorem, these two triangles were

deemed similar, and Student E stated the following proportion:

FG

EI
=

FA

EP
,

which was rewritten as the following:

FG =
EI · FA

EP
.

Another proportion that followed from the same pair of similar triangles was the

following:
AG

PI
=

FA

EP
,

which was then written as the following:

AG =
PI · FA

EP
.

Student E then reminded the reader of the three given identities: AB = AF ,

FJ = AI, and AL = IE. The student then listed out the three newly obtained

equations that followed from triangle similarities:

AD =
EI(PI + AI)

PE
, FG =

EI · FA

EP
, and AG =

PI · FA

EP
.

Next, Student E wrote down

Area(ALMG) + Area(FGKJ)
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Figure C.10: The pair of triangles △PEI and △AFG are highlighted.
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= (AL) · (AJ) + (FJ) · (FG).

Then, using the given identities and the identities that had been discovered by

similarity, the student replaced all four of these lengths, rewriting the expression

as the following:

= (IE) ·
(
PI · FA

EP

)
+ (AI) ·

(
EI · FA

EP

)

=
EI(PI + AI)

EP
· FA

= (AD) · (AB),

which was the area of rectangle ABCD.

C.6 Meeting 3 Interview Protocol

I’d like to remind you of the procedures of audio recording. Meetings will be audio

recorded in an effort to capture sentiments as accurately as possible. The recordings

will be promptly transcribed, and your name will be removed from the transcriptions.

Then, the recordings will be deleted, and the meeting transcriptions will be used in

the study. Is it OK if I begin recording now? [Researcher begins recording after

participant agrees.]

Think about your experience reading and responding to the students’ animations.

• What was difficult about it? Enjoyable? Surprising?

• What effect do you hope your written responses would have on the student?

I’d like to take a few moments during this interview to give you an electronic

questionnaire that asks you to evaluate these proofs according to elegance, surprise,

rigor, validity, completeness, and creativity. After each rating that you select, I’d like

to ask you audibly why you made that selection or if you have any comments about it.
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If you’d like to talk out loud about your reasoning as you think through the ratings,

that is fine too. [Researcher delivers the electronic version of the questionnaire.]

C.6.1 Rating Questionnaire

Rating Proof A

Rate your agreement or disagreement with the following statements about Proof A

(C.5.1). For each rating, please audibly explain your reasoning.

• Proof A is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof A is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree
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Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Rating Proof B

Rate your agreement or disagreement with the following statements about Proof B

(C.5.2). For each rating, please audibly explain your reasoning.

• Proof B is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof B is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree
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Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Rating Proof C

Rate your agreement or disagreement with the following statements about Proof C

(C.5.3). For each rating, please audibly explain your reasoning.

• Proof C is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof C is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree
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Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Rating Proof D

Rate your agreement or disagreement with the following statements about Proof D

(C.5.4). For each rating, please audibly explain your reasoning.

• Proof D is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof D is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree
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Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Rating Proof E

Rate your agreement or disagreement with the following statements about Proof E

(C.5.5). For each rating, please audibly explain your reasoning.

• Proof E is valid.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is complete.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is rigorous.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is surprising.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is creative.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree

• Proof E is elegant.

⃝ strongly disagree ⃝ somewhat disagree

⃝ neither agree nor disagree ⃝ somewhat agree ⃝ strongly agree
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Why did you make those selections about this proof?

Why do you say this here?

What made this rating low?

What made this rating high?

Think about your experience evaluating the students’ animations, based on

elegance, rigor, surprise, and creativity.

• What was the easiest judgment to make? The most difficult? Why?

• Which aspects do you value the most? The least? Why?

• Which aspects do you think your professors value the most? Least?

C.7 Take-Home Task 3

For the next take-home task, you will imagine you’re a student reading instructor

feedback about your proof submissions. Before our next meeting, respond to two

instructor comments that will be given in the questionnaire. [Researcher delivers the

questionnaire to participant.]

C.7.1 Responding to Instructor Questionnaire

Imagine you are Student C. You submitted the animation for Proof C (C.5.3). It

used Pythagorean Theorem and Law of Cosines. Your instructor made a comment

about your work. They wrote, “Are you sure that IA is less than FG? How would

your proof change if you weren’t sure?” How would you respond to your instructor?

Imagine you are Student E. You submitted the animation for Proof E (C.5.5). It

used similar triangles and proportions. Your instructor made a comment about your

work. They wrote, “What about when (CB)(ML) > (AB)(JK)? Is there a way to

account for that possibility?” How would you respond to your instructor?
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C.8 Meeting 4 Interview Protocol

I’d like to remind you of the procedures of audio recording. Meetings will be audio

recorded in an effort to capture sentiments as accurately as possible. The recordings

will be promptly transcribed, and your name will be removed from the transcriptions.

Then, the recordings will be deleted, and the meeting transcriptions will be used in

the study. Is it OK if I begin recording now? [Researcher begins recording after

participant agrees.]

Think about your experience responding to the instructor’s feedback.

• What was surprising? What was difficult? What was helpful?

• How might you have responded differently from this instructor in order to reach

a similar goal?

In this study, you have played the roles of student, of instructor, and of judge. Think

about the different questions and tasks.

• Did any tasks help you see math differently? If so, what? Why?

• Might any of these tasks be useful in other experiences? Like that?

• What unanswered questions and curiosities might you carry from this study?

What did you learn?

Thank you for participating in this study!

When we have analyzed the transcripts of these interviews, we will send you a

draft of the reported results, and at that time, you will be invited to provide feedback

about how we have interpreted the interview results. If you see something that has

been interpreted incorrectly or incompletely, you can let us know so that we can

re-analyze the data accordingly.
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C.9 Reliability Interview Protocol

Purpose: To build rapport with the validator and establish background information.

Interview Questions:

• What year are you in, in your graduate program?

• What is your concentration area within mathematics?

• How have your classes been this semester?

Purpose: To investigate how factors that vary from participant to participant, such

as self-efficacy, attitude, impatience, or resilience, might influence the responses that

this instrument elicits.

Interview Questions:

• Last semester, you were offered a chance to find a proof for this geometry

problem. How did that go? What was that process like for you?

• Do you think you went about working on the geometry problem, and analyzing

the proofs for it, in any unique ways that your peers likely would not have done?

If so, what did you do that you perceive could have been unique to you?

Purpose: To investigate how the problem and proofs in the REPS instrument might

elicit differing responses from participants based on the participants’ concentration

area or experience in mathematics.

Interview Questions:

• Do you think your perceptions of elegance and rigor are different within other

mathematical disciplines? If so, compare those perceptions of elegance and rigor

to what you experienced for the geometry problem.

• Think about a professor who’s influenced you greatly, either at the university,

or elsewhere. How do you think their perceptions of the elegance or rigor for

this geometry problem’s proofs would compare to your own?
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• What specialty field of mathematics is that professor in?

Purpose: To investigate whether the problem and proofs in the REPS instrument

elicit consistent responses from participants over time. If not, investigate why they

change.

Interview Questions:

• So, when you look back at these proofs, do you think your perceptions on their

elegance or rigor today have changed since you first encountered them? If so,

what specifically do you think has changed?

• What properties of a proof make it elegant, in your view? What properties of

a proof make it rigorous, in your view?

Purpose: To investigate whether participants tend to value the importance of the

aims of this instrument, and whether they put forth reasonable levels of effort when

interacting with it?

Interview Questions:

• Think about any differences between when you worked on the problem yourself

and when you judged the proofs for it. What differences do you notice in how

you interacted with and handled these two tasks?

• Think about math education in general at the post-secondary level. Do you

think students would benefit from evaluating work, not just producing it? If so,

should aspects like elegance or rigor be included in those evaluations, or just

validity?

Purpose: To wrap up the interview.

Interview Questions:

• Is there anything else you’d like to tell me?

• Thank you for your time!
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Vita

To me, education is one of the most important gifts life has to offer. It is something

so rich yet attainable. It teaches us to strive and succeed and also to fail and learn.

It is something that challenges and molds students into the people they will become

in the future. As a math teacher, I believe that it is crucial to provide this gift to

every child.

For some students, math is a skill that comes naturally, but this is not the case for

everyone. For some students, stepping into a math class is a nightmare. As a teacher,

one of my ultimate goals is to create an environment where students feel comfortable

with math. I want to encourage them to think about what they already know and

relate it to what we are learning. I want to guide them but also allow them to make

errors and learn from them. I want to create a place where they are comfortable

asking questions and trying different methods. I ultimately want them to learn that

math is nothing to be afraid of.

As a teacher, my goal is to teach my students more than just numbers and

equations. Although I do want them to understand the material, I also want them to

understand that math is a challenge that they are capable of tackling.
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