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Abstract

The contribution of this work lies in the development of a bulk driven operational

transconducctance amplifier which can be integrated with other analog circuits and

photodetectors in the same chip for compactness, miniaturization and reducing the power.

Silicon photomultipliers, also known as SiPMs, when coupled with scintillator materials

are used in many imaging applications including nuclear detection. This thesis discuss the

design of a bulk-driven transimpedance amplifier suitable for detectors where the front end

is a SiPM. The amplifier was design and fabricated in a standard standard CMOS process

and is suitable for integration with CMOS based SiPMs and commercially available SiPMs.

Specifically, the amplifier was verified in simulations and experiment using circuit models for

the SiPM.

The bulk-driven amplifier’s performance, was compared to a commercially available

amplifier with approximately the same open loop gain (70dB). Both amplifiers were verified

with two different light sources, a scintillator and a SiPM. The energy resolution using the

bulk driven amplifier was 8.6% and was 14.2% for the commercial amplifier indicating the

suitability of the amplifier design for portable systems.
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Chapter 1

Introduction

Today silicon photomultipliers are used in numerous applications, from environmental to

science. Silicon photomultipliers, or SiPMs, are semiconductor based photodiodes that are

extremely sensitive to light. With some other advantages such as immunity to magnetic field

and low bias voltage, they have been used as a legitimate replacement for photomultiplier

tubes (PMTs) [76, 77, 78].

SiPMs can be used as a photodetector in spectroscopic personal radiation detectors

(SPRDs). SPRDs are devices defined by ANSI/IEEE N42.48 [79] and IEC 62618 [80] and

are used to detect radioactive materials. SPRDs can record the gamma-ray energy spectrum

and identify the isotope emitting the radiation. In addition, the SPRD neutron detection

feature can help identify nuclear from other radioactive materials and naturally occuring

gamma-ray sources. [81].

In this thesis, the focus is on the electronics for SiPM based nuclear readout. This specific

application relies on the use of scintillators which could be, for example, LYSO (lutetium-

yttrium oxyorthosilicate) coupled with custom or commercially available SiPMs. The role of

a scintillator in the process is emitting the light when a particle such as gamma or neutron

are incident on the scintillator surface. Depending on the SiPM type, scintillator material

and application, various strategies may be employed to integrate the SiPM and scintillator.

However, generally SiPMs and scintillators can be coupled with optical coupling grease. [82]

provide more detail about the coupling materials. Thus, typical semiconductor based nuclear

detection systems consists of a source, a scintillator that transduces the incoming particles

1



such as neutrons and gammas to photons, a silicon photomultiplier as the photodetector,

and readout electronics (Fig. 1.1) [1].

SiPM analog interfaces throughout literature indicate a number of different amplifier

topologies, including voltage amplifier [37, 6], charge amplifier [16, 24], transimpedance

amplifier [26, 30, 13], various types of current conveyors, current mirrors and current buffers.

The information extracted from analog readout, with further processing provides the detail

of energy, time and position of nuclear interactions (Fig. 1.2).

In this work, an integrated SiPM readout based on bulk-driven transimpedance amplifier,

simulated and fabricated in a commercial 180 nm CMOS process is presented and compared

with a commercially available discrete charge amplifier for its suitability as a SiPM front

end amplifier. The novelty of this works lies in the design and assessment of the bulk driven

OTA for SiPM readout and the demonstration of the amplifier with a SiPM, scintillator, and

source [71, 1, 2].

1.1 Thesis Outline

This thesis focuses on an amplifier design strategy suitable for integrating with the SiPM

in the same chip and demonstrates the resulting design experimentally. Chapter 2 surveys

the literature on SiPM structures and SiPM readout strategies. Chapter 3 discusses the

amplifier design approach for portable SiPM based detectors. Chapter 4 outlines the SiPM

based sensor for a nuclear detection application and finally chapter 5 presents a summary of

the work.

2



ScintillatorSource Photons SiPM Amplifier Voltage

Figure 1.1: Scintillators convert nuclear particles into photons which are then transduced
by the SiPM into electrons. These can be amplified and further processed using charge,
current, or voltage based readout electronics [1].

Amplifier

High slew rate amplifier Comparator

Digitization &

ComparatorShaper

Energy

Time

Position

Pre amplifier Signal processing

Figure 1.2: Typical readout in a nuclear imaging system requires various circuit topologies
to extract time, energy, or position information [2].
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Chapter 2

Literature Review

Portions of this chapter were previously published as

• A. Hesari, M. A. Haque, and N. McFarlane, “A Comprehensive Survey of Readout

Strategies for SiPMs Used in Nuclear Imaging Systems,” Photonics vol. 8, no. 7, p.

266, 2021.

2.1 SiPM applications

SiPMs are based on single photon avalanche diodes (SPADs) which are pn junction

diodes which are biased in the reverse breakdown. These diodes can be implemented in

any semiconducting material, such as the III-Vs (eg. InGaAs) or in Silicon. CMOS silicon

foundries are commercially available and complex mixed signal circuits can be implemented

in these processes for low cost. Thus, readout in designed in standard CMOS processes

can be implemented directly alongside SiPMs in a single chip. This advantage make them

a great choice in wide range of applications such as medical imaging [83, 84, 85, 86, 87],

optical imaging systems [88, 89, 90, 91, 92], astrophysics and gamma detection [93, 94, 95,

96, 97, 98, 99, 100, 101, 102] and fluorescence imaging [103, 104, 105]. where they used in

many experiments [106, 107, 108].

Imaging system based on SiPMs can be developed around discrete electronic component

off the shelf or custom designed systems on printed circuit boards [109]. However, this is at

4



the cost of higher parasitics which leads to lower the system speed. Moreover, this approach

suffers from low spatial resolution due to optical dead zones. By integration of the SiPM

with the readout circuits, the parasitics are potentially reduced. In addition, power and size

can be significantly reduced. In complex multistage readouts, the overall fill factor may be

affected, where the fill factor is defined as the optically PN junction active area vs non optical

area. An example of the integration of silicon photomultiplier and the dedicated readout on

the same chip can be found in [110, 111]. One approach of such a integration is separating

the layer of SiPM and readout in a 3D integration process which affords the benefit of higher

fill factor in comparison with regular 2D integration [112, 113].

In nuclear applications, silicon photomultipliers are coupled with the scintillator mate-

rials. Scintillator materials vary widely in light yield and sensitivity to various particles.

With further processing, energy, time, and position of interaction can be quantified. The

raw SiPM output signal is influenced by the scintillator material and thickness [114]. In

addition, since the scintillator is the front-end transducer, its properties will limit the overall

imaging system characteristics regardless of the sensitivity of the subsequent readout. Fig.

2.1, shows examples of nuclear readout circuit topologies and scintillators.

2.2 SiPM SPICE Model

SiPMs array are based on SPAD (single-photon avalanche diodes) along with quenching

resistor. The SPADs are biased in reverse breakdown with a series resistor. When a photon

is incident on a SPAD, generated electron-hole pairs under high electric field are accelerated.

Then, due to impact ionization, influenced by the high energy charges, an avalanche current

is generated. In order to stop the process and prevent destruction of the device due to high

current flowing in it, quenching devices, either passive devices (such as a resistor), or active

devices (such as transistors), are placed in series with SPADs.

SiPMs systems are divided into two categories, digital or analog. The difference between

these two types of SiPM is the readout strategies. For the analog SiPM, the current in all of

the SPADs are summed and readout through a amplifier. The output signal is thus analog

in nature. For the digital SiPM, each SPAD has its own circuitry, and the output can be a

5



count rate and is an all or nothing signal typically using a comparator with a user defined

threshold.

SiPMs can be implemented through custom or commercial fabrication process. For

commercial foundries an initial fabrication is needed to extract parameters suitable for

simulating the model and readout electronic. However at the moment, a few commercial

foundries, such as XFAB, offer SPADs with device models as part of their fabrication options

[115, 116, 110, 117].

A general SiPM SPICE model is shown in Fig. 2.2. This model does not account for

the full probabilistic nature of avalanche process, but it is suitable for designing, simulating,

and characterizing the SiPM readout electronics. Fig. 2.2 consists of avalanching vs non-

avalanching cells, where each cell consists of parasitic devices [118, 119, 31]. In the model,

Rq is the quenching resistance, Cd is photodiode capacitance of SiPM’s micro-cell, Cq is the

small parasitic capacitance in parallel to Cq and Cg is the total parasitic capacitance which

account for interconnections between all the micro-cells. For a SiPM with many number of

micro-cells, Cd/(N-1), Cq/(N-1) and Rq/(N-1), show the load of the other N–1 micro-cells.

This model clearly indicates that, on one hand, Cd and Cq values and, on the other hand,

the bias and the breakdown voltage of SiPM, as is shown in Eq. 2.1 affect the amount of

charge produced by SiPM.

QTOT = (Cd + Cq)(VBIAS + VBR) = (Cd + Cq)(∆V )
(2.1)

Cq and Cd also provides two paths for the released charge by SiPM at the input of the

readout circuit. These two paths provide a “slow” and “fast” component of the voltage

generated at the input of the readout circuit. In order to analyze these two paths, the

charge is generated due to Cq and Cd is required. In addition, the equivalent capacitance

of the detector at low and high frequencies has to be determined. Since QF , is responsible

for the fast component of charge generated by SiPM, using Eq. 2.2, the amount of charge

that is almost instantaneously flowing in Cq and reaches the input node very quickly. This

charge is,

6



QF = QTOT .Cq(Cq + Cd)
(2.2)

without Cq, slow time constant Rq.Cd, would dominate high frequency component of charge

collection at the input of preamplifier.

At high frequency, equivalent capacitance of detector can be calculated using Eq. 2.3.

CHF = Cg + [N(CdCq)/(Cd + Cq)]
(2.3)

With CHF and QF , the fast component of generated charge at the input of readout circuit

can be calculated with Eq. 2.4

VINF (t) = QF

CHF
e

−t
τF

(2.4)

where, τF is the time constant formed by RIN and the high frequency equivalent capacitance

of detector CHF .

τF = RINCHF
(2.5)

Note that CHF represents the high-frequency equivalent capacitance of the detector, which

is valid for a few ns after the micro-cell is fired. Also, since typically the input capacitance

of the readout circuit in comparison with CHF , is quite small, the effect of the equivalent

input capacitance of readout electronics on the fast component of charge released by SiPM

can be neglected.

The second part of the charge that reaches the input of the readout circuit is due to the

slow component of charge generated by SiPM. Slow components of charge are the discharge

current released by Cd in parallel connection of Cq and Rq. The amount of charge that

Cd receives from the total charge and slow time constant formed by Rq, Cq and Cd can be

calculated with Eq. 2.6 and 2.7 respectively.
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QD = QTOTCd/(Cd + Cq)
(2.6)

ID(t) =
QD

τR
e

−t
τR (2.7)

where τR is recovery time constant of SiPM.

τR = RQ(Cd + Cq)
(2.8)

τS = τR + RIN(Cg + NCd) = τR + RINCLF
(2.9)

Using the values of RIN , QD and the time constant of the fast and slow components, 2.5 and

2.9, the input voltage of the preamplifier VINS(t) due to the effect of the slow component of

charge released by SiPM can be calculated,

VINS(t) = RIN(t)
QD

τS − τF
[e

−t
τRS

− −t
τRF ] (2.10)

which exhibits a rising time dominated by the fast time constant τF and a long tail dominated

by the slow time constant τS. At low frequencies, the equivalent capacitance of the detector

is calculated using,

CLF = (Cg + NCd) (2.11)

VINF (t) and VINS(t) indicate that while good timing performance can be achieved by fast

components of the signal, slow components are poor relevance in this respect. Another

element that affects the fast and slow components of VIN(t) is the input impedance of the

readout circuit. In [120], the effects of the variation of RIN on the fast and slow components

of the signal VIN(t) are shown and indicate that by decreasing the input impedance of the

readout circuit, the fall time of VINF (t) gets faster. The reason lies in the fact that, as

the input resistance of the readout circuit decreases, CHF is able to discharge faster since
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a larger discharge current is able to flow into readout input resistance. On the other hand,

increasing the readout input resistance reduces the rate of detected events due to possible

pile-up effects.

These results indicate that, for the readout circuit of SiPM, low input impedance is

preferred. Low input impedance also helps to limit voltage variation across the detector due

to firing up the SiPM’s microcells at different times, when it is coupled with a scintillator.

Another conclusion that can be made in this section, regarding the current flow into

the readout circuit, is that lower values of RIN , on one hand, correspond to shorter tails of

IINF (t) and IINS(t) and on the other hand, on the slope of IINF (t).

SiPM simulations in this work were performed using SPAD SPICE models in Cadence.

The model was adapted from [32] and is shown in Fig. 2.3. This model simulated both

the dynamic avalanche and quench process and the static current voltage characteristics. It

uses capacitances, resistors and voltage sources to model the diode substrate capacitances,

forward and reverse bias operations and breakdown voltage.

The model, characterize the SPAD above the breakdown using VSPAD. During the time

that SPAD is reverse biased and below VR, SF and SR switches are open. If the SPAD is

quiescent, the current-controlled switch SSELF and the voltage-controlled switch STRIG are

open. Thus, in this way, by the external electronics, the reverse voltage applied between the

SPAD’s cathode and anode.

In this model, voltage or current stimulus, may apply through R1 and R2. If positive

input apply and exceed the threshold voltage of STRIG, the switch closes are closed to

mimics the avalanche ignition. Then he threshold current level (Iq), of SSELF rises to few

milliampere. Now, SSELF is able to self-sustain the avalanche current up to the point that

the current lowers below Iq, even if STRIG is released. Thus, the current pulse interruption

is set by SSELF . It is noticeable that since S1 switch is controlled by the voltage between

anode and cathode (threshold voltage VTS1=−VB(breakdown voltage)), the photon signal

may drives STRIG only if the reverse voltage is above breakdown.

The forward mode, is characterized with a DC voltage generator (VF ), resistor (RF ), and

SF switch [32]. VF used in the reference is 0.6-0.9 V, however this is a function of the material

properties of the diode such as doping, materials (eg. STI, buried layers) and shape and can
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vary for different photodiodes. If the anode voltage is larger than the cathode voltage and

lower than V F , then SF opens and prevents current from flowing in the circuit. SF switch

will be open if VAC , and exceeds V F . The switch SR will complete the loop if the reverse

voltage VAC is larger in magnitude than the secondary breakdown value, V R. Then the

SPAD is in permanent breakdown and switch S2, with the threshold set to V R, inhibits any

new photon input similar to the dead time that occurs in a realistic device.

In order to obviate the need for a current-controlled switch, SSELF is replaced by a a

resistor to sense the current and a switch that depends on a voltage signal. VSPAD was

split into two namely a VSPAD and RSPAD. With using these andthe passive devices such as

resistors and capacitors, and sources (either voltage or current) the model can be accurately

simulated by correctly applying Kirchoff’s current and voltage laws as a combination of

voltages at nodes, current in branches and including built in complex expressions. It

should be noted that these complex expressions can also potentially be implemented using

operational amplifier based circuits and transistor level circuits. In this specific model the

static current voltage curve is derived in a piecewise linear manner which is reflected in the

circuit model which is a resistor and voltage source. In this model, CAC , CCS and CAS

represents the stray and junction capacitances of SPAD. More details about the model can

be find in [32].

2.3 Analog and Digital SiPMs

SiPMs are often divided into two major groups, analog and digital. In ref [115], an analog

and digital SiPMs developed in 0.35 µm, CMOS technology is presented. In an analog SiPM,

each SPAD is in series with device that reduces the absolute value of the voltage across the

SPAD to below the absolute value of the breakdown voltage and in doing so quenches the

avalanche process by limiting the current flow through the device. The combination of each

SPAD and quenching resistor is called a microcell. Fig. 2.4 is an example of a SiPM structure

with 16×16 microcells divided into 4 macro-pixels and provides more detail about microcell

and pixel definition. From the figure, one can say that in this specific example, each pixel

consists of 64 microcell pixels consists of 64 microcell (8×8 microcells).
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In analog SiPMs, the output is the sum of the individual currents of all microcells. While

in digital SiPMs, each SPAD has its own readout circuit and active quenching circuitry

[121], plus an integrated one-bit memory cell to switch on and off any desired SPADs [115]

which aids in optimizing the overall dark counts. In recent years, digital SiPMs coupled

with scintillators have provided an ideal choice for time-of-flight (TOF) positron emission

tomography (PET) detectors. Integrated Time-to-Digital Converters (TDC) with digital

SiPMs, besides providing low noise timing information, enables the designer to build an

extremely miniaturized PET detector.

As an example, multiple integrated TDCs called multi-channel digital SiPM (MD-SiPM)

as part of a PET scanner are developed and tested in [122]. In either analog or digital SiPMs,

for small array SiPM readout, each channel can be read out independently using dedicated

amplifiers and data acquisition circuits [123, 124, 125, 126]. However, multiplexing is needed

if dealing with larger arrays [127, 128, 129]. Multiplexing also aid in correcting pixel non-

uniformities due to design or fabrication process variations [130].

2.4 SiPM Signal Generation

A SiPM’s current pulse is proportional to the amount of charge due the incoming light

and thus directly proportional to the source intensity (number and rate of incident particles)

and scintillator (material type and light yield). Therefore, the equivalent circuit of SiPMs

can be considered as a current source. In a similar way, the readout circuit, which can be

generally termed as a preamplifier, has an effective input resistance, Ra, and capacitance,

Ca. The arrangement of a SiPM in conjunction with the readout circuit and its equivalent

circuit is shown in 2.5. Fig. 2.5 shows the total resistance (R) and capacitance (C) form an

RC circuit with a time constant τ= RC. The current pulse from SiPM appears as a voltage

pulse at the input of the readout circuit and its shape is a function of the RC time constant.

Now, if the RC time constant in comparison with the duration of charge collection is small

enough, then the SiPM’s output current and the current flow into the readout circuit are

almost identical and called a current pulse.
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Figure 2.1: Readout circuits used in nuclear imaging with various scintillator materials,
from 2012 to 2021 [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30].
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Figure 2.2: SiPM circuit model showing 1 avalanching cell and (N-1) non-avalanching cells
[31].

Table 2.1: Minimal detectable signal with photodetectors

Photodetector type Minimum detectable photon signal Gain
PIN photodiode (PD) 200–300 photon 1

Avalnche Photodiode (APD) 10–20 photon 10–300
Photomultiplier Tube (PMT) 1 photon 103–108

Silicon Photomultiplier (SiPM) 1 photon 104–107
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But most of the time, the RC time constant is much longer than the duration of charge

collection and the SiPM’s output current is integrated into the equivalent capacitor. This

pulse, which is called a charge pulse, eventually discharges the resistor and generates a

voltage pulse [131].

The voltage pulse generated at the output of the readout circuit can carry different types

of information out, such as the type of particle, timing, position, and the energy of the signal.

The basic characteristics of a pulse detector are shown in Fig. 2.6.

Fig. 2.6 shows the SiPM’s pulse, which in general consists of two parts, the leading edge

and tailing edge. The leading edge is the time duration when the pulse reaches its maximum

value and the tailing edge, is the time signal from the maximum value, falls to its initial

value. Rise time, fall time, and peaking time are also shown in 2.6, and are defined as the

time SiPM’s pulse goes from 10% to 90%, goes from 90% to 10%, and the time it takes for

the leading-edge to rise from zero to the maximum height, respectively. The SiPM’s pulse

width is generally measured in units of time and defines the distance between the 50% points

on the leading and trailing edges. The other terms shown in Fig. 2.6 are baseline and offset.

The baseline is translated to the voltage level at which the pulse starts and finishes.

Although in a general case, it is expected to see the baseline level at zero volts, the

baseline, for various reasons such as fluctuations in the pulse shape, can start at a non-zero

level voltage, and is referred to as an offset. The last term that is shown in Fig. 2.6, is pulse

amplitude, which is defined as the difference between the pulse baseline and the maximum

value of the pulse. In SiPM pulse processing applications, pulses can be considered “fast”

or “slow”. Generally, a pulse with less than a few nanoseconds rising in time is considered

a fast pulse. As an example, a typical SiPM’s output current has a rise time of less than a

few nanoseconds while the duration of a pulse may extend to a few microseconds.

2.5 Energy measurements

Energy or pulse-height spectroscopy systems play a key role in many applications such

as medical applications. The generated charge on a SiPM’s electrodes is proportional to the

incident light and thus to the source through the scintillation transducer function. Therefore,
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the readout pulse amplitude that is generated by a couple of building blocks of electronic

circuits, represents the distribution of energy deposition in SiPM. The basic structure of

such a system is shown in Fig. 2.7.

The first stage of a typical energy spectroscopy readout is usually a charge-sensitive

preamplifier, though in some cases, a current sensitive or voltage-sensitive preamplifier may

be used. If a charge amplifier is used as the first stage, the SiPM’s current is converted

and amplified into a charge pulse. The charge pulses are then fed into a shaper which is

sometimes also called a linear amplifier. The shaper, while amplifying the amplitude signal

of the preamplifier stage, will help optimize the signal to noise of the readout circuit. Also, at

high event rates, the shaper, by reducing the decay time of events, is better able to separate

the events.

As shown in Fig. 2.7, a typical shaper is comprised of a low pass (also called integrator)

and a high pass filter (also called differentiator). A high pass filter limits the noise at smaller

frequencies. A low pass filter influences the equivalent noise bandwidth. The band-pass

filter frequency response function is designed for optimized signal-to-noise ratio. The next

building block of energy spectroscopy is a multi-channel analyzer (MCA). The MCA sorts

the amplitudes of hte pulses into user defined bins and produces a spectrum of pulse heights.

A typical MCA consists of three building blocks, an analog-to-digital converter (ADC), a

histogram memory, and a monitor display. The resolution of the ADC affects the number of

channels (typically ranges from 512 to 65536) displayed in the spectrum.

Ideally, for the same amount of energy, one may expect to see the same amplitude (or

channel number) as measured by a spectroscopy system. However, in practice, the amplitude

of pulses corresponds to the same amount of energy that varies from each other. In a

real scenario, a real pulse-height spectrum has a finite width for a constant energy value.

Therefore, the energy resolution is defined as the full width at half maximum (FWHM) of

the Gaussian function. The energy resolution of a radiation detector is given by Eq. 2.12

and is shown in Fig. 2.8,

R =
∆Hfwhm

H0 (2.12)
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In Fig. 2.8, H0 is the related the average of the particle’s energy. Producing vibration in

the crystal lattice, SiPM’s size and electronic noise are the major sources of fluctuation in

the amplitude of pulses in response to the same amount of energy. Among these, electronic

noise can be decreased with a proper choice of circuit frequency response design that removes

the out-of-band noise.

A shaper produces an output pulse with an amplitude proportional to the amplitude of

the input pulse. However, any variation in the input port of the shaper due to fluctuation

in SiPM’s output current, will result in variation in the amplitude of the shaper’s output

pulses and affect the energy resolution [33]. Energy resolution may also be affected by pulse

pileup, which implies an inability to separate pulses from their source. Pulse pileup due to

a high detection rate and/or width of the pulses can be divided into tail and head pileups.

When two or more pulses have a shorter time interval than the time constant of the filters,

it is known as head pileup. In this case, the readout sees all the pulses as a single pulse and

is unable to accurately quantify the signal’s amplitude.

Another phenomenon that can affect energy resolution is baseline fluctuations. SiPM’s

leakage current, pulse processing errors, and thermal drift of the readout circuit are the

major sources of baseline variations. In nuclear readout circuits, random distribution of

events will result in variation in the average DC voltage which consequently results in a shift

of the baseline and degradation of energy resolution that is proportionals to the count rate.

There are also some other phenomena that can have a negative effects on energy resolution,

such as a change in performance of SiPM and scintillator due to aging, temperature, and

humidity [132, 133].

The photon energy of an event (defined as photons being incident on the SiPMs), is

proportional to the SiPM’s charge or current pulse, and is an important characteristic. The

peak signal provides information on the energy of the photons. Energy resolution may

affected by type of scintillator material and physical mechanisms such as ballistic deficit,

pulse pileup, or baseline fluctuation [134, 135, 136, 137, 138, 98].

Table 2.2 shows a relative comparison of the energy resolution using different scintillator

materials.The total photon absorption depends on the type and thickness of material and

incident energy of photons. For example, four different scintillators, CsI(Tl), NaI(Tl),
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Figure 4.10: Experimental setup of the amplifiers with a check source and scintillator
coupled to the Hamamatsu SiPM.

Figure 4.11: Experimental response to a CS-137 gamma source and CHC scintillator
coupled to a Hammatsu SiPM with (a) the bulk driven TIA and (b) the Cremat CR-113-
R2.1 readout electronics.

Figure 4.12: Experimental spectrum of a CS-137 gamma source and CHC scintillator
coupled to a Hammatsu SiPM with (a) the bulk driven TIA and (b) the Cremat CR-113-
R2.1.
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Table 4.1: Energy Resolution of the System Compared with other Readout Systems.

Reference SiPM Scintillator Source Readout Energy

Resolution

[11] Ketek LYSO:Ce Na22 ASIC 13.7 (%)

(MADPET)

[13] Hamamatsu LFS CS137 ASIC 11.8 (%)

(TOF-PET)

[14] Ketek LYSO Na22 ASIC 10 (%)

(TOFPET2)

[16] SensL LYSO Na22 Σ∆ ADC 10.5 (%)

[24] Hamamatsu LYSO Na22 Σ∆ 18.7 (%)

[30] Hamamatsu LYSO Na22 ASIC 13.08 (%)

(TOFPET2)

[290] SensL CHC AmBe Digitizer 6.27 (%)

(Caen V1730C)

[291] Hamamatsu CHC CS137 MCA 4.5 (%)

(Canberra MP2)

This work Hamamatsu CHC CS137 CSP 14.2 (%)

(Cremat) (CR113)

This work Hamamatsu CHC CS137 TIA 8.6 (%)

(Cremat) (CMOS 180nm)
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Chapter 5

Conclusion

In this work a SiPM based nuclear detection system was developed using a custom OTA

developed in standard CMOS in transimpedance configuration and a separate SiPM and

scintillator. While the SiPM operates at a relatively high reverse bias voltages, for a portable

detector the TIA should operate at low voltages and should be compact so as to reduce the

size of the system. Therefore, in this work bulk-driven and subthreshold region operating

transistors were used to develop the OTA for the TIA. The amplifier is fully differential to

help compensate for variations from SiPM to SiPM by using a reference device.

The transimpedance amplifier was designed and fabricated in a commercial 180 nm

CMOS and used cross coupled loads in addition to body driving. The OTA and a discrete

amplifier setup were experimentally characterized with a Hamamatsu SiPM. The CMOS

based OTA has an open loop gain of 70 dB, slew rate of 150 µV/ns, and input referred noise

of 1.26 µV2/Hz.

The transimpedance amplifier has 7.1 dB closed loop gain and the closed loop gain can

be improved by adjusting the feedback network. The amplifier is fully differential allowing

for the difference between a detecting SiPM and a reference device to account for process

variations.

The commercial amplifier has 69 dB open loop gain, slew rate of 1.5 mV/ns and input

referred noise of 0.8µV2/Hz. The CMOS amplifier consumes much less power (9 µW) than

the commercial amplifier. The systems were characterized with a pulsed LED and a gamma

source with scintillator.
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The energy resolution for the commercial amplifier based system with a CHC scintillator

was 14.2% while the energy resolution for the bulk driven amplifier was 8.6%. Initial

experimental results indicate that the proposed systems are suitable for portable CMOS

based nuclear detectors and the amplifier can be integrated with on-chip SiPMs for

miniaturization, compactness, and reduced power. By integrating the SiPM with the OTA

on the same chip this work enable a future path for portable SiPM based detectors.
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