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Chapter 1

Introduction

1.1 Motivation

Energy consumption is steadily increasing year over year in the United States (US).

Increasing population, climate change, and an abundance of new technologies have led to

this end-use energy inflation. This increase in energy end use goes hand in hand with surging

emissions as energy producers continue to meet energy demands. It is critical to understand

and model this energy consumption in order to predict and mitigate any adverse outcomes

climate change may have on humanity in the coming years. This modeling task is difficult,

as energy consumption in the US involves a complex web of geographically and economically

interconnected energy consumers across the country. One of the largest components of this

web is buildings, which use about 40% of US energy [19]. Modeling buildings provides a

significant opportunity to transform the built environment by examining new technologies,

optimizing building and grid efficiency, and testing the resiliency and reactions of buildings

under various scenarios. The results of these analyses will inform decision-making and policy

in the years to come.

1.2 Research Contribution

As urban building energy modeling (UBEM) is a relatively nascent field [43], it contains

many novel research areas to explore. While advances in high-performance computing (HPC)
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have allowed for the modeling of large numbers of buildings yet most analyses do not take

advantage of this computing power and model tens to hundreds of buildings [3] while relying

on city-based resources such as tax assessors data or city Geographic Gnformation System

(GIS) databases. Another issue with many of these analyses is that they lack the actual high-

resolution data necessary to assess the quality of and calibrate their building energy models.

An approach called “Automatic Building Energy Modeling (AutoBEM)”, has been created

that uses real 15-minute electricity data from an electrical distribution utility, allowing for the

modeling of parts of eight counties representing more than 178,000 premises in Chattanooga.

This approach is unique in that it allows for scalability beyond a single data source.

Significant improvements were made to the AutoBEM framework that substantially

reduced the pre-adjusted error rates (adjustments to simulation results can be made to

eliminate simulation bias and provide more representative simulations). These improvements

include tuning building prototypes, building prototype and vintage assignment strategies,

improved footprint matching, and handling of multiple electrical meters per building, among

others. Utility-scale analyses were undertaken on these improved building models, including

building retrofits, demand reduction techniques, cost and emissions savings opportunities,

renewable energy potential, microgrid analyses, and climate impacts. These analyses are

useful for utilities, as they allow them to estimate the efficacy of new building technologies

or the impact of climate change on their grid. As one of the primary novelties of this modeling

framework is its scalability, expanding beyond Chattanooga was an important goal. An effort

was made to expand the the scope beyond 178,000 buildings to every building in the US

using HPC resources (more than 125 million buildings). This work will lay the groundwork

for future mega-scale analyses while demonstrating the capability for HPC to such a large

number of buildings and allowing for utilization of simulation-informed analysis across the

US.

This work also makes research contributions beyond the scope of a single utility. Previous

US building energy climate research has focused on single climate zones, individual building

types, or forecasting total energy use based on past data. The geographic scale, climate

heterogeneity, and granularity of this work make it novel and valuable to the research

community.
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These contributions provide methodologies and results at a scale not previously seen in

building energy modeling (BEM), illustrating how advances in computing technology can

benefit this field greatly. It will become increasingly important to model vast geographic

areas to predict outcomes and find optimal strategies to reduce energy use, emissions, and

costs while making BEM ubiquitous in urban planning. A summary of the topic's novelty

and the contributions of this work is shown in Table 1.1.

1.3 Building Energy Modeling

BEM is an arduous task requiring a multitude of skill sets, as there are countless physical

phenomena occurring in a building at any given time and very few buildings are exactly the

same or have similar energy profiles. These interactions can be captured using physical and

data models.

1.3.1 Physical Building Energy Modeling

Physical BEM takes inputs describing a building - including geometry, construction

materials, lighting, HVAC, refrigeration, water heating, control strategies, and occupancy

schedules, among others - and combines them with weather data to calculate thermal loads,

system responses to those loads, and energy use, along with several other related metrics.

These calculations are performed using physics equations from many fields, including fluid

dynamics, heat transfer, electrical engineering, construction technology, lighting, and others.

The complexity increases in buildings (as in many other systems) as the interactions between

various physical phenomena must be taken into account [39]. A primary benefit of using a

physics-based model is that simulation results will generally be reasonable, as they are based

on the laws of physics. However, supplying the model with adequate inputs to capture

the exact physics of a building can be nearly impossible since a building energy model

typically averages about 3,000 inputs. Another benefit of physical modeling is the ability

to test specific changes to a building, such as a different technology or improved efficiency,

to observe the reaction in terms of the building's energy consumption. EnergyPlus is a

commonly used BEM software and is the simulation engine used to model building energy
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Table 1.1: Research Novelty and Contributions - Improvements to the AutoBEM
framework are covered in Section 2.1. Energy, cost, and emissions savings for a utility are
explored in Section 2.5. Climate impacts on a utility as well as US commercial building stock
are described in Section 2.6. The methodology by which every US building was modeling
can be found in Section 2.7.

Topic Novelty Contribution

Improvements to AutoBEM AutoBEM is a fully integrated Tuning building prototypes

framework bottom-up UBEM framework Improving building footprint selection

by which any buildings in a Handling of multiple electrical meters

region in the US can be per building

modeled. Real electricity data

Building type and vintage assignment

comparison

AutoBEMGen/AutoSIM [1][49]

upgrades/improvements

Energy, Cost, Emissions Simulation of many energy More than 2 million simulations

Savings and Climate Impacts conservation measure for on HPC resources

for Utility 178k+ buildings. No ECM or Demand management analyses for various ECM

climate analyses have been Common energy efficiency measures evaluated

done at this scale using a Models simulated using climate

bottom-up methodology. model weather data

Future Meteorological Year Current building energy 1,440 building prototypes from all

Simulations for all climate forecasts in the US US climate zones used

Commercial Buildings in US are geographically limited, 16,920 simulations using climate

limited to few building types model weather data

or utilize a top-down Prototype simulation energy scaling technique

approach. developed and implemented

Model America No bottom-up UBEM analysis Data aggregation/cleaning

has ever been done at this scale. Building property classification

(> 125M buildings) HPC Generation/Simulation

Big Data Movement
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use in this work. The specific inputs driving the engine as well as potential outputs can be

found in the input/output reference [58]. A typical framework for physical BEM is shown

in Figure 1.1.

1.3.2 Data-Based Building Energy Modeling

Data-based building energy models make use of various sensors throughout a building, storing

data from any relevant building systems. These data are aggregated and split into training

and testing sets. A model is chosen that is best suited for the data and is trained using

the training set. The model's accuracy is determined using the testing set. If the model

is of sufficient quality, it can be used to predict specific independent variables. Data-based

models differ from physics-based models in that data-based models utilize an independent

variable (here, typically building energy consumption), while physics models only use it

for calibration. This makes data-based models a good choice for forecasting energy use or

demand in buildings, as past occurrences are often a good indicator of future outcomes.

However, data-based models can be more unpredictable than physical models because

they usually cannot extrapolate, leading to the possibility of erroneous predictions. This

unpredictable behavior has been handled in several ways, including incorporating physical

equations into algorithms. A typical framework for data-based BEM is shown in Figure 1.2.

1.4 Urban Building Energy Modeling

While BEM focuses on modeling a single building, UBEM analyzes tens to millions of

buildings. UBEM can be either bottom-up or top-down. A comparison of the different

UBEM methods is shown in Table 1.2.

1.4.1 Bottom-up Urban Building Energy Modeling

Bottom-up UBEM uses the previously described physical and data-based models but at a

much larger scale. This is accomplished in one of two ways: Each building can be individually
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Figure 1.1: Physical BEM Workflow - Physical BEM includes a set of inputs describing
the physics of the buildings and simulates the building outputting specified parameters of
interest[27]. The amount of data input to develop a representative model can be one of the
difficulties of physical BEM. EnergyPlus is a commonly used BEM software [57].

Figure 1.2: Data-based BEMWorkflow - A data-based BEM approach can input similar
data to a physical BEM approach, though not all data is required. Data-based models are
not built on a physics simulation engine and therefore do not require specific simulation data.
The algorithm and data pre-processing can also be adjusted on a case by case basis. In this
way, data-based models may be much more flexible than physical models [24] but as they do
not use a simulation engine, they tend to be brittle and fail to generalize to data from new
buildings.
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modeled, or a set of representative buildings can be modeled and the results scaled up to

represent all of the buildings. Each method entails certain trade-offs.

Bottom-up physical BEM can be extremely computationally expensive at a large scale,

as each model must be simulated. This computational challenge has become easier in recent

years due to advancements in HPC. Physical building energy models require the most data,

as detailed information about the building's geometry, height, number of floors, construction

materials, window-to-wall ratios, HVAC type, and occupancy schedules are required to

accurately represent the building. For physical BEM, actual energy data are not required but

are helpful for accuracy validation and model calibration. These data can be acquired from

various public or private sources but can be challenging to obtain, nonexistent, or unreliable.

For this reason, simplifications often must be made. These frequently include the use of

building archetypes that describe much of the building stock. The parameters of these

building archetypes can be applied to buildings on an individual level. The methodology for

collecting data used to create building energy models is one of the primary distinguishing

factors of UBEM approaches, as having more data that describe a building often leads to

more accurate results. One issue that arises when physically modeling a large number of

buildings is that these models can lack detail, since zoning and other building parameters

must be automated. On the other hand, individually modeling each building allows the

model to capture the building's unique geometry and systems as well as the interactions

between buildings. Higher resolution weather data can also be used, if necessary.

Various UBEM analyses have been performed in the field in different geographic areas

and using different methodologies. A study of 332 residential buildings in Kuwait City

introduced a Bayesian calibration method for archetype assignment with improved error

rates compared to deterministic approaches [14]. A similar Bayesian approach was applied

on 2,663 buildings in Cambridge, Massachusetts, comparing annual and monthly calibration

approaches [54]. A smaller analysis of 22 urban buildings in California evaluated a data-

driven urban energy simulation method that aimed to capture the inter-building dynamics

of dense urban areas. The results indicated that the framework could adequately predict

energy consumption at various time intervals and partially capture inter-building dynamics

[38]. A study in Boston modeled 83,541 buildings to outline a workflow for a large number of
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buildings. This analysis was not calibrated but was roughly crosschecked using US national

consumption data. Metered energy data was the main inhibitor of using these models to

guide energy policy [15]. While the use of actual energy use was the main obstacle of that

analysis, it is an important element of the usefulness of the simulation outputs in this work.

SUNtool [45] and CITYSIM [46] are examples of full-scale streamlined frameworks that use

urban data to create building models of every building in a database and capture interactions

between buildings and microclimates.

These bottom-up physical methods are most similar to the AutoBEM framework explored

in Section 2.1. However, there are a number of differentiating factors. First, the number

of buildings analyzed (> 178,000 for Virtual EPB and > 125,000,000 for Model America)

is much greater than in any of the above-mentioned research, with most current UBEM

analyses covering fewer than 2,000 buildings. Another significant differentiating factor of this

analysis compared to other previous research is the use of 15-minute smart meter electricity

data for simulation bias adjustment and empirical validation. A major issue with various

UBEM methods is their reliance on aggregating building properties from datasets such as

tax assessor data, which can limit the scale and geographical reach of the modeling effort.

AutoBEM does not rely on these data and is therefore not limited by their availability [36].

The assignment of building properties is further explored in Section 2.2.

Physically modeling buildings that represent a majority of the building stock and scaling

them to the full number of buildings drastically lightens the computational load and data

collection effort - that is, modeling only the archetypes and scaling the results rather than

applying building archetype parameters to many unique building geometries. This can allow

for more detailed representative models, as fewer models need to be created, though the

unique building geometries and interactions between buildings are omitted. Accruing the

correct multipliers to scale the representative buildings up to the full sample can also be

difficult or inaccurate, depending on the location being modeled.

This representative building simulation with scaling methodology is used for US

commercial building climate projections explored in Section 2.6.2. It is useful for this scenario

because it enables one to estimate energy use of millions of buildings with orders of magnitude

fewer simulations.
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Some work has also been performed in data-based modeling of representative buildings.

One method of doing so involves clustering buildings in order to create models of these

representative clusters, scaling by the amount of buildings belonging to that cluster.

Bottom-up data-based BEM of individual buildings can be done by aggregating distinct

building model outputs. The data necessary for this method could be as little as historical

energy consumption data, though other building and environmental parameters are usually

necessary for substantive predictions.

An example of a bottom-up data-based approach was done in Cambridge, Massachusetts

on 6,499 buildings [31]. They used tax-assessors data as well as geographical survey

information to create a feature vector and use parametric and non-parametric learning

methods to predict building energy use. They were able to explain about 75% of energy

consumption variance in these buildings, meaning the model captures about 75% of the

spread of the energy consumption.

ResStock [64] and ComStock [26] are two additional tools that are currently being

developed by the National Renewable Energy Laboratory which can be used with aggregated

energy data in a hybrid approach to estimate end-use load profiles for every location in the

US [41]. This methodology is not fully bottom-up and thereby loses some of the granularity

of modeling each building individually.

1.4.2 Top-down Urban Building Energy Modeling

Top-down UBEM considers an entire group of buildings rather than modeling them

individually. Data are collected and an algorithm is trained to predict the energy usage

of the group of buildings. This requires far fewer initial data, as individual building data are

not required. Econometric variables such as income, gross domestic product, fuel prices, and

climate data are often used because they are available at the same scale, which also expands

the scope beyond buildings alone. The main drawback of the top-down approach is that

individual building energy data are not attainable. For this reason, most recent analyses have

used bottom-up UBEM, as individual building analyses are essential for decision-makers.

There are examples of analyses using a top-down UBEM approach. IMACLIM is a French

top-down computable general equilibrium model that uses demographics, labor, productivity
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and international energy prices to predict many outputs, including energy use and carbon

output in France [23].An energy-economic model was developed in Japan focusing on a

rural, residential Japanese region. This model focuses on the structures of energy supply

and demand in the region and takes into account both the technological and economic aspects

of energy conversion to assess CO2 emission reduction possibilities [4].

1.5 Building Energy Modeling Uncertainty

Uncertainty in BEM is an important concept, as the number of factors influencing energy

use in buildings is by nature uncertain [55]. There are two types of uncertainties at play

in BEM: epistemic and aleatoric. Epistemic uncertainty stems from a lack of knowledge.

An example of epistemic uncertainty in BEM is the power density of equipment within a

building, which cannot be easily represented without measuring each piece of equipment's

exact usage patterns. Aleatoric uncertainty refers to the intrinsic randomness in a system.

An example of aleatoric uncertainty in BEM is occupant behavior, which can be estimated

but involves some random events. Other sources of uncertainty in BEM relate to the weather,

building envelope, and HVAC system.

Uncertainty quantification is currently handled using one of two types of analysis:

forward or inverse. Forward uncertainty analysis makes use of known input uncertainty

and propagates it through the model to determine output uncertainties. Inverse uncertainty

analysis quantifies unknown input variables using measured data. The two methods are

linked, as sampling-based inverse uncertainty requires many forward uncertainty propagation

simulations, while the results of inverse uncertainty analysis can be used to estimate the

efficacy of building technologies.

Forward uncertainty analysis can be divided into two subcategories: probabilistic and

non-probabilistic [34]. Probabilistic methods are typically used when data are plentiful,

while non-probabilistic approaches are used when data are sparse. Most current studies

rely on probabilistic propagation for uncertainty quantification. Probabilistic uncertainty

quantification is further subdivided into sampling and non-sampling methods. Sampling

methods treat the model as deterministic and run it many times with different samples,

10



Table 1.2: Pros and Cons of UBEM approaches - Bottom-up UBEM has been used
more recently due to decreases in data aggregation, storage, and computation costs while still
allowing for individual building insights. This is especially true when the focus is buildings
alone. Top-down models typically involve other variables (e.g., econometric, transportation,
energy generation) in their analysis when the scope is beyond buildings alone.

Pros Cons

Top-Down

Less detailed individual building data unnecessary

Can use time-based modeling techniques

Can be easier/faster to model large area

No individual building results

No representation of end-uses

Depend on past energy use

Bottom-Up

Data-Based

Detailed building data not required

Can use time-based modeling techniques

No ability to model different technologies in building

Depend on past energy use

Bottom-Up

Physical

Ability to model different technologies in building

End-use energy consumption detail

Requires most detailed data

Computationally expensive

Many assumptions typically required

Table 1.3: Uncertainty Estimation Method Features - Various BEM uncertainty
quantification methods, common examples and their features are shown.

Direction Function/Features Sub-type Example/Features

Forward

Propogates uncertainty through

building energy models
Probabilistic

Monte Carlo

Flexibility with different data types/probability distributions

Computational cost

Intuitiveness/Ease of use Non-Probabilistic

Min-Max

Less computational cost than sampling

Requires domain knowledge

Results can be less reliable than sampling

Inverse

Infers inputs based through building

energy models based on measured

data

Frequentist

Maximum Likelihood Estimation

Infer single input point

Confidence intervals available

Requires measured data Bayesian

Bayes Theorem

Infer input probability distribution

Requires domain knowledge/data to create prior distributions
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while non-sampling methods rely on model perturbation. Sampling methods are widely

used in current BEM research, while non-sampling methods have not been widely adopted.

Both techniques have disadvantages; sampling methods are computationally expensive, while

non-sampling methods require extensive changes to existing modeling systems.

Monte Carlo sampling is a sampling-based probabilistic method widely used due to its

intuitiveness, ease of implementation, and reliability, as well as its flexibility in dealing with

different data types and probability distributions [30]. It uses sampled input probability

distributions to estimate output probability distributions. The main disadvantage of Monte

Carlo sampling is its computational cost, though this can be mitigated with efficient sampling

methods or surrogate modeling.

A non-probabilistic method used in forward uncertainty analysis is the use of a minimum

and maximum input interval to estimate the minimum and maximum output intervals. This

is a straightforward method, but the input interval may be difficult to determine and the

results can be unreliable compared to probabilistic methods.

Inverse uncertainty analysis is conducted using either a frequentist or Bayesian technique.

Frequentist methods rely on measured data to infer single input parameter values and their

deviations. A commonly used frequentist implementation is maximum likelihood estimation,

which compares measured data to model predictions to find input parameters that maximize

the associated function [40]. Confidence intervals for the input point are inherently available

when using linear models but numerical optimization techniques are required for non-linear

problems. Bayesian techniques use expert knowledge or available data sources to initialize

input parameter distributions (priors) with measured data and Bayes’ Theorem (a way to

way to update predicted probabilities or distributions with new information) to update priors

and create posterior distributions [12]. The incorporation of prior knowledge about the

system may lead to improved input distributions. A comparison of these BEM uncertainty

estimation techniques is shown in Table 1.3.

These BEM uncertainty quantification techniques are critical for modeling individual

buildings, as the analysis is focused and detailed input data are available, but they can be

less useful or impractical when modeling large areas. The number of buildings involved in

large UBEM invokes the law of large numbers, which states that, as sample size increases,
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the sample mean approaches the true mean. For this reason, UBEM often uses prototype

buildings, intended to represent a cross-section of common building types and cover 75%

of built commercial construction [56]. As the number of buildings of a given type within

a sample increases, the mean of those buildings will approach the representative prototype

building as the impact of outlier buildings is diminished.

Uncertainty is also very difficult to quantify for large numbers of buildings, especially

using common probabilistic sampling techniques. This is because, in UBEM, most of

the input parameters are typically assumed or assigned based on prototype buildings or

other coarse data, making input distributions difficult to create. The other difficulty of

using probabilistic sampling techniques in UBEM is the computational challenge involved.

Simulating large spatial areas is already computationally demanding, and sampling these

input parameters and simulating these buildings multiple times could be impractical

depending on the number of buildings in the study.

For these reasons, uncertainty quantification was not directly applied in this analysis

or included in the AutoBEM framework. Probabilistic methods would have been extremely

computationally expensive for even a small number of samples per building, quickly bringing

the number of simulations into the millions. While inverse uncertainty analysis could have

been used, the lack of granularity of individual building input data would have made these

results less valuable. The invocation of the law of large numbers with more than 178,000

buildings and use of prototype building energy models mitigated the need for uncertainty

quantification. The use of bias adjustments to simulated data and empirical validation using

measured data also confirms that a deterministic approach is sufficient.

1.6 Urban Building Energy Modeling Limitations

Though BEM has been an active field for many years, UBEM has only recently come to

the forefront, with advances in computing allowing for the modeling of more and more

buildings. Because it is a new field, there are some limitations related to current UBEM

strategies, one of which is related to individual building simulation efficacy. While aggregated

building simulation results are useful for large numbers of buildings, simulation quality will
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likely decrease as the number of buildings in a sample approaches one, if not adjusted

to measured energy data.. The irregularity of building energy use becomes an issue, as

any particular building may not be accurately represented by a prototype building. This

prototype building limitation could be mitigated in future work through the use of sensing

technology or crowdsourcing to obtain individual building properties such as occupancy

schedule, construction materials, and window-to-wall ratios.

1.7 Climate Modeling

It is important to understand how the built environment will be affected by climate change.

The field of climate modeling has benefited from advances in HPC, which have improved the

spatial and temporal resolution of predictions. Global Climate Models (GCMs) are complex

mathematical representations of the major climate system components (atmosphere, land

surface, ocean, and sea ice) and their interactions [22]. These interactions are shown in

Figure 1.3. Climate models produce simulations of past data to be compared with observed

data to instill confidence in future predictions. In recent years, more complex simulations

have been run in an effort to obtain better representations and a higher-fidelity picture of

what the future may hold. These simulation results provide data to inform decision-making

and aid in preparation for the future in many different fields. Climate model data are used

to estimate building energy use in Section 2.6.

As it is uncertain how emissions will trend in the coming years, the Intergovernmental

Panel on Climate Change (IPCC) created the representative concentration pathways (RCPs).

These climate scenarios were created to standardize the work of many climate researchers

across the globe. The RCPs contain a common definition of emissions values through the

year 2100 for each pathway. The names of the four RCPs define the level of radiative forcing

(W/m2) expected in 2100. Radiative forcing measures the influence a variable plays in

altering the balance of incoming and outgoing energy in Earth's atmosphere. The different

pathways represent projections varying from a decline in radiative forcing to a steady rise [63].

These RCPs are used in this work to quantify uncertainty in future weather by illustrating

how building energy will be effected by each pathway.
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Figure 1.3: Earth's Climate Interactions - Earth's energy balance between atmosphere,
land surface, ocean, and sea ice is key to long-term climate prediction. Each component has
representative equations for each grid point which are changing over time. [52].

Figure 1.4: Representative Concentration Pathways - The Intergovernmental Panel
on Climate Change defines Representative Concentration Pathways scenarios that range
from 1.5◦C to 4.9◦C by 2100 [53]. This could have significant impacts on buildings, cities,
and utilities.

15



Chapter 2

Methods

2.1 Virtual Electric Power Board (Chattanooga)

Our group at Oak Ridge National Laboratory (ORNL) has created a framework by which it

is possible to model each building in a utility service area. A partnership was formed with

the Electric Power Board (EPB) of Chattanooga, Tennessee, to model their service area,

consisting of about 178,000 building electrical meters. They shared 15-minute real electricity

data for the year 2015. Their geographical area covers parts of eight counties in southeast

Tennessee and northwest Georgia. Creating a digital twin of a utility service area is valuable

because it allows the utility to simulate countless scenarios to optimize its buildings and grid.

The utility may want to estimate the electricity, cost, and emissions savings from a retrofit

technology applied to their service area or forecast how their grid will be affected by climate

change projections. There are many more examples of possible analyses and modifications

that make utility-scale BEM worthwhile. These digital twin building technology and climate

applications are explored in Sections 2.5 and 2.6.1 respectively.

To create a digital twin of the EPB service area, a UBEM method had to be chosen.

Bottom-up physical BEM offers several advantages over data-based models, including retrofit

modeling, which is particularly important to a utility. The primary disadvantages of physical

modeling are related to the quantity of data necessary and computational challenges. This

analysis used HPC - including some of the world's fastest supercomputers (TITAN, THETA)

- to minimize computational difficulties while allowing for flexibility in the analysis by
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modeling all buildings individually. The data sources and algorithms are collectively called

“Automatic Building Energy Modeling (AutoBEM)” [37].

Significant improvements have been made to the framework for which a utility is modeled.

These improvements range from building archetype tuning to improved footprint matching

and duplicate-premise energy reduction strategies. One of the largest sources of improvement

was the refinement of the commonly used residential prototype, with the upgraded model

providing a more representative residential building simulation.

2.1.1 Data Aggregation

The first step in developing building energy models is collecting data. Most UBEM

approaches use tax assessor data or a city or county data source to create their building

energy models. While this is a valid approach, it is not scalable beyond a single city or

county without the aggregation of many data sources. Even if the data can be gathered

appropriately, there are often gaps if some counties share less or different data than others.

A method for developing building energy models in a scalable fashion without tax assessor

data was needed. The EPB service area, consisting of eight different counties across parts

of two states, did not have applicable tax assessor data, making it a viable area to evaluate

these scalable techniques.

The first data that must be aggregated describe the building's physical makeup in terms of

the building's 2D footprint and building height. Originally, building footprints were gathered

using ORNL image recognition. New building footprints taken from Microsoft's freely

available building footprint data, consisting of over 125 million footprints in all 50 states,

were matched to electrical meters in the EPB service area. These data were created from

semantic segmentation using a deep neural network architecture (ResNet340) to recognize

building pixels and polygonization to convert pixel blobs into polygons. The pixel error rate

on their evaluation set was 1.15% with a precision and recall of 94.5% [33]. Building heights

were found using LiDAR for the state of Tennessee as well as a small region in the state

of Georgia. These two features together describe the physical shape of the building. The

building geometries were then associated with an electrical meter by finding the distance

between each meter's GPS coordinates and the detected buildings.
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An issue that arose when matching electrical meters to detected buildings was buildings

with multiple electrical meters. Modeling each of these premises as the full building would

result in a significant overestimation of building energy use. Of the approximately 178,000

meters in the EPB service area, there were only 115,504 distinct buildings. For this reason,

only distinct buildings were modeled, with simulation results post-processed by dividing the

electrical use for a multi-meter building by the number of shared meters for that building.

This multiple meter issue is exacerbated in very large buildings, where it becomes critical to

downscale the results from the whole building.

Once the building geometries have been established and joined to their electrical meters,

establishing parameters relating to how the building functions is important for each model.

Prototype building type and vintage are used to assign many of these parameters. Prototype

building models are a set of models consisting of 16 building types that represent much of the

built environment, with current models representing about 75% of commercial buildings in

the US [56]. The vintage of the building is determined by the year it was built and can affect

various building parameters, including efficiencies. Building type and vintage prototypes

were assigned to each individual building by comparing the real 15-minute electricity use

to the simulated electricity use for the 97 prototype buildings and vintage combinations

for this climate region (ASHRAE-169-2006-4A). The matched building type and vintage

features (HVAC system, insulation, occupancy, floor-to-ceiling height, window-to-wall ratio,

etc.) were then assigned to the building geometry. Several methods were evaluated for

classifying building type and vintage. 3D renderings of the building prototypes are shown

in Figure 2.1. These methods have collectively been described previously [36], [37].

2.2 Building Type Classification

The impact of building type on simulation results is shown in Figure 2.3 for climate zone 4A

(Chattanooga). Each building type and vintage combination was simulated using the same

geometry and simulation parameters to determine the impact of building type and vintage

on simulation outputs. The difference in energy use across building types is significant.

Electricity use is especially impacted by building type, with the simulated annual electricity
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Figure 2.1: Prototype Building Model Renderings - These Department of Energy
(DOE) prototypes represent 70% of total US Commercial floorarea. Six vintages were used
for these prototypes which collectively cover any year a building could be built. [28].

Figure 2.2: Real vs Prototype Simulation Data - Example comparison of real building
energy use intensity (EUI) to prototype building simulation output EUI for two different
prototypes. When evaluating methods of building type assignment, the real building is
compared to all 97 building type and Standard combinations.
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output of less than 500 GJ for building types like warehouses and close to 4,000 GJ for

hospitals with the same geometry. Natural gas use is also affected but to a lesser extent,

while several building types use no natural gas.

The building standard also has an effect on the simulation outputs, though its impact is

less than building type. The impact of building standard on simulation results is shown in

Figure 2.4 for climate zone 4A (Chattanooga). The impact of building standard on simulated

energy use is intuitive: Older buildings use more energy. This is likely due to improvements

in efficiency and other building technologies. Buildings built before 1980 use the most energy,

while the 2013 which is the most recent standard used for the analysis, uses the least. The

discrepancy between the old and new standards is more extreme for natural gas use compared

to electricity.

As building type classification is one of the most important parameters in BEM, it was

important to ensure that the methods used were optimal. A sample of 100 premises was

randomly chosen to evaluate the various building type classification techniques. Building

energy use intensity (EUI)(typically kWh/ft2) was used to prevent building size from heavily

influencing the classifications. A sample of 100 buildings allows the pros and cons of

each method to be determined, including simulation quality and building type classification

accuracy. To evaluate the methods of building type assignment, each real building's actual

EUI was compared with every prototype building simulation output EUI (simulated for the

same year the real data were obtained) to obtain the prototype most similar to the real

building. An example of a real building compared to two sample prototype buildings is

shown in Figure 2.2.

In many cases where utility data are available, some post-processing may be done to

adjust the building classifications based on the utility rate structures, though this was not

considered for this analysis. Even as post-processing may better classify the actual building

type, the correct building type classification may not necessarily lead to higher-quality

building energy simulations, as an individual building may perform differently compared

to the average building for a particular building type. For example, an individual office's

energy use may more closely resemble that of a school prototype than the office prototype.

The end goal of the analysis should be considered when determining whether data should be
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Figure 2.3: Energy Use By Building Type - Building type has a significant impact on
both annual electricity use and natural gas use. Building type has a more significant impact
on electricity use than natural gas use across building types for climate zone 4A.

Figure 2.4: Energy Use By Standard - Building standard impacts annual natural gas
use more than electricity use in building energy models in climate zone 4A. Older buildings
use more energy than newer buildings.
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post-processed. Post-processing the building type classification based on sensed or known

data may provide the correct building classification but may also increase simulation error

in some cases.

The building type classifications were evaluated in two ways: error rates of simulated

electricity to actual electricity usage and assigned building type compared to actual building

type. Actual building type was found manually by searching each of the 100 buildings.

Building electricity data were adjusted using a single annual adjustment factor. The runtime

of each method was also considered, as it plays an increasingly important role as the number

of buildings grows. Building type classification methodologies based on smart meter data

are directly related to my published work [10].

2.2.1 Missing Values

As with any real data, there are often gaps and missing values. To assign building

type and vintage by comparing actual 15-minute electricity use to 15-minute prototype

building simulation outputs, these missing data must be handled in some way. Various

imputation strategies were employed to handle missing data, including omission, auto-

regressive integrated moving average (ARIMA), and univariate dynamic time warping

(DTW). The consequences of using each method were compared.

2.2.2 Euclidean Distance

The first and most straightforward method of comparing the real 15-minute EUI data to

the prototype 15-minute EUI data was measuring the Euclidean Distance between the EPB

sample and each of the 97 prototype simulation combinations. For the Euclidean Distance

comparison, imputation strategies were ignored, as missing points could be omitted with

each point being compared directly to the corresponding point from each time series. This

resulted in a comparison between however many points were in the EPB sample and the

same number of points from each prototype. The prototype and standard combination with

the smallest distance between each observation was chosen as the label for that observation.
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2.2.3 Dynamic Time Warping

The next method of comparing the EPB data to the prototype combinations was DTW.

DTW is a commonly used measure of the similarity between two time series. DTW finds the

optimal global alignment between two time series, accounting for temporal distortions. The

algorithm optimally maps one time series onto another and, similar to Euclidean Distance,

compares each point in one time series to every other point and returns the warped distance.

In this way, even if the time series are not exactly in phase, their points are compared

and the warping distance remains small. This method may be a good fit for electricity

data, where the same patterns may occur at different points throughout the year. As one

would expect, this vast comparison is very computationally expensive (quadratic time and

space complexity), and many modifications have been made in an attempt to expedite this

process. For this analysis, an approximation called FastDTW was used ([48]). A comparison

of Euclidean Distance to DTW distance is shown in Figure 2.5. DTW warps to another

section of the time series and maps similar queries together, which may result in a better

match. DTW cannot be used directly on time series with missing data. The data had to be

either omitted or imputed. For this analysis, the missing data were imputed for comparison

using the small and large gap strategy previously described.

2.2.4 Machine Learning

The final method used to label building type and standard was using a machine learning

(ML) classifier. The ML classifier was constructed in a different way than the previous two

methods. Rather than directly comparing the data to the prototypes, this method extracted

time and statistics-based features from the data, with the prototypes considered as the labels.

The Caret package in R was used to build, tune, and compare these models [32]. Several

time-based statistics were extracted from the time series (shown in Table 2.1 below).

These time windows were chosen because they summarize critical structures of the time

series. For example, one would expect the EUI of a large office on the weekend to be

different than normal and completely different when compared to other building types.

Weekly windows were originally used but were removed because they resulted in lower
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Figure 2.5: Euclidean Distance vs DTW Distance - Euclidean Distance versus
dynamic time warping distance [51]. Sine curve is compared to cosine as an example for
which Euclidean Distance does not adequately compare two time series due to phase shift.
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cross-validation metrics. Three different models were evaluated with a hyperparameter grid

search being used for each to compare optimal models for each. These models were k-nearest

neighbor (KNN), random forest (RF), and extreme gradient boosting (xgbTree). KNN is

a classifier that assesses the distance between a test vector and all training vectors with

the label being the vector at which distance is minimized [44]. xgbTree and RF are both

decision tree classifiers that recursively partition data based on feature values for which each

partition serves as a test for a feature of test data [42]. Boosting (xgbTree) relies on shallow

trees for which error is minimized by minimizing bias, while RF uses fully grown decision

trees and minimizes error by minimizing variance [13], [17].

As there were 97 different classes with one observation per class, cross-validation could

not be done with the raw labels. Instead, the labels were changed to building type only

(removing vintage), thereby incorporating at least 3 labeled observations (6 for most) into

the training data set which allowed for classic cross-validation to get a rough estimate of what

the hyperparameters should be to split the building types. The random forest ultimately

had the highest classification accuracy and was the final model used to create the building

energy models for the EPB samples. The hyperparameter grid values are shown in Table 2.2

while the cross-validation results are shown in Table 2.3.

2.3 Software

With all building features aggregated, the models can be created using OpenStudio, an open

source analysis platform that facilitates integrated whole-building energy analysis [59].The

model is then simulated using EnergyPlus, US Dept. of Energy’s $100M flagship whole

building energy simulation program that can model energy consumption, heating, cooling,

ventilation, lighting, plug and process loads, and water use in buildings [57]. This is done at

scale using AutoBEMGen [1]; a Python software developed to take a set of building features

in a comma separated value format and create an OpenStudio model and EnergyPlus input

file. This multi-threaded framework allows many building energy models to be generated

much faster than they could be built from scratch. AutoSIM [49]is then used to simulate

these EnergyPlus building energy models on HPC resources, distributing the models to
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Table 2.1: Machine Learning Windows and Statistics - Time windows and statistics
were chosen to retain as much data as possible in during relevant times of the year. Weekends
could be a significant differentiator between two building types.

Time Window Statistics

Monthly Maximum

Yearly Mean

Weekends Median

Standard Deviation

Minimum

Table 2.2: Machine Learning Grid Search Hyperparameters - Hyperparameter
values used for grid search are shown with optimal hyperparameter values from cross-
validation in bold. For more on these metrics, see [13], [17], [44], [50].

Method Hyperparameter Value
KNN Kernel Rectangular

Gaussian
Triangular

Epanechnikov
Kmax 30, 40, 50, 60

RF Trees 500
Mtry 2, 125, 390

Min Node Size 1
Split Rule Gini

Extra Trees
xgbTree N rounds 50, 100, 150

Max Depth 1-3
Eta 0.3 -0.5

Gamma 0
Col Sample By Tree 0.6 , 0.8
Min Child Weight 1

Subsample 0.5 , 0.75, 1
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Table 2.3: Machine Learning Cross Validation Comparison - Cross validation metrics
for k-nearest neighbors (KNN), extreme gradient boosting (xgbTree), and random forest
(RF). RF had superior mean and median classification accuracy and κ, which compares
observed accuracy to expected accuracy, taking into account the chance of randomly
classifying correctly.

Method Median Mean Median Mean
Acc Acc κ κ

KNN 78.4% 80.1% 77.1% 78.8%
RF 84.3% 82.2% 83.3% 81.1%

xgbTree 80.3% 81.0% 79.0% 79.7%
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