Developing the Lowcountry: Intra-regional Variability of Rice Culture Landscapes in the South Carolina Lowcountry

Kendanne M. Altizer

University of Tennessee

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation
To the Graduate Council:

I am submitting herewith a dissertation written by Kendanne M. Altizer entitled "Developing the Lowcountry: Intra-regional Variability of Rice Culture Landscapes in the South Carolina Lowcountry." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Anthropology.

Barbara J. Heath, Major Professor

We have read this dissertation and recommend its acceptance:

David G. Anderson, Kandace D. Hollenbach, Kimberly Pyszka

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)
DEVELOPING THE LOWCOUNTRY:
INTRA-REGIONAL VARIABILITY OF RICE CULTURE
PLANTATION LANDSCAPES IN THE
SOUTH CAROLINA LOWCOUNTRY

A Dissertation Presented for the
Doctor of Philosophy
Degree
The University of Tennessee, Knoxville

Kendanne Marie Altizer
May 2020
Acknowledgements

If you have ever written a research paper of any length, then you know it is often not a solo effort and the bigger ones require input from a multitude of people and resources. I did not write this dissertation alone; there were many people along the way who helped me put the pieces together. First and foremost, my sincerest thanks to Barbara Heath for taking me as a student and helping me see this through to the end. This document is infinitely better because of your comments and technical edits on previous drafts. I appreciate that you make me think in different ways. Many, many thanks to dissertation committee members David Anderson, Kandace Hollenbach, and Kimberly Pyszka for reading into the small hours of the night so I could make a deadline. David Anderson provided much needed background syntheses and climate change data. Kandi Hollenbach helped me see the forest for the trees. Kim Pyska is likely the best mentor on the planet; thank you for years of advice and support in addition to your technical expertise. Thank you to Katherine Pemberton for agreeing to read as well. Your knowledge and input are invaluable, and I appreciate that you took the time to advise and comment on this dissertation.

Thank you, Pierre Manigault, Michael Prevost and Evening Post Industries, for always accommodating my research efforts. I appreciate your faith in me in addition to financial support and housing accommodations for a multitude of students over the years. A big thank you to Bud Hill for being a great mentor and friend, and always making room for me at the community table at T.W. Grahams. Heartfelt thanks to everyone who answered my seemingly random questions and allowed me access to various properties and archives: Richard Morrison and White Oak Forestry; Jake and Horry McClellan; Randy McClure and the McClellanville Village Museum; Karen Emmons at Historic Charleston Foundation; Mary Edna Sullivan, Jeff Neale, and Bob
Sherman at Middleton Place Foundation; Sarah Stroud-Clarke, Trish Lowe-Smith, and Carter Hudgins the Younger at Drayton Hall; Charles Phillips, Inna Moore, and Brockington and Associates; Martha Zierden and Ron Anthony at the Charleston Museum; my dear friends Nic and Christina Butler; Keith Derting at SCIAA; Amy Mendelson; Carter Hudgins the Elder; and the many helpful folks at the South Carolina Historical Society as well as the Addlestone Library Special Collections at the College of Charleston.

This project would not have been possible without the financial support of various funding sources and entities. Thank you to the Department of Anthropology faculty at the University of Tennessee for awarding me the Kneburg-Lewis award and twice the Patricia Black award, to defray the costs of travel and hosting student laborers. I also received a Chancellors’ Top up award for sample analysis, in addition to the Charles Faulkner travel award, and Graduate Student Senate travel funding to present aspects of my research at various conferences.

Many people have volunteered their time on this project over the past eight years in addition to those listed above. Student labor was such a large part of this effort and the end result would not have been possible without many hands. Thank you, Sam Upton, Ileana Ilas, and Abby Duncan, for leading field crews, and thank you, thank you to all of the undergraduates who volunteered their time to assist in data collection. Lab and field volunteers Cara Lusk and Tera Stocking, thank you for countless hours of bagging, tagging, and data entry. A special thanks to Sarah Sherwood and the University of the South 2017 history field school students for spending two days with me at Peachtree digging holes. A very special thank you to Waring McCrady for graciously sharing your time, family papers, and allowing me access to your private collections. Your friendship is near and dear to me. Thank you to family, friends and business associates for
giving me the space to get this done. I appreciate all of your support over the years. Finally, thank you to my best friend, Mike Angst, for all things emotional and technical.
Abstract

This study addresses the argument for intra-regional analyses within the South Carolina Lowcountry, a region characterized by a series of river systems historically dominated by plantations organized around rice production. Archaeologists and historians have argued that regional analyses in other areas of the Atlantic World, such as the colonial-era Chesapeake obscure intra-regional variation, and the use of river valleys as analytical units provides a better scale for identifying and understanding distinctive trajectories of economic, social, and political development. I use these types of analyses, which have never been utilized in a Carolina Lowcountry context, to determine if plantations developed differently along Lowcountry river systems because of micro-environmental factors, social alliances, and economic drivers. I analyze archaeological, remote sensing, and archival data to facilitate rice culture landscape comparisons between three rice plantations on the Ashley River and three rice plantations on the Santee River. I assess variability within each river system by comparing the built plantation environment, family connections to these plantations, method of rice production, and economic pursuits after the collapse of the rice industry. The goal of this study is to demonstrate that an intra-regional approach to examining variation in the South Carolina Lowcountry leads to new ideas about the historical development of the region.
Table of Contents

Chapter One: Introduction to the Project and Scope of Work .. 1
 A Little Theory ... 7
 The Research Problem .. 10
 Project Questions and Scope of Work .. 13
 Study Subjects ... 15
 Approaches to Archaeology and Historical Landscapes: Contributions to the Concept of Intra-
 Regional Variability in the South Carolina Lowcountry ... 19
 Evolving Landscapes .. 26
 Colonial Period Lowcountry Plantation Architecture ... 27
 Colonial Landscapes as Places of Power and Control .. 30
 A Discussion of Data Limitations .. 44
 Cartographic Caveat .. 45
 Available Documentation ... 46
 The Breakdown ... 47

Chapter Two: Geography, Hydrology, and Rice .. 49
 Geography ... 49
 Hydrology ... 53
 Soils ... 55
 Evolution of Rice Production .. 59
 The Origins of Rice .. 59
 The Rice Cycle .. 63
 African and Carolina Rice Production Methods .. 68
 Inland Rice in the Carolina Lowcountry ... 70
 Tidal Rice in the Carolina Lowcountry .. 78
 Methods of Rice Production on Study Subject Plantations .. 82
 Enslaved Population ... 85
 Life After Emancipation .. 89

Chapter Three: A Brief History of the Lowcountry ... 91
 In the Beginning .. 91
 The Beginning of the Carolina Colony - Early Settlement 1670-1710 93
 Early Settlement along the Ashley River .. 95
 Early Settlement Along the Santee River .. 96
 The Proprietary Economy 1670-1721 .. 100
 The Royal Period 1721-1776 .. 104
 Revolution Brewing ... 106
 Charleston as Colonial Entrepot ... 109
 Revolution in the Lowcountry .. 111
 The Antebellum Economy ... 114
 The Civil War and A Changing Lowcountry ... 120
 Phosphate Mining Comes to the Ashley River ... 123
 The 20th Century and the Rise of Tourism .. 128
 Rice Planting in Transition on the Santee .. 129
Appendix A: Summary Chain of Title .. 391
Appendix B: LiDAR Imagery .. 395
Appendix C: Expanded Chains of Title ... 407
 Cedar Grove Expanded Chain of Title .. 408
 Middleton Place Expanded Chain of Title ... 410
Appendix D: Quantitative Data for Intra-regional Variability .. 412
Vita .. 429
List of Tables

Table 1. Number of Africans forced to immigrate by decade during the 18th century (Morgan 1998:59). ... 86

Table 3. Top Ten South Carolina Exports November 1, 1747 and November 1, 1748 (adapted from Coclanis 1989:81). ... 107

Table 4. Total per Capita Exports of Clean Rice 1768-1772 and Total per Capita Production of Clean Rice 1820-1859 (adapted from Coclanis 1989:117). ... 116

Table 5. Plantations owned by Col. Lynch in 1737 with numbers of enslaved people and rice quantities. .. 214

Table 6. Summary of artifacts recovered from Test Unit 1. ... 239

Table 7. Summary of artifacts recovered from Test Unit 2. ... 242

Table 8. Summary of artifacts recovered from Test Unit 3. ... 244

Table 9. Summary of Artifacts recovered from Test Unit 7. ... 246

Table 10. Summary of artifacts recovered from Test Unit 4. ... 249

Table 11. Summary of artifacts recovered from Test Unit 5. ... 251

Table 12. Summary of artifacts recovered from Test Unit 6. ... 253

Table 13. Summary of artifacts recovered from Test Unit 8. ... 254

Table 14. Summary of artifacts recovered from Test Unit 9. ... 257

Table 15. Quantitative data for intra-regional variability* ... 341
List of Figures

Figure 1. The vicinity of Charleston, South Carolina (map by the author). ... 3
Figure 2. Location of Ashley and Santee River systems (map by the author). .. 12
Figure 3. Location of Ashley River study subjects on a modern topographic map (ESRI 2019; map by Michael Angst). .. 16
Figure 4. Location of Santee River study subjects on a modern topographic map (ESRI 2019; map by Michael Angst). .. 18
Figure 5. The expanded Ashley River Historic District boundaries on a modern aerial image (ESRI 2019); the red dots represent the main house locations of Cedar Grove, Middleton Place and Drayton Hall. The Charleston peninsula is present in the southeast corner of the image. Note encroaching urban development up the Ashley River (shapefiles courtesy of Brockington and Associates by permission of Historic Charleston Foundation; map by the author). .. 24
Figure 6. Overlay of historical plantation boundaries on modern aerial imagery (ESRI 2019); the red dots represent the main house locations of Cedar Grove, Middleton Place and Drayton Hall. Note modern development on much of these former plantation lands (shapefiles courtesy of Brockington and Associates by permission of Historic Charleston Foundation; map by the author). .. 25
Figure 7. Detail of 1771 plat of Cedar Grove Plantation overlain on a modern topographic map for orientation and scale (Courtesy of South Carolina Department of Archives and History; map by the author). .. 37
Figure 8. Detail of the 1820 plat of Cedar Grove showing the domestic core, allée, and adjacent enslaved settlement, overlain on a modern topographic map with Middleton Place present just below (plat map courtesy of the South Carolina Historical Society; map overlay by the author). .. 38
Figure 9. Measured drawing of the Middleton Place gardens illustrating the geometric symmetry used in the original garden design, which still survives today (Image adapted from Chisholm and Garber 2018; original map housed at the Middleton Place Foundation, Charleston, South Carolina). .. 39
Figure 10. Aerial view, northeast of Middleton Place butterfly ponds and gardens (Image courtesy of the National Trust for Historic Places). .. 40
Figure 11. Overlay of the 1796 grid map by Dr. Charles Drayton showing the Drayton Hall main house and surrounding areas, including shield-shaped gardens, as well as rice fields, on top of a modern topographic map. The arrow points to the ha-ha separating the gardens from the foot paths (courtesy of Drayton Hall National Trust Historic Site) .. 41
Figure 12. Soils map of South Carolina, also showing landform regions (map courtesy of South Carolina Department of Natural Resources 1997). .. 50
Figure 13. Aerial image of the Santee Delta showing remnant rice fields. The western red line indicates the modern salt line and the southeastern red line represents the historical salt line. The red dots are the locations of the Santee River study subjects (aerial imagery courtesy of ESRI 2019) .. 56
Figure 14. The west coast of Africa, showing modern countries where rice was historically grown (Carney and Porcher 1993:130; map by Michael Angst) .. 69
Figure 15. Portion of the 1885 Middleton Plat overlaid on a modern topographic map, showing Horse Savannah and the locations of inland rice fields in low-lying swamps; the red circle is the location of Jerry Hill and the red dot is the Middleton Place domestic core (image.
Figure 16. Detail of the 1873 U.S. Coast Survey map showing the Santee River delta with canals and field divisions evident. The red dot to the southwest is Peachtree and the northern dot is the modern Rochelle house location. The red line in the southeastern corner is the historical salt line (image courtesy of the University of Alabama Cartography Lab; overlay map by the author). .. 73

Figure 17. Detail of 1820 Cedar Grove Plat showing the location of abandoned rice fields located on inland creeks in relation to those in production at the edge of the Ashley River (Image courtesy of the South Carolina Historical Society). .. 75

Figure 18. Ashley River corridor with overlay of historic plantation boundaries, showing the location of the salt line (in green) in relation to Drayton Hall, Middleton Place, and Cedar Grove, which are depicted by red dots (Overlay courtesy of Historic Charleston Foundation and Brockington and Associates; map by the author). .. 77

Figure 19. Runaway slave advertisement (https://mesda.org/files/2016/12/Runaway-Ad-for-Sam-Ltbox.jpg).. 80

Figure 20. A portion of the 1695 map Carte Particuliere de la Caroline, by Pierre Mortier, showing settlement along the Ashley River (Digital map collection, University of North Carolina Libraries, original housed at North Carolina State Archives). .. 82

Figure 21. Detail of Carte Particuliere de la Caroline, by Pierre Mortier (1695), showing a lack of settlement on the Santee River in the upper right, which is labeled as “established by the French” (Digital map collection, University of North Carolina Libraries, original housed at North Carolina State Archives) .. 85

Figure 22. Detail of the 1732 map by Herman Moll showing the location of plantations along the Ashley and Santee Rivers (http://inlandrice.charlestoncounty.org/history.html). 87

Figure 23. Edward Crisp map of 1704 showing the walled city of Charleston (Retrieved from the Library of Congress, https://www.loc.gov/item/2004626926/). 89

Figure 24. Topographic map in vicinity of Middleton Place and Drayton Hall, depicted by the red dots, with yellow overlay of areas strip mined for phosphate (Data provided by Historic Charleston Foundation and Brockington and Associates, map by the author) 91

Figure 25. Modern aerial imagery in vicinity of Middleton Place and Drayton Hall, depicted by the red dots, with yellow overlay of areas strip mined for phosphate (Data provided by Historic Charleston Foundation and Brockington and Associates; ESRI 2019; map by the author) 93

Figure 26. 1711 plat of Cedar Grove Plantation (Courtesy of South Carolina Department of Archives and History). .. 95

Figure 27. Detail of 1711 plat of Cedar Grove Plantation, showing the locations of Mary Middleton’s Lookout, the allée, enslaved settlements, the old rice fields, and Canty’s and Jenny’s settlements (Courtesy of South Carolina Department of Archives and History). 99

Figure 28. Detail of 1711 plat of Cedar Grove Plantation overlaid on a modern topographic map for orientation and scale (Courtesy of South Carolina Department of Archives and History; map by the author) .. 101

Figure 29. 1820 plat of Cedar Grove Plantation (courtesy of the South Carolina Historical Society). .. 103
Figure 30. Detail of the 1820 plat of Cedar Grove showing the domestic core and adjacent enslaved settlement, overlaid on a modern topographic map for orientation and scale (plat map courtesy of the South Carolina Historical Society; map overlay by the author). 145
Figure 31. 1868 plat of Cedar Grove Plantation (Courtesy of South Carolina Department of Archives and History). .. 147
Figure 32. 1868 plat of Cedar Grove Plantation overlaid on a modern topographic map for orientation and scale. (Courtesy of South Carolina Department of Archives and History, map by the author). ... 148
Figure 33. 1842 Sketch of Middleton Place domestic core by Mrs. Arthur Middleton, the Countess Paolina Bentivoglio (courtesy of Middleton Place Foundation, Charleston, South Carolina). ... 161
Figure 34. Middleton Place main house taken between the Civil War and the earthquake of 1886 (photo courtesy of Middleton Place Foundation, Charleston, South Carolina) 163
Figure 35. 1715 Plat of plantation lands on the south side of Ashley River Road, within Horse Savannah and Jack Savannah (Image courtesy of Middleton Place Foundation). 165
Figure 36. Overlay of the 1715 Plat of plantation lands on the south side of Ashley River Road, within Horse Savannah and Jack Savannah. Note those lands owned by R. Izard to the northwest, the Middletons in the central portion and L. Drayton to the southeast, all denoted by red arrows. The red circle is the location of W. Cattell settlement, which was later Jerry Hill, and the red dot is the location of Middleton Place (Image courtesy of Middleton Place Foundation; map by the author). .. 166
Figure 37. 1813 map of the public canal system and inland rice fields present through Middleton lands (Image courtesy of Middleton Place Foundation). ... 167
Figure 38. Overlay of the 1813 map of the public canal system and inland rice fields present through Middleton lands; the arrow points to a Middleton settlement and the circle is Jerry Hill (Image courtesy of Middleton Place Foundation; map by the author). 168
Figure 39. Map of the Middleton Place tract in 1885, just after Williams’ death (Image courtesy of Middleton Place Foundation). ... 169
Figure 40. Overlay map of the Middleton Place tract in 1885 on top of modern topographic imagery (ESRI 2019), just after Williams’ death; the circle is the location of Jerry’s Hill and the red dot is the Middleton Place domestic core (Image courtesy of Middleton Place Foundation; map by the author). .. 170
Figure 41. Overlay detail of the 1715 plat of St. Paul and St. George’s Parishes on top of the 1885 Middleton plat showing the Cattell settlement in relation to Jerry Hill, all circled in red core (Image courtesy of Middleton Place Foundation; map by the author). 172
Figure 42. Landside elevation of Drayton Hall (www.visitcharleston.com). 182
Figure 43. East façade of Drayton Hall (Google Images 2014). .. 183
Figure 44. Drayton Hall, S.C. 1765, Pierre Eugène Du Simitière (Courtesy of the Private Collection of J. Lockhard; used by permission of the Drayton Hall National Historic Trust). .. 183
Figure 45. Drayton Hall c. 1845, Lewis Reeve Gibbes, Drayton Papers Collection (Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC). ... 185
Figure 46. Drayton Hall gridded map showing field locations, drawn by Dr. Charles Drayton ca. 1790s (courtesy of Drayton Hall National Trust Historic Site). .. 186
Figure 47. The Glover Plat, likely drawn by Joseph Glover Ca. 1790, shows how the Drayton fields were laid out and named; the red arrow is where the cemetery is located and also the
likely location of the enslaved settlement detailed on the back side of this map (“Glover Plat” c. 1790, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC).. 187

Figure 48. The Glover Plat, likely drawn by Joseph Glover Ca. 1790, shows how the Drayton fields was laid out and named; the red arrow is where the cemetery is located and also the likely location of the enslaved settlement detailed on the back side of this map (“Glover Plat” c. 1790, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC).. 188

Figure 49. The back side of the Glover plat in detail, showing the row plan for a series of enslaved housing. Note the gardens attached to them and the overseer’s house and yard on the left side of the drawing (“Glover Plat” c. 1790, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC). .. 189

Figure 50. Detail of the Glover plat overlaid with the enslaved settlement map, showing the row plan for enslaved housing (“Glover Plat” c. 1790, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC; map by the author). .. 191

Figure 51. General ceramic types with associated date ranges found at both Peachtree and Rochelle (jefpat.maryland.gov). .. 202

Figure 52. Location and dates of Huger land grants (image courtesy of Shlasko 1997; original housed at the Charleston County RMC). .. 204

Figure 53. 1787 plat of Waterhorn overlaid on a modern USGS quadrangle (Charleston County Register of Mesne Conveyances). .. 207

Figure 54. 1794 revised plat of Waterhorn overlaid on a modern USGS quadrangle (Charleston County Register of Mesne Conveyances). .. 208

Figure 55. Overlay of Lynch’s Island, plat 32-53-14, dated 1820. A red arrow points to Lynches causeway, the northwest linear feature on the plat between the two branches of the Santee. The gold outline is the current Peachtree property boundary (plat courtesy of the South Carolina Historical Society, map by the author). .. 215

Figure 56. Peachtree main house ruin, before stabilization (photo by the author). .. 220

Figure 57. Peachtree ca. 1873 showing the ghost mark of the roof (image courtesy of the McCrady Family Archive). .. 220

Figure 58. The Peachtree ruin, post-stabilization (photo by Hillary King). .. 223

Figure 59. US Coast Survey 1873 map, Reg. 1308, showing the Santee Delta. Peachtree is located at the top of the map (image courtesy of the University of Alabama Cartography Lab). .. 224

Figure 60. Detail of 1873 US Coast Survey Map, overlaid on a modern aerial map (ESRI 2019), showing the current Peachtree parcel, in gold, and the location of rice fields in vicinity to the parcel (image courtesy of the University of Alabama Cartography Lab; map by the author). .. 226

Figure 61. Modern aerial imagery showing remnant rice fields along the north and south branches of the Santee River in proximity to the Peachtree parcel, which is outlined in gold (ESRI 2019; map by the author). .. 226

Figure 62. Detail of 1873 US Coast Survey Map, overlaying a modern aerial map (ESRI 2019), showing the extent of the current Peachtree parcel, in gold, and the locations of structure clusters outside of the main plantation domestic core (image courtesy of the University of Alabama Cartography Lab; map by the author). .. 228
Figure 63. 1873 U.S. Coast Survey map overlaying a topographic map of a portion of the Peachtree parcel showing the location of the main house and dependencies (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 232

Figure 64. Outbuilding 1, red arrows show the looter’s trenches still present on the landscape, view north (photo by the author). ... 234

Figure 65. Detail of Outbuilding 1 showing test unit placement. Solid color indicates the hypothesized outline of the structure (map by the author). ... 234

Figure 66. Detail of Outbuilding 2 showing test unit placement. Because exterior walls were not positively identified, the location of this structure (shown in solid color) is approximate (map by the author) .. 235

Figure 67. Test Unit 1, Level 5, showing a portion of the looters trench, and remnant foundation (photo by the author). .. 237

Figure 68. Plan view Test Unit 1, bottom of level 5 on the left, south wall profile on the right (map by Michael Angst). .. 237

Figure 69. Test Unit 1, south profile, post excavation. The red arrow indicates the location of the looter’s trench, also noted by the dark staining and loose rubble filled sandy loam (photo by the author). .. 238

Figure 70. Test Unit 2, southeast profile. The red arrow points to Feature A. 240

Figure 71. Test Unit 2, northwest profile showing the location of Feature B (photo by the author). ... 240

Figure 72. Outbuilding 1, Test Unit 3, south wall profile (map by Michael Angst). 243

Figure 73. Test Unit 7, plan view bottom level 4, with large feature, view northwest (photo by the author). .. 245

Figure 74. Test Unit 7, plan view bottom level 4, with large feature on the left side; north wall profile with soil descriptions on the right (map by Michael Angst). .. 245

Figure 75. Test Unit 4, post excavation, south wall profile. .. 248

Figure 76. Test Unit 5, south wall profile. I is brick and mortar and II is root (map by Michael Angst). .. 248

Figure 77. Test Unit 6, west wall profile showing a large black stain. Small brick fragments are present just underneath it (photo by Ashley Chapman). .. 250

Figure 78. Test Unit 8, north wall profile (map by Michael Angst). .. 252

Figure 79. Test Unit 9, bottom of level 5, note staining in the northeast portion, under the brick layer. The stain in the southeast portion of the unit is a root (photo by Meggie Ellis). 256

Figure 80. Test Unit 9, bottom of level 5 plan view on the left, north wall profile on the right (map by Michael Angst). ... 256

Figure 81. Shovel Tests at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey map (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 261

Figure 82. Surface collected ceramics in vicinity of the South Settlement. 262

Figure 83. Types and quantities of ceramics recovered from shovel testing at the South Settlement. .. 264

Figure 84. Brick, by weight in grams, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey map (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 264
Figure 85. Nails, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey map (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 265

Figure 86. Glass, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey map (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 265

Figure 87. Ceramics, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 265

Figure 88. Heat density map of brick and mortar by weight at the South Settlement and the Smudge overlaid on a detail of the 1873 U.S Coast Survey map. Darker colors represent concentrated areas of brick and mortar rubble (Image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author). 266

Figure 89. Heat density map of nails, glass, and ceramics by weight at the South Settlement and the Smudge overlaid on a detail of the 1873 U.S Coast Survey map. Yellow and red colors represent concentrated areas of nails, glass, and/or ceramics (Image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author). .. 267

Figure 90. Heat density map of all artifacts at the South Settlement and the Smudge overlaid on a detail of the 1873 U.S Coast Survey map. Darker colors represent concentrated areas of artifacts (Image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author). .. 267

Figure 91. Types and quantities of ceramics recovered by shovel testing at The Smudge. 269

Figure 92. Detail of 1873 US Coast Survey Map with shovel tests located at the Enslaved Street overlaid (image courtesy of the University of Alabama Cartography Lab; map by the author). .. 271

Figure 93. Types and quantities of ceramics recovered by shovel testing at the Enslaved Street. ... 272

Figure 94. Brick, by weight, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 272

Figure 95. Nails, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 273

Figure 96. Glass, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 273

Figure 97. Ceramics, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author). ... 273

Figure 98. Heat density map of brick and mortar by weight at the Enslaved Street overlaying a detail of the 1873 U.S Coast Survey map. Darker colors represent concentrated areas of brick and mortar rubble (image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author). ... 274

Figure 99. Heat density map of nails, glass, and ceramics by count at the Enslaved Street overlaying a detail of the 1873 U.S Coast Survey map. Yellow and red represent
concentrated areas of nails, glass, and/or ceramics (image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author).

Figure 100. Heat density map of all artifacts at the Enslaved Street overlaying a detail of the 1873 U.S Coast Survey map. Darker colors represent concentrated areas of artifacts (image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author).

Figure 101. Portion of 1873 U.S. Coast Survey Map 1308. The red circles indicate housing areas and other structures within the modern property boundary of Rochelle plantation (image courtesy of the University of Alabama Cartography Lab, map by the author).

Figure 102. Portion of the 1896 United States Coast and Geodetic Survey, Coast Chart No. 152. Murrell's Inlet to Cape Romain Including Winyah Bay, South Carolina. The red circles indicate housing areas and other structures within the modern boundary of Rochelle plantation (map courtesy of the South Carolina Historical Society; map overlay by the author).

Figure 103. Portion of 1897 Addendum to Title plat of the Marsh overlain on modern aerial imagery (ESRI 2019). The gold line is the modern Rochelle property boundary on the north side of the Santee River. Note the three squares, which likely represent structures (plat courtesy of the South Carolina Historical Society, map by the author).

Figure 104. Aerial imagery of the modern Rochelle main land property boundary on the north Santee River, showing the locations of areas in which archaeological testing was conducted (ESRI 2019; map by the author).

Figure 105. Previous Rochelle house, taken during deconstruction in 1957, view northeast (photo courtesy of Pierre Manigault).

Figure 106. Northeast elevation of Rochelle, during house raising, note the pile of colonial brick in the foreground, which was re-used in the reconstruction of the exterior chimney; view southwest (photo by author).

Figure 107. Measured drawing of the Rochelle house foundation before deconstruction (drawing courtesy of Jake McClellan).

Figure 108. Tri-fireplace foundation present underneath modern Rochelle house; the void on the left side of the feature is where a steel I-beam, used during the house raising, was placed (photo by the author).

Figure 109. Types of Ceramics found under the modern Rochelle house during construction activities.

Figure 110. Close-up of shovel test locations in the Front Yard and East Field displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red boxes represent test unit locations (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).

Figure 111. Brick, by weight, recovered from the Front Yard and East Field displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red boxes represent test unit locations (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).

Figure 112. Nails, by quantity, recovered from shovel testing in Rochelle Front Yard and East Field displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red boxes represent test unit locations (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).
Figure 113. Glass, by quantity, recovered from shovel testing in Rochelle Front Yard and East Field displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author). ... 296

Figure 114. Ceramics, by quantity displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author). .. 296

Figure 115. Heat density map of brick and mortar by weight in the Front Yard and East Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh. Darker colors represent concentrated areas of brick and mortar rubble and red squares are test units (plat courtesy of the South Carolina Historical Society, GIS map by the author). 298

Figure 116. Heat density map of ceramics, glass, and nails by count in the Front Yard and East Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh. Yellow represents more concentrated areas of ceramics, glass, and nails and red squares are test units (plat courtesy of the South Carolina Historical Society, GIS map by the author). 297

Figure 117. Heat density map of brick, mortar, ceramics, glass, and nails in the Front Yard and East Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh. Darker colors represent concentrated areas of all artifacts and red squares are test units (plat courtesy of the South Carolina Historical Society, GIS map by the author). 298

Figure 118. GPR imagery overlaying a modern aerial photo (ESRI 2019) of the Rochelle domestic core (super 3D, 41 cmbs +/- 10.5 cm, 12 gain; map by Michael Angst). 300

Figure 119. Rochelle Front Yard, GPR time slice imagery at 30 cmbs, 40, cmbs, and 50 cmbs. The arrows point to different anomalies (maps by Michael Angst). 300

Figure 120. Rochelle Front Yard and East Field showing shovel test and test unit locations in red squares on modern aerial imagery. Test units and shovel tests in the Front Yard are overlaying a GPR time slice at 50 cmbs, 12 gain (ESRI 2019; map by the author).............. 302

Figure 121. Rochelle Front Yard, Test Unit 2, view north (photo by the author). 303

Figure 122. Rochelle Front Yard Unit 2, west wall profile (photo by the author). 303

Figure 123. Test Unit 2, plan view with foundation staining on the left and west wall profile drawing on the right (map by Michael Angst). ... 304

Figure 124. Foundation remnants, East Field structure, view northwest (photo by the author). 306

Figure 125. Close-up, foundation remnant, English bond. The hole in the upper left corner is a shovel test, the two smaller holes on the lower left are small core tests. The changes in soil color next to the foundation are the builders’ trench and backfilling after the foundation was constructed (photo by the author). ... 306

Figure 126. Close-up of shovel test locations in Triangle Field, in the upper left, and Kinloch Field, in the bottom central portion of the maps, overlaid on the 1873 U.S Coast Survey and 1897 Addendum to Title for The Marsh maps. The red rectangle represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author)...... 308

Figure 127. Kinloch Field 2.5-ft-x-5-ft test unit showing remnant foundation, view north (photo by the author). ... 309

Figure 128. Plan view drawing of 2.5-ft-x-5-ft test unit with Munsell colors and soil textures (image by Michael Angst). ... 311

Figure 129. Kinloch Field and Triangle Field shovel tests with brick quantities displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red rectangle
represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author). ... 311

Figure 130. Kinloch Field and Triangle Field shovel tests with nail quantities displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red rectangle represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author). ... 312

Figure 131. Kinloch Field and Triangle Field shovel tests with glass quantities displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red rectangle represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author). ... 312

Figure 132. Kinloch Field and Triangle Field shovel tests with ceramic quantities displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red rectangle represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author). ... 313

Figure 133. Heat density map of brick and mortar by weight in Kinloch Field and Triangle Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh and 1873 U.S. Coast Survey maps. Darker colors represent concentrated areas of brick and mortar rubble and the red rectangle represents a test unit (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author). ... 313

Figure 134. Heat density map of ceramics, glass, and nails by count in Kinloch Field and Triangle Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh and 1873 U.S. Coast Survey maps. Yellow and red represent concentrated areas nails, glass, and/or ceramics and the red rectangle represents a test unit (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author). ... 314

Figure 135. Heat density map of all artifacts recovered from Kinloch Field and Triangle Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh and 1873 U.S. Coast Survey maps. Darker colors represent concentrated areas of artifacts and the red rectangle represents a test unit (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author). ... 314

Figure 136. Ceramics surface collected on the western perimeter of Triangle Field. 317

Figure 137. Location of River Road Residences shovel testing over top of the 1873 U.S. Coast Survey map (courtesy of the University of Alabama Cartography Lab; GIS map by the author). ... 318

Figure 138. Types of Ceramics found by shovel testing at River Road Residences. 320

Figure 139. Brick, by weight, recovered from shovel testing at River Road Residences, the red rectangle indicates two shovel tests with features (courtesy of the University of Alabama Cartography Lab; GIS map by the author). ... 320

Figure 140. Nails, by quantity, recovered from shovel testing at River Road Residences, the red rectangle indicates two shovel tests with features (courtesy of the University of Alabama Cartography Lab; GIS map by the author). ... 321
Figure 141. Glass, by quantity, recovered from shovel testing at River Road Residences, the red rectangle indicates two shovel tests with features (courtesy of the University of Alabama Cartography Lab; GIS map by the author). .. 321

Figure 142. Ceramics, by quantity, recovered from shovel testing at River Road Residences, the red rectangle indicates two shovel tests with features (courtesy of the University of Alabama Cartography Lab; GIS map by the author). ... 322

Figure 143. Heat density map of brick and mortar by weight recovered from River Road Residences overlaying a detail of the 1873 U.S. Coast Survey Map. Darker colors represent concentrated areas of brick and mortar rubble and the red rectangle is the location of features in two shovel tests (maps courtesy of the University of Alabama Cartography Lab; GIS map by the author). .. 322

Figure 144. Heat density map of nails, glass, and ceramics by count recovered from River Road Residences overlaying a detail of the 1873 U.S. Coast Survey Map. Yellow and red represent concentrated areas of nails, glass, and/or ceramics and the red rectangle is the location of features in two shovel tests (maps courtesy of the University of Alabama Cartography Lab; GIS map by the author). .. 323

Figure 145. Heat density map of all artifacts recovered from River Road Residences overlaying a detail of the 1873 U.S. Coast Survey Map. Darker colors represent concentrated areas of artifact concentrations and the red rectangle is the location of features in two shovel tests (maps courtesy of the University of Alabama Cartography Lab; GIS map by the author). ... 323

Figure 146. Intra-regional variability between the Ashley and Santee Rivers in the early settlement period................. 345

Figure 147. Intra-regional variability between Ashley and Santee River study subjects in the early settlement period. ... 345

Figure 148. Intra-regional variability between the Ashley and Santee Rivers in the colonial period. 348

Figure 149. Intra-regional variability between Ashley and Santee River study subjects in the colonial period. .. 348

Figure 150. Intra-regional variability between the Ashley and Santee Rivers in the antebellum period. .. 350

Figure 151. Intra-regional variability between Ashley and Santee River study subjects in the antebellum period. 350

Figure 152. Intra-regional variability between the Ashley and Santee Rivers in the postbellum period. .. 352

Figure 153. Intra-regional variability between Ashley and Santee River study subjects in the postbellum period. 352

Figure 154. Intra-regional variability between the Ashley and Santee Rivers in the early 20th century. .. 356

Figure 155. Intra-regional variability between Ashley and Santee River study subjects in the early 20th century. 356

Figure 156. Intra-regional variability between the Ashley and Santee Rivers in the late 20th century. .. 359

Figure 157. Intra-regional variability between Ashley and Santee River study subjects in the late 20th century. 359

Figure 158. Sea level rise and coastal flood exposure predictive map of the greater Charleston area with the Ashley River pointed out by a red arrow. Areas in dark blue are predicted to
be below water and areas in green are predicted as isolated areas below water by the year 2100. The red dots indicate Cedar Grove, Middleton Place, and Drayton Hall (image courtesy of Climate Central). ... 370

Figure 159. Sea level rise and coastal flood exposure predictive map of the Santee River Delta and surrounding coastal areas between Mount Pleasant and Georgetown. Areas in dark blue are predicted to be below water and areas in green are predicted as isolated areas below water by the year 2100. The red dots indicate Waterhorn, Peachtree and Rochelle (image courtesy of Climate Central). .. 371
Chapter One: Introduction to the Project and Scope of Work

When I stepped out of the van into the crisp January air of the South Carolina Lowcountry and caught my first glimpse of the Peachtree house ruins on the South Santee River near McClellanville, South Carolina, I was intrigued and amazed. The Peachtree ruin is a unique example of a high style, stuccoed, Georgian Palladian house built in the middle of the swamp at the edge of a river. This is an architectural style more typical of downtown Charleston, with its Georgian Palladian townhouses, or the Ashley River, which is much closer to Charleston and contained the country homes of the most elite families in the British colonies. Peachtree was such an anomaly on the landscape that I immediately fell in love with it and this contrast stayed with me as I moved forward with research on the Santee River.

I began field work for my master’s thesis in the summer of 2013. That work took an interdisciplinary approach to the documentation of the Peachtree main house ruin using a combination of archival research, archaeology, and architectural documentation. I quickly discovered that there was much more to the plantation landscape than just the main house ruin and it became increasingly difficult to focus on this one element of Peachtree (Altizer 2014). A few months later, I decided that Peachtree plantation needed more than just a master’s thesis for its story to be adequately conveyed. It needed a deeper understanding of the plantation enterprise and critical analysis of the landscape; these were skills that I wanted to hone but I also needed a broader skill set to effectively make a contribution to what is known about such an important time period in American history. More importantly, I wanted to understand the landscape and the people who lived, worked, and died at Peachtree—not just the main house and its architectural significance. This realization led me to historical archaeology and the University of Tennessee to study under the direction of Dr. Barbara Heath.
What follows is the culmination of eight years of study on a subject that continues to intrigue, frustrate, and fascinate me. I have chosen to broaden my research to include the Lowcountry region in South Carolina to understand the differences in development between river systems in order to understand Peachtree’s historical context and why its architecture is so exceptional (Figure 1).

To understand the unique Lowcountry historical landscape and the archaeological contexts discussed in the following chapters, it is necessary to explain the terms plantation and landscape as I use them through the course of this dissertation. The term plantation has been defined in a myriad of ways, depending on the region and environment in which it is located.

A common definition, and one that can be applied in any region, not just the Carolina Lowcountry, describes the plantation as an independently owned parcel of land within which the owner exerts control over both the resources and people contained in its boundaries with the intent of large-scale production of a commodity for sale to a market (Edelson 2005:41; Burnard 2015:119-120). This enterprise differs from a farm, which is typically a settlement where the family supplies most of the labor force with little, if any, outside help and what is produced is meant for consumption on site or within a regional marketplace (Singleton 1985:2). The plantation is set apart from a farm by the sole intent of economic gain utilizing a non-kin labor force (Orser 1988:740). Before 1865 in the American South, that labor was almost exclusively enslaved.¹ Within the plantation, there was clear separation between the owner and the work force. The plantation owner did not labor in the fields alongside the work force and the work force, in turn, was alienated from the means of production (Singleton 1985; Orser 1988).

¹ Many early settlers brought indentured servants with them; however, the practice had ended by 1700 in the Lowcountry, much sooner than it did in other regions of the British colonies (Wood 1974; Morgan 1998).
Figure 1. The vicinity of Charleston, South Carolina (map by the author).
Most Southern plantations were typically large-scale operations requiring a substantial work force. Coastal plantations during the colonial and antebellum periods of South Carolina produced a narrow range of crops, predominantly rice, for the purpose of making a profit through participation in the Atlantic trade. These profits were re-invested in additional plantations and planters often diversified by expanding into other economic pursuits, such as mercantile interests or providing credit, to accumulate large-scale wealth that was then passed on to their children (Edelson 2005:41; Burnard 2015:120). To most planters, the plantation was a vehicle for social gain and improvement of family wealth. Social prestige in the colonial and antebellum South was based on land holdings and the number of slaves owned.

Scholars of the Lowcountry generally accept three broad categories of planters. An elite planter owned thousands of acres of land and hundreds of slaves; an average or middling planter owned as many as 1,000 acres and 20-40 slaves; while a small planter owned 500 acres or less and 10-15 slaves (Orser 1988:740). The present study focuses on plantations owned by elite planters where multiple generations built upon the family wealth and prestige.

The term landscape is grounded in geography. It was introduced to American geography in the 1920s when Carl Sauer identified landscape as “the unit concept of geography” and defined it as “an area made up of a distinct association of forms, both physical and cultural” (Sauer 1925:25). According to Sauer, the cultural landscape is a collection of features that are the product of human activity. Sauer believed that “culture was the agent, the natural area was the medium, and the result of the intersections of these two concepts was a cultural landscape” (Sauer 1931). However, he was more interested in how humans left their imprint on the landscape, not necessarily the reasons why. This concept forms the basis of cultural geography, though it has evolved over the years (Winberry 1997). Since the 1980s, there has been a newer
school of thought in cultural geography. Scholars such as Judith Carney, Richard Rosomoff, and Etta Fields-Black are more interested in the social and political substructures that were imprinted on the landscape by humans and subscribe to an expanded version of this theme (Carney 1996, 2001, 2013; Carney and Rosomoff 2009; Fields-Black 2015a, 2015b).

Anthropologist James Deetz (1990) also defined landscape in terms of culture in an opening essay to the edited volume *Earth Patterns*. He understood landscape as the total terrestrial context in which archaeological study is pursued. He used the term cultural landscape to define the part of the terrain that is modified according to a set of cultural plans (Deetz 1990:2). Deetz stated that the cultural landscape has been neglected by archaeologists in favor of houses and communities where material culture is almost always encountered; yet it is the space between these houses and communities that serves as the connective tissue and gives these places their context (Deetz 1990:2). He argued that the landscape itself is a feature yet, because of its multi-scalar nature, it is difficult to give it a specific locational focus. He stated that gardens, landfills, and fields are all landscapes created by people who desired some specific and quite explicit result (Deetz 1990:4). To add to this discussion, Anschuetz et al. (2001:188) have defined the archaeological landscape as “the palimpsest of cultural residue that results from natural and cultural processes operating at different spatial and temporal scales.” They argued that this palimpsest represents a patterned distribution of sites across both time and space and that nature plays an integral part in decision-making and activities that humans need for survival (Anschuetz et al. 2001:188).

These definitions are a few in a long list of efforts to describe landscape. There is no general consensus among archaeologists on a common definition, as it relies on the nature of the research questions being asked and whether these questions are directed at a site, the interaction
between humans and environment, or the intellectual reconstruction and preservation of a historical landscape (Winberry 1997). This lack of general definition for the term also denotes that there is no single theoretical paradigm to envelop it (Anschuetz et al. 2001). Herein lies the attractiveness of the term landscape; its lack of general definition means that it is open to the theoretical orientation of the researcher who defines it. To me, landscape is multi-scalar, fluid, and changes by social and environmental factors. It is difficult to study and attempt to interpret, which is what makes it a fascinating area of research.

Landscapes in general present a myriad of challenges because they are a palimpsest of time periods and cultural manifestations. Plantation and river system landscapes are multi-scalar because of overlapping time periods in construction of certain elements of the study subjects in addition to geographic scale.2 For this body of research, I will be using the term landscape in two ways: to discuss the evolution of plantations in the Carolina Lowcountry, from their origins centered around rice culture utilizing an enslaved work force and, after the Civil War, their changing economic pursuits as they adjusted to the wage labor system; and to place these plantations within the context of the river system in which they are located.

The rice culture plantation landscape, as I use it in this dissertation, encompasses European cultural modifications to the natural environment of river systems. These modifications include buildings, agricultural fields, canals, roads, the introduction of non-native rice plants as agricultural commodities, and other European anthropogenic changes, such as phosphate mining and large scale timbering, to the environmental landform.

2 The term river system is used here to denote major rivers, which are fed by smaller tributaries and creeks. While this is also true of river valleys, the term valley denotes a major change in elevation and is usually a river flanked by hills or mountains. The Lowcountry does not contain hills or mountains and topographic elevation changes are relatively minor in this region; therefore, the term river system is a more accurate descriptor of the landscape (Kovacik and Winberry 1997; Edgar 1998).
A Little Theory

In this study I conduct intra-regional analyses between two river systems, the Ashley and Santee, in the Carolina Lowcountry using a historical ecological framework. The Lowcountry is a specific region characterized by a series of river systems dominated by plantations, which were originally organized around the production of rice (Figure 1). My primary objective is to determine how river systems developed differently over time, from settlement through the first half of the 20th century, because of specific environmental conditions, methods of rice production during the colonial and antebellum time periods, and economic development after the Civil War. Ultimately, the goal of this study is to demonstrate that an intra-regional approach to examining variation within the Carolina Lowcountry will lead to new ideas about the historical development of the region.

To carry out this study, I take an historical ecology approach, using the landscape as a central theme to understand rice culture plantations and their contributions to how river systems evolved into distinct communities over time. Historical ecology is a broad concept employed by a variety of disciplines over the course of the 20th and into the 21st century (Deevey 1964; Crumley 1987, 1994, 2007, 2017; Jackson and Hobbs 2009; Vellend et al. 2013; Szabó 2015). I use it here because it promotes a holistic, multi-disciplinarian approach to studying landscapes. The simplest definition of historical ecology is the “historical interconnectedness of nature and human culture” (Szabó 2015). Like the term landscape, there is no unified theoretical approach or method to historical ecology; however, many researchers choose this avenue because it crosses disciplinary boundaries and is temporally multi-scalar, providing a way for researchers to engage in a variety of applied avenues as well as multi-disciplinary collaborative ventures (Crumley 2007; Armstrong et al. 2017).
Of all scholars utilizing historical ecology, Crumley (1987, 1994, 2007, 2017) is perhaps the widest known. She sees historical ecology as a practical and holistic perspective to studying environmental change from an interdisciplinary lens and also approaches it from an archaeological perspective in her work in Burgundy, France. By utilizing multiple lines of evidence, from the spectrum of the physical as well as social sciences, a more holistic view of the relationship between humans and the environment can be seen over time. Crumley sees historical ecology as a group of related concepts that provide a framework for studying the past and the future of the human-environment relationship (Crumley 2017:565). She states quite clearly, “the goal of historical ecologists is to use scientific knowledge in conjunction with local knowledge to make effective and equitable management decisions” (Crumley 2007:16). I find this approach practical and useful as a tool to conduct intra-regional analysis because it provides a way of bridging the problem of multi-scalar landscapes, as well as allowing the use of a variety of disciplines to study the evolution of river systems from the time of European colonization through the 20th century.

Intra-regional variability of plantation economies and material life has been examined in the Chesapeake with some success but has not been utilized in the Lowcountry. Archaeologists and historians have argued that regional analyses of the colonial-era Chesapeake obscure intra-regional variation (Walsh 1999, 2001; Heath and Breen 2009; McMillan 2015; Heath 2017). Walsh and others (Hatfield 2007; Coombs 2011; McMillan 2015; King 2016) have used river valleys as analytical units to provide a better scale for identifying and understanding distinctive trajectories of economic, social, and political development (Walsh 1999, 2001). Walsh (1999) identified three main sub-regions that existed within the Chesapeake from 1680 to 1730 and highlighted different markets and production strategies that are obscured by a broader regional
approach. More recently, Coombs (2011) has taken a closer look at differences between river valleys through the rise of slavery in early Virginia. He found that there were discrepancies between his data and the accepted chronologies that were based on a regional approach. He showed that a closer inspection of court records, wills, and inventories indicated that slave holding was more prevalent in some sub-regions than others in the 17th century, and that the prevalence of large slaveholdings changed regionally and over time (Coombs 2011).

Archaeologically, Heath and Breen (2009) have argued that interpretations of 18th- and 19th-century slavery, which are heavily biased towards excavations in the Virginia Tidewater, mask important regional differences related to housing. Heath (2017) was able to observe intra-regional differences in the distribution of Indo-Pacific cowrie shells, which she linked to trans-Atlantic mercantile connections that varied by river system in Virginia and southern Maryland. McMillan (2015) examined social networks organized around the trade of tobacco clay pipes in the Potomac Valley. She used a multi-scalar micro-historical approach to show consumer choice at the household, community, and regional scale within the Potomac Valley (McMillan 2015). These examples illustrate the need to re-assess how the colonial Chesapeake is studied and demonstrate that more accurate data can be extrapolated by analyzing intra-regional variation.

Historically, Lowcountry planters utilized river systems between present-day Cape Fear, North Carolina and Savannah, Georgia to produce rice in a variety of ways. Rice was the staple crop in the Lowcountry from the colonial period until just before the Civil War (Wood 1974; Coclanis 1989; Morgan 1998; Porcher and Judd 2014). Rice was produced on plantations, located well away from the city centers, along navigable rivers. On the eve of the American Revolution, the free population of the Lowcountry held more wealth per capita than any other region in British North America, a standard that continued well into the 19th century (Coclanis
1989:7; Morgan 1998). After the Civil War, as the Lowcountry struggled to adapt to new market conditions, river systems continued to develop in different ways, based on their natural resources, and rice ceased to be a profitable commodity by the third quarter of the 19th century.

The Research Problem

Current interpretations of Lowcountry landscape development predominantly focus on plantations located along the Ashley River because of the number of well-preserved properties lining its banks and their proximity to Charleston (Lewis and Hardesty 1979; Hartley 1984; Griffin 1985; Lewis 1985; Figure 2). These were once owned by the wealthiest of families in the British colonies. Their legacies have provided a profusion of documentary evidence that has contributed to scholarly interpretations of the Lowcountry past. A 15.1-mile section of the Ashley River system, encompassing approximately 26,000 acres, is designated as a historic district and is listed on the National Register of Historic Places (Power et al. 1994; Felzer 2012). Additionally, a number of historic plantations on the Ashley River, including Drayton Hall, Magnolia Plantation, and Middleton Plantation, are now house museums with full-time personnel to support on-going research of the area. In contrast, there are few other river systems in the region with this type of research support.

The research bias towards the study of Ashley River plantation landscapes may mask important intra-regional variability in rice culture development and planter relations, and after the Civil War, in the development of new economic opportunities in other areas of the Lowcountry. This variability likely developed in response to differing micro-environmental factors within the region, such as different river types, and from distinct historical processes that can be traced to alliances formed among wealthy planters at the time of the Charles Towne settlement in 1670 (Dethloff 1982; Coclanis 1989; Edgar 1998). These relationships impacted
early historical settlement patterns, as well as political and trade relations, both regionally and internationally (Dethloff 1982; Coclanis 1989; Bates and Leland 2015). By studying the Lowcountry as a unified region, the distinctive contributions and histories of individual river systems are obscured.

Few studies have focused on the Santee River (Porcher and Judd 2014; Bates and Leland 2015; Figure 2), and none have been synthesized with the goal of examining how Santee plantation landscapes might have differed in important ways from those that developed along the Ashley River. A comparative analysis of three plantation landscapes on each river system serves as a case study for understanding how domestic architecture, as well as designed rice culture landscapes, developed differently over time, and how those developments helped shape the later historical trajectories of the Santee and Ashley Rivers.

The analysis of architectural and landscape details of the study plantations, such as the placement of outbuildings and housing for the enslaved in relationship to rice fields, and the relationship of the main house to enslaved workers’ settlements, was designed to demonstrate if, and how, agricultural and environmental variation affected the built landscape along each river system during the colonial and antebellum periods. A comprehensive study of different methods in rice production provides a concrete measure for studying the differences in plantation layout in relationship to method of rice production. Environmental factors may also have played a key role in the past as people on different river systems adapted to a changing economy during the postbellum period.

3 with the exception of architectural study and archaeological work at Hampton, Waterhorn, Yaughan and Curriboo plantations (Wheaton et al. 1983; Wheaton and Garrow 1985; Shlasko 1997; Young 2010, 2012a, 2012b, 2014; Young and Adams 2010; Hester 2014).
Figure 2. Location of Ashley and Santee River systems (map by the author).
The material culture observed and analyzed as part of this study provides an important line of evidence to understand intra-regional variability and contributes to a better understanding of the people who lived and worked on the subject plantations during the colonial and antebellum time periods and to their subsequent use in the late 19th and 20th centuries.

Project Questions and Scope of Work

An historical ecological approach to intra-regional variability provides a framework for understanding the differences in plantation landscapes and development between river systems of the Carolina Lowcountry. I have framed my questions with this construct in mind. They are:

1. Was the Lowcountry a homogenous landscape in the past, or did differences in hydrology, rice production methods, and plantation architecture exist between river systems that are important to recognize? If they existed, why are these differences, important?

2. Did different social factors affect the development of landscapes on these two river systems?

3. What was the relationship, if any, between methods of agricultural production and land use?

4. Did different environmental conditions result in distinct uses of the landscape over time?

I used multiple lines of evidence to answer these questions. These include environmental evidence such as soils, river salinity, tidal cycles, the presence or absence of mineral deposits, and bounty of wildlife; documentary evidence including family histories, historical plats and maps; extant landscape evidence including standing structures, landscape remnants related to main house gardens, rice production, and mining activities; archaeological evidence of additional structures and landscape modifications; and remote sensing to identify remnant landscape
features and structures. Specific details are also included, such as the placement of outbuildings and housing for the enslaved in relationship to rice fields, and the relationship of the main house to enslaved workers settlements. These criteria were chosen to demonstrate if, and how, agricultural and environmental variation affected the built landscape along each river system. By utilizing a holistic approach to the data, these types of details underline the significance of intra-regional variability between the Ashley and Santee Rivers. I use these details as quantifiers for the degree of similarity and difference between each river system.

I use LiDAR imagery throughout this document as a supporting line of evidence to illustrate remnant landscape features and land use change over time. A brief definition is provided here to provide a general definition of the technique and how it works. Light Detection And Ranging (LiDAR) is a remote sensing technique that utilizes pulse lasers to measure distances to the earth’s surface. These measurements, combined with other geographic positioning data recorded at the same time, generate three-dimensional imagery of the earth’s surface in a point cloud. The data are usually collected by airplane or helicopter over large surface areas. These data can then be used to create digital elevation models in a GIS, which show details of the earth’s surface without interference of vegetation (Harmon et al. 2006). LiDAR imagery is particularly useful in landscape studies because human manipulations can be readily identified. Some LiDAR data sets are higher resolution than others. The data for the Ashley River are more fine-grained than those available for the Santee River.

To operationalize an intra-regional approach to the historical development of the Lowcountry, I compared the Ashley and Santee river systems with emphasis on plantation landscapes with the above criteria in mind. My analysis of these landscapes included a sample size of three plantations on each river system. Each plantation was occupied by successive
generations of elite planter families spanning the early 18th century to the mid-19th century. I selected these plantation landscapes for their dates of occupation, their location on each river system, ease of property access for on-site landscape and archaeological study if warranted, and availability of existing archaeological data. All plantations discussed here were under rice cultivation, to some degree, in the 18th century, and persisted until after the Civil War. Some are still extant today.

Study Subjects

Ashley River plantations analyzed include Cedar Grove, Middleton Place, and Drayton Hall, which are all located approximately mid-river (Figure 3). Cedar Grove (38DR155, 38DR158, and 38DR189) sits up river and across from Middleton Place, and was owned by the Izard family during the colonial period. The main house, constructed sometime around 1700, burned during the Civil War and there is little left of the original Georgian-Palladian landscape as it has been developed into a modern residential community (Power et al. 1994; Feltzer et al. 2012). There is documentary and archaeological evidence suggesting that Walter Izard installed a large ornamental garden with irrigation system on this site during the colonial period (Philips 1992; Trinkley and Hacker 2007). A detailed description of the main house survives (Dwight 1918). Archaeological investigations have occurred at the site by avocational researchers as well as a number of cultural resource management firms (Beard 1990; Styer 1992; Bailey and Fletcher 1999; Bailey et al. 1999; von Loewe 2001). What is left of the original domestic core is protected by a conservation easement and the Ashley River Historic Corridor (Power et al. 1994; Feltzer et al. 2012).

Middleton Place (38DR16, 38DR82, 38DR85) is commonly known as the family seat of the Middletons, the wealthiest family in the Carolina Lowcountry by the mid-18th century. It is
known for its Jacobean-style main house, which also burned in the Civil War along with the majority of the plantation domestic core. Middleton Place boasts extensive ornamental gardens, which are the oldest surviving gardens in North America (Smith 1988; Power et al. 1994; Feltzer et al. 2012). Extant on the landscape are the south flanker building to the main house, ornamental gardens, remnant rice fields, and a reconstructed early 20th-century rice mill and stable yard complex. Archaeological excavations were conducted in 1979 (Lewis and Hardesty 1979) within the domestic core and again in 1993 around the rice mill in support of rice mill stabilization efforts near the butterfly ponds (Trinkley 1993). Middleton Place is owned and managed by a private foundation and the south flanker, once the private residence of the J.J. Pringle Smith family, is now a house museum. The house and gardens are open to the public for tour.
Drayton Hall (38CH255, 38CH803) is located down river from Middleton Place and was the family seat of the Draytons, who owned it until 1977. The plantation was established before 1700 and acquired by the Drayton family in 1738 (Espenshade 1991; Zierden and Anthony 2004). Extant architecture includes the original intact main house, privy, remnants of ornamental gardens, remnant rice fields, and the archaeological remains of several dependencies and outbuildings (Power et al. 1994; Feltzer et al. 2012). Several archaeological investigations have occurred at Drayton Hall since it was acquired by the National Trust for Historic Preservation in 1977 (Lewis 1978; Zierden and Anthony 2004, 2006, 2008). The property is now managed by a private trust as a house museum and supports an on-going archaeological program led by a team of permanent staff members.

Santee River plantations analyzed include Waterhorn, Peachtree, and Rochelle (Figure 4). Waterhorn Plantation (38BK371) is located at the confluence of the South Santee River and Wambaw Creek. It was originally owned by Daniel Huger by a land grant from the Lords Proprieter in 1686, and then later in the colonial period by the Horry family who were prominent plantation owners in the Santee Delta during the antebellum period (Shlasko 1997; Bates and Leland 2015). There is no extant architecture on the landscape today; however, there is archaeological evidence for post-in-trench buildings dating to the mid-18th century and remnant rice fields are present (Shlasko 1997). Ellen Shlasko conducted archaeological excavations in the 1990s as part of her dissertation work (1997). The property is currently within the boundary of the Francis Marion National Forest and is managed by the U.S. Forest Service.

Peachtree Plantation (38CH78) is downriver of Waterhorn, also on the South Santee. The Peachtree manor house was constructed from 1760 to 1762 for the Lynch family; however, the plantation was under rice cultivation by 1738. The Lynch family occupied the house until 1835
when it was leased to the Doar family. It was sold out of the family in the first quarter of the 20th century. The main house burned in 1840 and what remains of the built landscape today is the main house ruin and remnant rice fields. There is archaeological and documentary evidence for ornamental gardens, dependencies, outbuildings, and enslaved settlements (Altizer 2014). I have conducted archaeological excavation of the main house and dependencies as well as within enslaved residential areas depicted on historical maps. The results of these investigations are discussed in Chapter 5. The property is under conservation easement and privately held.

Rochelle Plantation, previously part of The Marsh Plantation, sits at the mouth of the Santee Delta and was established by Col. Thomas Lynch before 1732. The property stayed in

4 Rochelle Plantation does not yet have a trinomial number issued by the state.
the Lynch family, in various portions, until the passing of Esther Lynch in 1823, when it was divided among surviving family members. It was predominantly a commercial rice plantation and some structures, including a main house and large outbuildings, are known to have existed on the property (Linder and Thacker 2001; Pierre Manigault pers. comm. 2018). Recent archaeological investigations have uncovered the remains of several buildings as well as two residential areas for the enslaved, also depicted on historical maps. These are discussed in detail in Chapter 5. Like Peachtree, Rochelle is under conservation easement and privately held.

Approaches to Archaeology and Historical Landscapes: Contributions to the Concept of Intra-Regional Variability in the South Carolina Lowcountry

Several studies within the South Carolina Lowcountry contribute to the concept of intra-regional variability. They lay the groundwork for the interpretive aspect of historical archaeology and landscape studies that is commonly practiced today. My discussion of some of those early studies conducted in the region is followed by an introduction to colonial-era Palladian architecture and a discussion of the theoretical background I use to understand plantation landscapes within the context of historical archaeology. The chapter ends with a short discussion of data limitations with regard to the study subjects I have chosen for analysis.

In the late 1970s, Stanley South approached the Lowcountry historical landscape within a processualist framework; his intent was to look for specific early colonial settlement patterns that could then be used as a predictive model for other similar types of colonial settlement. He and Michael Hartley (1980:1-2) theorized that wealthy early settlers chose the highest ground along primary deep water routes in order to have the best vantage point for defensive purposes and access to a primary transportation network to transport crops to market. South and Hartley used a processual approach to test their deep water/high ground model. Their goal was not to make
regional comparisons between river systems, but to document the presence of 17th-century sites on the landscape. They carried out field work to ground-truth historical maps, which indicated the location of early settlers’ houses along the Stono and Edisto rivers (South and Hartley 1980). This survey helped to define the early colonial landscape of two key Lowcountry river systems and also provides part of the framework for this dissertation.

South and Hartley’s work is still relevant and can be utilized on the Ashley and Santee rivers. Middleton Place and Drayton Hall both sit at bends in the Ashley River, which are key defensive positions. The early building campaigns of these plantations could have been more defensive in nature and, over time, they became displays of wealth. Waterhorn was built on a small rise but placed strategically at the confluence of the Santee and a prominent tributary, Wambaw Creek. Waterhorn was the eastern-most French Huguenot settlement from the core of Jamestown, which was the original Huguenot settlement after they left the Ashley River in the 1680s. The placement of Waterhorn could have been an early defensive measure because, at the time of its construction, Peachtree sits on the highest rise of its parcel, which is the highest rise for miles along the South Santee. However, by its construction in 1760, defensive measures were not as much of a consideration as in the early days of settlement. Its prominent location is likely for showing status and wealth.

In the 1980s, Thomas Wheaton and Patrick Garrow (1985) presented archaeological evidence for the process of acculturation within the enslaved populations at Yaughan and Curiboo plantations, on the South Santee River, during the 18th century. They looked specifically at acculturation by analyzing architecture, colonoware, and artifact patterns between the two sites. Their analysis of the early architecture of enslaved quarters indicates post-in-trench and

5 For more on the early history of Jamestown see Chapter 3 of this dissertation and Bates and Leland 2015.
wattle-and-daub type structures, which are West African in style, while later structures appeared to be post-in-ground, indicating a switch to European ideals of architecture. Colonoware appeared to decline in importance after the Revolutionary War, while material culture broadened during this time period with the introduction of larger quantities of non-local ceramics (Wheaton and Garrow 1985:257).

Amy Friedlander (1985) conducted an historical analysis of Yaughan and Curriboo Plantations to look at enslaved population demographics and complemented Wheaton and Garrow’s findings with historical documentation. Through archival research of Yaughan and Curriboo plantations in St. Stephen’s Parish, and family as well as neighbors’ records, she found that enslaved families were kept together by systems of inheritance through the 18th century because they were based on larger plantations in an isolated region that saw little white population growth (Friedlander 1985:229). The plantation itself was self-sufficient and traded with nearby neighbors rather than regionally. Systems of inheritance by the Cordes family, who owned Yaughan, sought to minimize kinship breaks among their enslaved (Friedlander 1985:229). This pattern indicates continuity within the enslaved population that may have enabled Africans to perpetuate cultural practices and traditions through the 18th century. However, the trend dissolved in the 19th century as the white population increased and there was more frequent contact with regional communities (Friedlander 1985:236).

Kenneth Lewis, also working in the early 1980s, used a processual approach in his comparison of core activity areas of Middleton Place and Hampton plantation based on a basic plantation patterning model (Lewis 1985). His goal was to develop a model correlating settlement pattern to socioeconomic function (Lewis 1985:35). Though his use of artifact density mapping (SYMAP) is one of the earlier publications of this type of analysis on historical
landscapes in the South Carolina Lowcountry, it is based on a less than 1% sampling strategy at two plantations. The sampling strategy was also restricted to those areas where activity was known, based on historical maps, and does not consider the spaces in between.

Ellen Shlasko’s dissertation (1997) on her excavations and research at Waterhorn Plantation hinted at intra-regional variability. She used the changing landscape of Waterhorn to examine how and why the plantation infrastructure was rearranged. She postulated that, in addition to changing styles and particular planter tastes in Georgian architecture that can be seen in the broader Atlantic World during the 18th century, other local economic developments took place that influenced planter decisions. Though she did not compare river systems, she pointed out that local economic developments—mainly the growth of rice production—infuenced the local expression of these changes in the form of upgrades in housing and the arrangement of the plantation domestic core (Shlasko 1997:76).

In 2002, Thomas Wheaton expanded on the work that he and Garrow had conducted at Yaughan and Curriboo and revised his previous analyses to provide for cultural continuity and change over time (Wheaton 2002). His previous argument was that African populations in the early colonial period at Yaughan and Curriboo were rapidly becoming African-American and, by the 19th century, it was almost impossible to tell from an archaeological context an African-American from a European settlement. After excavating at James City, North Carolina, he modified this position to allow for differential rates of change and argued that practices influenced by African heritage can still be seen in the more recent archaeological record.

The systematic survey of the Ashley River corridor in support of a National Register of Historic Places nomination has added to what is known of the colonial time period in this pivotal
rice culture landscape (Power et al. 1994; Felzer et al. 2012). Power and colleagues began the
original nomination in the mid-1990s with a few key colonial sites along the Ashley River,
including Middleton Place, Drayton Hall, and Cedar Grove. The original nomination
encompassed 7,000 acres along the Ashley River. Felzer (Felzer et al. 2012) followed up with an
expansion nomination in 2012 to include a significantly larger footprint for the original Ashley
River survey area and the result is the Ashley River Historic Corridor, which encompasses
almost 24,000 acres and covers historical sites and landscapes dating from the 17th through the
20th centuries (Figure 5).

As part of the expanded nomination, Historic Charleston Foundation contracted
Brockington and Associates to conduct GIS predictive modelling to look for the highest
probability of sites within the proposed expansion. One of the outcomes of this modelling is an
overlay of known plantation boundaries, based on historical plats and maps (Figure 6).
Brockington and Associates then conducted field checks to test the model. The result was a
randomized yet controlled survey. They were able to document a number of historical sites based
on this modelling. The results are published on a website, which tells the history of the Ashley
River corridor (Brockington and Associates 2014). These data continue to inform management
decisions related to development of these areas as the city of Charleston grows outward from its
peninsular core.

All of these previously conducted studies contribute, in some way, to an understanding of
intra-regional variability. They begin with landscape patterns and take us toward a better
understanding of the Lowcountry landscape by testing new theories and ideas. They also guide
the discipline of historical archaeology in the Lowcountry toward the goal of understanding the
Figure 5. The expanded Ashley River Historic District boundaries on a modern aerial image (ESRI 2019); the red dots represent the main house locations of Cedar Grove, Middleton Place and Drayton Hall. The Charleston peninsula is present in the southeast corner of the image. Note encroaching urban development up the Ashley River (shapefiles courtesy of Brockington and Associates by permission of Historic Charleston Foundation; map by the author).
Figure 6. Overlay of historical plantation boundaries on modern aerial imagery (ESRI 2019); the red dots represent the main house locations of Cedar Grove, Middleton Place and Drayton Hall. Note modern development on much of these former plantation lands (shapefiles courtesy of Brockington and Associates by permission of Historic Charleston Foundation; map by the author).
lives of everyday people. It is impossible to move forward without these previous studies laying
the groundwork for new ideas. Unlike these studies, which were more narrowly focused on
specific plantations, comparisons between two plantations, or searching for specific examples of
plantation types to support hypotheses, I am seeking a subregional approach to understand how
river systems evolve as communities over time.

Evolving Landscapes

During the early colonial period, there was a shift in the plantation landscape in response
to both agricultural necessity and population pressure. Early plantation settlements of the late
17th and early 18th centuries, in the Lowcountry as well as the broader Atlantic World, reflect a
tighter domestic core, with enslaved and indentured servants likely living in closer proximity to
their owners (Wood 1974; Morgan 1998; Edelson 2006). Owners and workers often labored side
by side in the fields as a matter of necessity, and social hierarchy was likely not as strictly
defined because of this daily intimacy. As plantations became commercially viable, and planters
became wealthier and bought more forced labor, enslaved settlements were pushed toward the
periphery of the plantation domestic core but still within line of sight. Enslaved workers also
lived within the main house or immediate outbuildings such as kitchens and laundry areas, or
other dependencies, if their working space was within or near the main house (Upton 1984). By
re-arranging the plantation domestic core, planters asserted control over the natural order of the
environment and created a series of both physical and social barriers where only those who were
invited would be allowed access to the most intimate spaces such as gardens out of public view,
or private social spaces (Upton 1984).

Drayton Hall was re-organized by Charles Drayton from its original landscape of 1742,
with colonnade, dependencies and an enslaved settlement as part of the domestic core, which
was in close proximity to the main house on the landside yard. Charles moved the enslaved settlement behind a ridge closer to the river road; however, it could still be seen on approach to the manor house from the Ashley River Road (Espenshade 1991; Zierden and Anthony 2004).

On the Santee River, evidence of evolving landscapes can be seen at Waterhorn, where the settlement changed over time. The early main house design at Waterhorn is thought to be Poteaux-en-terre, which is a distinct French style of architecture utilizing post-in-trench foundations (Shlasko 1997). Other buildings within the domestic core were built using wattle and daub. Elias Horry, in the late 18th century, re-arranged the domestic core layout and removed the enslaved housing to the periphery; however, the domestic core does not appear Palladian in design.

Colonial Period Lowcountry Plantation Architecture

Many plantation landscapes of Charleston’s elite families were based on the concept of Palladian architecture. Cedar Grove, Middleton Place, Drayton Hall, and Peachtree were all built in the mid-18th century using this concept. At their so-called “country seats,” elite Lowcountry planters demonstrated their desire to recreate the English idea of landed gentlemen’s country estates (Joseph 1993; Hudgins 1999; Smith 1999). Many of their plantations were laid out in this fashion as will be seen in Chapters 4 and 5. A brief discussion of Palladian architecture and landscape design is presented here to facilitate a general understanding of main design elements discussed in the rest of the dissertation.

Palladian architecture has its roots in 16th-century Italy, with the publication of Andrea Palladio’s *Four Books of Architecture*. His work was based on the work of Vitruvius, an ancient Roman architect. Palladio used Vitruvius’ rigid formulations of appropriate proportions for
elements of classical buildings and temples in *Del architectura* as a basis for formulating his own ideas regarding classical architectural design (Palladio 1738). Through Palladio’s work, a revival of the classical Orders of Architecture swept Italy. Tuscan, Doric, Ionic, and Corinthian orders denoted the hierarchy of space, where Tuscan is the simplest order and Corinthian is the most elaborate.

Symmetry, regular fenestration, clean geometries, and use of the Orders of Architecture characterize the Palladian style. His floor plans were open and spacious and often included dependencies, attached to the main block by arcades or colonnades and sharing the same geometries as the mansion, supported by gardens. There was no clear distinction between architecture and landscape design in the 17th and 18th centuries, and gardens and other formal landscape elements were also influenced by Palladian ideals.

Although Palladio designed villas for wealthy merchants in Italy, his influence shaped building in other parts of Europe and Britain as well. Specifically, Palladio’s work influenced Inigo Jones, who traveled through Italy in the early 17th century. Jones’s design books reflect this influence. Other architects and landscape designers who worked in Britain and published design books in the late 17th and early 18th centuries include Isaac Ware, James Gibbs, and Abraham Swan, William Kent and Lancelot (Capability) Brown. Publications by these architects were some of the earliest to make their way to the colonies. These works are part of at least 106 pattern books known to have circulated in the colonies before the American Revolution (Park 1961). They also served as guides for colonial craftsmen in their construction of townhomes and plantations for the British colony’s elite. There are direct correlations between early design pattern books and design elements at both Middleton Place and Drayton Hall (Lowe 2010).
Cedar Grove and Peachtree would likely have had similar elements from these books; at the very least, their floorplans and landscape design elements show the hallmarks of Palladian design.

As late as the 1770s, there were no trained architects in the colonies. Design and construction of buildings and landscapes were left to gentlemen amateurs, craftsmen, and construction workers. These gentlemen were the sons of wealthy planters and merchants sent to Europe for education. Part of their studies abroad usually included architecture, then considered a necessary subject for a refined gentleman. Upon returning to the colonies, these wealthy gentlemen employed local carpenters and craftsmen to execute designs of their choosing, which they often fine-tuned to meet their specific needs (Lowe 2010). Evidence of these gentleman architects can be found in the design elements of prominent Lowcountry houses and gardens including Middleton Place and Drayton Hall. Henry Middleton is known to have had a hand in the design of his gardens, though most of the credit deservedly goes to the Dutch landscaper whom he hired to do the job (Yeadon 1857; Smith 1988). John Drayton is thought to have had an influence on the design of Drayton Hall and there is evidence of this influence in his book collection, which included works from John Evelyn, Isaac Ware, and Colen Campbell (Lowe 2010:18).

It is possible that Thomas Lynch, Sr. or his father Colonel Lynch had a hand in the designs of Peachtree and The Marsh (modern Rochelle plantation), though there is no firm evidence to support this conjecture. The Peachtree inventory, taken after Thomas Lynch Jr.’s death, shows a complete listing of the books in his library. His father and grandfather undoubtedly passed some of these down (Moore 1974). Among them were the eighteen volumes of Jonathan Swift, a volume of Swift’s letters, several law books, volumes in Greek and Latin, and Hooke’s series on Roman history (Fields 1952; Bridges and Williams 1997:61). However,
no design books were listed or any other clue is present to indicate a particular affinity for architecture among the Lynch gentlemen.

Social and family connections likely also played a role in how plantations were designed on both river systems. While there is no firm evidence for an architect of record at any of the study plantations presented here, the design of new houses and ever-evolving landscapes would have been a topic of discussion during the course of daily business, at social functions, or at family gatherings. The Izards, Middletons, and Draytons were related by marriage and spent much time together. They also frequently wrote to each other as a matter of course; family letters survive between the Izards and Middletons. The Lynches were related by marriage to the Horrys and also knew the Draytons and the Middletons through political arenas and Charleston social circles, and there were likely business dealings between the families. Stephen Drayton was a witness to the inventory of Thomas Lynch, Jr. in 1783 (Moore 1974).

Colonial Landscapes as Places of Power and Control

Within the context of colonial Palladian plantation landscapes are underlying psychological processes that planters employed to wield control over their enslaved workforce as well as the natural environment. Palladian-designed landscapes, as well as architecture, employed a number of techniques that were meant to control and to represent power and control over the natural world. To better understand the complex relationship between planters and their enslaved workforces, as well as their environment, a number of theoretical concepts are used here. These concepts of power, control, and surveillance act as support mechanisms in my broader study of intra-regional variability. Power, control, and surveillance are key factors in Lowcountry plantation landscapes and will be discussed here as an introduction to the study
subjects of both the Ashley and Santee rivers in the following chapters. Without them, the plantation landscape cannot be fully understood.

Mark Leone’s work (1984) on William Paca’s garden in Annapolis, Maryland presents an early but seminal study on the use of order and control as part of the Georgian ideal. William Paca was an 18th-century politician and signer of the Declaration of Independence. His garden was a very structured landscape in which he used perspective to present the illusion of a natural setting ordered by man. Leone argued that the formal garden was not an adornment or the product of spare time, but a place with intentional political aims—to naturalize social inequality through the ideology that the garden conveyed. Leone contended that the garden was active in communicating its message. “By walking in it, admiring it, discussing it, and using it in any way, its contemporaries could take themselves and their position as granted and convince others”…that this was the way it was, the way it should be, and the way it should remain, referring to this structured society where elites were the highest class and part of the natural order (Leone 1984:34).

Human power dynamics can be expressed through cultural landscapes, which can then be seen as powered landscapes (Spencer-Wood 2010:502). The powered landscape, as defined by Spencer-Wood, encompasses both domination and resistance tactics within social relationships (Spencer Wood 2010). Domination, in its simplest definition, is the exercise of power through control of resources. This concept is referred to as viewing the social world from the top. Conversely, resistance is characterized as the failure to comply with this type of power (Paynter and McGuire 1991). Domination, in all its forms, is characterized by the need to create a sense of “other,” which is different and alien to those being dominated, and then to incorporate this “other” into a single cultural system of domination, which is biased toward the socially elite,
who are most often the dominators. Social scientists most often have access to the dominators because it is they who are most represented in the literature by virtue of the records they have left behind (Paynter and McGuire 1991), including land and tax records, newspaper accounts, diaries, inventories, and wills. Resistors, or those who are subordinate to the dominators, rarely leave these types of documents in abundance.

The powered landscape model works within plantation landscapes where planters used an enslaved labor force. In this type of powered landscape, elite planters were the dominant force exerting control over their enslaved. They did this in several ways, the most obvious being through the racialization of laborers through which Africans and their descendants were forced to labor without wages (Joseph 1993). They also forced their enslaved laborers to build quarters with inferior construction materials, which were much smaller than the main house and segregated from living spaces used by white people (Spencer-Wood 2010). Enslaved people often resisted this dominance both overtly and covertly.

Resistance can be studied by examining landscape relationships between main houses and enslaved quarters, as well as material culture related to domestic sites. Studies of this type of work in Virginia include Terrence Epperson’s (1990) discussion of the reconstruction of the enslaved quarters at Carter’s Grove and Matthew Reeves’ (2014) discovery of hidden bottles at Montpelier. Epperson’s discussion uses the theoretical discourse of dominance and resistance to discuss the relationship between the mansion at Carter’s Grove and the related slave quarters. Archaeological evidence and the diaries left by the family patriarch, Robert “King” Carter served as guides for the reconstruction of quarters for the enslaved. King Carter was the wealthiest man in Virginia at the time of his death in 1732 (Epperson 1990:29). Epperson (1990:31) argued that architecture played a dual role on the colonial landscape by presenting the appearance of
symmetry and the “natural order” while at the same time articulating a system of dominance that appeared to be “inevitable, eternal and matter-of-fact common sense.” Use of the classical orders of architecture can support this argument by making this assertion of domination appear unending and inescapable. The position of structures on the landscape conveys the impression of symmetry and order; while the enslaved quarters are carefully screened by a row of trees, they are not entirely out of sight of the main house. Though domination is overt on the landscape, covert resistance is seen in the quarters through a series of pits where the enslaved kept or stored items, some of which were thought to have been taken from the plantation stores without permission (Epperson 1990:34).

More recently, Reeves (2014) discovered upright glass bottles in the cellar of Montpelier dating to the early 19th century. One of these bottles was recovered in a sub-floor pit and one was concealed within a brick wall, where bricks had been deliberately removed to accommodate the bottle. Reeves’ first reaction was that the bottles could represent ritual activities based on their locations and contexts, but subsequent critical analysis of the evidence convinced him that these were not areas of ritual. His conclusions caution archaeologists not to assume that every intentional placement of an object is the material manifestation of ritual. However, there is little doubt that the concealed bottles discovered by archaeological excavation were intentional and part of an act of resistance by enslaved workers who had access to the cellar (Reeves 2014:191-193).

Similar types of resistance can also be seen in the Lowcountry on the Charleston peninsula. In 1988, Martha Zierden and Kimberly Grimes excavated at the John Rutledge house on Broad Street in Charleston by request of the property owner, who wanted to know more about its history. Excavations took place in the rear yard as well as under the carriage and main houses.
In the rear yard, Zierden and Grimes excavated layers of refuse, which were intersected by a deep narrow pit. The pit was filled with loose, coarse sand. Artifacts recovered from the pit included green bottle glass and a series of clam shells, which covered clusters of lead musket balls (Zierden and Grimes 1989:48-50). The pit was dated to the Revolutionary era and could have been dug by a soldier to store ammunition on a temporary basis. However, because the rear yard was an enclosed space with limited outside access, Zierden and Grimes posed the more likely interpretation is that an enslaved person took advantage of the upheaval of the war and the siege of Charleston to stockpile their own reserve of ammunition. The artifacts and interpretation are currently on exhibit at the Charleston Museum in Charleston, South Carolina (Martha Zierden, pers. comm., 2019).

In 2001, Zierden conducted archaeological excavations at 14 Legare Street at the Simmons-Edwards house in Charleston. As part of her interpretations of the backyard space based on refuse layers dating to the late 18th and 19th centuries, she surmised that occupants of the Miles Brewton house at 27 King Street may have dumped their trash on the 14 Legare Street property. Among this refuse was a wine bottle with the Miles Brewton seal still attached. The backyards of the Miles Brewton property and the Simmons-Edwards property about each other. Pollen and phytolith analysis indicate, during the 18th and early 19th centuries, these backyards areas were not yet filled and still remained marsh-like swamp. Zierden postulated that this swamp portion of low-lying land between the two high-style townhouses may have been a gathering place for enslaved people living and working in this area of the Charleston peninsula. A hearth feature excavated at the rear of the Miles Brewton property ten years earlier, which contained refuse consisting of broken tobacco pipes, bottle glass, and a broken colonoware pot, add further support to this hypothesis (Zierden 2001, Zierden et al. 2001).
Brockington and Associates conducted mitigation activities in advance of a proposed residential development at former Clay Hill Plantation, an 18th- to mid-19th-century plantation used primarily for timber production, in southern Dorchester County. During their excavations near the main house, they recovered evidence of two possible enslaved African ceremonial pits or shrines (Baluha et al. 2018:256). These consisted of round and oval features, which extended into the clay subsoil. Both were identified near chimney bases. Both also contained platforms of burned oyster shell, with artifacts lying directly on top. Artifacts recovered were unusual and appeared to have been arranged very carefully. They included iron shovel heads, an iron hoe, a ceramic marble, a gun flint, lead pellets, and a ground glass jewel. Glass beads were also recovered from both features. Baluha et al. (2018:256) interpret these features as a possible shrine site to a deity known in West African Yoruba tradition as “Ogun, the deity of warriors, hunters, blacksmiths, technologists, and drivers.”

The oval feature contained groupings of artifacts including an iron band with broken bottles inside, a broken bottle outside of the band, and a cluster of large mammal bone, possibly goat, in proximity but clustered away from the other artifacts. All of these were arranged on top of a thin lens of brown loam soil over top of the clay subsoil. Baluha and colleagues also interpreted this feature as a shrine, which may have been placed in a barrel or large bag (Baluha et al. 2018:257).

In fall 2019, while uninstalling early 20th century flooring at the Nathaniel Russell House in Charleston, South Carolina, preservationists discovered a piece of chandelier crystal or glass deliberately placed in the original 18th century baseboard of the enslaved quarters. This deliberate placement is interpreted as a spiritual practice or type of resistance (Katherine Pemberton, pers. comm., 2019).
Landscape evidence of ordered control is present on all three of the Ashley River study subjects. A 1771 plat of Cedar Grove shows a pristine Palladian pastoral setting with well-manicured gardens. Visitors from Fort Dorchester Road approached the main house by a long straight allée of oak and elm trees. This forced perspective allowed visitors a glimpse at well-maintained fields, while also admiring the landscaped gardens around the main house as they drew closer. The allée was likely designed in tandem with an enslaved settlement in the outer yard, where trees were strategically placed for optimal viewing. A physical barrier of trees separated the formal gardens from the fields. A smaller barrier of ornamental plants, or a fence, further separated the main house from the gardens. Upon entrance into this smaller space, the visitor may have been able to glimpse the enslaved settlement, just northeast on the bluff, yet well away from the domestic core (Yeadon 1857; Shaffer 1939; Figure 7). By 1820, the enslaved settlement of the outer yard had been removed and fields were completely divided, further emphasizing order and control of the landscape (Figure 8).

The Middleton Place gardens offer a study on planter control and forced perspective. The gardens were laid out by the enslaved workforce at the property according to Henry Middleton’s specifications, which were based on the French landscape architect “André Le Nôtre’s principles of symmetry, balance, order, and focal vantage points within a precise geometric form” (Chisholm and Garber 2018:219-220; Figure 9). These are also the guiding principles of Andrea Palladio, in addition to his use of the Orders of Architecture. The main house ruin is strategically located atop a 40-foot bluff at a bend in the Ashley River, approximately 675 feet from the tidal creek. The house is used as an axis point; the main approach to the house forms one leg of the right triangle. At a 90-degree angle, the second side of the triangle is formed by a large reflecting pool. The third leg of the triangle, the longest, connects the reflecting pool back to the main
Figure 7. Detail of 1771 plat of Cedar Grove Plantation overlain on a modern topographic map for orientation and scale (Courtesy of South Carolina Department of Archives and History; map by the author).
Figure 8. Detail of the 1820 plat of Cedar Grove showing the domestic core, allée, and adjacent enslaved settlement, overlain on a modern topographic map with Middleton Place present just below (plat map courtesy of the South Carolina Historical Society; map overlay by the author).
Figure 9. Measured drawing of the Middleton Place gardens illustrating the geometric symmetry used in the original garden design, which still survives today (Image adapted from Chisholm and Garber 2018; original map housed at the Middleton Place Foundation, Charleston, South Carolina).
Figure 10. Aerial view, northeast of Middleton Place butterfly ponds and gardens (Image courtesy of the National Trust for Historic Places).

house through the centers of a series of three smaller geometrically laid out gardens (Figure 9). In all, the Middleton Place gardens contain 65 acres of green space, ornamental flowers and bushes, live oak trees, topiary, birdbaths and urns. The centerpiece of the gardens is the perfectly symmetrical terraced butterfly ponds, which sit on the main house axis at the edge of the Ashley River (Figure 10). From the landside approach, the butterfly ponds cannot be seen. The position of the house and flanking buildings forms a barrier to the back gardens and butterfly ponds. This was Henry Middleton’s showpiece and experimental station in horticulture.

A colonnade, which shielded the elaborate gardens and orangery from the landside entrance, was present during the 18th century at Drayton Hall. The colonnade formed a social barrier as well as controlling foot traffic between the flanking buildings and the main house (Stroud 2009). Like Middleton Place, the gardens and house are symmetrical with the house and approach forming a central axis to the garden layout (Figure 11).
Figure 11. Overlay of the 1796 grid map by Dr. Charles Drayton showing the Drayton Hall main house and surrounding areas, including shield-shaped gardens, as well as rice fields, on top of a modern topographic map. The arrow points to the ha-ha separating the gardens from the foot paths (courtesy of Drayton Hall National Trust Historic Site).
A ha-ha separated the main symmetrical shield garden from a meandering, naturalistic garden and foot paths (van Valkenburgh 2003; Zierden and Anthony 2004). The colonnade shielded the house and gardens from visitors approaching from the landside. Like Middleton Place, these spaces were likely only meant for those invited to admire them up close or utilize them; however, they could be seen from the river as a showpiece of the wealthy Drayton family.

The overall landscape design has been termed a ferme orné, or ornamental farm, by noted landscape planner Michael van Valkenburgh (2003). This is a phrase first coined by Stephen Switzer in his book, *Ichnographia rustica or The Nobleman, Gentleman and Gardener’s Recreation* (1715) where he describes it: “By mixing the useful and profitable parts of Gard’ning with the Pleasurable in the Interior Parts of my Designs and Paddocks, obscure enclosures, etc. in the outward, My Designs are thereby vastly enlarg’d and both Profit and Pleasure may be agreeably mix’d together.” The ha ha and the remains of the orangery, as well as the raised circular beds on the landside elevation at the nexus of the approach, are still present on the landscape today.

On the Santee River, Peachtree plantation also offers a glimpse into a carefully controlled landscape. Enslaved settlements were well away from the domestic core. The closest of these, the South Settlement, sits just on the southern periphery of the main house and dependencies. In private diary entries, a visitor to Peachtree wrote of landing at a dock on Montgomery Creek and entering the plantation domestic core through the English Gardens (Bridges and Williams 1997). In this way, Mr. Lynch controlled the visitor experience through the use of space, controlling

6 A ha-ha is a sunken fence that resembles a ditch system. Historically, these types of landscape features were built to keep livestock out of garden areas without obstructing the view. In addition to Drayton Hall, they can also be found on grand in estates in England, where it was customary to keep the lawns trimmed by grazing livestock (van Valkenburgh 2003; Zierden and Anthony 2004).
what visitors saw as they approached the main house. In the latter part of the 18th century, visitors to Peachtree approaching by water from the mouth of the Santee would have passed by the large Lynch mansion and docked at Montgomery Creek where they were afforded the view of an elaborate, terraced English garden. One of the dependencies, which was likely a kitchen with enslaved quarters, was also within line of sight of the dock and gardens, as well as the stuccoed mansion. By the time the visitor was shown through the front door, their luggage would already have been in the house, taken there by enslaved servants who were instructed to remain out of sight.

As plantations grew, additional settlements were also located in proximity to outlying agricultural areas, often far away from the main house either at the edge of highlands or knolls, or on lands seen as generally unfit for other plantation endeavors. Jerry Hill at Middleton Place is one such location where a known enslaved settlement is located in proximity to inland rice fields. Many of these types of semi-independent settlements have been documented in the Francis Marion National Forest within an 18th-century context (Williams et. al. 1992). Additionally, though not documented, the extant remnants of similar settlements can be seen dotting the Santee Delta.

Those settlements were often surrounded by low-lying swamps and inlet bays, which planters considered to be inadequate for crop production and unhealthy for white European occupation. Unlike white European colonists, who modified their environment to create order and a sense of control, enslaved Africans had to utilize the land available to them (Littlefield 1991; Smith 2012). In some ways, this can also be considered a domination tactic by European colonists as they pushed their enslaved labor to the plantation periphery. These low-lying swamp lands were likely familiar to some enslaved Africans, as they came from lands in Africa where
they produced rice in similar environments before they were forced into slavery (Littlefield 1991; Carney and Porcher 1993; Carney 1996, 2001, 2013; Smith 2012; Fields-Black 2015).

A Discussion of Data Limitations

There is some dissonance in comparative datasets between the study subjects on the Ashley and those on the Santee. I am utilizing data that have been previously collected from the Ashley River to make comparisons with data that I have collected from the Santee River. The archaeological and landscape data are variable among all six plantations; these include data from a small survey in which limited shovel testing was conducted and exploratory test units were excavated by avocational archaeologists at Cedar Grove, to multi-year seasonal surveys and systematic shovel testing by archaeologists at Drayton Hall. Only limited archaeological research has been conducted at Middleton Place. The data from the Ashley River were collected from the house museum archives of Drayton Hall and Middleton Place as well as other historical documents and secondary resources, with the exception of Cedar Grove, which was obtained from a local Cultural Resources Management (CRM) firm.

In the absence of extant architecture on the Santee, archaeology and archival evidence provide the only means of understanding landscape layout at all three study subjects. To attempt to rectify some of this problem, I have chosen to use archaeological features and broad documentation of the landscape on all of the study subjects to understand where settlements and specific plantation infrastructure were located, rather than relying on fine-grained material culture analysis. The material culture recovered from archaeological excavations acts as both a diagnostic tool to help understand ranges of occupation at each study subject plantation, in addition to providing some limited means of specific building use or function. Even though these
sources are variable, the archaeological information available is still a useful guide to understanding landscapes that no longer exist in their original forms.

Cartographic Caveat

There are very few colonial-period plats available for study from these sites that show a human modified landscape. There are no known colonial plats of Peachtree and The Marsh that show structures. The 1873 U.S. Coast Survey map, portions of which are presented below, is the earliest known map showing where structures were located in the Santee Delta. The fact that it was drawn 100 years after the river was first settled is problematic. However, it is still a valuable resource for understanding the colonial plantation landscape of the Santee Delta. I have used it as a guide over the past five years of research and have found it to be surprisingly accurate. When taken in context, it is a tool for understanding the plantation landscape of the Santee Delta but cannot stand alone as, undoubtedly, not all structures are represented accurately. Therefore, the use of archaeological data as well as remote sensing techniques, in combination with traditional historical maps, provides a more holistic view of the landscape than any of these resources could by themselves.

A number of historical maps and plats are presented in the following chapters. They demonstrate a variety of human modified and topographic features; however, because most were measured and drawn by hand over 200 years ago, the overlay with modern maps is sometimes problematic. I have used ArcGIS to layer historical maps onto modern topographic and aerial imagery, available through ESRI, to demonstrate the historical landscape while at the same time showing where modern features now exist. The Middleton Place maps cover a large area of land and some parts are not as accurate as others. Where possible, I use the overlay in a GIS; however, sometimes this is not possible because there are no features on the modern landscape to
tether the data on the historical map. There are also a few maps, such as the Drayton series, which are drawn disproportionately, yet parts are accurate. This distortion will be readily seen on the Glover plat of the Drayton Hall landscape circa 1790. The 1820 map of Cedar Grove is very detailed and surprisingly accurate when overlaid with the modern landscape. The 1873 U.S. Coast Survey map is accurate to within 50 feet, as will be seen on the Santee River plantations of Peachtree and Rochelle.

Available Documentation

Thanks to early scholars writing in the late 19th and early 20th centuries and early regional publications such as the *South Carolina Historical and Genealogical Magazine*, many of the elite early families of Charleston and their extensive land holdings in the immediate vicinity are well documented. H.A.M. Smith, writing in the early 20th century, provided great accuracy and detail tracing family histories and chains of title for many of the early families of colonial Charleston. His work is very well respected and still used today; much of the family history detail included in the research for Ashley River plantations presented below is based on Smith’s publications (Smith 1919, 1988). It is also important to point out his research bias toward elite families and their land holdings in the vicinity of Charleston. We do not have a similar published body of work for many of the outlying river systems, such as the Santee, though much primary research in support of popular secondary literature does exist.\(^7\) The notable exceptions to this lacuna is a comprehensive study of the French Huguenot families on the

\(^7\) Agnes Baldwin was the definitive source for plantation research on the Santee River, in addition to many other places in the Lowcountry. Her papers are on file at the South Carolina Historical Society in Charleston as well as the McClellanville Village Museum.
Santee River near Jamestown and the Historical Atlas of Georgetown County Rice Plantations (Linder and Thacker 2001; Bates and Leland 2015).

Additionally, Smith as well as other early Lowcountry scholars (Yeadon 1857; Smith 1919; Salley 1928; Shaffer 1939) do not write about the enslaved people and their descendants who formed the majority population residing in the Lowcountry until the 20th century. Recognizing the bias in early scholarly literature is important and, with that in mind, newer scholarship searches for ways to read between the lines of what has already been written as well as re-visit primary sources to look for additional data to create space for the silent black majority (Hicks and Beaudry 2006; Wilkie 2006). While the work presented here is biased toward elite colonial planters, I seek to utilize these known political and social figures to look for evidence of the unknown, which is enslaved people on the Santee River, for whom very little documentation currently exists.

The Breakdown

Chapter 2 contains a discussion of geography and soils, along with a comprehensive discussion of the environmental differences between inland and tidal rice production. The history of the Lowcountry plantation system is also included at the end of this chapter. This discussion is followed in Chapter 3 by an historical overview of the South Carolina Lowcountry, centered on the Ashley and Santee rivers and focused on the economy from first settlement through the first quarter of the 20th century. Chapter 4 is a comprehensive discussion of the study subjects on the Ashley River, including comparative analysis of their landscapes and how they contribute to intra-regional variability. Chapter 5 is a comprehensive discussion of the Santee River study subjects with a similar analysis to that of the Ashley. Emphasis is placed on recent
archaeological investigations at Peachtree and Rochelle. Chapter 6 provides a comparative analysis between the Ashley and Santee river systems, utilizing all of the data presented in this document. These analyses interrogate differences and similarities between river systems, which I interpret and discuss at its conclusion. The end of this chapter contains conclusions and avenues for future research, based on the results of my analyses.
Chapter Two: Geography, Hydrology, and Rice

This chapter sets the framework for the importance of considering intra-regional variability from an environmental perspective by introducing a brief geography of the Lowcountry, including hydrology and soils, followed by the historical introduction of rice and how it was produced on the Ashley River as compared with the Santee River. Archival and secondary sources are combined with historical maps, modern LiDAR and aerial imagery from the Ashley and Santee rivers to demonstrate the differences in methods of rice production and expanding economic pursuits on each river system.

Geography

The boundaries of South Carolina, set in 1815, contain approximately 31,113 square miles, measuring 225 miles north-south and 285 miles east-west. Though geographically small, the landscape is quite diverse, encompassing mountains, rolling hills, and some of the flattest terrain in the United States (Kovacik and Winberry 1987:13). The South Carolina climate is subtropical with hot and humid summer months and mild winter months. Hurricanes are common along the coast and, occasionally, they are catastrophic. There have been five Category 5 hurricanes to strike in or near Charleston in the past 150 years (Kovacik and Winberry 1987:38-39).

The state is commonly divided into five landform regions including the Blue Ridge, Piedmont, Sand Hills, Coastal Plain, and Coastal Zone (Figure 12). A fall line, which is a transitional zone between metamorphic crystalline rocks of the Piedmont and sedimentary rocks of the Coastal Plain, splits the state. Here, I focus predominantly on the Outer Coastal Plain, as the study subjects on the Ashley River sit just on its edge, and the Santee Delta Coastal Zone
Figure 12. Soils map of South Carolina, also showing landform regions (map courtesy of South Carolina Department of Natural Resources 1997).
along the North and South Santee River, which is where the Santee River subjects are located.

The Coastal Plain is the largest of South Carolina landform regions, extending south from the Sand Hills to the Atlantic Ocean and encompassing approximately 20,000 square miles. It is relatively flat to rolling and elevations range from sea level to approximately 300 feet at the threshold of the Sand Hills. Soils in this zone are silts, sands, and mud atop sedimentary rock. The Coastal Plain is often divided into the Outer and Inner Coastal Plain due to the recession of the ancient shoreline to its present location. The Inner Coastal Plain edge at the Sand Hills - Citronelle Escarpment represents an ancient shoreline. The Outer Coastal Plain is present southeast of the Citronelle Escarpment and slopes gradually toward sea level by a series of broken terraces, which were formed by marine and fluvial processes as the shoreline gradually receded. Phosphate beds, which were mined extensively in the late 19th and early 20th centuries, are present in the Miocene Hawthorn formation of the ocean bed (Cooke 1936:2; Kovacik and Winberry 1987:19-20; Coclanis 1989:30).

Soils in the Coastal Plain consist of well drained loamy sands in the uplands, which contain a mixture of sands, silt, and clay. These soils are ideal for agriculture and most of the state’s agriculture is produced in this zone. The low-lying areas in the Coastal Plain are poorly drained, consisting of a gley layer of wet, sticky clay present under the loamy soil. Combined with a high water table, water is prevented from percolating, and soils retain too much moisture for major crop production (Kovacik and Winberry 1987:19-20; Coclanis 1989:35).

The Coastal Plain is also known for Carolina Bays, which are pockets of standing-water swamps. Distinct vegetation is associated with these including red bay (Persea borbonia), sweet bay (Magnolia virginiana), and loblolly bay (Gordonia lasianthus), which are usually found around their edges. Their centers usually contain bald cypress (Taxodium distichum) and water
tupelo (*Nyssa aquatica*). Open savannahs are also present within the Coastal Plain, interspersed with pine forests. These contain several genera of grasses including *Aristida* sp., *Panicum* sp., and *Andropogon* sp. (Kovacik and Winberry 1987:45; Edgar 1998).

Vegetation present in the Coastal Plain is predominantly pine forest; however, other hardwoods and softwoods of vegetation are also interspersed. On higher grounds along rivers, loblolly pine (*Pinus taeda*) is interspersed with hickory and several species of oak including red oak (*Quercus falcata*) and post oak (*Q. stellata*). White oak (*Q. alba*), willow oak (*Q. phellos*), sweet gum (*Liquidambar styraciflua*), and black gum (*Nyssa sylvatica*) are present on lower slopes with wetter conditions. Water hickory (*Carya aquatica*), laurel oak (*Q. laureifolia*), overcup oak (*Q. lyrata*), water tupelo, and bald cypress are found in river floodplains (Kovacik and Winberry 1987:45; Edgar 1998).

The Coastal Zone includes 185 miles of shoreline, which stretches approximately 10 miles into the interior and encompasses nearly 1.2 million acres of land and water. The Coastal Zone can be sub-divided into three distinct zones. The Grand Strand stretches 60 miles south from the North Carolina state line south to Winyah Bay. It is characterized by a lack of inlets because it is present on a 100,000-year-old barrier formation. The Santee Delta is the second zone within the Coastal Zone; located just south of Winyah Bay, it is a 20-mile-wide stretch of delta containing a mixture of marshes, smaller streams, and abandoned rice fields. Traditionally, it was a cuspate (pointed) delta; however, water projects upriver, including construction of Lake Marion, Lake Moultrie, and the Santee-Cooper canal project, have decreased sediments coming out of the river. These projects have increased erosional processes significantly by allowing sediment that would have otherwise accumulated at the mouth of the delta to instead accumulate in lakes and reservoirs. As a result, the delta has eroded as much as 900 feet in some areas over
the past 40 years (Kovacik and Winberry 1987:23). The Sea Islands, a complex of barrier islands, begin just south of the Santee Delta and continue over 100 miles to the Savannah River, where they continue into Georgia (Edgar 1998:4; Kovacik and Winberry 1987:25-26).

Hydrology

The principal river systems in South Carolina include the Pee Dee, Santee, Edisto, and Savannah. These systems flow generally northwest to southeast and all, with the exception of the Edisto, originate in the Blue Ridge Mountains of North Carolina. The Santee is the largest of these systems; the watershed covers approximately 40% of the state and average waterflow is 20,000 cubic feet per second. The Ashley-Cooper River system, which drains into Charleston Bay on either side of the peninsula, originates on the Coastal Plain and is considered a part of the Ashley-Cooper-Edisto (ACE) Basin (South Carolina Department of Natural Resources [SCDNR] 2013; Zierden and Reitz 2016:35). All of South Carolina’s rivers are affected by the tide at their mouths and the tides can reach as far as 10 miles inland (Coclanis 1989:30; Edgar 1998:4-6).

Rivers in the Carolina Lowcountry were the life source of rice production both in terms of cultivation and transportation to carry processed grain to markets in Charleston and beyond. River systems are not all the same in this region. River formation and salinity affects how they can be utilized for crop production. The Lowcountry contains both black water and brown water rivers, which originate in different regions, were formed very differently, and contain varying percentages of sea salt. These rivers are named for how they get their color and their volumes of water flow. Black water rivers, such as the Ashley River, originate on the Coastal Plain. They are typically sediment-free and have a much lower volume of freshwater flow. These rivers are

8 The Edisto originates at the fall line.
named because the tannins emitted from decomposing organic matter contained in them turn them black. Their salt lines, the boundary between brackish and fresh water, are generally 20-25 miles from the ocean because the lower volume of freshwater discharge allows the ocean to push salt water farther up the river system. The Ashley River has a very narrow non-alluvial floodplain, no natural levees, and its delta is at the Charleston peninsula where it flows into the bay (Hilliard 1978; Kovacik and Winberry 1987; Edgar 1998; Porcher and Judd 2014).

Brown water rivers are so named because of the amount of clay they contain. This is a result of erosional processes from their points of origin. In South Carolina, all of the brown water rivers, which include the Santee River system, originate in the piedmont and mountains of North Carolina. The Santee River is actually a submerged river valley and has a very broad alluvial floodplain that has been built up by sediment deposition over the course of thousands of years. Its channel meanders, eventually splitting to form the North and South Santee at its delta. A series of natural levees are also present along its banks. The Santee Delta is the largest in the region. Because of its large delta and historically large volume of freshwater flow, the salt line was once very near the ocean. Today, because of the hydroelectric power project that created the reservoirs farther up river, the Santee salt line is 9 miles farther inland at the point where Highway 17 crosses the North and South Santee (Kovacik and Winberry 1987; Edgar 1998; SCDNR 2013; Porcher and Judd 2014). As a result, rice can no longer be produced in the delta at volumes produced during the colonial era.

Black and brown water rivers also have different types of estuaries, or mouths. The Ashley River has a vertically homogenous estuary, dominated by the tidal current. This type of estuary does not have a large volume of freshwater flow and does not create the same type of salt and freshwater mix. Vertically homogenous estuaries are generally salt marsh at their mouths.
with brackish marsh upriver to the salt line. A salt marsh is present on the southeast side of the Ashley River estuary near its mouth. The northwest side of the estuary has been filled and developed so that very little of the original landscape is left. A brackish marsh is present upriver to the salt line, which is just above the crook in the river near Magnolia Gardens. Rice could not be grown below the salt line (Hilliard 1978; Porcher and Judd 2014). Drayton Hall is approximately 2.2 miles downriver from the salt line in brackish water and could not have grown tidal rice with any great success.

By contrast, the Santee River has a salt-wedge estuary where the strong push of fresh water from upriver creates a thin layer of fresh water over the salt water. Above the salt line, bald cypress and hardwood swamps are common along the river banks. Historically, the freshwater flow from the mountains was strong enough to supply the freshwater layer in the river to within a half mile of the delta mouth (Hilliard 1987; Kovacik and Winberry 1987; Porcher and Judd 2014). Planters utilizing enslaved labor learned to siphon this layer of fresh water into their fields through a series of canals and trunk lines. The Santee Delta was the ideal setting for tidal rice production in the Lowcountry. Remnant rice fields, which demonstrate the breadth and depth of historical rice production in the Delta, can still be seen today (Figure 13).

Soils

Soils in the Lowcountry are well suited for agriculture and the mild climate supports a growing season of 240 to 290 days per year. Annual rainfall in the region averages approximately 50 inches (Edgar 1998:5; Kovacik and Winberry 1987:31). The sub-tropical climate, long growing season, abundant rains, and natural coastal swamps made the Lowcountry one of the best places in the world to grow rice on a large scale. Soils in the Coastal Zone consist of remnant sands and loamy material left from the retreat of the ocean during the Pleistocene.
Figure 13. Aerial image of the Santee Delta showing remnant rice fields. The western red line indicates the modern salt line and the southeastern red line represents the historical salt line. The red dots are the locations of the Santee River study subjects (aerial imagery courtesy of ESRI 2019).
These soils are ideal for truck farming, small scale row crop production, and rice production; however, because the Coastal Zone is flat, it is poorly drained and water must be managed to effectively harvest cultigens (Kovacik and Winberry 1987).

Coastal Zone vegetation varies and can be categorized by four zones, from inland to the shore, as fresh marshes, maritime forests, salt marshes, and sand dunes. Fresh marshes are protected from saltwater by beach ridges and do not contain any trees or bushes. Cattail (Typha sp.), Bulrush (Scirpus validus), and various species of black rushes (Juncus sp.) are typically present in fresh marshes. Maritime forests are located along old beach ridges and separate fresh marshes from salt marshes. Trees and shrubs are dominant on these ridges and include live oak (Q. virginiana), palmetto (Sabal minor), wax myrtle (Myrica cerifera), slash pine (Pinus elliotti), holly (Ilex opaca), sweetbay magnolia (Magnolia virginiana), and wild olive (Osmanthus americana). Salt marshes are located closer to the ocean and are usually inundated at high tide. Cordgrasses (Spartina sp.) and black rushes (Juncus sp.) dominate the vegetation assemblage with smaller quantities of glasswort (Salicornia virginica), and sea oxeye (Borrichia frutescens). Sand dunes are also part of the Coastal Zone and form a natural protective barrier to the coast line. The fore dune, that closest to the ocean, is dominated by sea oats (Uniola paniculata) with smaller quantities of marsh elder (Iva imbricata), sandspurs (Cenchrus tribuloides) and pennywort (Hydrocotyle bonariensis). The protected areas behind the dunes usually contain yaupon holly (Ilex vomitoria), wax myrtle (Myrica cerifera), Spanish bayonet (Yucca aloifolia), and live oak (Q. virginiana) (Kovacik and Winberry 1987:45-47).

Soils along the Ashley River have been significantly impacted by phosphate mining in the latter part of the 19th century. As a result, at least 4,200 acres of plantation lands have been strip mined in the area of the study plantations presented in this document. Evidence of this strip
mining is present on modern topographic maps and these areas stand out in sharp relief in LiDAR imagery (Appendix B). What remains of natural soils are predominantly fine loamy sands along the uplands, represented by over 20 soil units. Of these, the most dominant are the Mouzon, Capers, Coosaw, Seabrook, and Charleston series. These are all fine sandy loams to loamy fine sands, which are typically found in marine terraces. They are moderately well drained. Meggett series loams and clay loams are also in the low-lying areas. These soils are characterized as poorly drained (USDA 2019). The Meggett series historically supported inland rice cultivation along the Ashley River (Smith 2012).

Soils along the North and South Santee River are a range of series. Silty clay loams of the Bohickett-Levy-Chastain series, which are located in between the river branches and along their edges, predominate. This type of soil association dominates flood plains in this region and is characterized by poorly drained silty clay loam soils. Abandoned delta rice fields are associated with these soils. Also of note along the Santee River are Cainhoy fine sands, which are present on marine terraces and composed of sandy marine deposits. The remaining soils range from loams to fine sandy loams of over twenty different smaller units (USDA 2019).

Hydrology and soils played an important part in rice culture landscapes of the Lowcountry colonial era. Since the Ashley River and the Santee River originate from different regions, their flood plains and estuaries are quite different. Their soils are similar yet distributed differently because of their hydrologic differences. Though they both flow into the sea, their deltas and estuaries are unique because of their distinct channel formations. Because of distinct hydrologic differences between the rivers, planters utilized landscapes in different ways for rice

9 See study subjects map of the Ashley River in Chapter 1 (Figure 3). The darker areas on the south side of Ashley River Road are phosphate strip mining pits from the 19th and early 20th century.
production. Rice production techniques also evolved over time in response to increased understanding of the environment, cultigen experimentation, and an ever increasing market demand for rice in Europe. To understand these differences, a brief history of the Lowcountry is presented in Chapter 3.

Evolution of Rice Production

The Origins of Rice

The soils in Carolina were exceptionally good for a number of cultigens. Planters at Drayton Hall and Middleton Place produced an array of crops for both plantation consumption and export including sweet and Irish potatoes, corn, rice, rye, wheat, buckwheat, peas, Dutch and French beans, lettuce, cabbage, spinach, radishes, parsley, cucumbers, tomatoes, squash, cauliflower, and asparagus (Doyle et al. 2008). However, indigo and rice were the most lucrative. Though there is little archival evidence for the exact origins of rice, and planters were not very optimistic about the results of early experiments, by 1690, it was a viable export and was used by some planters to pay their quitrent to the Lords Proprietors (Dethloff 1991; Waterhouse 2005; Porcher and Judd 2015).

There is evidence for rice being introduced to the Carolina colony around the time of its settlement from 1670 to 1680 and there are several written accounts in which rice is specifically mentioned (Dethloff 1991). Wood (1974) placed the first importation of rice at 1672. The first documented occurrence of rice is in 1685 when Dr. Woodward, a Proprietor’s Deputy at the time, took possession of a packet of rice from a ship hailing from Madagascar (Heyward 1993; Porcher and Judd 2014). The origin of the rice seed contained within the packet was unknown; however, an Asian variety of rice is known to have been cultivated on this island (Dethloff 1991; Carney 2001).
Another theory places the date of rice introduction at 1696 by inquiry of Charles Dubois, the treasurer of the East India Company, who had a bag of rice from East Asia given to Thomas Marsh, a Carolina merchant, to ship to the colony (Porcher and Judd 2014:16). The account, printed in the *Gentleman’s Magazine* in London in 1766, does not say to whom the rice was shipped, or exactly how much there was. Because it was published so long after the original transaction, there is speculation that this is not how the first rice seeds were introduced into the region (Porcher and Judd 2014:16).

There is also scholarship arguing that the first rice seed was actually imported much earlier and could have arrived with the first enslaved Africans in the 1670s. Judith Carney, in her seminal work on the origins of rice in the New World and African influences on it, has made a strong case that rice was brought over by people captured and enslaved in Africa (Carney and Porcher 1993; Carney 1996, 2001). There is evidence to suggest that early settlers experimented with different rice varieties prior to the 1670s as well (Dethloff 1991; Carney 2001). I think it is likely a combination of these factors where enslaved Africans, with rice culture knowledge, brought seeds with them; at the same time European settlers were encouraged to experiment with rice production by the Lords Proprietors. Settlers would have known at least some, if not all, of the skillset their enslaved possessed and, if those slaves knew how to cultivate rice, that knowledge would have been exploited by their enslavers. By 1690, colonists were paying quitrents in rice and this is good evidence that crops were firmly established by this date (Dethloff 1991).

There are limited first-hand accounts of the early rice grown in the Lowcountry. Of note is the journal of John Lawson and his canoe trip through the Lowcountry during which he made some pertinent observations. In 1700, he and five other Englishmen, three Indian men, and an
Indian guide with his wife travelled from Charles Towne down the Ashley, and along the seaboard to the Santee River. Here, he observed, “There are several sorts of Rice, some bearded others not, besides the red and the white; but the white Rice is best” (Lawson 1967:81). His observations provide good evidence for several varieties of rice being grown in the Lowcountry during the Proprietary period.

No doubt early planters experimented with multiple varieties in different conditions. Thomas Pinckney, writing in 1829, tells of a rice variety he experimented with around the year 1800. He stated that he had some success selling it to a merchant in Amsterdam directly, but local shippers would not take it because they did not know if it would sell on the European market (Porcher and Judd 2014). Of note, Pinckney did not expand on the type of rice or its color, just that it was a larger variety than the gold seed, which would have been Carolina Gold. Carolina Gold was introduced sometime after the American Revolution and is likely a hybrid of several different varieties.10

During the colonial period, there were only two known rice varieties in the Lowcountry; Asian rice (*Oryza sativa*) and African rice (*Oryza glaberrima*). Colonists experimented with both strains; however, Asian rice was the preferred species because it was easier to process than African rice. When it was processed, the seeds were refined and white, which appealed to the aesthetics of European consumers (Wood 1974; Carney and Porcher 1993; Carney 2001; Porcher and Judd 2014).11 African rice was likely experimented with as a possible large-scale commodity. However, because it was smaller, difficult to process, and darker in color— not the

10 Currently, the Carolina Gold Rice Foundation is working on building a comparable database of DNA rice samples so historical samples of rice can be positively identified (Glen Roberts, pers. comm., 2019).

11 *O. glaberrima* is also referred to in primary documents as red rice or bearded rice.
coveted white—it is likely that attempts to produce it commercially were abandoned early in the Proprietary period (Carney and Porcher 1993; Carney 2001).

Because an enslaved work force was used for all manner of plantation functions, they had access to all aspects of the landscape. In the course of tending livestock or timbering to clear new lands, enslaved Africans became very familiar with the natural environment as well as the modified landscape. If they had been familiar with growing rice in Africa, the wetland hydrology in these areas would have been of particular interest. Growing rice was economically and culturally important in parts of West Africa, and that culture would not have simply disappeared by forced migration to a new environment (Fields-Black 2015a). Enslaved Africans cultivated whatever crops they could to supplement rations from their enslavers and ensure they could feed themselves and their families. The plantation task system theoretically would have allowed them enough time to do so.

Though there is no primary documentary evidence of enslaved people growing rice in their gardens in the Carolina Lowcountry during the colonial era, it was observed in Virginia and other British colonies during this time period (Carney and Rosomoff 2009:150; Porcher and Judd 2014:35). Because of these observations, it seems reasonable that enslaved Africans were also growing rice in their gardens in Carolina (Carney and Rosomoff 2009). Evidence of other African native cultigens that were introduced to the southeastern part of North America, as enslaved ships traded goods at ports along the colonial seaboard, is also present in the form of first hand observers such as the naturalist Mark Catesby, who wrote of observing millet, sorghum, and yam in the context of enslaved gardens in his travels around Carolina. Additionally, Luigi Castiglioni observed okra being cultivated by enslaved people in their own gardens (Carney and Rosomoff 2009:124).
The Rice Cycle

The cycle of rice production encompassed much of the growing year in the Lowcountry because of mild winters. The rice plant life cycle ranges from 105 to 150 days, depending on the species, and growth occurs in three general stages: vegetative, reproductive, and ripening. Rice plants can either be grown from seed, or transplanted, as environmental conditions warrant. In tropical environments, such as the Lowcountry, the rice plant life cycle is typically 120 days with 60 days spent in the vegetative stage and 30 days each in the reproductive and ripening stages (Heyward 1993; www.ricepedia.org 2013; Porcher and Judd 2014). After the plants ripened they were harvested and processed, which was a labor intensive endeavor, regardless of the variety grown (Heyward 1993; Doyle et al. 2008; Smith 2012).

In the Carolina Lowcountry, rice was planted from early March to as late as the first week in June, though most planters preferred to seed in March and then plant a second crop in early June (Heyward 1993; Norris 1712:98 quoted in Porcher and Judd 2014:32-33). Exact timing was often dependent on bird migration patterns. Bobolinks, or rice birds, were attracted to the seeds during their spring migrations north, if planted too soon. Planting too late would result in bobolinks eating rice seeds on their return pattern in September (Heyward 1993; Doyle et al. 2008).12

Rice was planted by a variety of methods and evolved, becoming more efficient over time to meet market demands. Broadcast methods were utilized during the early Proprietary period; however, this method proved to be inefficient as the seeds would either be consumed by birds or washed away by the first flood of the field (Smith 2012). The broadcast method was

12 Heyward referred to bobolinks as May birds because they always flew over the fields in May. He stated that his father planted between March 10th and May 10th and then again June 1-10 (Heyward 1993).
replaced by the more efficient drop method where the enslaved laborer walked barefoot between rows, placed approximately 10 to 12 inches apart, dropping seed in holes made with their big toes (Doyle et al. 2008; Porcher and Judd 2014). The holes were sealed with the heel of the foot tamping down on the rice (Heyward 1993; Doyle et al. 2008; Smith 2012). This method is identical to African methods of rice planting (Porcher and Carney 1993; Carney 2001, 2013).

Trenching replaced this traditional method as hoes became more widely utilized. An open trench was cut by one person and seeders followed along behind dropping seed into the open trench. Another person came behind the seeder and tamped dirt over the trench, either with a hoe or a wooden bat. It took approximately 2.25 bushels of rice to seed 1 acre of tidal rice (Heyward 1993).

During the growth period, water flow and control were critical. Slaves controlled the water flow into the fields by raising and lowering the trunk gates. The first flood after planting was called the Sprout Flow. During this time, the field was kept underwater for three to six days to allow the rice seed time to sprout and to kill the weeds in the fields. The weather dictated how long the water stayed on the fields. Every morning a field hand was sent to check the plants. At first sprout, called a pip, the fields were drained and kept dry so the plants could take root. When the new pips were visible at 50 yards away, the field was flooded again. This flood was called Stretch Flow and it covered the plants again to allow them to grow. The other submerged weeds and grasses died off and harmful insects drowned, but rice continued to grow under water. After three to six days, when the plants at the higher end of the fields were approximately 2 inches long, the field was partially drained. The fields were allowed to sit this way for a week and gradually drained over a period of ten days. The fields were then dried and the rice plants were
allowed a period of dry growth for approximately 40 days (Heyward 1993; Doyle et al. 2008, Porcher and Judd 2014).

The fields were then marked off in half-acre sections to provide tasks for the enslaved. A half-acre of hoeing was a typical task and the field was hoed twice to aerate the soil and remove weeds during this 40-day time period. The final flooding was called the Harvest Flow or Long Flow, when water was gradually re-introduced into the field as the plants approached the tassel stage. As rice stalks grow, they become top-heavy with seed. Gradually flooding the fields provided support for the stalks and also supported them during heavy winds. The fields were again drained as the tassels matured so they could be sufficiently dry for the enslaved work force to harvest (Heyward 1993; Doyle et al. 2008, Porcher and Judd 2014).

Rice was harvested from September to November. To harvest, the stalks were cut down at ground level with a rice hook or scythe and left in the field on the stubble to dry. Enslaved workers gathered the dried stalks into bundles and loaded them either onto carts or flat boats to take to processing areas. Separating the rice from the stalk was manually performed using flails. The rice was then separated from the chaff using a large winnowing basket. The rice was tossed into the air with the winnowing basket and the wind blew away the chaff. This work was usually performed by enslaved women at a winnowing barn, which was a large, square, wooden structure raised 12 to 15 feet in the air on stilts with a large central opening in the floor. The winnower would fan the rice with the basket over the hole in the barn floor and the breeze would

13 The task system was a specific model of labor organization developed during the early settlement period of rice experimentation in the South Carolina Lowcountry. A task was assigned to each enslaved laborer with the intent that, once the task was completed for the day, that person was free to do whatever they wished. Enslaved Africans often spent their “free time” supplementing food resources, which were frequently inadequate. By the colonial period, tidal rice field tasks for typical male field laborers were set at ¼ acre per task (weeding, harvesting, etc); however, tasks varied by age and gender as well (Wood 1974; Morgan 1998; Porcher and Judd 2014:37).
take the chaff. Any rice flipped out of the basket could be gathered on a drop cloth below
(Heyward 1993; Doyle et al. 2008; Porcher and Judd 2014).

The rice could be sold with the husks still on, called rough rice; however, to be edible the husk had to be removed. This was done with a large wooden mortar and pestle; the rice was pounded until the husks were removed. The resulting product was brown rice and could also be sold in that state. However, overseas demand was for white rice. Most rice in the Lowcountry was grown and harvested for export so the bran covering the white rice grain had to be removed before it could be barreled and shipped. This step also required the mortar and pestle pounding process and then the grains were again fanned with the winnow basket to remove the bran from the rice. Whole white rice was shipped in barrels, which were made by enslaved coopers on the plantation. The barrels were loaded onto sloops or schooners where they could be transported to the nearest port for shipment overseas (Heyward 1993; Doyle et al. 2008, Porcher and Judd 2014). The nearest port to the Ashley River was Charleston. Plantations on the Santee River shipped to both Georgetown and Charleston.

During the harvest and processing period, enslaved laborers were more apt to run away from plantations, and accidents involving fire in storage facilities containing rice seeds occurred more frequently during this time period (Wood 1974; Morgan 1998; Carney 2001). To minimize these acts of resistance, as well as to maximize profits and production, planters began experimenting early in the 18th century with technological innovations. These ranged from improved methods of cultivation, rice field infrastructure such as improved trunk systems for water delivery, different types of sluice gates, and later in the 18th century, advancements were made in mechanized processing systems (Porcher and Judd 2014). Though many patents were given for technological innovations, not many were widely employed because none of these
could profitably replace the labor of enslaved Africans and the steady supply of forced labor through the transatlantic slave trade (Wood 1974; Morgan 1998). The notable exceptions to this reluctance to improve technologies were a water-powered rice mill invented by Jonathon Lucas in 1793 and the invention of the steam engine, which replaced water power in rice mills later in the antebellum period (Porcher and Judd 2014).

When rice was not being grown, fields were prepped. New fields were laid out in January and February and the stubble of rice plants left from the harvest was burned (Smith 2012; Porcher and Judd 2014). Rice cultivation was labor intensive and there was no break from the fields. The work was constant regardless of the season.

During the first years of settlement in the Carolinas, rice was produced in natural low-lying wetland areas, as part of a group of experimental crops. This early method, termed Upland or Providence rice culture, relied on rain fall and on these small low-lying areas with non-porous soils for good water retention, to grow the first seeds (Porcher and Judd 2014). As noted historians Peter Wood (1974), Max Edelson (2006), Hayden Smith (2012), Richard Porcher (2014), and, as well as cultural geographer Judith Carney (1996, 2001, 2013) have pointed out, though no primary sources exist, which expound on the nature and production of the early methods of cultivating rice, there are a multitude of factors to indicate enslaved labor brought the method of production to the New World and, in addition to using the knowledge in their enslaver’s fields, they also used it to supplement inadequate food supplies. A global perspective on rice culture lends much credence to this argument, as discussed in the following section (Carney and Rosomoff 2009; Carney 2013; Fields-Black 2015a, 2015b).
African and Carolina Rice Production Methods

During the colonial era, rice growing areas in Africa were well known. Portuguese sailors, arriving in West Africa during the fifteenth century, documented rice cultivation in large area between Sierra Leone and The Gambia (Figure 14). Evidence for rice cultivation dates back at least 3,000 years in these areas (Carney 2001, 2013). *Oryza glaberrima* was originally domesticated in West Africa at the delta of the Niger River; the Portuguese introduced *Oryza sativa*, which is an Asian strain, upon their arrival or by subsequent trade routes across the Sahara (Carney and Porcher 1993:129). Both of these strains grow in environments similar to those in the Carolina Lowcountry. When the first slave ships approached West Africa, rice culture was already mature in these areas. Africans cultivating rice along major river systems did so in a variety of micro-environments based primarily on the amount of rainfall. They cultivated rice plants to adapt to water availability and were able to produce rice in mangroves, flood plains, lacustrine basins, low-lying depressions, upland forested areas, and savannas (Carney and Porcher 1993). Thus, their agricultural practices evolved over time and they were able to extend the growing season and ensure a secure source of subsistence. These African agricultural practices are still in use today in both Africa and South Carolina, though rice is no longer produced in the South Carolina Lowcountry in quantities for global distribution.

There are three major types of water systems employed by African rice farmers, both historically and today, which correspond to historical rice production in the Carolina Lowcountry. These are Pluvial, which corresponds to Upland rice; Phreatic, which corresponds to Inland or spring fed rice; and fluxial, which corresponds to tidal rice. Pluvial systems rely only on rainfall whereas phreatic systems draw supplemental water from moisture retentive soils, natural springs, perched water tables, or catchment water runoff. Fluxial systems
Figure 14. The west coast of Africa, showing modern countries where rice was historically grown (Carney and Porcher 1993:130; map by Michael Angst).
rely on irrigation from tidal flow along flood plains, within mangrove swamps, and estuaries. These types of systems can be used in lowland swamps, with the exception of Pluvial systems, which must be cultivated in upland areas (Carney and Porcher 1993; Porcher and Judd 2014).

Inland Rice in the Carolina Lowcountry

Depending on the source, inland rice has been characterized as upland rice, providence rice, and reservoir rice (Porcher and Judd 2014). The terms are used to characterize different methods of inland rice production. For ease of identification, I will refer to these types of rice cultivation collectively as inland rice because the method of production relied on areas farther away from primary rivers with saline tidal flow and did not employ the tides for fresh water irrigation, unlike tidal rice. Cultivators employed several different methods that evolved over time. Pluvial or upland rice cultivation did occur early in the settlement of the Carolina colony; however, in the Lowcountry, this method was abandoned early during the experimentation period. Upland rice cultivation was difficult to manage as it relied more heavily on natural rainfall. Cultivators began experimenting with different micro-environments and ways to deal with the challenge of finding a controllable, constant water source to supply their fields (Heyward 1993; Doyle et al. 2008; Porcher and Judd 2014).

Colonists likely switched methods of production based on choices made by the enslaved in planting in low-lying areas, which were thought of by Europeans as unhealthy or unsuitable for growing crops. Unlike Europeans, enslaved Africans, particularly those captured from West African regions where rice was grown for subsistence, had some familiarity with this type of environment and cultivated rice and other crops in areas seen as unfit by their European enslavers (Wood 1974; Littlefield 1991; Edelson 2006; Carney and Rosomoff 2009; Smith 2012). Colonists quickly realized the productivity of these areas for agricultural pursuits after
observing their slaves utilize them with success. As a result, by the turn of the 18th century, these landscapes were being manipulated for the pursuit of white European economic prosperity.

By manipulating the landscape, colonists controlled the environment and brought order to wilder landscapes that did not fit the European ideal of genteel society. They ordered their slaves to clear land, channel water and create reservoirs for the production of an economic commodity that would bring prosperity for themselves and the future generations of their families (Greene, 1992; Edelson 2006; Smith 2012). In this sense, the plantation was “an economic institution whose primary purpose was to increase the planter’s wealth” (Orser 1988:739). Thus, plantations were the beginning of capitalism in the British North American colonies.

The primary challenge that colonists constantly faced during the early years of inland rice production was hydrologic in nature. To successfully produce rice using inland methods, a consistent and reliable water source was needed, in addition to a soil base that would retain moisture. In areas where inland rice was predominantly produced, those soils are part of the Meggett series, which is a mixture of sand, silt, and clay. They are characterized as poorly drained, meaning they retain water. Because of the clay content, these soils were also good for construction of canals, reservoir basins, and berms or banks, which were needed to capture and control water flow. Colonists had to rely on water to flow from higher elevations to flood their fields. In the Lowcountry, higher elevations may only be 1 to 3 feet. Low-lying depressions, drainages, and natural springs made good inland fields and early cultivators adapted the landscape to grow rice for profit in these areas.

The topography and soil types played a very important role in the placement of reservoirs, canals and fields. Cultivators had to read the landscape and observe both of these carefully to strategically place their infrastructure. Planters and enslaved Africans learned early
that all water flowed in the Lowcountry from the uplands to the rivers and into the sea (Heyward 1993; Smith 2012). They used that knowledge to understand where to place dams, berms, and canals to get enough flow to adequately irrigate the fields.

Plants and trees served as signals to the types of soils present; for example, longleaf pine and oak grow well in sandy well-drained soils, while cypress and tupelo can be found in poorly drained swamps. First-hand observations also give an indication of how cultivators were choosing their locations and which guiding natural features they were relying upon. In 1761, South Carolina Governor James Glen wrote, “the best land for rice is wet, deep, miry soil, such as is to generally be found in Cypress Swamps; or a black greasy Mould with a clay foundation; but the very best lands may be meliorated by laying them under water at proper Seasons” (Glen 1951:26).

Inland rice fields were generally small and contained within the wetland topography. There is no standard size for them and they generally follow the terrain of smaller tributary flood plains near larger river systems. The inland rice fields of Middleton Place shown in Figure 15, just southeast of the enslaved settlement of Jerry Hill, range in size from 10 to 30 acres, whereas those in Horse Savannah attached to the Public Canal were much bigger, ranging in size from 28 to 94 acres. The difference in size is likely due to the differences in reliable water sources. Horse Savannah fields were connected to a public water source while those fields in proximity to Jerry Hill were not.

A large amount of labor went into preparing an inland rice field before it could be used for cultivation. The wetland area had to be cleared of dense forests. Undergrowth was burned and roots and small weeds removed by hoe to prevent competition with rice plants. Larger tupelo and cypress trees also had to be removed. These were cut down and the stumps allowed to rot in
Figure 15. Portion of the 1885 Middleton Plat overlaid on a modern topographic map, showing Horse Savannah and the locations of inland rice fields in low-lying swamps; the red circle is the location of Jerry Hill and the red dot is the Middleton Place domestic core (image courtesy of the Middleton Place Foundation, Charleston, South Carolina; map by the author).
the fields. Large trees could take 10 to 12 years to decompose. Rice was planted around them until they were completely gone. The fields also had to be leveled and water-control infrastructure built. Quarter ditches were dug for effective removal of flood waters between the fields; the fields were then connected to reservoirs by a series of trunks (Heyward 1993; Doyle et al. 2008; Porcher and Judd 2014).

Trunks were the conduit in which water flowed in, out, and between inland fields utilizing dams, berms, and reservoirs for water collection and control. They are almost always depicted on historical plats and maps and are good indicators of how fields were split, irrigated, and managed by task (Figure 16). Trunks were first constructed of cleared logs from the fields, usually cypress or palm. By the first part of the 18th century, they were constructed by the plantation carpenter as a square or rectangular box, either nailed or pegged together, with a door or gate at one end. This door is also called a sluice gate.¹⁴ The earliest type of trunk is thought to be a plug, simply a hollowed out tree trunk with a plug at one end; none have been found in archaeological contexts in the Lowcountry though Duncan Heyward references them in his discussion of field construction during the latter half of the 19th century (Heyward 1993; Porcher and Judd 2014). Similar construction methods have also been found in African contexts (Carney 1993).

Three of the most common types of trunks used in conjunction with inland rice were the lift gate, swing gate, and lever gate. These all describe how the gate functioned as water flowed and could be locked in place as needed. The swing gate may have been a later innovation to

¹⁴ The entire mechanism is also referred to as a trunk or sluice.
Figure 16. Detail of the 1873 U.S. Coast Survey map showing the Santee River delta with canals and field divisions evident. The red dot to the southwest is Peachtree and the northern dot is the modern Rochelle house location. The red line in the southeastern corner is the historical salt line (image courtesy of the University of Alabama Cartography Lab; overlay map by the author).
reduce the labor involved in continuously having a slave lift the gate at the tides. The swing gate opened and closed automatically according to the tides. It could also serve as a check valve during storms. If a secondary trunk with a swing gate was placed at a higher elevation than the tide trunk, should a storm flood the field when the tide trunk was closed, the swing gate in the higher trunk would automatically release the excess water back into the river, preventing a break in the banks or catastrophic field flooding (Porcher and Judd 2014).

Documented historical remnants of trunks and sluice gates are rare, likely because of poor preservation of wood in salty Lowcountry soils as well as the need to actually recover a trunk. They were either replaced as needed or left in situ as the fields were abandoned. As a result, there is little documentation of them in archaeological contexts. However, there are a few instances where documentation has occurred (Lewis 1978; Porcher and Judd 2014). These include the remnants of a lift gate trunk found in situ at Drayton Hall, in association with inland rice fields. The trunk was constructed of cypress boards and nailed together. A similar style was identified in proximity to Caw Caw County Park in Ravenel, South Carolina. The trunks are similar in form and perform the same function but were constructed differently. Another similar form was found near the Combahee River but constructed of cypress with mortise and tenon joints. It is likely these gates were made to the preference of the builder; when they found something that worked well, they continued to use the design until a better design was found (Lewis 1978; Porcher and Judd 2014).15

As infrastructure related to water control evolved, so too did inland rice culture. All of these innovations were in direct response to a growing market demand for rice in Europe and

15 For a comprehensive discussion on the different styles of trunk gates, as well as measurements and construction details, see Porcher and Judd 2014.
England. Over time fields were added and expanded. As soils began to stress from repeated cultivation, they were left to fallow for cattle grazing and newer fields utilized technological innovation as designs were improved. Conversion of saline marshes to viable rice fields was one such innovation. With proper placement of a system of embankments and sluice gates, near the confluence of a freshwater stream into a salt marsh, a desalinization process could take place. The freshwater stream was harnessed by placing a lower embankment near the salt or brackish water to permanently block it from flushing the field at high tide. At low tide, the sluice gate was opened to allow the freshwater stream to flow through the field and rinse the salts away (Porcher and Judd 2014). Similar systems were employed in Africa, though rainfall was a larger factor in areas where this technique was practiced. In Carolina, the technique did not depend on rainwater but on freshwater streams and reservoirs (Carney 1996).

Reservoir systems were also utilized throughout the 18th century and the advent of tidal rice. Reservoirs were constructed on high ground by a series of berms. The reservoir collected rain water and was connected to the fields by a series of canals and sluice gate systems, which allowed the water to flow by gravity to the fields. Excess water flowed out of the fields on their lower ends through a drainage canal and sluice gate, usually back into a nearby creek or stream. These types of systems were generally located on the edges of rain-fed farming lands near tidal rice zones and could also be used as a backup system during times when the river system was too salty to utilize for fresh water (Hilliard 1978; Carney 1996). This system operates much like reservoir systems in West Africa, which are constructed by a similar method and also use gravity to guide water to fields on the edges of tidal swamps (Carney and Porcher 1993; Carney 1996).
Tidal Rice in the Carolina Lowcountry

In response to European market demands, colonists continued searching for new ways to improve crop yields and strive for more efficiency. As early as 1737, a new method of rice production was introduced in the Lowcountry, which utilized tidal swamps and tidal flows for irrigation. This method was very similar to mangrove and tidal rice methods also employed in West Africa (Clifton 1981; Dethloff 1982; Carney and Porcher 1993; Smith 2012; Porcher and Judd 2014). This method harnessed the power of the ocean and the push of freshwater rivers to irrigate rice fields. Because the tide flows at regular intervals, a valuable push of fresh water could be funneled into rice fields through a series of trunk lines and sluice gates. With minimal supervision, fields could be flooded and kept relatively free of debris and weeds with minimal labor needed. The regular interval of water ensured the fields would stay wet during critical growing periods or could be drained in preparation for harvest (Carney 2001; Carney and Porcher 1993; Porcher and Judd 2014). Tidal rice plantations were generally larger than those that practiced inland rice, sometimes by thousands of acres. Peachtree was over 2,000 acres and The Marsh was a land grant of 4,500 acres, but in actuality was likely closer to 5,500 acres. Many tidal rice plantations were devoted primarily to the production of rice with minimal upland acreage for cultivating other crops for commercial purposes as were inland rice plantations (Clifton 1981). The Draytons grew a variety of crops, as did the Izards at Cedar Grove, while Peachtree is known only for rice and indigo. There is no evidence to indicate Waterhorn grew crops other than rice for commercial production.

16 There is no definitive date for the introduction of tidal rice into the Carolina Colony. The date of 1737 comes from a newspaper advertisement by Landgrave Smith in the Carolina Gazette. In it he offered land for sale on the Black River near Georgetown “part of which is good rice swamp that the spring tide flows on” (quoted in Clifton 1981).
Early tidal rice cultivation required a large labor force to clear huge swaths of cypress and tupelo swamp. However, the tidal rice method held the distinct advantage of producing higher quality rice and larger yields with a smaller labor force, after the new fields had been cleared. Therefore, the return on investment was much more profitable than inland rice techniques. Cedar Grove offers a unique example of how this transition may have looked on the landscape. The 1820 plat shows where older rice fields, located inland from the river, may have been abandoned in favor of those more productive on the river itself (Figure 17).

Clearing was an odious process. The ground within tidal marshes is thick with dead or dying organic matter and highly unstable. Patches of briars are in random areas throughout tidal marshes and poisonous snakes and predators abound. The summer months in the Lowcountry are oppressively warm and humid and mosquitoes are sometimes thicker than the air. Clearing efforts in this environment would have been tedious and unhealthy, yet enslaved Africans were forced to clear these lands with oxen, hoes, and hand-made axes at considerable cost to human life.

Planters found the end result was lucrative enough to make the considerable effort worth it. When clearing was complete, tidal rice fields yielded twice as much rice per acre as inland rice fields and the labor of one enslaved person produced as much as six times more rice by the tidal method (Carney 2001; Porcher and Judd 2014). By using the tidal flows, which occurred at regular intervals, the fields could be flooded and drained as necessary to create the ideal environment for rice plant growth with minimal hoeing and weeding by human laborers (Porcher and Judd 2014).
Figure 17. Detail of 1820 Cedar Grove Plat showing the location of abandoned rice fields located on inland creeks in relation to those in production at the edge of the Ashley River (Image courtesy of the South Carolina Historical Society).
Most tidal rice plantations were laid out in a similar fashion, though a few differences did exist based on topography, local hydrology, and available resources. Most planters hired out to have fields and canal infrastructure laid in by either an experienced planter, overseer, or engineer (Porcher and Judd 2014). Some planters owned enslaved Africans who knew how to lay out tidal fields as well. Outer field boundaries trended from higher land inland through the river swamp directly to the river and then back through the swamp to the high lands. This outer boundary formed a rough square or rectangle. The inner and outer perimeter of the permanent bank, or rice dike, were then established where the outer perimeter followed the survey boundary through the swamp and highlands; however, it was offset by 50 to 80 feet at the river’s edge. A perimeter was then cleared on the outer bank toward the inner margin line to prevent large trees from possibly damaging the dike. The large trees from the outer margin were moved toward the inner stands of trees. The ditch next to the proposed bank was dug out in at a later time. The outer bank was then constructed with its base precisely 12 feet wide. A temporary ditch was constructed 3 feet wide and 3 feet deep at the center of the outer bank base and dirt removed from the ditch was packed at its outer edge to form a temporary bank that kept river water out during construction. As the temporary ditch was constructed, any trunks or other debris were removed from what would become the permanent outer bank. Trunks were then placed at appropriate locations along the temporary bank. These both drained the work site during rains and then were repurposed during construction of the permanent bank (Heyward 1993; Porcher and Judd 2014).

After the temporary bank and ditch were complete, any creeks or small drainages were banked to the same height as the temporary bank. A parallel line was then staked off 15 feet from the inner perimeter of the proposed permanent bank and the main ditch was dug along its inner margin. The ditch was constructed 8 feet wide and 5 feet deep. The dirt removed from the
permanent ditch was used to fill in the temporary ditch and build the permanent outer bank. This permanent bank was constructed 2 feet higher than the highest spring tide. Only after a good solid bank was constructed could clearing begin. This activity was conducted the same as inland clearing of low-lying depressions and swamps, with a combination of hoes, axes, and burning (Heyward 1993; Porcher and Judd 2014).

Once the clearing was complete, the larger fields were divided into smaller sections of 20 acres. These were separated by check banks, which were meant to keep the fields evenly flooded. Each field was stepped along the slope from the high lands to the river; the banks ensured uniform coverage so plants would grow at the same rate and could be harvested at the same time (Heyward 1993).

Trunks made by enslaved carpenters were then installed in the banks surrounding each field. The task was time intensive, requiring precision and skill as tidal trunks were constructed at higher elevations to keep out the tide flow. This meant each step of the process had to be performed in tandem with the ebb and flow of the tides. Once these were constructed, a series of quarter drains was placed every quarter acre throughout the field, which emptied into the main ditch. Each field was flooded and drained by its own tide trunk and ditches were dug to the back fields that could not be flooded from the river (Hilliard 1981; Carney and Porcher 1993; Carney 1996; Porcher and Judd 2014).

Methods of Rice Production on Study Subject Plantations

Though most river systems eventually adopted tidal rice, not all plantations could do so, depending on their proximity to river deltas and the natural strength of the tidal flow along particular river systems (Porcher and Judd 2014). Water quality also impacted tidal rice, as rivers
with high salt lines, brackish waters or a high marl content could not utilize this system to the same extent as other river systems that contained lower contents of marl and salt lines toward their deltas. On the Ashley River, inland rice cultivation was practiced on all of the plantations upriver of Magnolia Plantation because the water was too brackish below the salt line (Figure 18). Drayton Hall would not have been able to produce tidal rice because it sits down river of the salt line. Middleton Place is 4.5 miles above the salt line and Henry Middleton purchased the marsh lands on both sides of the river for tidal rice cultivation. Rice was also being produced on the south side of Ashley River Road in Horse Savannah, utilizing a system of inland reservoirs (Doyle et al. 2008). Cedar Grove was also in tidal rice production (Figure 17). However, because of a lack of freshwater flow and tidal push, as well as non-alluvial flood plains that did not allow for large tidal rice fields, the Ashley River plantations reviewed here did not produce tidal rice to the extent of those on the Santee River.

On the Santee River, tidal marshes were utilized to cultivate rice, almost exclusively. Waterhorn practiced tidal rice on the point around Wambaw and the South Santee Creek early in the Proprietary period and then expanded to tidal rice fields in the 18th century after the second tract was purchased in between the two branches of the Santee. LiDAR imagery shows Peachtree likely had a reservoir system in place on the mainland in addition to its extensive rice fields in the middle of the delta (Appendix B). The Marsh appears to have been exclusively cultivating tidal rice, based on historical plats and maps available for review. LiDAR imagery for this area of the Santee Delta is not as fine-grained as others and was inconclusive.
Figure 18. Ashley River corridor with overlay of historic plantation boundaries, showing the location of the salt line (in green) in relation to Drayton Hall, Middleton Place, and Cedar Grove, which are depicted by red dots (Overlay courtesy of Historic Charleston Foundation and Brockington and Associates; map by the author).
Enslaved Population

The first settlers arrived with slaves at Albemarle Point in 1670 and, from the time of the Carolina colony’s charter, it was understood that slavery would be tolerated and accepted in South Carolina. However, it is important to note that South Carolina began as a colony with slaves and was not a slave society (Berlin 2000) until after rice proved to be a viable staple and production crop. A slave society exists where the economics of the society are predominantly focused on enslaved labor; this turning point was achieved in South Carolina after rice became a stable cash crop at the turn of the 18th century (Pyszka 2012:125; Berlin 2000:64). Planters argued that slavery was the only way they could profit in the Lowcountry and most insisted that enslaved Africans were better suited for the climate and work than white Europeans (Wood 1974). Though colonial planter reasoning is seated in racism and ethnocentrism, they were also observing that many Europeans succumbed to fevers every year while their enslaved counterparts seemed to be immune to them. There is sound science underlying the claim that Africans were better suited to the climate. Carriers of sickle cell anemia, which is prominent in western and central African populations, have greater resistance to malaria than those who do not carry the allele. Malaria is spread to humans through contact with an infected mosquito and the effects are fever, chills, nausea, vomiting, and death. Malaria is common in areas with great quantities of anopheles mosquitoes, such as the Lowcountry, and enslaved Africans may have had a greater immunity to the disease than Europeans because of their genetic predisposition to sickle cell anemia (Jurmain et al. 2017:90).

Economically, chattel slavery was less expensive when compared to indentured servitude. Gray and Wood estimate the annual cost for a male slave in 1740s Georgia would have been £3.46 sterling as compared to a white male servant, which was estimated at £9 sterling (Gray and
Wood 1976:359; Coclanis 1989:110). According to planter accounts, enslaved Africans worked harder than the average indentured servant and adapted to the environment much more easily (Edgar 1998). Indentured servants were often not used to a sub-tropical climate and were frequently either newly released from prison or escaping jail, which meant they were not used to manual labor in a warmer climate than England (Wood 1974; Coclanis 1989; Morgan 1989). Barbadian planters re-settling in the Carolina colony quickly learned that, unlike the West Indies where the life expectancy of an enslaved person was five to seven years, it was more cost effective to treat them better in hopes that they would survive and procreate (Edgar 1998:80; Morgan 1998). Barbadians worked their slaves to death in order to turn a profit in the sugar industry; in contrast, by the 18th century, South Carolinians saw their enslaved as an economic investment. Population statistics for the state reflect this progression (Table 1 and Table 2).

Table 1. Number of Africans forced to immigrate by decade during the 18th century (Morgan 1998:59).

<table>
<thead>
<tr>
<th>Decade</th>
<th>1700s</th>
<th>1710s</th>
<th>1720s</th>
<th>1730s</th>
<th>1740s</th>
<th>1750s</th>
<th>1760s</th>
<th>1770s</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of African Immigrants</td>
<td>3,000</td>
<td>6,000</td>
<td>11,600</td>
<td>21,150</td>
<td>1,950</td>
<td>16,500</td>
<td>21,850</td>
<td>18,850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>1680</th>
<th>1708</th>
<th>1720</th>
<th>1740</th>
<th>1761</th>
<th>1769</th>
<th>1775</th>
</tr>
</thead>
<tbody>
<tr>
<td>African</td>
<td>200</td>
<td>4,100</td>
<td>11,800</td>
<td>39,000</td>
<td>57,000</td>
<td>80,000</td>
<td>104,000</td>
</tr>
<tr>
<td>%</td>
<td>16.6</td>
<td>50.1</td>
<td>64.5</td>
<td>66.1</td>
<td>65.5</td>
<td>64</td>
<td>59.8</td>
</tr>
<tr>
<td>European</td>
<td>1,000</td>
<td>4,080</td>
<td>6,500</td>
<td>20,000</td>
<td>30,000</td>
<td>45,000</td>
<td>70,000</td>
</tr>
<tr>
<td>%</td>
<td>83.4</td>
<td>49.9</td>
<td>35.5</td>
<td>33.9</td>
<td>34.5</td>
<td>36</td>
<td>40.2</td>
</tr>
<tr>
<td>Total Population</td>
<td>1,200</td>
<td>8,180</td>
<td>18,300</td>
<td>59,000</td>
<td>87,000</td>
<td>125,000</td>
<td>174,000</td>
</tr>
</tbody>
</table>
By the time of the American Revolution, over three quarters of the enslaved work force were born in South Carolina. This is not to make light of the continued forced enslavement and immigration of Africans, as the statistics also reflect the colony’s voracious appetite for chattel slavery (Table 1).

In the early years of settlement, most enslaved had some agency over their labor. As the Carolina colony struggled to find a foothold within the larger Atlantic economy, there were multiple sources of labor and white indentured servants, as well as settlers, often worked alongside enslaved Africans and Native Americans. Africans were regarded for their knowledge of cattle and cultigens, notably rice. Henry Laurens, a Charleston merchant, planter, and slave trader, noted repeatedly in his letters and journals that people from West African regions were often requested by planters. He noted specifically that “slaves from the River Gambia are preferr’d to all others with us save the Gold Coast” (Henry Laurens to Richard Oswald, May 17, 1756 in Laurens 1968). The Gambia River was well known for rice cultivation and it is likely that slaves were being captured in regions known to the English for rice production specifically for their knowledge and skillset in cultivating this plant (Wood 1974; Littlefield 1991:103; Carney 2001).

As rice developed into a wealth-building crop, the plantation system became a way of life and the Lowcountry became a true slave society. By 1750, South Carolina was the wealthiest colony in British North America. In response to the economy, the enslaved population also increased exponentially. Though they represented wealth, and their labor was a necessity to plantation economics, the large numbers of enslaved made European colonists in the Lowcountry paranoid and uncomfortable. White South Carolinians increasingly sought to control the enslaved by defining their social, economic, and physical place in the world (Wood 1974:272;
Morgan 1989). The enslaved frequently resisted this increased control by running away. Newspaper advertisements through the 18th century reflect this practice with a progressively larger proportion of runaway slave advertisements appearing toward the turn of the century (Figure 19).

A number of slave rebellions, including the Stono Rebellion in 1739, further solidified this fear and relations between enslaver and enslaved became increasingly complex over the course of the 18th century. From 1721 until the Civil War, nightly patrols by militia, paid for by taxpayer dollars, were meant to control and surveil with the purpose of disrupting events organized by the enslaved and/or capturing and returning runaways to owners. This patrol speaks to the nature of what white colonists saw as an internal threat to their security. Over the course of the 18th century, these patrols were given increasing authority to question and administer punishment as they saw fit (Wood 1974:274-275; Morgan 1989). As surveillance and control increased, so did enslaved resistance.

Figure 19. Runaway slave advertisement (https://mesda.org/files/2016/12/Runaway-Ad-for-Sam-Ltbox.jpg).
This occurred on a spectrum from subversive techniques such as pretending not to understand instructions, feigning simple-mindedness, back talking and mumbling, and stealing food and small objects, to more overt techniques including running away, arson, poisoning, and murder (Wood 1974:275-280; Morgan 1989).

Life After Emancipation

After the Civil War, newly freed people in the Lowcountry struggled to gain a foothold in the stagnant economy. Those planters who were willing, and had the capital to do so, hired formerly enslaved people for a wage to perform the work that they had done in bondage. Some freedmen stayed on and others elected to move out of the Lowcountry altogether (Edgar 1998). Those that did stay also took up other kinds of work in addition to plantation labor. Some rented plots from their former owners and became tenant farmers. Others went to work at phosphate mines on the Ashley River, or as guides for hunting on both the Santee and the Ashley (Edgar 1998; Doyle et al. 2008; Beach 2014).

At Middleton Place, many formerly enslaved workers stayed on, working in the phosphate strip mines as well as tenant farming on the lands they had previously been forced to work. When the Middleton Deer Hunt was initiated in 1908, descendants of some enslaved workers owned by the Middletons became guides for the deer hunt. This tradition is part of Gullah culture; knowledge and skill are passed from father to son. The tradition was upheld through the 20th century (Lowndes 2019).

On the Santee River, formerly enslaved people also accepted work in the rice fields or rented land for tenant farming. The Lynch descendants rented Peachtree to tenant farmers in the last quarter of the 19th century. The partnership between northern industrialists and local
plantation owners also provided much-needed jobs. The hunt clubs, including Santee Gun Club and Kinloch Gun Club, also employed local groundskeepers, house keepers, cooks, and guides, many of whom were either formerly enslaved or descendants of them (Bridges and Williams 1997; Edgar 1998; Beach 2014). Today, some of their descendants are employed as groundskeepers, guides, and domestic help by modern plantation owners as well.
Chapter Three: A Brief History of the Lowcountry

This chapter traces the economic and political development of the Lowcountry region over time, with emphasis on the Ashley and Santee Rivers. South Carolina history is generally split into time periods with wars as dividing factors. The colonial era consists of the Proprietary Period, from 1651 to 1719, when the Lords Proprietors held control of the colony, and the Royal Period, after 1719 through the end of the Revolutionary War to circa 1788. The Antebellum Period spans the time frame between the end of the American Revolution and the Civil War (1788 to 1861) and the Postbellum Period consists of the Civil War itself, Reconstruction and Jim Crow eras, and the early part of the 20th century (Edgar 1998).

Economic considerations are important to the argument for intra-regional variability because the Ashley and Santee Rivers developed differently through the historical period based on the method of rice production before the Civil War, and the ability of planters to respond to changing economic conditions after the Civil War. Some political history is also woven in, as it pertains to the families connected to the study subject plantations presented in this document.

In the Beginning

First contact in South Carolina between Europeans and Native Americans occurred in 1520 when Francisco Gordillo commanded a group of Spanish explorers and surveyors along the coast. They conducted slave raids on indigenous peoples in the area of the Santee River during this time (Anderson and Logan 1981:25; Shlasko 1997:16). King Charles I claimed large swaths of land in the name of England early in the century. In 1629, he granted his attorney general, Sir Robert Heath, a proprietary charter to settle the area between 31 and 36 degrees North under the
name of Carolana. Sir Robert never set foot on North American soil and, in 1632, gave the patent to Henry Frederick Howard, Lord Maltravers.

Little progress was made to encourage settlers to immigrate to Carolana, largely due to the War of Three Kingdoms, also known as England’s Civil War, and the colony only existed on paper until March 24, 1663, when King Charles II signed the first Charter for the colony of Carolina (Edgar 1998:36). The charter granted liberal authority to eight of his strongest supporters in his restoration to the Crown after the war and Oliver Cromwell's decade-long rule of England. The Lords Proprietors ruled the Carolina colony under a modified English system in the early years of Carolina settlement, typically called the Proprietary Period.

The Lords Proprietors were aware of what they were getting into when they petitioned King Charles II for the charter. At least one of them, Lord Colleton, had previous experience in the English colony of Barbados as a royalist exile during the English Civil War years. He was familiar with the plantation system, having established himself as a planter after the Puritans took control of England. He was knowledgeable in the sugar industry, the primary export of Barbadian planters, and very familiar with the enslaved labor system used to grow and process sugar (Wood 1974:15; Edgar 1998:38). The Barbados plantation system became the model for South Carolina and much of the Lower South. These connections are also important to the development of the Ashley River because Barbadian planters established a foothold at its headwaters, near Goose Creek.

By 1670, the year Charles Towne in Carolina was founded, Barbados was the wealthiest and most densely populated of all the English colonies, with approximately 20,000 white colonists, and 30,000 African enslaved laborers. It was this population pressure, combined with constant outbreaks of disease, a very coarse society, and the end of conflict in England, that prompted
some wealthy planters, their younger sons, or those living in exile from Puritan rule in England such as Lord Colleton, to seek additional avenues of revenue in the colonies or return home to a healthier England (Dunn 1973:76-77; Greene 1987:195).\footnote{17 Barbados was a lawless, overpopulated island during this time. There was barely any civil order, as the English aristocracy were used to, and the island was not really a place where most would want to raise a family. Most planters were absentee owners who spent very little time at their plantations, preferring instead to leave the supervision of day-to-day tasks in the hands of a paid overseer (Dunn 1973; Wood 1974; Edgar 1998).}

The Beginning of the Carolina Colony - Early Settlement 1670-1710

After the restoration of King Charles II in 1660, Lord Colleton returned to England where he received a knighthood and an appointment to the Council of Foreign Plantations. His primary goal was to seek reward for his loyalty to the King. His idea was to charter a colony between Virginia and Spanish Florida. On the council, he worked with Sir William Berkeley, governor of Virginia; Lord Anthony Ashley Cooper, chancellor of the Exchequer; Sir George Carteret, vice chamberlain of the household and treasurer of the navy; and Edward Hyde, earl of Clarendon, who was the king’s first minister (Edgar 1998:39). It did not hurt that Lord Colleton’s cousin was George Monck, the duke of Albermarle. All of these men came together, along with John Berkeley, the Baron of Stratton, and William Craven, the Baron of Craven, to assist Lord Colleton in his plan to charter the Carolina colony. Like Colleton, all of them were seeking compensation for their loyalty to the King. King Charles granted the charter in 1663 and made the eight nobles, “true and absolute lords and proprietors” of the colony of Carolina (Waterhouse 2005:19).

In the charter, the King granted the Lords Proprietors a number of executive powers. These included the ability to make war and peace, raise an army and maintain it, create towns and ports of entry, collect taxes from settlers and duties on imported goods, levy the death penalty, and
grant pardons. Additionally, they were given control over mineral rights, the Indian trade, and fishing rights (Edgar 1998:39). With all of this control over the colony, the Lords Proprietors were expecting to make a large profit and any costs they incurred would be covered by colonial revenues. The Lords Proprietors invested in provisioning three immigrant ships; they were particularly interested in Barbadians but were hoping for emigrants from England as well (Edgar 1998:41; Waterhouse 2005:21).

Approximately 130 settlers arrived on the Carolina and were predominantly English, though a few were from Barbados and Nevis, as the three ships sailed to the West Indies to recruit settlers before making the final journey to Carolina. The settlers were comprised of free and enslaved men, women, and children. Over the course of the next twenty years, more than half of the immigrants coming to coastal Carolina were Barbadian and, like Lord Colleton, they brought the Barbadian cultural model with them (Greene 1987:192; Edgar 1998:37; Zierden and Reitz 2016:56). Often the younger sons of wealthy planters, they came from privilege and had lived in a lawless society; they were shrewd, tough, and very driven to get what they wanted, which was material wealth. Because they were a majority for the first two decades, the Barbadians were integral in proprietary politics and other English settlers were forced to acclimate to their way of doing business or move to another colony. After 1700, the white population had become more diverse, yet the Barbadian business model persisted.

Charles Towne, originally located at Albemarle Point on the Ashley River near present day Charleston, was formally settled in 1670. The first twenty years were difficult, yet the colonists managed to survive and eventually make a profit. By 1676, after the first settlers had stabilized their food stores and were able to support themselves through the year without external help, they focused more on experimenting in cultigens and produced some viable options for mass
production and export (Waterhouse 2005:36). Experimentation had always been the plan of the Lords Proprietors, who were looking for a staple crop to provide the level of production and profit that sugar in the West Indies provided. They supplied a variety of experimental cultigens to the settlers including rice, indigo, silk, sugar, wheat, cotton, ginger, and olive trees (Wood 1974:27; Edgar 1998:131). Settlers also raised livestock and supplied the West Indies with desperately needed food. By 1731, South Carolina was shipping 1,200 barrels of pork and 2,000 barrels of beef per year (Zierden and Reitz 2016:57; Waterhouse 2005:22). Carolina proved to be rich in timber resources, notably long leaf and loblolly pine; colonists produced naval stores such as tar, turpentine, resin, and pitch. They also traded with local Native American groups, a practice that would eventually be semi-regulated by the colony.

Early Settlement along the Ashley River

The Lords Proprietors had originally envisioned settlements and towns, rather than individual farms and plantations, for defensive purposes. However, Barbadian planters were ambitious and ignored this plan in favor of large tracts of land that showed agricultural promise. The Ashley River was settled when Charles Towne was founded in 1670. From the original palisaded town, it was easy for planters to make their way along the river and find potential agricultural land. Early settlers often looked for abandoned Native American garden plots along the river systems and during the early years of settlement there was a preference for lands containing oak forest rather than pine (Kovacik and Winberry 1987; Edgar 1998). As the Lowcountry population grew in numbers, the demand for lands fronting the rivers became so high that the government placed restrictions on river front property, stating that the depth of the property was to be five times its river frontage (Kovacik and Winberry 1987:68-69). This law
made for odd shaped land grants and later parcels and is the reason why parcels along the rivers today are typically long and narrow from the river front inland (Felzer 2012:4).

Lord Ashley’s barony is located in the vicinity of the original Charles Towne settlement (Figure 20). Most colonists, as they began to venture from Charles Towne, claimed land grants toward the mouth of the Ashley River (Felzer et al. 2012:4). As Mortier’s map indicates, by 1695, there was considerable settlement along the Ashley and Cooper Rivers, as well as the Edisto, Wando, and Goose Creek (Figure 20).

Early Settlement Along the Santee River

French Huguenots were among the earlier settlers in Charles Towne. In 1680, 45 Huguenots arrived on board the French vessel the *Richmond*. They were attracted by the promise of land and religious freedom. Over the following years, more families emigrated; however, when King Louis XIV revoked the Edict of Nantes in 1685, larger numbers fled to South Carolina. The Edict of Nantes guaranteed freedom of worship and many Protestants were persecuted for their religious beliefs after the Edict was revoked. Many escaped to England and boarded vessels bound for the New World with only the clothes on their backs. Some remained in Charles Towne proper, and a few moved to the headwaters of the Ashley River, but the majority chose to move north along the Cooper River and east to the Santee River (Porcher 1887:98; Edgar 1998:50-51).

In 1687, a group of 50 French Huguenots left Charleston to scout the Santee River, in Craven County, for a suitable settlement. They left their families behind, thinking conditions would be too harsh for women and young children.

18 Charles Towne was shortened to Charleston in 1783 (Edgar 1998). For consistency, I refer to Charles Towne as Charleston through the majority of this document.
They founded Jamestown, a small outlying settlement on a high limestone bluff lying on the south side of the Santee River. The bluff afforded a good view of the river in both directions and was ideally situated as a strategic defensive location. The Jamestown settlement was known to the Lords Proprietors by this time as they had issued a warrant to Joachim Gaillard in 1687 for lands in the Jamestown Precinct (Salley 1928:216; Bates and Leland 2015:8).

By the following spring, approximately 12 families of French Huguenot settlers were acquainted with the local Sewee band of Native Americans, with whom they established trade, and had fanned out along the Santee River, finding suitable lands for plantations (Porcher 1887:105). Daniel Huger and his wife Margueritte Perdriaeu were among them and founded their
plantation, Waterhorn, during this time period (Shlasko 1997). By 1690, the Santee River population had grown to 17 families (Bates and Leland 2015:8-11).

During the early Proprietary Period, non-English immigrants struggled for the same rights as English settlers. They were discriminated against because they did not speak English or have the same belief systems as English immigrants and Barbadian settlers. Though on paper the Lords Proprietors called for equality and tolerance among settlers, in reality, this was not the case. The detail of Mortier’s *Carte Particuliere de la Caroline* illustrates this well (Figure 21). By the time this map was produced in 1695, there were at least 20 families living on the Santee, yet none of them are depicted on the map. Instead there is a general notation regarding French settlement. Because of this discrimination, early land grants on the Santee River are sparse. Notably, there are several large tracts of land assigned to Jean Francois Gignilliat, a wealthy Swiss settler who could afford to purchase multiple warrants. He then sold them to French settlers, eliminating the need to deal with English officials as the deeds could be written in French and witnessed at Jamestown. This also eliminated the need to pay quitrent to the Lords Proprietors (Edgar 1998:51-52; Bates and Leland 2015:10-11).

As the Carolina colony developed, it experienced a number of growing pains, first with factionalism within the colony, followed by a series of Indian wars, and finally a united front against the Lords Proprietors to become a royal colony. The proprietary years of South Carolina were wrought with strife; in its 49 years of existence as a proprietary colony, Carolina saw 22 governors; some lasted less than six months in office (Edgar 1998:84). Governors were elected by the Lords Proprietors and were usually the senior landholders in the colony. They were often corrupt and/or had little experience in politics and leadership. As a result, they could be easily manipulated by political groups.
Factionalism among the settlers began early and became more acute as the colony became more diverse. Two political groups rose early. The Goose Creek Men were comprised mostly of Barbadian planters who wanted control over the colony for the purpose of serving their end goal of aggressive financial gain. They were also largely Anglican, with the majority of French Huguenots, and all of the German Lutherans also joining them. For this reason, they were often referred to as the Church Party, the Anglican Party, or the Anti-Proprietary Party. In direct opposition were the Proprietary Party, also called the Dissenters, because they were comprised primarily of those who did not belong to the Church of England. The two factions’ views often changed and, depending on the day and the matter at hand, they often swapped opinions; first supporting and then opposing certain groups, such as the French Huguenots and those seeking naturalization in 1696 (Porcher 1887:102; Edgar 1998:84-88).
The Proprietary Economy 1670-1721

During the Proprietary period, as colonists experimented with ways to make a viable living in a new world, they were also trying to interpret an unfamiliar environment. Preconceived perceptions of the natural world affected European’s views of how and where they settled. The first grants of land by the Lords Proprietors contained a variety of landforms and geographic features from drier ridges and knolls to low-lying depressions and swamps. Early plantation owners settled on the high grounds, along ridges and knolls along the Ashley River, near Albemarle Point. However, within 20 years they were venturing further out along the frontier in search of large tracts of arable land. The Santee River was considered the frontier until the early 18th century. The 1732 map by Herman Moll demonstrates early settlement patterns well, with considerable settlement along the coastline, Ashley, and Cooper Rivers and fewer plantations along the Santee (Figure 22).

In this new environment, colonists tried to recreate the European pastoral landscape, reminiscent of their homelands (South and Hartley 1980; Smith 2012). Early plantation settlements were generally located near major waterways and the main house and outbuildings were clustered closely together with housing for the enslaved. Waterhorn Plantation provides an example of this early plantation landscape. Daniel Huger built the domestic core of his plantation on a high bluff at the confluence of Wambaw Creek and the South Santee River in 1690 and enslaved housing was also within the core (Shlasko 1997). The early domestic core of Drayton Hall also reflects this landscape design. The original colonial period enslaved settlement was present in the landside yard in close proximity to the original house.
Figure 22. Detail of the 1732 map by Herman Moll showing the location of plantations along the Ashley and Santee Rivers (http://inlandrice.charlestoncounty.org/history.html).

The original manor house was replaced in 1738, and the enslaved settlement was moved to the periphery of the domestic core at the ridgeline beyond the pond in 1755 (Zierden and Anthony 2004).

The early Proprietary economy was centered around goods and services that did not require a large amount of labor because most early settlers came with few enslaved or indentured servants and few resources to purchase them. Early colonists raised livestock, sold deerskins, and produced naval stores and timber products. These were fast and easy ways to get the capital they needed to comply with the Lords Proprietors’ policy that all colonists would experiment with
crops to find suitable cultigens for mass export (Carney 1996; Waterhouse 2005:56). They established a trade network with England and the West Indies, with whom many already had ties.

In addition to European immigrants of little means, lesser sons of wealthy Barbadian planters, such as the Draytons and Middletons, came to the colonies in search of their fortunes. They already had established ties with Barbados and it was relatively easy to invest in a mercantile relationship with those connections. Raising livestock and timbering provided an economical way to utilize a lot of land without a large labor force and the West Indies was an ideal trade partner as they imported most of their consumable resources. By 1690, deerskins, naval stores, salted meat, and livestock were being exported by the British colonies. This trade relationship provided the economic stimulus for early colonists to continue agricultural experiments (Edgar 1998; Smith 2012; Porcher and Judd 2014).

Raising livestock took place in three micro-environments: low-lying bottom lands containing hard woods, the floodplains of small streams, and upland areas containing long leaf pine and oak communities. All of these micro-environments would later be under rice cultivation. During this time period, enslaved Africans and American Indians constituted the forced labor tending livestock. Because colonists let their cattle range free, enslaved workers became intimately familiar with the natural environment as they were sent after stray cattle or to round up herds for slaughter. Cattle generally spent the summer months in upland areas containing forests and savannas and the winter months in low-lying hardwood areas and swamps. Large property holdings, an enslaved labor force, and capital benefitted early planters (Otto 1987). In turn, they invested in bigger plantations to support more cattle and, as a consequence, they required more labor to support this effort.
In the waning years of the 17th century, rice cultivation began to take place first in upland areas and then very quickly spreading into these micro-environments also occupied by cattle. Rice could be cultivated while cattle were grazing in nearby woods (Carney 1996). By 1712, rice cultivation had surpassed livestock as the leading agricultural activity in the Carolina Lowcountry. In that year, Carolina exported 1,863 barrels of salted beef and 1,241 barrels of salted pork for a combined value of £10,000; by contrast, 12,727 barrels of rice were exported for a value of £40,000 (Coclanis 1982). In the coming years, more and more planters turned their attention to rice as their primary commodity.

Queen Anne’s War (1702-1713) was likely the first indicator that the Proprietary Period was coming to an end. After a series of expensive skirmishes with pirates, the colonists were exhausted and becoming increasingly angry with the Lords Proprietors for not paying part of the bill for defenses. During this time, tensions heightened as the Lords Proprietors sought to change the composition of the Council, demanded that all proposed laws be sent to them for approval, took the former Yamasee lands for themselves, and ordered the land office closed so no more land grants could be issued. The colonists responded by uniting together in a common cause and they effectively overthrew the Proprietary government by electing a new governor, James Moore, Jr., who agreed to take over in the name of the King of England. The overthrow of the Lords Proprietors has been termed the Peaceful Revolution because not one life was given and no blood was shed, though tensions were high.

This conflict is a good indicator of how tenacious the people of the Lowcountry were. It also speaks to the voracity with which they sought material wealth. Had the Lords Proprietors supported the colonists and lobbied for them in England as they said they would, the relationship would have continued. However, the South Carolina colonists had studied the other royal
colonies and discovered government under the royal crown was much more financially lucrative. England formally recognized the South Carolina colony in 1720. By 1721, the colonial government of South Carolina was operating as it should. From 1721 to 1761, there was little interference in South Carolina colonial government, which allowed the wealthy elite to establish a political system that served their interests (Edgar 1998:109-110).

The Royal Period 1721-1776

In contrast to the Proprietary Period, the Royal Period was more politically stable yet became increasingly untenable over the course of the 18th century. Only six royal governors held the seat during this time and none less than two and one-half years. Governors were appointed by the British government and, as was typical of England, were placed because of family connections. They became progressively inept and, by mismanagement of an array of issues, created a political environment that contributed to a revolution. When royal governors were absent, or there was a period in between them, the seat was filled by the Lieutenant Governor, who was also the leader of the Privy Council. This position was almost always filled by an elite planter and the Council was filled with planters and merchants. The Izards, Middletons, and Draytons were among those that served on the Privy Council during this period. Wealth was the most important criterion in being selected for the Council and gentlemen were groomed for this privilege by serving in local church vestries. By filling these positions of power, the wealthy who were predominantly Lowcountry planters, ensured their interests were served (Edgar 1998:115-116).

The 1730s saw a stabilization in both the economy and the local political arena in the Lowcountry. Factionalism over economic and religious differences was finally waning, largely because elite planters and merchants were in control of the government. Their political
management style was that of country ideology, which had its roots in England. Country ideology was based on an inherent distrust of human nature and the idea that a strong government must be in place to protect property, freedom, and life. However, if the government should become corrupt, then it was the duty of the people to resist. These two positions created a system of checks and balances. This way of looking at the world, and the political system, began in the 1730s and was firmly in place within the tenets of Lowcountry society by the 1750s. In South Carolina, the Commons House of Assembly was considered the protector of the people (Edgar 1998:119-120).

During the Royal Period there was a gradual shift from elite planters and merchants holding prestigious positions on the Privy Council to serving in the Commons House of Assembly. After the French and Indian War was over (1763), the British government began selecting Privy Council members to ensure they were more agreeable to British interests. As a result, elite planters and merchants declined to serve and, instead, focused their energy in the Commons House of Assembly.

Until the 1750s, wealthy, elite planters controlled the Commons House of Assembly; however, a shift occurred in the last 25 years before the Revolution from planters to merchants and local attorneys, although there were a few exceptions. Thomas Lynch, Sr., a well-known planter and one of the architects of the Revolution, served in the Commons House of Assembly until his death in 1776 (The American Society of Learned Studies 1943:420). This shift happened seamlessly because of the united front in economic interests as well as external threats to wealth by the English wars with Spain and France, the Cherokee, and the perceived constant threat by the black majority. Elite planters and merchants were willing to work together to protect their interests both at the state and local levels (Edgar 1998:123). Because they presented
such a united front, they were considered the most powerful assembly in the colonies during this
time period and they likely wielded more real authority than any other colonial government
entity.

The Royal Period saw a number of European wars, including the War of Jenkins Ear
(1739-1748), the war of Austrian Succession (1740-1748), and the French and Indian War
(1756-1763), all of which disrupted trade between British North America and the European
continent. These conflicts, in addition to import duties, which fluctuated greatly throughout the
century, all affected the economy in different ways. Indigo became a cash crop during this time
as South Carolina experimented with perfecting the processing of it and global demand increased
because of trade disruptions with France. Rice production and export also experienced a number
of increases and decreases due to demand, environmental factors such as drought and hurricanes,
and duties on exports. However, other exports such as livestock, produce, and naval stores
remained relatively stable and, in addition to more lucrative crops, contributed greatly to
economic expansion during the 18th century (Coclanis 1989; Edgar 1998). A snapshot of the
expanding economy can be seen in the top ten exports from November 1, 1747 to November 1,
1748 (Table 3).

Revolution Brewing

What followed over the course of the next ten years were a series of increasingly
controlling Acts meant to force colonists to pay for the costs of both the French and Indian War
and maintaining and defending the British Empire. The Sugar Act (1764), Currency Act (1764),
and Stamp Act (1765) were the first of these and others followed (Coclanis 1989:72-73; Edgar
1998:210). The acts stimulated the Commons House of Assembly to form secret committees and
other organizations that continued to operate even when the Governor dissolved the Assembly or
Table 3. Top Ten South Carolina Exports November 1, 1747 and November 1, 1748 (adapted from Coclanis 1989:81).

<table>
<thead>
<tr>
<th>Commodity Exported</th>
<th>Value in South Carolina Currency (to the nearest £)</th>
<th>Percentage of Total Export Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rice</td>
<td>618,750</td>
<td>54.78</td>
</tr>
<tr>
<td>Deer Skins</td>
<td>252,000</td>
<td>22.31</td>
</tr>
<tr>
<td>Indigo</td>
<td>117,353</td>
<td>10.39</td>
</tr>
<tr>
<td>Pork</td>
<td>31,140</td>
<td>2.76</td>
</tr>
<tr>
<td>Naval Stores</td>
<td>24,548</td>
<td>2.17</td>
</tr>
<tr>
<td>Lumber Products</td>
<td>23,490</td>
<td>2.08</td>
</tr>
<tr>
<td>Indian Corn</td>
<td>19,654</td>
<td>1.74</td>
</tr>
<tr>
<td>Tanned Leather</td>
<td>18,123</td>
<td>1.6</td>
</tr>
<tr>
<td>Beef</td>
<td>11,466</td>
<td>1.01</td>
</tr>
<tr>
<td>Peas</td>
<td>3,053</td>
<td>0.27</td>
</tr>
<tr>
<td>Total</td>
<td>£1,119,577</td>
<td>99.12%</td>
</tr>
</tbody>
</table>

Acts passed by the Commons House of Assembly were disallowed by British officials back in England. It was these secret committees that increasingly held more political power and propelled South Carolina to work with the other colonies for self-determination. In the other colonies, local issues were beginning to take a backseat to the more general issues of British royal rule and increased taxation. However, South Carolina was ahead of the other colonies by four years. The royal government effectively ceased to exist in 1771 as no other formal legislation was passed until after the Revolution. All decisions were made by South Carolinians in secret committees and associations composed of Assembly members (Edgar 1998:218-219).

The Tea Act of 1773 had far-reaching consequences but, for South Carolina, it laid the groundwork for an independent government. Assembly members met and all agreed to protest the importation of tea, boycott the East India Trading Company, whose representatives agreed not to accept it, and encourage others to not use or purchase tea as a sign of resistance (Edgar 1998:219). After the Intolerable Acts were passed, to punish Massachusetts for their Boston Tea Party, Assembly members were acutely aware that this could happen to the port of Charleston.
By 1769, Charleston was the fourth largest port on the Atlantic seaboard and closing it would have been economically devastating to the region (Morgan 1995:434).

In 1774, Boston called for an intercolonial meeting, called the first Continental Congress, and South Carolina answered by sending delegates Christopher Gadsden, Thomas Lynch, Sr., Edward Rutledge, John Rutledge, and Henry Middleton. These delegates were the elite of the Lowcountry; all had served in the Commons House of Assembly, and all were wealthy in their own right. A series of resolutions were made condemning the British for abuses of power. They created an association to boycott British goods and refused to export colonial products to Great Britain. In a great show of strength, South Carolina refuted this last part of the deal because their economy depended so heavily on rice exports. By 1774, South Carolina held the majority of wealth in the colonies, with the highest amount per capita within the white population, and it was sustained by rice and the system of chattel slavery (Coclanis 1985; Morgan 1995:433; Coclanis 1989) The other colonies acceded to their demands and allowed for rice export but not indigo (Edgar 1998:221-222).

In South Carolina, the General Meeting elected a sub-committee of 99 members representing artisans, merchants, and planters. Elias Horry, Jr. of Waterhorn Plantation was among those elected and the committee quickly became the acting government of South Carolina. They also called for an election of a Provincial Congress, the majority of which was comprised of former Assembly members. The Draytons, Rutledges, Middletons, Horrys, and Lynches, both Sr. and Jr., were included (South Carolina Provincial Congress 1776). The purpose of the congress was to unite the colony in a common cause against the British crown for the right to self-determination.
In 1775, the British government sent a new governor, Lord William Campbell, to South Carolina to try to reign in the dissidents. Campbell had married Sarah Izard, daughter of Ralph Izard of Cedar Grove plantation, and had prior experience as an administrator; however, he was met with tacit rebellion. He refused to recognize the Provincial Congress as a legal governing body and dissolved the Commons House of Assembly after they rebuked him for being a puppet of the British crown and ignoring the will of the people in South Carolina. The Congress was officially dissolved in September 1775, as Governor Campbell was fleeing for his life to a British warship in the harbor (Edgar 1998:225). This was the beginning of the American Revolution in South Carolina.

Charleston as Colonial Entrepot

Charleston was pivotal in the economic, political, and social development of South Carolina and it was settled specifically for these purposes. The original settlement at Albemarle Point was abandoned in 1680 in favor of the peninsula, a strategic location at the confluence of the Ashley and Cooper Rivers (Figure 23). The natural deep-water port ensured that Charleston would be a major influence both within the British North American colonies, as well as the larger Atlantic World. Because of its strategic location and its emerging economic ties, it was the largest city and port in the southern colonies by the Revolutionary War.

As planters began settling the major river systems of the Lowcountry, and experimenting with marketable commodities, they relied on Charleston to ship those commodities to other markets. These shipments linked Charleston with markets in the northern colonies, as well as the Caribbean, and Europe, which linked the southern colonies to the larger Atlantic economy (Morgan 1995:434; Coclanis 1985; Coclanis 1989). They also relied on Charleston for news of
the larger world, incoming goods and services, mail from loved ones back home and, beginning in the 18th century, a steady supply of human chattel. In this sense, Charleston was also an entrepot, which tied it between the colony and the larger British Atlantic World (Hudgins 1999:103). As demand among colonists rose for goods and services such as textiles, household furnishings, and craftsmen to build homes, Charleston supplied them as a major port of debarcation in the colonies.

By the middle of the 18th century, Charleston was a society for planters. They learned early that Lowcountry marshes were inhospitable from May to October. During these months, they retreated to Charleston to escape the oppressive heat and diseases of the marsh (Waterhouse 2005; Edelson 2006). Smith has postulated that this is the reverse of the English town and country model, where the landed gentry escaped to the countryside in the hot summer months to avoid the heat and diseases that the city generated during that part of the year (Smith 1999:330).
Consequently, Charleston was a haven for the planter elite and many kept year-round
townhouses to conduct business in town in addition to escaping the maladies of their plantations.
The Izards, Middletons, and Draytons of the Ashley River, as well as the Horrys and Lynches of
the Santee River, all kept houses in town and were residents of Charleston at least part time.

It was in Charleston that the planter elite cultivated business relations by participating in
society and becoming active in politics to serve their plantation interests. Wealthy planters were
expected to participate in benevolent societies, social clubs, and various societal gatherings,
which to some extent, mimicked English society. Many also participated in the political process
that helped shaped the colonies and, consequently, many chose to participate on the national
level. The Izards, Middletons, Draytons, Horrys, and Lynches all participated in the political
process through multiple generations. Sons often followed in their father’s footsteps, first going
to England for a gentleman’s education and then returning to learn the family business, which
was often diversified to include mercantile interests by the second and third generations. Some
then continued the family legacy by entering into politics to ensure planter traditions and serve
their particular interests. The planter elite in the Lowcountry were such a small community that,
by the third generation, most families were related to one another (complicated genealogies) by
marriage. This also played a factor in diversifying business interests and served to strengthen
planter interests in politics to keep control of their plantations and continue their legacies. This
tradition manifested during the antebellum period.

Revolution in the Lowcountry

For all of the tension, fanfare, and initial support leading up to the American Revolution,
the business of actually conducting a prolonged war was exhausting and very expensive to all of
the colonies. People were generally apathetic from 1776 to 1778 as they tried to regain a sense of
normalcy and adjust to revolutionary fervor. Voter turnout to elect a Second General Assembly was lackluster at best, even though the assembly was tasked with drafting a permanent constitution. This lack of participation may have had some influence on the document itself as the final version was biased toward elite planters by requiring property and residential qualifications to run for political office. Most could not meet these qualifications and were effectively disenfranchised from participating in politics (Edgar 1998:230). The document was ratified in March 1778 as the basic law for holding office in South Carolina.

The Revolution became very real for South Carolina in 1778 when British troops landed in Savannah and by 1779 the Lowcountry was feeling the effects of probing British attacks. British forces looted and burned many plantations and large numbers of enslaved workers were taken as prizes of war. Many more enslaved people ran away to British camps seeking freedom (Edgar 1998). In 1780, General Cornwallis had taken up residence at Drayton Hall, where he and a contingent of troops remained for much of the summer. During this time period, the Ashley River felt the effects of British occupation and large number of plantations were either damaged or completely destroyed. Middleton Place certainly felt the British presence as most of the original outbuildings were destroyed during this time period. Charleston proper fell to the British during this time and was occupied by British forces until the end of the war.

The turning point in the war came, not because of regular militia or paid soldiers, but by the actions of small units waging guerrilla warfare on regular British Troops. Francis Marion, Andrew Pickens, and William Harden led groups of volunteers in ambushes of British detachments, which served to cull their numbers, as well as demean and unsettle them. It is through their efforts that the tide began to turn and after a series of skirmishes and battles, the British were finally expelled from Charleston in December 1782.
Of note here is Francis Marion, also known as the Swamp Fox, who spent much of his active career in the swamps and marshes of the Santee River. He fought a small skirmish against General Thompson on Wambaw Creek in vicinity of Waterhorn and visited Hampton Plantation on occasion (Bridges and Williams 1997). One of Francis Marion’s Lieutenants was Peter Horry, a cousin of Elias Horry, owner of Waterhorn Plantation during this time period. Peter Horry was known to patrol in the area of Waterhorn at the confluence of Wambaw Creek and the South Santee River (Bridges and Williams 1997). Though there is no direct historical documentation that links Francis Marion or his militia to Waterhorn, Peachtree, or The Marsh, because he spent much time in the vicinity of these plantations, it seems likely that he or his men camped on one, or even all, of these plantations. Hampton is the only plantation with historical documentation placing Francis Marion on the property at a specific period in time (Rankin 1973 275-276; Edgar 1998). British troops visited and looted Hampton Plantation several times during the course of the war, while looking for Francis Marion (Bridges and Williams 1997:81-82). During the period of the Revolutionary War, Peachtree was under the guardianship of Sabinah Bowman, Thomas Lynch, Jr.’s eldest sister, and her husband John. The Marsh was occupied part of the year by Esther Lynch, Thomas Lynch, Jr.’s younger sister. It is likely that, during this unstable time period, the sisters and their families retreated to either Charleston or Philadelphia and thus were not present to aid Francis Marion or his men.

By 1782, the South Carolina government was already imposing strict fines on those not patriotic to the cause. A series of confiscation acts were passed by the Assembly to punish those still loyal to the British crown. However, elite planters who were British loyalists seemed to be almost immune to these fines while those of lesser means were severely punished for their
allegiance to Britain. Many ardent loyalists chose to leave South Carolina of their own volition for other colonies, the Bahamas, or Britain (Edgar 1998).

The South Carolina government had a difficult time imposing these penalties in the backcountry because allegiance shifted often as residents tried to hold on to their assets over the course of the war. Loyalty to one side of the other often divided families and it was difficult to institute fines or take property among those who were clearly divided. After the war, many residents took the law in their own hands and several prominent loyalists were hanged or mysteriously murdered after they had paid their fines. Tensions ran deep and families were torn apart by almost a decade of war. Many families lost husbands and sons, agricultural lands were in ruin, livestock and horses had been stolen by both sides. Approximately 30,000 fewer slaves were present at the end of the war than in 1775 (Coclanis 1989:122; Edgar 1998:244). It would take multiple generations to recover financially and emotionally from the effects of the American Revolution.

The Antebellum Economy

The Revolutionary War effectively halted commercial rice production on the Ashley and Santee Rivers for approximately 10 years (Coclanis 1989; Edgar 1998). It took until the early part of the 19th century for planters to sufficiently recover from the effects of the war. Ashley River plantations were rebuilding after being ransacked by British soldiers. The Santee River plantations were also trying to recover though they had not been the subject of looting and burning to the degree that the Ashley River plantations had suffered (Edgar 1998). Never-the-

19 There are no specific statistics available for the Ashley and Santee Rivers in regard to exactly how many enslaved people were killed in the Revolutionary War or self-emancipated. These numbers are a broad estimate for the Lowcountry based on U.S. Census records.
less, rice dikes and trunks needed repair and the fields needed clearing before production could resume as it had before the war.

Cedar Grove, Middleton Place, and Drayton Hall all resumed rice production in some capacity after the war. The 1820 plat of Cedar Grove labels many of the rice fields as “old.” This label could indicate that rice was not in production at the time of the survey or, that some fields were still in production but older than others on the parcel. Middleton Place appears to have been producing inland rice until the early part of the 20th century. Drayton Hall is more ambiguous and was likely not producing inland rice in any great quantity after the Revolutionary War as the Drayton family was managing properties on other rivers and considered Drayton Hall the country seat from where those properties and other business interests were managed, at least part of the year.

On the Santee River after the Revolutionary War, at Waterhorn, Peachtree, and The Marsh, rice production resumed much as it had before the conflict. The Marsh was split into smaller plantations after Esther Lynch’s death in 1823. Ravenel plantation, a small part of the original Marsh plantation, produced 300,000 pounds of rice in 1850, even though it was only 600 acres (Baldwin Papers South Carolina Historical Society [SCHS]; South Carolina Historical Society 1897; Linder and Thacker 2001).

Rice production in the Lowcountry peaked just before the Revolutionary War. Per capita, the Lowcountry exported more rice from 1768 to 1772 than was produced during the entire Antebellum Period (Coclanis 1989:117; Table 4). This change was due to a variety of complex factors, including but certainly not limited to, structural changes in the economy, the British embargo of 1807, the War of 1812, expanding agricultural interests including cotton, and a re-emergence of the naval store industry.
Table 4. Total per Capita Exports of Clean Rice 1768-1772 and Total per Capita Production of Clean Rice 1820-1859 (adapted from Coclanis 1989:117).

<table>
<thead>
<tr>
<th>Date</th>
<th>Pounds Exported (annual average)</th>
<th>Pounds Produced</th>
<th>Total Lowcountry Population</th>
<th>Pounds Per Capita</th>
</tr>
</thead>
<tbody>
<tr>
<td>1768-1772</td>
<td>66,327,975</td>
<td>88,244</td>
<td></td>
<td>751.64</td>
</tr>
<tr>
<td>1820</td>
<td>43,951,800</td>
<td>181,731</td>
<td></td>
<td>241.85</td>
</tr>
<tr>
<td>1830</td>
<td>74,010,600</td>
<td>1,960,040</td>
<td></td>
<td>377.53</td>
</tr>
<tr>
<td>1839-1840</td>
<td>59,654,911</td>
<td>192,291</td>
<td></td>
<td>310.23</td>
</tr>
<tr>
<td>1849-1850</td>
<td>104,759,672</td>
<td>209,262</td>
<td></td>
<td>537.23</td>
</tr>
</tbody>
</table>

Additionally, a number of catastrophic storms during the 19th century impacted rice production. Of note, because evidence of them can be seen in stratigraphic sequences on the Santee River, are the hurricanes of 1820 and 1822. Both of these struck near Georgetown. They affected the Santee River and Winyah Bay near Georgetown much more so than the Ashley River and Charleston. The 1820 hurricane caused the tide to rise four feet in Winyah Bay and inundated many of the plantations at the mouth of the Santee. The eye of the storm passed north of Georgetown and damage reports were posted as far north as Cape Fear, North Carolina (Ludlum 1963:114). The hurricane of 1822 struck near Awendaw, south of the Santee Delta, and devastated the Santee River and Georgetown. Death estimates were over 300 people, at least half of these were enslaved workers who were swept out of the delta by the tides. Many planters on the Santee lost their homes and outbuildings as well (Bull 1980).

The Antebellum Period also saw an out-migration of the Lowcountry population, which contributed to a falling economic bottom line. In 1790, Charleston was the fourth largest city in the United States but had fallen to 22nd by 1860 (Coclanis 1989:115). Many people opted to leave the Lowcountry after the Revolutionary War. Countless planters lost their property or could not recover sufficiently financially to rebuild their plantation infrastructure. Additionally, many enslaved workers ran away to the north, were taken by the British, or died fighting during...
the war (Edgar 1998). Planters had to replace their forced labor in order to replicate the plantation system that had existed before the war, and this necessity put the majority of them in debt. After the war, cotton emerged as a staple crop in the south and other states were producing it more competitively than South Carolina. As a result, yeoman farmers, as well as some elite planters, sought their fortunes to the west or further south in Georgia and Florida (Coclanis 1989; Edgar 1998; Beach 2014).

The British embargo of 1807 followed by the War of 1812 brought the Lowcountry economy to a standstill. Because it relied so heavily on rice for export to world markets, there were few other business interests to keep it moving forward. It did eventually recover but only at the cost of incurring more debt to do so. The economic demise of the Lowcountry during the Antebellum Period was not rapid or absolute but, rather, occurred over time because the white majority was unwilling to diversify business interests into manufacturing and modern industry. At face value, the economy actually appeared to be expanding, especially from 1835 to 1860 as rice and cotton regained a partial hold in national and global markets. The early part of the 19th century saw inroads in transportation as private and public companies sought to increase the ease of travel both within the Lowcountry as well as the backcountry and parts elsewhere. As early as 1786, canals and roads were constructed between river systems to ease the transport of commercial goods as well as people (Edgar 1998:282). Railroads also came to the Lowcountry in the first half of the 19th century with the charter of the South Carolina Canal and Railroad company in 1827 (Edgar 1998; 283).

During the Antebellum Period, the Ashley River further solidified the ideal of the county gentlemen’s estate. Most plantations were producing inland rice; however, planters on the Ashley River, continued to diversify because tidal rice cultivation could not be practiced as
profitably as on other river systems. Those that could bought more plantation lands on more productive river systems such as the Santee. They also bought more human labor to work the fields). Many planters also became merchants preferring to handle all aspects of their business enterprises (Edgar 1998). The “Old” Cedar Grove rice fields could be an example of this diversification as the Izard family pursued other, more economically lucrative interests yet kept Cedar Grove as part of their children’s inheritance.

The Santee River operated in a similar way to the Ashley during this time period. Large antebellum plantation homes were built as country seats for sons who inherited property from their parents. Older planters also built second homes on the Santee as they expanded their interests. White Oak, Silk Hope, Millbrook, and Harrietta were all built during the first half of the 19th century (Linder and Thacker 2001). Larger colonial-era plantations were also split into smaller parcels. The Marsh was subdivided and sold to pay debts after Esther Lynch’s death. Still others, such as Hampton Plantation, continued much as they had before the Revolutionary War.

The antebellum economy moved forward based on field and forest production. The Industrial Revolution had a limited impact, other than in the rice industry, because the Lowcountry was closed off from the rest of the world. Unlike before the war, when Charleston was a colonial entrepot to the greater Atlantic World, after the war, Lowcountry society kept to itself. By 1850, Charleston had become a satellite port to larger more modern ports along the eastern seaboard, including Philadelphia, New York and Boston, and was no longer on the direct route to and from Europe (Coclanis 1997; Edgar 1998).

The tenets of slavery and a well-defined, classed society dictated that wealthy white men did not perform manual labor. There was no working middle class in this slave society and there
was also a general anti-business climate. This sentiment that industry was bad for the state of South Carolina was expounded upon by Governor John C. Calhoun from the time of his election in 1824 right up to his death in 1850 (Edgar 1998:281). Slaves were depended upon to do all of the labor, whether it was in the mills, in the fields, or in the plantation main house; white people thought it was their place to oversee the labor and manage the wealth created by the humans they held in bondage (Coclanis 1997; Edgar 1998).

The Lowcountry during the Antebellum Period was a closed society where anyone entering with opposing ideas about slavery or the “civilized” society that had grown around the institution was viewed as a threat to their way of life (Edgar 1998:323). As in the colonial era, there was a direct relationship between wealth and slave ownership. During the Antebellum Period, the majority of wealth held by elite white planters was in their human assets, not in their production yields (Coclanis 1989). Though the Lowcountry resisted the call of manufacturing and industry that had taken hold in the north, there was some limited industry in the processing of raw forestry materials (Coclanis 1989; Edgar 1998). Elite planters and politicians generally resisted technological innovation in favor of enslaved labor; however, the Industrial Revolution did impact rice production as the power of steam trickled into the Lowcountry. Myriad new machines were designed to increase production capacity in both threshing and milling. Mechanized threshing was common by the 1830s; milling innovations began in the mid-18th century and continued through the 19th century (Porcher and Judd 2014:97). Remnants of these machines can still be seen in abandoned fields in the Santee Delta and inland rice fields along the Ashley River (Porcher and Judd 2014). Though advances in mechanized rice production did happen, the fields were always harvested by hand and clearing of new fields and repairs to trunks
and banks had to be done by hand. Machinery did not replace the enslaved work force but rather made more time for them to clear more land (Edgar 1998; Porcher and Judd 2014).

The Civil War and A Changing Lowcountry

The Civil War brought big changes to the Lowcountry and to the Ashley and Santee rivers, in particular. The war ravaged the countryside and many plantations were burned as a result of both conflict, occupation, and roving bands of armed militia. The Ashley River was affected more than the Santee in part because of its close proximity to Charleston, but also because it was a well-known neighborhood of wealthy planters and merchants. Both Cedar Grove and Middleton Place were burned by the Union Army: Cedar Grove as the Union Army came through in 1861 and Middleton Place by Sherman’s army in 1865 (Smith 1988). The main house was ransacked and then set ablaze along with the rest of the outbuildings and the family tomb was also pillaged. Drayton Hall was spared because of a rumor that it was being used as a smallpox hospital (Zierden and Anthony 2004).

Union Army forces also patrolled the Santee Delta, though they had great difficulty in doing so because of the series of islands and creeks that made navigation treacherous. The fear for most Santee River residents was that the Union Army would come up the river, burn the rice fields and other plantation infrastructure, and take out the railroad bridges further upriver. Several strategic camps and batteries were constructed near the mouth of the delta, and all along the coastline between Georgetown and Charleston, for the purpose of preventing such an occurrence by the Union troops (Bridges and Williams 1997; Edgar 1998). It was well known that the most valuable of rice lands were located along the Santee and further north on the Pee Dee, Black, and Waccamaw Rivers. Several skirmishes did take place within the Delta; however, these were mainly contained to its mouth near Blake’s plantation, which is approximately a half
mile from the confluence of the Santee Delta and the Atlantic Ocean (Bridges and Williams 1997:217-219).

Though gun emplacements are known along the North Santee River, there is no evidence, documentary or archaeological, to indicate that any of the Santee study subjects were especially affected by specific troop movements (Bridges and Williams 1997; Edgar 1998). Waterhorn appears to have been unaffected by any impact of the war as archaeological investigation indicates at least some housing areas were occupied until the last quarter of the 19th century and Shlasko’s excavations did not recover any items that could be related to the events of the Civil War (Shlasko 1997). The Peachtree main house burned by kitchen fire in 1840. Dr. Lynch moved his family to Tennessee in the mid-1830s and, by the time of the Civil War, the property was being rented for its rice fields by the Doar family. It is unclear if the fields were actively cultivated during this time period. Mary Rachel Doar Lucas, in her memoirs, recalled that 1862 was the last time most plantations along the Santee River were occupied and productive during the war (Bridges and Williams 1997:204). Doar family members were active planters and continued to grow rice after the war, so it seems likely that Peachtree was at least partially productive, even if only to supply the local economy with rice as the export market was cut off by the northern blockade. During this time, most planters were fighting the war and the enslaved labor force was delegated to other tasks associated with the Confederate war effort such as building fortifications (Edgar 1998; Beach 2014; Porcher and Judd 2014). By 1860, The Marsh was divided into several smaller plantations and they also appear little affected by troop movements.

Most planter families, in the absence of the patriarch, removed themselves and their enslaved laborers to pine uplands or second homes out of the way of the war. Flat Rock, North
Carolina served as a haven for planter families during the war, as well as other places well removed from the fighting such as Philadelphia, Pennsylvania and Newport, Rhode Island (Bridges and Williams 1997; Edgar 1998; Beach 2014). Those who could not, or would not, remove themselves from the Lowcountry, purchased houses in uptown Charleston, away from the bulk of the bombardments, which occurred below Broad Street, down on the East Battery (Bridges and Williams 1997). The long-term effects of the Civil War contributed to the demise of the antebellum society that had existed around the institution of slavery, but these effects also contributed to intra-regional variability because residents on the Ashley and Santee rivers adapted quite differently in its aftermath.

Because many Lowcountry families invested heavily in the Confederacy, the years after the Civil War were economically devastating. The Vardell family, owners of Cedar Grove in the last half of the 19th century, gave much of their material wealth and invested heavily in the Confederacy. Family correspondence indicates that Mr. Vardell sent the lead window weights out of the main house to the local Confederate army so they might make more bullets with them. After the war, the Confederate bonds in which they had invested were virtually worthless and they were unable to rebuild the main house. Middleton Place fared little better. Williams Middleton moved his family into the South flanker building, which was the only stable structure left after Sherman’s army came through. He planned to rebuild the main house; however, the earthquake of 1886 toppled the remainder of the ruin (Shick and Doyle 1985). Drayton Hall was spared major damage by the Union army but the Drayton family, like the rest of the Lowcountry, suffered the effects of the downward economic turn, which lasted through the Great Depression.
Phosphate Mining Comes to the Ashley River

As planters struggled to revive their plantations after the Civil War, they tried to resuscitate their rice fields and continue as they had before, though without an enslaved labor force. Unlike in the years following the Revolutionary War, there were very few credit extensions available to them and most were at exceedingly high interest rates. This lack of capital was compounded by depleted soils, which was becoming a problem during the Antebellum Period but grew because most of the livestock in the Lowcountry had been lost during the war and the result was a lack of natural fertilizer. This problem was not unique to the South, though they may have felt the effects of it more so than anywhere else in the United States. Northern states as well as Europe were also suffering the effects of worn out soils because of poor agricultural practices (Edgar 1998; Beach 2014; McKinley 2014).

Even though soil depletion and erosion were known problems in the South before the war, most southern planters and farmers, rather than address the issue, chose to clear more land and continue as they had before because it was more immediately lucrative (Edgar 1998; Beach 2014). A few of the wealthiest planters did recognize the problem and its long-term consequences. They formed agricultural societies for the purpose of improving agricultural methods. These societies petitioned the state to bring an agricultural expert in from Virginia. Edmund Ruffin was considered an authority in agricultural reform and was also schooled in science and technological advances. In 1843, he arrived in the Lowcountry and pointed out the marl beds along the Ashley River, which contained phosphate that could be used as fertilizer. His initial study was conducted at Cattell’s Bluff, between Middleton Place and Drayton Hall (Yeadon 1857:6). Ruffin advised the planter societies that exploiting the marl beds would be a good way to economically fertilize their fields. Though they all agreed, no one was willing to
invest in manufacturing plants to break down the phosphate (Edgar 1998:278). It was not until after the war that phosphate was reconsidered.

Because chemical fertilizers were expensive and scarce during the latter half of the 19th century, an economical way to fertilize farm lands had to be found. Chemists were experimenting with turning raw phosphate into an easily transportable product that could be broadcast efficiently and the process was eventually perfected by the application of sulphuric acid to the raw phosphate rock, which reduced it to a fine powder that was also water soluble (Edgar 1998; Beach 2014:51). In 1867, St. Julien Ravenel, a former professor of chemistry at the Medical College of Charleston and descendant of rice planters, contributed $300,000 to open the Wando Phosphate Company. Dr. Ravenel was one of the earliest investors in phosphate and likely one of the very few who could afford to do so in the Lowcountry (Beach 2014:52).

The South desperately needed a cash infusion to help them stabilize economically and it came from wealthy investors from the north who looked south for lucrative commodities. Some investors followed the lead of Dr. Ravenel and opened phosphate mining companies along the river systems that contained marl. The Drayton family leased their lands to mining companies during this time period and Williams Middleton started his own mining company (McKinley 2014). As with other planter families, mining was one of the only solutions to help stabilize their holdings. Before the Draytons leased their lands, John Drayton thought seriously of dismantling the main house and selling the bricks.

The mining process was treacherous, and the work was hard, yet the wage was much needed for newly freed people. Many, who were formerly enslaved on these same lands, continued to live on them while they worked for the mining companies. On land, they dug ditches 4 to 7 feet deep to expose the phosphate rock and then shoveled it by hand into wheel
barrows, which were pushed to mechanical washers. The rock was then placed in drying sheds and loaded on to barges or rail cars for shipment (Beach 2014:54). Evidence of phosphate mining is still present along the Ashley River today and can clearly be seen on topographic maps and digital elevation modeling (DEM), and aerial imagery (Figure 24, Figure 25, Appendix B).

Phosphate mining was lucrative; so much so that by 1868, George Trenholm had given his Santee River plantation to his son and started mining phosphate on the Ashley River (McKinley 2014). In 1870, the state granted river mining rights for $1 per metric ton, which accelerated the industry. By 1884, South Carolina was producing half of the world’s phosphates. However, the boom was short lived. The Great Earthquake of 1886, which was centered on Middleton Place and measured an estimated 7.3 on the Richter scale, devastated the Lowcountry and almost every standing structure in and around Charleston was affected. This disaster, combined with the discovery of higher quality beds of phosphate in Tennessee and Florida, severely hampered mining activities along the Ashley River. The industry was further decimated when Governor Tilman assumed control of all river phosphate mining in 1891. He was convinced the state was being cheated out of revenue and the takeover bankrupted the state’s largest producer, Coosaw Mining Company. The fate of phosphate mining was sealed by the catastrophic hurricane of 1893, which killed thousands of workers and destroyed a good deal of mining infrastructure. By 1894, Florida had surpassed South Carolina as the top phosphate producer in the United States and the South Carolina industry never recovered (Edgar 1998; Beach 2014:55).
Figure 24. Topographic map in vicinity of Middleton Place and Drayton Hall, depicted by the red dots, with yellow overlay of areas strip mined for phosphate (Data provided by Historic Charleston Foundation and Brockington and Associates, map by the author)
Figure 25. Modern aerial imagery in vicinity of Middleton Place and Drayton Hall, depicted by the red dots, with yellow overlay of areas strip mined for phosphate (Data provided by Historic Charleston Foundation and Brockington and Associates; ESRI 2019; map by the author).
The 20th Century and the Rise of Tourism

Though it was only lucrative for a short time period, phosphate mining enabled some former rice planters including the Middletons and the Draytons to keep their lands and rebuild some of their material wealth. By the first quarter of the 20th century, fresh life was being breathed back into some of the Ashley River plantations as younger generations took over the management of family plantation lands. The Middleton and Drayton families, in particular, began the arduous process of rebuilding their once opulent gardens. In particular, Middleton Place and Magnolia, also a Drayton property, began to draw garden enthusiasts and tourists to the Ashley River.

In 1915, John Julius Pringle Smith, a Middleton descendant, inherited Middleton Place. He and his wife, Henningham, moved into the south flanker and made Middleton Place their winter home until 1970 when their grandson took over management of the plantation. During the Smith’s tenure at Middleton Place, significant improvements were made by modernizing the south flanker, updating the outbuildings, and restoring the vast gardens. The gardens were open to the public in the late 1920s and, in 1941, Middleton Place received the Garden Club of America’s Bulkley Award (www.middletonplace.org 2001, 2019).

The Smith’s grandson, Charles Duell, after assuming management, turned the stable yards into an outdoor museum. In 1972 Middleton Place was named a National Historic Landmark and is also listed on the National Register of Historic Places. In 1975, Middleton Place opened to the public as a house museum and open garden. The south flanker is now a museum house and is also home of the Middleton Foundation archive (www.middletonplace.org 2001, 2019).
Drayton Hall also evolved into a museum house, but under very different circumstances. By 1915, Charles Drayton had died and the property passed to his widow. Their daughter, Charlotta, gained controlling interest and held Drayton Hall until her death in 1969. She left the property to her nephews who could not afford the maintenance. They sold it to the National Trust for Historic Preservation in 1974 and became members of the board to help guide the future of Drayton Hall. It opened as a house museum in the late 1970s. Recently, The Trust sold the property to the Drayton Hall National Historic Trust Foundation where it remains today as a house museum open to the public (www.draytonhall.org; Zierden and Anthony 2004). Through generations of Draytons, the house was never significantly remodeled and the result is one of the oldest examples of an intact Georgian-Palladian house.

Not all plantations survived the effects of the Civil War and encroaching development on the Ashley River. Cedar Grove passed out of the Vardell Family in 1912 and was owned by a series of private families until it was donated by William Gregg to the Coastal Carolina Boy Scouts in 1940 (Riddle 2015; Philips n.d.). The Boy Scouts held it until 1980 when they sold it to a group of investors (Riddle 2015). The land was subdivided and sold off to a series of developers and, today, the majority of the original 2,419 acres is now residential and commercial property (Philips n.d.).

Rice Planting in Transition on the Santee

Hard times were also felt on the Santee River as new freedmen and planters alike struggled to find ways to make a living. Unlike the Ashley River, there were no marl or phosphate beds to lure mining companies to the remote region of the Santee Delta. Some planters continued to produce rice and some hired those whom they had formerly enslaved. Some planters, however, refused to hire freedmen, insisting that they were not obligated to pay slaves a
wage for work that had, until then, been expected with no compensation. Still others simply refused to adapt to a new way of life and removed themselves from the South altogether (Bridges and Williams 1997; Edgar 1998; Beach 2014; Porcher and Judd 2014).

Those who could, managed to produce rice on the Santee Delta into the 1870s. They were helped by an infusion of northern cash into the southern banking system and a tariff on foreign rice. These factors allowed planters to produce rice profitably even though a reliable labor force was not guaranteed, and most were unable to take advantage of newer technology to prepare rice for the market (Beach 2014; Porcher and Judd 2014). To keep up with market demand and compete with an emerging mechanized rice industry in the gulf states, planters had to find ways to streamline production and mechanize where they could. During Reconstruction, syndicates were formed to collaboratively manage labor as well as bundle machinery and land to make production less expensive.

For a short period after the Civil War, rice production regained momentum, but was soon hobbled by a labor force empowered by freedom and wages, as well as a new group of middlemen such as mill owners, rice brokers, and short-term money lenders (Beach 2014:47; Porcher and Judd 2014). Newly freed workers refused to do some types of work that had previously been required of them as enslaved workers, such as standing in waist-high water and mud to repair dikes and trunk lines during the winter months. Because dikes and canals required constant maintenance, and these were tasks that had to be performed by manual labor, this decision by workers proved problematic to planters. The added expense of milling if it could not be done on site, selling rice to a broker who took a percentage of the profit, and borrowing money short term at a high rate of interest to cover unforeseen expenses drastically reduced planters’ net profits. As a result, Gulf states soon surpassed Lowcountry rice planters in
production and foreign tariffs could no longer protect their bottom line. Then, the weather shifted. Seasonal freshets on the Santee repeatedly flooded rice fields with salt water over several years and, by 1877, the endeavor was no longer profitable in much of the Santee Delta (Bridges and Williams 1997:263).

After the Civil War, Frederick Rutledge lost Waterhorn because he was unable to pay the taxes on it. The property was owned by a series of timber companies until 1934 when it was acquired by Francis Marion National Forest in effort to conserve what was left of the upland forests (Shlasko 1997; Beach 2014). Peachtree stayed in the family through extended relatives, who were absentee owners, and the Doar family continued to rent the property for some limited rice production. Tenant farming also occurred on a sporadic basis though it was difficult to rent the lands because working families were worse off than planters and could not afford the rents. The Doar family routinely helped the Lynch descendants with planning and creative solutions to generate enough income from the family holdings to pay taxes on the land, and there were several years when taxes went unpaid because of the lack of income (Waring McCrady Family Archive). Many people living on the Santee during this time period were in similar situations, having lost most of their wealth after emancipation and the loss of the Confederacy.

David Doar was a good renter and family friend and often collected rents from tenant farmers for the family. In 1914, he recorded that Peter Smalls and Gabriel Meyer were renting portions of Peachtree for farming (Waring McCrady Family Papers). In 1915 he advised Sally McCrady, one of the extended family members who bought a 450-acre tract of Peachtree containing the house ruin, on what might make her some extra money to keep up the property taxes. Mrs. McCrady was living in Sewanee, Tennessee at the time and had bought a house to keep boarders who attended The University of the South. She and Mr. Doar corresponded for the
better part of 30 years and he advised her on turpentine, timber sales, and possibly a full property sale. He also advised against certain buyers, who were from the north and would not make a reasonable offer (Waring McCrady Family Papers).

Mr. Doar made every effort to help the Lynch descendants hold on to their family lands, though it became increasingly difficult to do so because of the poor economic situation in the Lowcountry, which continued well into the 20th century. Family discussions on what to do with the Lynch estates, Peachtree included, continued for the better part of 50 years before a series of lawsuits to divide property between the heirs was settled in the first quarter of the 20th century. The Peachtree parcels were eventually sold out of the family in the 1930s to a cattle company.

The majority of the lands once belonging to the Lynch family and John Bowman, including parts of The Marsh, were sold at auction in the latter part of the 19th century. Arthur Manigault purchased a number of tracts in the Santee Delta during the 1890s. He may have had interest in creating a rice syndicate but sold some of those lands to another rice syndicate, S.M. Ward and Company. He kept Ravenel and Pine Grove, re-uniting a portion of The Marsh, and re-named it Rochelle after his family’s origin of La Rochelle, France. He continued to cultivate rice on the Rochelle lands until 1907 (Beach 2014; Linder and Thacker 2001).

Northern Industrialists Come for the Ducks

During the last quarter of the 19th century, a series of economic boosts helped get the Lowcountry over the void that large-scale plantation activities left when the enterprise crumbled. The railroad expanded, which was pushed by the forest industry; and northern industrialists who financed both of these industries discovered the great outdoors. While timbering and economic activities around naval stores occurred throughout the Lowcountry, these forest industries proved
particularly vital to the Santee River because, other than rice, there were limited means of economic production (Edgar 1998; Beach 2014). By the turn of the century, timber companies were buying or leasing large portions of the Lowcountry. This was due, in part to an exhaustion in old wood growth by commercial timber companies operating in the Great Lakes and Northeast regions (Beach 2014). Westward expansion of both people and railroads was driving the need for more housing and infrastructure, and thus more lumber products. Having exhausted the resources in the north, these companies turned their attention south. By 1913, Lowcountry mills were producing more than 300 million board feet of lumber (Beach 2014:57).

As with phosphate mining, the forest industry was funded by northern capital, which brought rich northern industrialists and investors to the Lowcountry, many for the first time. By the 1870s, railroad investors were taking a few days off and visiting rice plantations, at invitation from their owners, to hunt water fowl and deer. The trend in the north during the latter part of the 19th century was a return to nature and tranquility as an escape from the hustle and bustle of the cities. Additionally, many northerners were already familiar with elite South Carolina rice planters as many southern families escaped the heat of their plantations to summer homes in Newport, Rhode Island or Philadelphia, Pennsylvania. The elite of both societies were familiar with each other through a mixture of social circles, education at private schools, travel on the European continent, and intermarriage. Even though a war had been fought, many of those relationships were still intact and it is through them that northern elite businessmen discovered the Lowcountry as a place of retreat from their busy lives (Edgar 1998; Beach 2014).

Elite industrialists such as Harry Hollins, a business partner of J.P. Morgan and founder of New York banking and brokerage firm H.B. Hollins & Co., and Edward Dennison of Philadelphia, who together represented a large interest in Central of Georgia Railroad, came to
South Carolina to hunt at the invitation of wealthy planters such as General Porter Alexander (Beach 2014:60). Many were already avid outdoorsmen and had been hunting since their youth, but never had they seen the abundance of water fowl that inhabited the South Carolina Lowcountry, and particularly, the Santee River.

Different species of duck and other waterfowl historically populated the Lowcountry region because of the proliferation of natural nesting grounds and abundant food sources. Because the Santee was so remote, those nesting grounds and more than adequate food supply provided by newly-abandoned rice fields, ensured large populations of waterfowl in the winter months. This was particularly true at the turn of the 20th century before the hunt gained in popularity and waterfowl were overhunted. The Ashley River attracted both local and northern hunters; however, because of the phosphate mining industry, waterfowl did not nest on that river in great quantity as they did on the Santee. Middleton Place hosted a yearly deer hunt within their inland rice fields, which attracted northern interest, but waterfowl was not the main draw for the event (Edgar 1998; Beach 2014),

After a story in a northern magazine based on the experiences of Hollins and Dennison, interest grew in seasonal hunting in coastal Carolina so much so that, by the 1880s, clubs were being formed with the purpose of buying or leasing vast amounts of acreage for hunting. Many hunt club members eventually also became plantation owners because land was so inexpensive in the South during this time period. Soon, elite hunting clubs comprised of wealthy northerners as well as local southerners, were popping up all over the Lowcountry. Hunting had always been part of life in the Lowcountry, both for pleasure and subsistence. Seeing an opportunity to preserve that way of life and perhaps hold on to ancestral lands, southern plantation owners welcomed northern industrialists to the Lowcountry. They gave a much needed boost to the
economy through their local purchases of goods and services. The clubs also employed local groundskeepers, house keepers, cooks, and guides, many of whom were either formerly enslaved or descendants of them (Bridges and Williams 1997; Edgar 1998; Beach 2014). Later, these clubs would be vital for the preservation of undeveloped former plantation lands.

During this time, two major hunt clubs were established on the Santee River. The Santee Gun Club was founded in 1898 by two southern gentlemen who both fought in the Civil War and were educated in the north, Captain Garden and General Porter Alexander. Both had acquired large tracts of land near the mouth of the Santee Delta and Winyah Bay. The charter members were a mixture of local elite former rice planters and northern industrialists; honorary members were President Grover Cleveland and Captain Thomas Pinckney (Bridges and Williams 1997; Beach 2014). Their mission statement was “to acquire tracts of land in South Carolina and to use and maintain the same as a private preserve for the benefit of its members for the purpose of hunting, fishing, yachting, health, rest and recreation” (Bridges and Williams 1997:297). The Santee Gun Club eventually owned or leased 23,000 acres on both sides of the Santee from its delta to approximately seven miles inland. This acreage included parts of The Marsh Plantation land grant. The club still has a charter today, though the lands they hunt have changed. Currently, they have a lease to hunt on Peachtree, in agreement with White Oak Forestry (Altizer 2014).

The Kinloch Gun Club was also formed in 1912 of lands previously owned by rice syndicate S.M. Ward and Company, which consisted of 14 tracts of land. Some of these tracts included the former rice plantations of Milldam, Camp Main, The Bluff, and a portion of The Marsh. These tracts were all owned by the Horry family prior to the Civil War. Kinloch Gun Club was formed in partnership by a group of wealthy businessmen from Wilmington, Delaware. They built a club house on the site of Milldam plantation. By 1930, Eugene DuPont and his
cousin Eugene E. DuPont had bought out the rest of the partners and they held it in common until 1962 when Eugene E. became the sole owner. The Kinloch Gun Club still operates today and uses the club house built in the first quarter of the 20th century. It is now owned by the Turner Foundation, which is a part of the Turner Broadcasting System. The Turner Foundation placed a conservation easement on the entire parcel and invests in sustainable land management techniques to support habitat for waterfowl, quail, dove, turkey, and deer (Linder and Thacker 2001:644).

Rochelle was sold to a private hunt club in 1919 and then re-acquired by Robert Manigault, Arthur Manigault’s son, in the 1950s. Rochelle is still in the Manigault family today and was one of the first plantations on the Santee Delta to have a conservation easement placed on it. The easement ensures only limited development can take place on the parcel and also protects sensitive waterfowl habitat. Many other plantation owners have also followed the Manigault family’s example and, as a result, a portion of the Santee Delta is now protected under conservation easements. These easements are essential to the protection of the Santee Delta as a sensitive habitat and will ensure limited development in future land acquisitions. Unlike the Ashley River, the Santee is protected from population pressures because of its remoteness. The landowners along the Santee intend to keep it that way and encourage new landowners along the river system to place conservation easements on their properties as well.
Chapter Four: The Ashley River

Included in this chapter is a chain of title for each study subject on the Ashley River (Figure 3), a review of the prominent families, some related maps, and a summary of the results of archaeological investigations. These varied sources of information show how the plantations changed over time, based on social and economic drivers from settlement to the early part of the 20th century. The end of this chapter includes analyses of the Ashley River study subjects and how they fit into the argument for intra-regional variability.

Cedar Grove

Cedar Grove is more generally known as the country seat of the Izard family who were wealthy planters and politicians in the 18th century. The Izard family held a large portion of land by way of at least 16 plantations on the Ashley River, which comprised almost 20,000 acres (Smith 1919). Wherever they built a residence, it was accompanied by well-manicured grounds and large gardens. Cedar Grove was no exception. There is no firm date of construction for the main house; however, the land grant that Francis Turgis received in 1696 for 370 acres contained a residence and enslaved settlement (Smith 1919). The house was most likely constructed for Job Bishop sometime prior to 1696. This was likely the same main house that burned in 1861, but with revisions over time. A handful of descriptions exist for the plantation house before it burned (Yeadon 1857; Dwight 1918, Shaffer 1939; Smith 1988). The most thorough and useful of these descriptions came from Charles Dwight, the son of Dr. Dwight who acquired the property in 1836. Mr. Dwight grew up at Cedar Grove and, later a Civil Engineer by trade, gave an explicit and precise account for Henry A.M. Smith, at his request, in 1918 (Dwight 1918).
The Cedar Grove house measured approximately 55-ft-x-45-ft with porticos on the long axes facing both the landside and the riverside. It was 2.5 stories high on an English daylight basement and built almost entirely of brick. The house was Georgian-Palladian in style with primary entrances centered on the second level on both riverside and landside elevations. The ground level was an English daylight basement and contained the kitchen with large hearth and storage rooms for dishes, utensils, and a wood room for the fireplaces. It was also paved with large yellow flagstones (Dwight 1918; Philips 1992).

The exterior of the house was colonnaded on both the landside and riverside elevations. Both elevations also contained porticos with brown stone steps and wrought iron balustrades leading up to them. The riverside elevation contained a large piazza, which ran its length, affording a sweeping view of the Ashley River and nearby plantations including Middleton Place. The landside portico contained a series of turned cypress columns, which sat on sandstone blocks. The portico floor was paved with diagonally placed black and white marble tiles with a border of sandstone (Dwight 1918). Dwight describes the landside portico as the main entrance to the house but this was likely not always the case. During the colonial period, both the landside and riverside entrances would have been utilized as the Ashley River was an important mode of transportation and was likely an easier way to get back and forth to Charleston during certain times of the year.

The main level of the house contained a large parlor, library, bedroom, pantry and linen storage, as well as a large staircase on the east side of the building. The second story contained four bedrooms with adjacent dressing rooms, large linen closet and stair hall landing and the half story contained four additional rooms. Previous occupants and visitors described the Cedar Grove interior as quite ornate with a marble mantel and surround atop the fireplace in the parlor.
and large ornate mantel in the dining room (Yeadon 1857; Dwight 1918). Charles Philips made a conceptual sketch of the house footprint. Based on his limited archaeological testing, he found the landside elevation to be centrally recessed, which is not characteristic for this time period and likely a testament to the planter making this house to his taste.

In addition to the main house, several earlier accounts also describe grounds as being quite ornate and, during its occupancy by the Izard family, the property likely contained one of the best colonial gardens in America (Yeadon 1857; Shaffer 1939). Though no exact measurements or inventory of plants survives, Richard Yeadon, writing in an editorial for The Charleston Courier in April 1857, provides a general description. He described the grounds as elevated and then gently sloping toward the river. He spoke specifically of the causeway, which connected Cedar Grove on the mainland through the marsh to the Ashley River where it contained a wooden boat landing. Evidence of the landing is still present underwater (Newell 1990; Felzer et. al. 2012). Yeadon wrote somewhat romantically of oaks, elms, large magnolia trees, and other hardwoods that dominated the landscape in addition to smaller flowering plants and bushes. Though overgrown, some of these trees were still present on the landscape during Shaffer’s visit of 1939, and Charles Philips documented parts of the oak and elm allée in the 1990s as part of his archaeological assessments (Shaffer 1939; Philips 1992).

Yeadon describes the yard on the landside elevation of the house as a large and sweeping green campus while the flower gardens dominated the space between the house and the river. A large artificial mound, rising approximately 15 feet high and constructed of brick masonry, was also present on the south side of the plantation and afforded a sweeping view of the river and surrounding plantations (Yeadon 1857; Shaffer 1939). Mary Middleton had the mound constructed so she might summon those at Middleton Place on occasion, as well as admire the
extensive terraced gardens at Middleton. Sometime from 1826 to 1836, many of the oaks, particularly those along the mile-long allée approach to the house from what is now Dorchester Road, were cut down and sold as ship timber to a company in the north (Yeadon 1857; Shaffer 1939).

Yeadon also described the outbuildings on the landscape, which included a corn crib, carriage house and stable, and, as the Vardell’s granddaughter indicated, a wash house (Yeadon 1857; Murray 1970). Cedar Grove produced a variety of cultigens including rice, corn, cotton, sweet potatoes, potatoes, fruits and other vegetables, and also operated a dairy on site (Yeadon 1857). Yeadon (1857) indicated that most of the outbuildings were constructed of wood with brownstone piers. None of these early descriptions of Cedar Grove make note of nearby enslaved settlements though they do appear on the 1711 and 1820 plats, which are the best physical renderings of the landscape available during the Izard family occupancy (Figures 26-30).

Maps

There are several maps associated with the Cedar Grove Tract. The earliest of these that contains structures dates to 1711 and shows the domestic core, enslaved settlement, and field layout (Figures 26-28).20 The 1820 plat, surveyed and drawn after Mary Middleton had the lands divided for her sons, is the most detailed (Figures 29 and 30). A later map, drawn in 1868, is also useful for its details of the latter half of the 19th century

20 The earliest map of Cedar Grove dates to 1706 but does not contain identifiable landmarks, except for a portion of the Ashley River. There are also two maps related to phosphate mining dated 1911 and 1912. While they do show areas for potential mining, it is unclear whether Cedar Grove was mined for phosphate and thus, these are not included as part of this study. Those mining features were also not included in the Ashley River Historic Corridor survey of 2012 (South Carolina Department of Archives and History).
Figure 26. 1711 plat of Cedar Grove Plantation (Courtesy of South Carolina Department of Archives and History).
Figure 27. Detail of 1711 plat of Cedar Grove Plantation, showing the locations of Mary Middleton’s Lookout, the allée, enslaved settlements, the old rice fields, and Canty’s and Jenny’s settlements (Courtesy of South Carolina Department of Archives and History).
Figure 28. Detail of 1711 plat of Cedar Grove Plantation overlaid on a modern topographic map for orientation and scale (Courtesy of South Carolina Department of Archives and History; map by the author).
Figure 29. 1820 plat of Cedar Grove Plantation (courtesy of the South Carolina Historical Society).
Figure 30. Detail of the 1820 plat of Cedar Grove showing the domestic core and adjacent enslaved settlement, overlaid on a modern topographic map for orientation and scale (plat map courtesy of the South Carolina Historical Society; map overlay by the author).
(Figures 31 and 32). The later maps appear to be based on the 1711 map. These are all important maps for understanding change over time at Cedar Grove.

The 1711 map shows Cedar Grove still being developed. An overlay of the map on a modern topographic map shows only the lands in proximity to the river as developed. The fields and the plantation domestic core appear to be strategically located; the fields were placed in the marshy areas next to the water, while the domestic core was placed near the river’s edge but in between marshy wetland areas. Because the 1711 map is not as detailed, more elements of the domestic core can be seen. Cedar Grove contained a Palladian landscape, which is still present in 1820 yet obscured by the number of trees. The 1711 map clearly shows dependencies on the landside elevation, in addition to other outbuildings (Figure 27). They appear placed to balance the landscape. Additionally, there is an enslaved settlement present on the 1711 map, in the outer yard, just east of what may be a reflecting pond. This settlement appears part of an overall plan of perspective utilizing the oak allée. There are 11 houses on the map; of these the most northeastern house appears to stand alone possibly indicating this was the overseer’s residence at 45-degree angles between the trees of the allée. The allée was originally a one-mile long approach to the main house from the public road and forms the central axis of the domestic core, which continues through to the causeway at the Ashley River. The house sat approximately 840 feet from the rivers’ edge. Mary Middleton’s mound appears as well approximately 250 feet southeast of the house within the domestic core (Figure 27).

Another enslaved settlement present is approximately 650 feet northwest of the main house on the next slight rise just beyond the ponds (Figure 30). The settlement consisted of an overseer’s house and eight cabins for the enslaved. It is 250 feet north of the nearest field
Figure 31. 1868 plat of Cedar Grove Plantation (Courtesy of South Carolina Department of Archives and History).
Figure 32. 1868 plat of Cedar Grove Plantation overlaid on a modern topographic map for orientation and scale. (Courtesy of South Carolina Department of Archives and History, map by the author).
that appears to have been under tidal rice cultivation and 350 feet northeast of the nearest outbuilding to the main house. This is the only documented housing area for the enslaved on the Cedar Grove tract; however, there may have been others at Cantey’s and Jenny’s that were not included on this plat.

As a visitor approached the domestic core, they passed from the outer working fields, through a wooden fence line into a pastoral landscape. The allée consisted of two rows of trees on either side of the road from the outer gate, and an enslaved settlement was strategically placed for view between the trees on the north side of the road. The allée ends at the dependencies, which mark the entrance to the inner gardens and main house. These are delineated by another fence line. There is another enslaved settlement present on the rise to the northwest of the main house, just north of what appear to be reflecting pools, similar to the butterfly ponds of Middleton Place. Also of note in the 1711 map, the inland rice fields in proximity to what is now Dorchester Road are already marked as “Old Rice Fields.” Canty’s settlement is also included in this map. Jenny’s settlement is present as a single structure with approach from the main road (Figures 27 and 28).

The 1820 map is the only known representation of Cedar Grove in the antebellum period, and gives an indication of how the property was being utilized in the first part of the 19th century (Figure 29). It contains many similar elements to that of the 1711 map and there are also revisions to the landscape. The fields have been completely divided by a series of canals and roads and some elements of the colonial landscape have been removed. The enslaved settlement in the outer yard does not appear in this map and Canty’s settlement is labeled yet no structure is recorded as present, only a few trees. Jenny’s settlement is also labeled with a singular structure
and approach from the road depicted. The Cedar Grove landscape appears very precise, divided, and controlled in the 1820 plat.

The domestic core appears similar to that of the 1711 map; however, there are some noticeable differences (Figure 30). Mary Middleton’s lookout is not as pronounced indicating it may have not been in use by this time period. There is an additional outbuilding within the inner garden complex and the gardens do not appear as ordered or there may be the addition of foot paths, indicated by a series of dashed lines. The domestic core presents as a pastoral landscape with manicured lawns and planted trees and bushes around the edges to delineate it from the rest of the working plantation (Figure 30). The canal system served as a mechanism to direct water flow to fields and to show field division. It appears that, by 1820, the majority of the inner fields away from the Ashley River were no longer actively cultivated. While overall there is more detail on the larger plat, the attention to detail within the plantation domestic core is not as fine as it is on the earlier map.

By 1868, just after the Civil War, the Cedar Grove tract appears as a shell on the landscape, when compared with previous maps (Figures 31 and 32). The domestic core is scant, with only the main house and dependencies present. There is no evidence of gardens, the lookout, or other outbuildings. The reflecting ponds are present; however, the enslaved settlement is gone. The dike and canal systems are still present, but there is no indication that any of the fields were being cultivated during this time. Of note, there is a structure at Canty’s settlement and Jenny’s is also still present. This map provides solid evidence of the effects of Sherman’s troops on Cedar Grove.
Archaeology

In the absence of earlier detailed plats or descriptions of the Cedar Grove landscape and domestic core, archaeology can serve as guide to understanding both plantation layout and change over time. Charles Philips oversaw limited exploratory archaeological excavations from May to July 1992, on the weekends, with support by a group of avocationalists who volunteered their time and were attached to the local archaeology society in Dorchester County. Philips was able to relocate parts of the original allée, containing elm and oak trees along the main house approach, and identified at least three planting episodes: the original planting of oaks in the 1750s, a later planting of them in the 1830s, and an addition of elm trees to the interior along the road itself in the 1840s (Philips 1992). He also located several other original trees to the Cedar Grove domestic core along the southwest side of the house.

Most of the archaeological excavation Philips conducted was on the main house foundation. He was able to confirm some of Mr. Dwight’s reminiscences of the house as well as expand on what is known of the original building construction, design, and materials. Philips confirmed that the house measured 43-45 feet by 53-55 feet with porticos constructed on the long axes. The landside portico was recessed by several feet. The ground level was paved with a series of large yellow flagstones along the interior riverside elevation with a brick paved floor underneath. The brick paving was exposed, indicating the flagstones were either removed at some point or there was another type of material on top of the brick floor. There was some indication of the remains of the kitchen fireplace as well, but its exact location is unknown on the floor plan. Philips (1992) observed evidence of the fire and subsequent wall collapse in portions of the exposed interior. Excavations were conducted to expose the corners of the ruin, get an accurate measurement of the footprint, and assess the integrity of intact architecture. Household
artifacts recovered were consistent with an 18th- and 19th-century main house occupation. Diagnostic ceramics included tin-glazed wares, white salt-glazed stoneware, Chinese export porcelain, pearlware, creamware, and American stoneware.

Cedar Grove has also been the subject of several cultural resources surveys in the late 1990s and early 2000s as a part of subdivision development (Newell 1990; Styer 1992; Poplin 1993; Bailey and Fletcher 1999; Bailey et al. 1999; Bailey et al. 2001). By recommendation, the projects avoided the main house ruin and causeway, both of which are now under a conservation easement, along with the original allée from Dorchester Road to the main house. The enslaved settlement, also recorded during this time period, was documented as already disturbed by previous development activities and was recommend not eligible as a contributing element to the site. This area received its own site number; however, it was destroyed in the course of subdivision development.

LiDAR imagery and Digital Elevation Modeling helps to understand what remains of the landscape, despite modern development. The remains of the original allée to the main house at Cedar Grove are present, as well as a depression where the main house sat. Remnant terracing from the gardens is also present in addition to the causeway to the Ashley River, remnant canal systems, and a knoll on the land-form where the enslaved housing settlement was located. Remnant terracing and canals are also beside the knoll, though the main part of this landform has been completely developed into a housing subdivision (Appendix B).

Cedar Grove Interpretations

The Izard family was known for their fine gardens and houses at a number of their plantations, and Cedar Grove was no exception. Though there is little evidence left of it, the
landscape depicted on the 1711 map provides details of an ordered Palladian landscape. The 1820 map provides details of the entire tract, which is helpful in terms of field layout and use. Firsthand accounts and observations help to fill in the gaps of what the domestic core once looked like. Philips’ archaeological investigations, though limited, support Mr. Dwight’s descriptions of the early 20th century. Philips (1992) was also able to document elements of the house not discussed in these accounts, including the recessed central portion of the landside elevation and portico, as well as the presence of at least two flooring layers on the ground level.

Mary Middleton’s lookout is another fascinating detail that speaks to the Cedar Grove landscape. Though it is mentioned in secondary documentation as a vantage point for her to communicate with Middleton Place and admire the gardens and butterfly ponds, Mary had her own extensive gardens at Cedar Grove as well (Yeadon 1857; Shaffer 1939). The mound likely also served a dual purpose of providing a vantage point to oversee enslaved workers in the fields and gardens, if not by her then by her husband or an overseer. Shaffer’s description of its remnant in 1939 indicates the mound was at least 15 feet high with a terraced brick retaining foundation. He also states that, while the grounds were overgrown at this point, he could still see glimpses of the Ashley River and Middleton Place on the other side. Charles Philips’ visit in May 1992 confirmed the remnants of the mound were still visible on the landscape at that time.

Of note on the 1711 map are the presence of two enslaved settlements; one in the outer yard and another on the bluff to the north of the main house. By 1820, the yard settlement was no longer present. Though it is briefly described by Yeadon, and some rudimentary archaeological testing was conducted before development in the early 2000s, little is known of either settlement and those that lived there. The absence of the yard enslaved settlement by 1820 is likely because Cedar Grove was no longer fully cultivated and there was no need for as many laborers
on the tract. The choice to remove the yard settlement while retaining the bluff settlement at the edge of the plantation core likely served a two-fold purpose. This settlement was closer to rice fields than the yard settlement but could also be a telling indicator of the planter and enslaved relationship by the antebellum period. The landscape itself provides a convenient barrier between the domestic core and the enslaved settlement, with a natural bluff and drainage, and canals cut into the land form, separating enslaver from enslaved. The enslaved settlement likely was visible from the primary level piazza on the riverside elevation of the main house. The outbuildings form another barrier between the two dwelling areas and there is a clear separation of space by a fence demarcating the main house gardens and the rest of the tract. The failed Denmark Vesey slave rebellion occurred only two years after this map was drawn, and this landscape relationship between planter and a portion of the enslaved work force could be an indicator of strained relations due to population pressure (Edgar 1998; Spencer Wood 2010).

Of note on the 1711 and the 1820 maps, many of the Cedar Grove fields were not in production. Both maps reference “Old Rice Fields” in what appear to be low-lying areas, as well as what is now Coosaw Creek. These fields were likely abandoned when tidal rice became the preferred method of rice production. Henry Middleton’s tidal rice fields are also labeled on the 1820 map, just south and west of Mary Middleton’s lookout mound. It is also likely that the Izards delegated their resources to other more productive rice plantations even as early as as 1787 and Cedar Grove was used primarily for other, local food production such as corn. In 1787, these fields were not yet laid out, but they were divided by 1820. Also of note are large sections of woods and pinelands not cultivated. By 1820, many planters on the Ashley River had already sold out and moved to other river systems with better production values.
Though Cedar Grove ceased to be the Izard family seat after 1820, it was still a prominent plantation on the Ashley River landscape and was likely still producing other cultigens in addition to some rice during the antebellum period. The description of the gardens by Yeadon as overgrown by the time that Mr. Dwight acquired the property indicates that the Pepper brothers were either only interested in the fields and did not use the house with any frequency or could not afford the maintenance on the fine home and acreage they had purchased (Yeadon 1857). Dr. Dwight invested much time and energy into Cedar Grove, rebuilding the gardens and adding to them. As his son’s account of the house indicates, the family spent a great deal of time at Cedar Grove and, during their occupation, it seems to have been used as the family country seat.

As with many other plantations on the Ashley River, the Civil War took its toll on Cedar Grove and the main house was burned at the beginning of the war. The Vardell family, who purchased the property just before the war, could not afford to rebuild. The map of 1868 is testament to a stark, very different landscape than that of 1820 (Figure 31). The Vardells sold it to another family in the first part of the 20th century. It sat in ruin until its development by a private corporation into a series of subdivisions in the latter part of the 20th century. Cedar Grove is representative of the majority of plantation landscapes on the Ashley River, which have succumbed to population pressure because of their proximity to Charleston.

Middleton Place

Henry Middleton was born into wealth, the middle son of former governor of South Carolina, Arthur Middleton. Henry’s father Arthur was well known in the Carolina colony as one of the Goose Creek Men as well as a wealthy plantation owner; he led the revolution to overthrow the Lords Proprietors in 1719 (Woolson 1879). The family holdings were extensive,
including property in England and Barbados. The Middletons owned the Mount plantation in the middle of Barbados, as well as other lands Arthur had acquired in the Lowcountry (Dunn 2000). Henry’s oldest brother, William, moved back to England to manage the family holdings there while Henry managed those in the colonies (Woolson 1879; Edgar 1998).

During the colonial era, the Middleton family held over 20 plantations in South Carolina alone, totaling at least 50,000 acres, and held as many as 800 enslaved people in bondage. Middleton Place was 6,500 acres and 44 enslaved people were in residence by 1793. This number increased to 92 by 1846 (Doyle et al. 2008:40). The small number of laborers on 6,500 acres of property is a good indicator that the Middletons did not use the property for extensive commercial production of cash crops; however, they were still producing inland rice for sale in the broader Atlantic world, as well as crops for plantation consumption. Henry Middleton was considered the wealthiest man in British North America by the mid-18th century (Fields 1956; Coclanis 1998; Edgar 1998; Doyle et al. 2008). Like many third- and fourth-generation Carolina planters and his father before him, he was educated in England, studied law at Middle Temple, and returned to the colonies to manage his family’s plantations. After their marriage, Henry and Mary settled at Middleton Place though Henry had been living at his family plantation, The Oaks, previously.

John Williams may have built the Jacobean style house on the Middleton Tract when it was under his ownership. It is thought to have been built in the late 1730s (www.middletonplace.org 2001). Henry Middleton began construction of the expansive gardens adjacent to it after he acquired the property in 1741. He hired a Dutch gardener to lay out the beds to his specifications (Woolson 1879; Lewis and Hardesty 1979). Family lore indicates it took the work of 100 enslaved people 10 years of seasonal labor to construct (Doyle et. al. 2008).
Henry also made improvements to the domestic core of the plantation. After 1741, he either added to, or rebuilt the main house (Pinckney 1991:152) and the flanker buildings were added in 1755. Several other outbuildings were also added during this time period (www.middletonplace.org 2001).

In 1764, Henry claimed grants for the marsh lands in front of Middleton Place as well as on the opposite side of the river in front of Cedar Grove, Bakers, Spring Farm, and Chatsworth Plantation. These newly acquired grants were annexed to Middleton Place, diked and placed under rice cultivation. The detail map of Cedar Grove (Figure 30) shows the Middleton tidal rice fields abutting the Cedar Grove property. Before his death, Henry gave Middleton Place to his oldest son Arthur, who married Mary Izard of Cedar Grove in 1764. Arthur was a signer of the Declaration of Independence along with Thomas Lynch, Sr.’s son, Thomas Lynch, Jr. Arthur died in 1787, at the age of 45, and Middleton Place passed to his oldest son, Henry.

In 1785, the French botanist Andre Michaux was sent to America by the French government to collect plant specimens he thought might grow well in France. Michaux became a frequent visitor to Middleton Place and often brought Henry Middleton rare plants and trees. Michaux brought Henry the first Camellias (Camellia japonica) ever to be planted in the United States and this strain still blooms in the Middleton Place gardens today (Smith 1988).

In 1798, during Henry’s ownership of Middleton Place, the Duke de la Rochefoucault-Liancourt visited and wrote of the landscape and house he witnessed. He wrote that the outbuildings including the kitchen, wash house, and offices were sizeable, but the house was small and plain. He also noted that the gardens were not well kept and thought perhaps the soils were not conducive to ornamental plants (Smith 1988; Pinckney 1991). Governor Middleton
may have been somewhat embarrassed by this account because he seems to have paid much more attention to the house and grounds after this royal visit.

Henry died in 1846 and the property passed to his son Williams Middleton. Like his ancestors before him, Williams managed the family plantations and was something of an agricultural experimenter; he expanded the gardens with foreign specimens such as the Indian Azalea (*Azelea indica*), which is now a common plant in the South. Also like his ancestors, he was active in politics though not as patriotic as his father and grandfather before him. Williams signed the Ordinance of Secession along with many other Lowcountry planters. He was also something of a defense contractor and sold anything of value, including forestry products, sand, and wire fencing to the Confederate Army. In 1865, Sherman’s Union army occupied Middleton Place for a short time. They burned all of the buildings, including the main house, which was ransacked before it was set on fire. The family vault was also looted and all of the caskets strewn about the yard (Smith 1988; www.middletonplace.org 2001, 2019).

After the war, Williams relied on phosphate mining. He started his own company, with the help of his sister Eliza Middleton Fisher and brother-in-law J.A. Fisher, to stabilize the family holdings (Shick and Doyle 1985; Doyle et al. 2008:67. MCKinley 2014). Fisher provided financial advice, telling Williams to resist the temptation to sell Middleton Place to other phosphate companies. Instead, he advised going into business for himself. The company, Ashley Mining and Phosphate, was backed by two Baltimore-based fertilizer dealers who promised to supply the money if he supplied the land and supervision. The contract was executed by 1868 and Williams moved his wife, Susan Pringle Smith, and their two children Lilly (Elizabeth) and Hal (Henry) into the south flanker building by 1870, after repairs were finally made. This building was the least damaged by the fires of the Civil War.
Phosphate mining helped revive Middleton Place to some degree and Williams was able to re-build some housing for the formerly enslaved, which had burned in the Civil War, for his workers. Many of the workers were formerly enslaved by him, while others came from nearby plantations. The work was hard and, to many, it felt like slavery again because the hours were long and many had to purchase equipment and food from the company store to be paid back in labor over time (Doyle et al. 2008:67). Timbering, milling, and small-scale agriculture also occurred during this time period; all of this work was performed by new freedmen and women (Doyle et al. 2008:67-68). Remnants of phosphate mining can still be seen on the landscape today on both topographic maps as well as LiDAR imagery for the area (Figure 24, Appendix B).

Williams died in 1883 and his wife Susan assumed management of the plantation and gardens. The earthquake of 1886 felled what was left of the crumbling main house, north flanker, and other outbuildings, but Susan was able to save the south flanker and had it repaired yet again. The earthquake left holes in the garden terraces and the butterfly ponds were drained as a result of the seismic activity (Pinckney 1991; www.middletonplace.org 2001). Lilly inherited Middleton Place after the death of her mother in 1900; her brother Hal stayed in England after he finished his education at Eton and was working as an engineer and inventor (Middleton Place Foundation Archive; Mary Edna Sullivan, pers. comm., 2019). By this time the Middleton Place house and grounds were in disrepair as there was little money for upkeep during the Reconstruction years.

Lilly died in 1915 and, by will, left Middleton Place to her cousin John Julius Pringle Smith who was also a Middleton descendant. He and his wife, Henningham, moved into the south flanker and made Middleton Place their winter home. Their grandson took over management of the plantation in 1970. They also marketed their flowers and vegetables to local
Charleston commercial outlets (Pinckney 1991). During the 1930s, the Smiths hired an architect to design and construct the stable yards in the manor of 18th-century outbuildings of South Carolina. In 1937, they built a guest house, which is now the Middleton Place restaurant (Pinckney 1991).

The Smiths initiated the Middleton Place Deer Hunt and employed local Gullah drivers who had a long-standing tradition of animal driving in their culture. The hunt club began in 1908 because there was interest in maintaining hunting traditions on the Ashley River. Local residents joined and the first drivers were descendants of formerly enslaved workers on Middleton Plantation. They kept the tradition of driving alive by passing their knowledge on to their children who, in turn, also became drivers for the Middleton Place Deer Hunting Club. The Hunt became tradition at Middleton Place and also had the effect of culling deer and pig populations on their property (Strauch 2002; DiBenedetto 2012; Kathy Hall, pers. comm. 2019 Lowndes 2019).

An 1842 sketch by Mrs. Arthur Middleton, the Countess Paolina Bentivoglio, gives a good indication of the exterior of the house and flankers, as well as the stable yard complex (Figure 33). As with Cedar Grove and Drayton Hall, the Middleton Place house was oriented in the cardinal directions and the porticoes were placed on the long axis. From the sketch, the main house was a full three stories of brick over a brick English daylight basement capped by a hipped roof and flanked by external chimneys centrally located on the north and south elevations. The landside elevation consisted of a projecting three story tower, which created a formal entrance into the house. A one-story piazza or addition is present on the riverside elevation. The house appears to be a central hall floor plan; an architectural scholar visiting the plantation in the 1950s
Figure 33. 1842 Sketch of Middleton Place domestic core by Mrs. Arthur Middleton, the Countess Paolina Bentivoglio (courtesy of Middleton Place Foundation, Charleston, South Carolina).
suggested a central hall floor plan two rooms wide, with angled fireplaces in a typical tidewater Virginia style (Pinckney 1991).

A photo taken from the riverside elevation sometime between the war and the earthquake of 1886 shows the house in similar form with the remaining external chimney stack on the north elevation servicing at least four interior fireplaces; three of these are visible in the center of the photo (Figure 34). From the sketch, historical photo, and the ruin left today, the central hallway was brick paved in a herring-bone pattern and the curved brownstone portico steps, with iron balustrades, were identical on the landside and riverside elevations.

The flanker buildings, constructed by Henry Middleton in 1755, are similar in configuration yet with notable differences to the main house. Identical in form, both are two stories high capped by a double hipped roof, with central pediment over the principal door opening. Two internal chimneys are also present, which flank the centrally-located cupola. They were seven bays wide, which balanced their form and mass, though not symmetrical in sash form between the first and second stories (Figure 33). One of the flankers served as plantation offices while the other was a guest residence and is thought to also have housed a music conservatory (www.middletonplace.org 2001, 2019).

There is no general synopsis or detailed documentation of the outbuildings at Middleton Place that pre-date the 20th century stable yard complex, other than the descriptions and sketches included here. From family correspondence, it appears that the rice mill and spring house were built sometime in the antebellum period by Williams. Most of the original outbuildings burned in the Civil War and it appears that Williams at least tried to rebuild, or at the very least re-roof, the rice mill for crop storage (Trinkley 1993).
Also in family correspondence is a reference to enslaved housing south of the mill pond, which was left intact during the burning episode of the Civil War. These are likely the same as the buildings included in the 1842 sketch (Figure 33) and they are marked on the garden map (Figure 9). One of these structures was moved and then interpreted as Eliza’s house, which houses an exhibit on what is known of the enslaved people who lived and worked at Middleton Place. Extensive records, many of which survive, of the Middleton family plantations provide a large body of evidence for names and jobs of the Middleton Place enslaved (Doyle et al. 2008).

Maps

There are three historical maps associated with Middleton Place, which are dated 1715, 1813, and 1885. They are valuable for presenting the landscape in different ways. They give an indication of the domestic core of the plantation and its relationship with enslaved settlements,
inland rice fields, and other nearby plantations and smaller settlements. The earliest of these, dated 1715, shows all of the settlements within St. Paul and St. George’s Parishes (Figure 35). It is important for its clear indication of property boundaries and the locations of nearby settlements. Of note is the location of Horse Savannah, which contained the majority of the Middleton Place inland rice fields as well as Jerry Hill, which was one of the Middleton Place enslaved settlements. This map also shows Drayton lands to the southeast side of the Middleton lands and Izard property present to the northwest (Figure 36). The Cattell family, whose plantation flanked Middleton Place to the south, owned the majority of these plantation lands during the later colonial period.

The 1813 map shows the public canal system as the focal point (Figures 37 and 38). Note the rice fields and related canals are on the periphery and marked as “Old” by this time period. There is also a settlement to the northwest of the canal and rice fields marked as Middleton, which could also be an enslaved settlement. The 1885 map also shows the location of Jerry Hill, then a freedmen’s settlement on Horse Savannah in proximity to inland rice fields (Figures 39 and 40). By 1885, there were likely freedmen living in this area and working the rice fields, or phosphate mines, for the Middletons in return for a wage. Jerry Hill was likely in this location well before the 1885 map was drawn but not included in earlier maps or labelled as W. Cattell’s settlement.

In 1790, over 80% of the population in Colleton District, where Middleton Place is located, was of African descent. However, there is very little cartographic representation of them on the landscape (Edgar 1998). Other than the 1885 map, which shows Jerry Hill as a larger structure with at least two smaller buildings flanking it, there are no other indicators of enslaved housing outside of the domestic core. Their absence is likely because planters considered
Figure 35. 1715 Plat of plantation lands on the south side of Ashley River Road, within Horse Savannah and Jack Savannah (Image courtesy of Middleton Place Foundation).
Figure 36. Overlay of the 1715 Plat of plantation lands on the south side of Ashley River Road, within Horse Savannah and Jack Savannah. Note those lands owned by R. Izard to the northwest, the Middletons in the central portion and L. Drayton to the southeast, all denoted by red arrows. The red circle is the location of W. Cattell settlement, which was later Jerry Hill, and the red dot is the location of Middleton Place (Image courtesy of Middleton Place Foundation; map by the author)
Figure 37. 1813 map of the public canal system and inland rice fields present through Middleton lands (Image courtesy of Middleton Place Foundation).
Figure 38. Overlay of the 1813 map of the public canal system and inland rice fields present through Middleton lands; the arrow points to a Middleton settlement and the circle is Jerry Hill (Image courtesy of Middleton Place Foundation; map by the author).
Figure 39. Map of the Middleton Place tract in 1885, just after Williams’ death (Image courtesy of Middleton Place Foundation).
Figure 40. Overlay map of the Middleton Place tract in 1885 on top of modern topographic imagery (ESRI 2019), just after Williams’ death; the circle is the location of Jerry’s Hill and the red dot is the Middleton Place domestic core (Image courtesy of Middleton Place Foundation; map by the author).
their work force property and not human. It also shows a bias on the part of the surveyor in what he chose to record as part of the landscape.

An overlay of the 1715 map on top of the 1885 map shows Jerry Hill in close proximity to a W. Cattell settlement, or house. Jerry Hill may have been enslaved quarters related to that earlier settlement (Figure 41). From Middleton journals, wills, and inventories compiled by Middleton Place Foundation, it appears there was at least one other enslaved settlement in Horse Savannah; the Middleton settlement depicted on the 1813 map could be this reference (Doyle et al. 2008). Within the domestic core, there was at least one enslaved cabin, depicted in the background of the 1842 sketch (Figure 33). Enslaved domestics also likely lived in the flanker buildings, basement and upper story of the main house. Enslaved men who worked in the stable yards were likely living in those outbuildings as well.

The Middleton Deer Hunt Club kept meticulous records of the fields they hunted and where particular drives were located. They also kept a record of local drivers and where they lived, based on the recollections of Theodore Mayes who was a driver and later president of the club. Mr. Mayes’ grandmother was born into slavery at Middleton Place and her family stayed on after they were freed. Mr. Mayes’ oral history provides evidence that, though they may not have been recorded on earlier maps, there were houses and entire settlements within the 6,500-acre parcel of Middleton Place that were built for enslaved workers and later maintained for freed workers to support the plantation (Lowndes 2019).
Figure 41. Overlay detail of the 1715 plat of St. Paul and St. George’s Parishes on top of the 1885 Middleton plat showing the Cattell settlement in relation to Jerry Hill, all circled in red core (Image courtesy of Middleton Place Foundation; map by the author).
Archaeology

Limited archaeological investigations have been conducted at Middleton Place. These include a small survey of the domestic core, excavation of a late 19th-early 20th-century privy, and limited exploratory excavations in support of the stabilization of the rice mill near the butterfly reflecting ponds (Lewis and Hardesty 1978; Lewis and Haskell 1981; Trinkley 2001). The privy and rice mill were constructed late in the antebellum period.

In 1978, Kenneth Lewis and Donald Hardesty conducted a random survey of the domestic core and stable yards, based on an arbitrary grid system, with the purpose of understanding the built landscape and probing for additional settlement areas. The survey itself consisted of a series of test units across the domestic core. They were interested in site interpretation and also trying to define a settlement pattern type. Because Middleton Place is so well known, they thought it may be representative of a broader settlement pattern of wealthy planters along the Eastern seaboard.

During the course of survey, they noted the existing domestic core, much as it is today, with the ruin of the main house and north flanker, the south flanker now a house museum and archive, a brick rice mill near the river, a brick spring house, the reflecting ponds, extensive gardens, the Middleton family tomb, and remnant rice fields, and the more modern stable yards and craft exhibition buildings. Artifact analysis from this survey indicates a median occupation date of 1796, based on recovered ceramics. This date is associated with the occupation of Governor Henry Middleton and is when the plantation was in full cultivation and regularly occupied (Lewis and Hardesty 1978).
In 1993, Chicora Foundation conducted limited archaeological investigations at the rice mill. The structure was damaged in 1989 by Hurricane Hugo and was in need of stabilization. Chicora excavated three test units to understand the date of construction and whether any previous building episodes were present. They also monitored ground disturbing activities during stabilization to ensure no archaeological deposits were damaged by the effort (Trinkley 1993).

Trinkley (1993) confirmed that the building was originally a rice mill constructed just before the Civil War and postulated that, because of its size, it was likely only utilized to mill what was needed on the plantation. It would not have been able to commercially compete with nearby larger mills. It may have burned during the Civil War; however, it was still standing and had to be rebuilt in the 1870s. This was the first of several building alterations, which occurred in the 1880s, 1890s, and again in the 1920s when the building was repurposed as a tea room (Trinkley 1993).

Middleton Place Interpretations

The Middleton Place domestic core contains the oldest surviving garden in America as well as the ruins of a once handsome Jacobean style home with dependencies, although these are a later building episode. The plantation was completely burned, with the exception of the enslaved quarters in the stable yard complex. The rice mill and spring house were re-built in the latter half of the 19th century along with the south flanker, which now houses the museum and archive. There is no known detailed plat of Middleton Place, though documentation of some of the outbuildings is present in family correspondence. The stable yard complex was re-built and re-configured to accommodate visitors in the 1970s. Therefore, what remains on the landscape today, within the domestic core, is actually an altered landscape from the 18th century, with the exception of the structure of the gardens, though these were expanded through the 19th and 20th
centuries. However, from family records, such as the 1842 sketch and family correspondence, in addition to the archaeology conducted by Lewis and Hardesty in the late 1970s, the locations of many of the outbuildings are known, as well as what the main house probably looked like. The 1842 sketch provides details on the perspective and use of space within the domestic core. There is a low fence connecting the flankers to the main house. In the sketch it appears that the fence is constructed of wood, which likely burned in the Civil War. The fence on the landscape today is brick, but serves the same purpose. The gardens and butterfly pond are not visible from the landside approach and any glimpse of them are hidden by the fence. Glimpses of them may be possible on horseback, looking through the trees. The butterfly ponds and part of the gardens could be seen from the Ashley River but in all, the garden spaces were only meant to be accessed by permission of the family. This was a very controlled, private space meant only for those who were invited into that social sphere. The 1842 sketch also shows many more trees surrounding the main house and what appear to be trees near the northwest portion of the gardens in proximity to the reflecting pool. They were likely placed there to conceal the gardens in this vicinity as well, creating a private, exclusive space.

Within the larger working plantation, Jerry Hill is the only known enslaved settlement besides the quarters south of the rice mill pond, in proximity to inland rice fields, though several more settlements were likely on the plantation tract (Doyle et al. 2008; Jeff Neale, pers. comm. 2019). One of these could be the settlement depicted on the 1813 public canal map. The Middletons cultivated tidal rice on the plantation and Henry seems to have had some luck with it as he purchased the majority of the marshlands flanking the Ashley River in proximity to Middleton Place. However, the majority of rice production appears to have taken place at Horse Savanna on the other side of the Ashley River Road from the main house and gardens. As
indicated by the numbers of enslaved present on Middleton Place as compared to the Middletons other working plantations, their country seat was a headquarters for their business interests and agriculture was practiced on a smaller scale (Doyle et al. 2008).

As with some other plantations on the Ashley River, phosphate mining saved the Middleton family from financial ruin after the Civil War and also helped give newly freed people a wage in return for their labor. Though it was lucrative, the mining industry did not last long and the earthquake of 1886 destroyed most of the mining infrastructure in the area (Edgar 1998; Beach 2014). The Middleton Deer Hunt was established in the first quarter of the 20th century likely for nostalgic reasons, to keep hunting traditions alive as the Lowcountry moved away from historical plantation lifeways. Club members were local residents and no northerners took part in their activities (Lowndes 2019). It was not until the second quarter of the 20th century that the Middleton family were able to fully restore the gardens. They also discovered the general public was interested and northern visitors helped restoration efforts by paying the entrance fee to visit the gardens. This act of opening to the public began the modern era of Middleton Place, which eventually opened a house museum and archive.

Drayton Hall

It is thought that Francis and Lydia Yonge built the first house on the property about 1718, in the vicinity of where the current Palladian building stands (Zierden and Anthony 2004).21 John Drayton acquired the property from subsequent owners in 1738. A newspaper advertisement lists the property as having a “very good Dwelling-house and convenient Barn and

21 The original 650-acre tract that became Drayton Hall was first laid out for Nicholas Carteret in 1676 or 1677 by issue of a warrant, which was given or sold to Edward Mayo in 1678 and included an additional 100 acres for a total of 750 acres. Edward Mayo sold to Joseph Harben, a Barbadian planter, in 1680. By 1718, the land was owned by Alexander and Jemima Skene who sold to Francis and Lydia Yonge in that year.
other necessary out-Houses…” (South Carolina Gazette, October 5, 1734; Espenshade 1991; Zierden and Anthony 2004).

John Drayton was born at the family home of Magnolia plantation, which abuts Drayton Hall on the northwest side. Though not much is known of his early life, he is thought to have been raised at Magnolia and sent to school in England. He built one of the largest plantation houses in the Lowcountry, based on Palladian principals (Palladio 1997). He married four times, and each union advanced his social status. His second and third marriages were to Charlotta Bull, the daughter of the Royal Governor of South Carolina, and Margaret Glen, a sister of South Carolina Royal Governor James Glen. Drayton’s primary income was from his plantation holdings, though he also managed plantations for absentee owners. He is known to have owned or operated as many as 10 plantations and at least 76,000 acres between Charles Towne and the Satilla River in Georgia. His wealth was largely due to the massive enslaved labor force he owned. Though the exact number of enslaved are not known, the Drayton Hall National Historic Trust Foundation estimates this number is in the thousands (www.draytonhall.org). John Drayton had seven children who survived infancy (Zierden and Anthony 2004).

In addition to rice, his enslaved labor force also grew indigo and raised livestock for export to the Caribbean (Hudgins 2011; www.draytonhall.org). He is thought to have practiced trade on occasion, as it arose in the course of his management activities (Carter C. Hudgins personal communication 2016). John Drayton was also active in politics, beginning as an assistant judge to the Justices in the Commission for the Peace and served as a member of His Majesty’s Privy Council between 1761 and 1775. He died of a seizure in 1779 while fleeing the British Army (Hudgins 2011).
Before his death, John Drayton added an additional 310.5 acres to his estate on the Ashley River. After his death in 1779, the property passed to his fourth wife, Rebecca Perry. In 1783, she deeded it to John’s second son, Charles, who was educated to be a physician in Edinburgh, Scotland during the Scottish Enlightenment. Dr. Charles Drayton married Hester Middleton, a daughter of Henry Middleton of Middleton Place, and he and Hester moved to Drayton Hall in 1784 (Zierden and Anthony 2004; www.draytonhall.org). Though Rebecca only held the property for a short time, during her tenure the British occupied the main house in 1780. Soldiers only stayed for one night and continued travelling across the Ashley River; however the officers stayed much longer and Charles noted they caused some property damage. One of the Royal Engineers who occupied the house in March 1780, John Peebles, described Drayton Hall as “One of the best houses I have seen in America, with handsome improvements” (Espenshade 1991; Zierden and Anthony 2004).

The period of Charles and Hester’s occupation of Drayton Hall is documented by Charles’ diaries, which he kept regularly and in detail. Like Henry Middleton and perhaps Ralph and Walter Izard, Charles was a horticulturalist and an experimenter in his gardens. André Michaux also visited Drayton Hall and was a good friend of both Charles and Henry (Espenshade 1991; Zierden and Anthony 2004). In 1796 during his visit to the plantations along the Ashley River, in addition to Middleton Place, the Duke de la Rochefoucault also visited Drayton Hall. He remarked on the quality of the main house and also approved of the garden plan, generally remarking on the views of the Ashley River from it (Smith 1988). Apparently, he was much more approving of Drayton Hall than Middleton Place.

Charles made a number of changes to the Drayton Hall landscape during his tenure. He repaired and made modifications to many of the outbuildings, built a new barn, and moved one
of the enslaved settlements from the colonial location of the landside yard of the main house to the ridge beyond the pond. This move was likely in response to population pressure of enslaved workers as the number of enslaved living on the plantation grounds grew from 41 in 1790 to 181 by 1810. There is some evidence to suggest that Dr. Drayton was experimenting with cotton during this time period, which could account for this increase in forced labor (Espenshade 1991; Zierden and Anthony 2004). The invention of the cotton gin by Eli Whitney in 1793 as well as the development of Sea Island cotton during this time period suggest that Dr. Drayton was utilizing plantation lands that were not well suited to rice (Espenshade 1991; Edgar 1998; Zierden and Anthony 2004). Tidal rice could not be grown at Drayton Hall because it was below the salt line; some inland rice was grown in addition to a variety of other crops, primarily for plantation consumption. The Draytons also kept a variety of fruit trees in their orchard including oranges, nectarines, and peaches (Espenshade 1991; Zierden and Anthony 2004).

Dr. Charles Drayton’s son, Charles inherited the property when his father died in 1820. The younger Charles was able to increase the family holdings; however, he died intestate in 1844. The property passed to his widow, Mary Middleton Shoolbred Drayton, and four sons. Of these, Thomas and John took controlling interested and held it through the Civil War. During this time, Drayton Hall is notable as one of the only plantations on the Ashley River to have survived the Civil War intact. It is said that the reason Drayton Hall was spared by Union forces was because the younger Dr. Drayton had displayed a quarantine sign notifying visitors that the house was being used as a smallpox hospital (Zierden and Anthony 2004).

The effects of the Civil War and resulting Reconstruction era were almost catastrophic for the Drayton family. At one point, John Drayton considered deconstructing the house and selling the brick. Like many other plantation owners on the Ashley River during this time period,
including Middleton Place, the Draytons were able to recover some of their losses by leasing their lands to phosphate miners. Thomas and John hosted phosphate investors in 1867 and by 1868, a portion of the Drayton Hall lands were leased for phosphate production (McKinley 2014:44-45; Mendelson 2019). The Draytons included a clause in their land lease that phosphate mining could not be conducted in the immediate yard or gardens of Drayton Hall (McKinley 2014).

Mendelson (2019) postulated that the mining companies re-used former slave quarters for their workers. The settlement would have been a mixed community of phosphate workers and freemen who stayed on in the employment of the Draytons to care for the house and grounds during their absence. Individual houses were also built during the latter part of the 19th century as the worker population supporting phosphate production dispersed on the landscape (Mendelson 2019:45). Phosphate mining continued through most of the 19th century at Drayton Hall and the effects of mining can still be seen on the landscape today (Zierden and Anthony 2004; www.draytonhall.org; Figure 24, Figure 160).

By 1915, Charles Drayton had died and the property passed to his widow. Their daughter Charlotta gained controlling interest and visited from Charleston on weekends and holidays until her death in 1969. She left the property to her nephews. Because the Drayton family never sufficiently recovered financially from the Civil War, the Drayton Hall tract had become a financial burden to them and, as a result, Charlotta’s nephews Charles Drayton III and Francis Drayton sold it to the National Trust for Historic Preservation in 1974. Recently, The Trust sold the property to the Drayton Hall National Historic Trust Foundation where it is remains today as a house museum open to the public (www.draytonhall.org; Zierden and Anthony 2004).
The landscape of Drayton Hall is unique in that it is the oldest surviving unrestored Palladian design in the United States today. What remains of the landscape consists of parts of the original approach, the main house, a privy and a Victorian garden on the landside elevation. Elements of a garden, serpentine paths, and an orangery are present on the riverside elevation between the house and the Ashley River.

The main house lies approximately 650 feet west of the Ashley River and is oriented in the cardinal directions. The house measures approximately 70 feet north-south by 52 feet east-west. It is a piano-nobile style, three story building consisting of a full ground level work space and two upper stories used as living space; these levels are separated by belt courses (Chase et al. 1988; Figure 42). The roof is double-hipped and constructed of terne-seam metal painted red. This roof is a replacement of an “M” or “W” English-style roof, which was part of the original construction. These styles of roof were constructed to collect water and, using an internal drainage system, drain to a cistern or well. These early styles were also prone to leaks and most, if not all, have been replaced with a different style of roof. The English roof at Drayton Hall was replaced early in the 19th century; however, there is still evidence of it in the attic (Trish Lowe Smith personal communication 2013). Drayton Hall is constructed of Flemish bond laid brick and is seven bays wide on the principal elevations with entrances centrally located. The north and south elevations are six bays wide.

There is no true principal entry to the main house. It is thought that both the landside and riverside entrances were utilized and equally important (Drayton Hall Guided Tour 2012). The west elevation faces Ashley River Road and consists of an elaborate two-story, three-bay, pedimented portico with flat frieze and architrave (Chase et al. 1988; Figure 42).
The east elevation of Drayton Hall faces the Ashley River and consists of a dressed limestone portico with a brick foundation flanked by stairs, which are parallel to the structure and curve down to the ground surface (Figure 43).

There are several accounts of the Drayton Hall landscape, and several documents survive, which speak to changes in the domestic core through the 18th century. A 1765 watercolor of the main house and flanker buildings shed light on the original design of Drayton Hall (Figure 44). In the watercolor, the flankers are intact and large brick colonnades are present between the flankers and the house, with fencing extending out on either side. These features would have blocked the view of the gardens on the river side from the landside approach to the house. Only upon exiting the house from the riverside elevation, would the visitor be able to enjoy the gardens.
Figure 43. East façade of Drayton Hall (Google Images 2014).

Figure 44. Drayton Hall, S.C. 1765, Pierre Eugène Du Simitière (Courtesy of the Private Collection of J. Lockhard; used by permission of the Drayton Hall National Historic Trust).
This colonnade also afforded a very controlled way to force foot traffic between the flanker buildings and the working area on the ground level of the main house (Stroud-Clarke 2009). This circulation pattern is in keeping with a tightly controlled landscape, which was common among the elite during this time period.

By the Gibbs drawing of the 1840s, the colonnades had been modified and the side fencing removed (Figure 45). These changes may have occurred during the Revolutionary War when General Cornwallis occupied the house and grounds for the better part of the summer of 1780. During his tenure, the house was altered and the outbuildings burned. It seems reasonable that the wood used in the colonnades and fencing would have been repurposed or used for firewood during this time period (Stroud-Clarke 2009).

Maps

There is one document of note, attributed to Charles Drayton I, which survives (Figure 46). This is a gridded map of the riverside portion of Drayton Hall. In it, he showed the general layout of the property, including the location of fields as he envisioned them to be, the approach and the main house with flankers, a shield-shaped garden, and an orangery, constructed in 1747, with associated serpentine foot paths.22 Rice fields are the large void areas in the central portion of the map, and a canal is present on the west side of the house from the Ashley River. Three buildings are located on the canal, likely related to storage and shipping of crops being grown in the fields. The remains of these buildings have not been re-located by archaeological survey so their exact function is unknown. The rice fields, referred to as ponds in the Drayton journals, were likely not very productive because of salt content but may have acted more as reservoirs.

22 See Chapter 1 for a description of the Drayton Hall gardens.
A canal system fed water to the rest of the property from them. The rice fields were mined for phosphate in the latter part of the 19th century (Figure 24). Based on Charles’ gridded map, the plantation was broken down into large fields by a system of dikes and canals for water diversion from the Ashley River and then further divided into smaller fields (Figures 46 and 11). The small size of the grids is likely in direct correlation with the task system for enslaved labor.

Also of note is the Glover plat, ca. 1790 (Figures 47-49). This plat is attributed to Charles Glover, whose name is scribed on the approach to the main house on this document. The Glover plat shows how Drayton Hall was divided, including named fields and their acreage, and gives an indication of where enslaved workers were living during this time period. Of particular interest is BG field, which is where an enslaved cemetery is located that persists on the landscape today; therefore, BG likely stands for Burial Ground (Figure 47). The backside of the plat is a detail drawing of an enslaved settlement (Figure 49).
Figure 46. Drayton Hall gridded map showing field locations, drawn by Dr. Charles Drayton ca. 1790s (courtesy of Drayton Hall National Trust Historic Site).
Figure 47. The Glover Plat, likely drawn by Joseph Glover Ca. 1790, shows how the Drayton fields were laid out and named; the red arrow is where the cemetery is located and also the likely location of the enslaved settlement detailed on the back side of this map (“Glover Plat” c. 1790, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC).
Figure 48. The Glover Plat, likely drawn by Joseph Glover Ca. 1790, shows how the Drayton fields was laid out and named; the red arrow is where the cemetery is located and also the likely location of the enslaved settlement detailed on the back side of this map (“Glover Plat” c. 1790, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC).
Figure 49. The back side of the Glover plat in detail, showing the row plan for a series of enslaved housing. Note the gardens attached to them and the overseer’s house and yard on the left side of the drawing (“Glover Plat” c. 1790, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC).
The detail shows housing, associated gardens, a communal stock yard, and an overseer’s house and yard. The detail appears very ordered and the spaces for the enslaved are all enclosed. Mendelson (2019) proposed this settlement is in the northwest quarter of BG field, denoted on the front side of the plat. Though there is no terrestrial evidence of buildings or structures on the landscape, except for the cemetery grave stones, it is plausible the settlement was confined to this area and certainly warrants further archaeological research (Figure 50). BG Field is located approximately 700 yards southeast of the main house, just east of the main approach. This is likely also the same settlement that was moved from the yards of the land-side elevation during the colonial era.

Archaeology

Of all the plantations included in this document, the most is known of Drayton Hall, archaeologically, because the Drayton Hall National Historic Trust Foundation has supported landscape studies and archaeological investigation since the late 1970s. Drayton Hall has been the subject of a number of archaeological inquiries, beginning in the 1970s with Lynn Lewis’ study of the Drayton Hall landscape to inventory extant structures and ascertain if there were previous structures that archaeology could help to delineate. From 1975 to 1982 she conducted limited archaeological excavations on the two flanker buildings, which were torn down in the latter part of the 19th century, the privy, and the yards surrounding the main house. She found evidence that the north flanker was of later construction than the south flanker and was a laundry and servant’s quarters, while the north flanker was a kitchen. She also encountered evidence of an early building, which may be the original house advertised for sale in 1738. Lewis also tested the ornamental mound on the landside elevation in front of the house and confirmed an early
Figure 50. Detail of the Glover plat overlaid with the enslaved settlement map, showing the row plan for enslaved housing (“Glover Plat” c. 1790, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC; map by the author).
20th-century construction date. She also noted several refuse deposits in the vicinity of the house (Lewis 1985; Zierden and Anthony 2007). During this time period an additional survey was conducted by Lewis in portions of the main yard surrounding Drayton Hall, which confirmed 20th-century serpentine garden beds flanking the central walk and further defined the refuse deposits originally located by Lewis (Zierden and Anthony 2007). In 1981, Lewis conducted limited excavations on the privy and confirmed that it is contemporaneous with the main house. She also exposed drainage features, which are similar to those documented by Philips at Cedar Grove.

The site of the garden house on the Ashley River was tested in 1989 by New South Associates, who determined it was an orangery and archaeological deposits were intact. They recommended stabilization and preservation of the structure. In 1990, in response to damage by Hurricane Hugo, Brockington and Associates surveyed the entire Drayton Hall tract. Shovel tests were performed every 20 meters and they were able to locate 22 areas for further archaeological inquiry. This survey directed the fieldwork over two seasons by The Charleston Museum and the College of Charleston bi-annual field school.

The Charleston Museum, in collaboration with the College of Charleston, conducted several years of field schools at Drayton Hall. The first of these, in 2003, explored the waterfront area in the azalea gardens in addition to the landside yard. The 2005 field school also explored the landside yard area thought to be a colonial-era enslaved settlement and barn. All artifacts were dated to the 18th century; however, the interpretation is tentative and warrants additional investigation. The 2007 field school expanded on the privy investigations begun by Lynne Lewis in the early 1980s. They expanded on Lewis’ original interpretations and proposed an 18th-century construction date, perhaps after Charles Drayton acquired the property in the
1780s. The building was subsequently re-purposed into office space and then living quarters in the latter part of the 19th century; the privy portion was sealed and the roof re-oriented during this time period (Zierden and Anthony 2003, 2005, 2007).

In 2009, Drayton Hall archaeologist Sarah Stroud-Clarke conducted limited archaeological investigations between the northwest corner of the house and the footprint of the flanker building to field-truth the 1765 water color. Five 5-x-5-ft units were placed to capture the footprint of the colonnade, if it was actually on the landscape. She was able to relocate the colonnade footprint as well as a builder’s trench, which yielded a few artifacts indicating a pre-Revolutionary War construction date for the wall (Stroud-Clarke 2009).

Drayton Hall Interpretations

Though the 18th-century domestic core of Drayton Hall is similar to that of Middleton Place, with its once ornate shield gardens and Georgian-Palladian house with associated flanker buildings, there are some distinct differences. The use of space around the main house and a tighter domestic core, as well as firm field divisions, provide some insight into a very controlled landscape. The 1765 water color provides what is thought to be a very accurate snapshot of the original landscape. The presence of the tall colonnade connecting the flankers to the main house speaks both to its Palladian design but also to a sense of control by the designer and the owner. The colonnades provided a division between the landside and the riverside yards, but also controlled foot traffic between the flankers and the main house (Stroud-Cla rke 2009).

The Drayton fields were also used in different ways. Charles Drayton’s journals and field drawing as well as the Glover plat of 1790, give a good indication that the Draytons were growing different kinds of crops in proximity to the Ashley River. Though John Drayton may
have experimented with rice in the first half of the 18th century, he seems to have abandoned this endeavor in favor of other crops. There are also references to rice ponds, present on the Drayton gridded map in Figure 46, and in the Drayton papers; however, these would not have been successful if the water was coming from the Ashley River. Inland rice was grown on the other side of the Ashley River Road from the main domestic core of Drayton Hall; however, how successful the endeavor was is not currently known. Dr. Charles Drayton was also known as an experimenter and the different kinds of cultigens he was growing, in addition to his quite ornate ornamental gardens and Andrè Michoux’s visits, offer further testament that he was utilizing at least a portion of the fields drawn in the 1790s gridded map.

Like Middleton Place, Drayton Hall was more of a family home than a large corporate plantation. The majority of the Drayton’s wealth derived from their many other working plantations. The original tract was 650 acres, much smaller than that of Cedar Grove, which was almost 2,500 acres and Middleton Place, which was approximately 6,500 acres. As a result, the enslaved work force at Drayton Hall would have been smaller than Cedar Grove or Middleton Place during the colonial era. Because of these differences, it seems likely that the enslaved settlement potentially located in BG Field is the only settlement on the Drayton Hall tract from this time period.

During the antebellum period, the number of enslaved on the plantation expanded and the colonial-era settlement was moved to the periphery of the plantation core. Dr. Drayton may have been experimenting with cotton during this time period, which could account for this increase in forced labor (Espenshade 1991; Zierden and Anthony 2004). After Dr. Drayton’s death in 1820, the Drayton interests were expanded by his son John; however, John died in 1844 and after his
death the plantation passed to his four sons. They managed the Drayton holdings and managed to keep the property intact through the Civil War.

The Drayton family also struggled to keep their property after the Civil War and, they too turned to phosphate mining to recover some of their financial losses. They were fortunate and were able to keep their family home until the late 1960s when it was sold to the National Trust for Historic Preservation. In the 1970s, Drayton Hall opened to the public for tours as a house museum and still operates in a similar fashion today.

Discussion

The Izards, Middletons, and Draytons were all related by marriage by the end of the 18th century. All of these elite planter families were active in politics over multiple generations, their children were educated at the best schools in London, and they were all in the same social circle. They likely shared holidays together and perhaps gave each other advice on agriculture production methods utilizing their enslaved work force. Architecture and landscape likely were topics of conversations as these interests and knowledge were a sign of a gentleman’s education.

The product of those likely conversations can be seen on the landscapes of their plantations. These plantations are all considered family country seats because of their proximity to Charleston and the Izards, Middletons, and Draytons were not full-time residents on them. Cedar Grove, Middleton Place, and Drayton Hall are all examples of Palladian landscapes, which evolved over time in response to planter preferences and economic drivers. They all contained extensive gardens during the 18th century and all likely experimented with plantings, both within their decorative gardens, and in their fields. The Middleton and Drayton family papers can attest to those experiments and there is evidence that the Izards were avid horticulturalists as well.
These landscapes demonstrate the Georgian ideal of the colonial period. Though they are all similar in layout, they also exhibit some differences that reflect the tastes of their owners.

There is evidence for different types of plantations between these three examples. Cedar Grove was pieced together by the Izard family and consisted of over 2,400 acres by the mid-18th century. Based on the 1787 and 1820 maps, inland rice was abandoned by the end of the Revolution and, by 1820, it was a working plantation with several cultigens, including tidal rice, as well as corn. The Izards had other plantations on more productive river systems and they may have abandoned inland rice production at Cedar Grove in favor of more lucrative tidal rice fields. Middleton Place was a sprawling plantation of over 6,000 acres. The Middletons were known to experiment with horticulture and agriculture and they too had several kinds of crops in production, though primarily inland and tidal rice. Drayton Hall was a much more compact plantation of only 650 acres. The Draytons, also experimenters, had fields of different kinds of vegetables under cultivation, likely to support their enslaved work force as well as the main house. Tidal rice could not be practiced with any great success because the plantation sits below the salt line and only limited inland rice was produced. These factors, along with only one known enslaved settlement, also supports archival evidence that the Draytons used the property as the family seat from which to manage their other business affairs.

After the Revolutionary War, the Izards, Middletons, and Draytons all returned to the business of planting, though it took a few years to recover economically. Per capita, rice production was never as successful as before the war, but during this time period planters on the Ashley River expanded their holdings and some diversified into other economic pursuits in addition to planting. By the antebellum period, The Izards, Middletons, and Draytons had all
diversified and held other plantations and business interests, yet were still using their Ashley River estates, for the convenience of being near Charleston.

The Civil War and the demise of slavery had a profound effect on the Ashley River and, as a result, rice production was never a viable option for economic benefit in the latter half of the 19th century. The Vardell family, owners of Cedar Grove in the last half of the 19th century, never recovered sufficiently to rebuild the main house, after it was burned by Sherman’s troops, and the property began to decline. Phosphate mining revived the Ashley River economy and benefitted both individuals and large property owners such as the Middletons and Draytons, but would not have been possible without the influx of northern money. Forestry products, stimulated also by northern industrialists looking south to new avenues of timber, because the northern and mid-west old growth timber was largely depleted, also helped to revive the economy. Though there is little evidence that forest products were sold from Cedar Grove or Drayton Hall, they are represented on the Annual Report of the Chief Engineers to the House of Representatives for the year 1895. From 1888 to 1892, the amount in dollars raised from the sale of timber products on the Ashley River rose significantly from $20,000 in 1888 to $125,000 in 1892, likely because of the failing phosphate industry (Chief Engineers, United States Army 1895:1434). Williams Middleton sold forestry products to the Confederacy during the Civil War and he likely continued to harvest those products in addition to his phosphate mining activities.

During the early part of the 20th century, the Middleton family initiated a seasonal deer hunt, which became a Middleton Place tradition. The hunt club only hunted deer and pig, and water fowl was never their primary interest. The club was never a source of revenue for the Middleton family, but rather hosted by them for local residents as a way to continue historical hunting traditions. By the middle of the 20th century, the Ashley River was drawing in tourists.
with its stately oaks along the river road and the remnants of plantations, which could be
glimpsed through the trees. This rise in tourism has benefitted both Middleton Place and Drayton Hall.

All three of these plantations are representative of the evolution of the Ashley River over
time, but the biggest difference can be seen after the Civil War. Because of their proximity to
Charleston, the Ashley River plantations were all affected by troop movements through the area,
which brought large-scale looting and property destruction. Drayton Hall was spared by a
fortuitous rumor of smallpox on its grounds but the domestic cores of Cedar Grove and
Middleton Place were both burned. Cedar Grove never recovered and Middleton Place and
Drayton Hall only managed because of phosphate mining. Cedar Grove was sold to Ashley
Phosphate Works for the purpose of phosphate mining. Though it was owned by private
families after the collapse of the phosphate industry, it was never rebuilt and later succumbed to
the effects of population pressure and urban development. Cedar Grove representative of many
other plantations on the Ashley River, which have met a similar demise. The aftermath of the
Civil War and the economic driver of phosphate mining in the last half of the 19th century, both
fueled by northern interests, set the Ashley River on a much different evolutionary path than the
Santee River.
Chapter Five: The Santee River

This chapter begins with a brief introduction to the methods I used as I collected data related to the study subjects on the Santee River. This methodology is followed by a chain of title, related maps, and archaeological investigations for each study subject on the Santee River (Figure 4). As with the Ashley River subjects, this is meant to show how the plantations changed over time based on environmental conditions, the effects of two wars, and changing economic conditions from settlement to the early part of the 20th century. The end of this chapter includes analyses of the Santee River study subjects and how they fit into the argument for intra-regional variability.

Methodology

I have conducted archaeological investigations at Peachtree and Rochelle plantations, but not at Waterhorn. Therefore, the methodology for study subjects on this river system is different than that of the Ashley River. Waterhorn is presented similar to the other study subjects on the Ashley River; however, Peachtree and Rochelle are presented differently for two reasons: first, they were both originally owned and cultivated by the same family, the Lynches, so the historical background somewhat overlaps and second, the archaeology is presented in more detail. This is done to place the plantations in context because there is a lack of archival data for both plantations.

For both Peachtree and Rochelle, I implemented an arbitrary grid system to facilitate controlled shovel test sampling. In support of this dissertation, I wanted to specifically target areas of what appeared to be enslaved settlements on the 1873 U.S. Coast survey map, in addition to looking at a few other areas of interest on each plantation. At Peachtree, there are two
larger areas of what appear to be housing clusters, in addition to a smaller area, which also contains a known enslaved cemetery. I targeted the larger clusters with the intent that, if there was a large margin of error on the 1873 U.S. Coast Survey map, I might still recover archaeological deposits without testing the entire grid. At Rochelle, I targeted both clusters on the 1873 U.S. Coast Survey map, as well as three additional areas, which looked like they could be main houses related to plantation divisions over time based on the 1897 Addend to Title plat. I was interested in locating Esther Lynch’s house and I thought these locations may offer some evidence for it.

All shovel tests at both of these plantations measured approximately 1 foot in diameter and were placed at regular 50-foot intervals layered with a portion of the 1873 U.S. Coast survey map, modern topographical, and aerial imagery in a GIS. Areas of interest were clipped and uploaded to a Trimble Geo XT 7 hand-held GPS unit with sub-meter accuracy. I then navigated to each shovel test using the GPS. All shovel tests were documented on standard shovel test forms with soil and artifact descriptions included. Any features or other anomalies were noted on the forms. All sediment was screened through a ¼-inch mesh hardware cloth. Shovel tests were dug to sterile sub-soil, usually sand, or until the water table was breached. Artifacts recovered were collected for laboratory analysis. The results of shovel testing and limited unit excavations are presented in the archaeology sections for Peachtree and Rochelle. I also supplemented shovel testing with geophysical survey (GPR) at Rochelle in two separate areas. These data are integrated within the archaeology section of Rochelle as well.

All artifacts recovered are the property of the land owner and will be curated at the McClellanville Village Museum after final laboratory analyses are complete. Detailed documentation and summary reports will also be filed with the South Carolina Institute of Archaeology and Anthropology (SCIAA) in Columbia, SC. Data sets related to Peachtree and Rochelle are available for use by permission of the author.
GPR uses high frequency electromagnetic reflection. To do this, a GPR transmitter emits a series of high frequency electromagnetic signals through a megahertz (MHz) antenna, usually 350 or 900 MHz depending on the resolution expected of the data. Most archaeological applications use a 350 MHz antenna because the frequency can penetrate deeper into the ground; however, the 900 MHz is sometimes used in forensic applications for improved resolution. The machine works by emitting an electromagnetic signal into the ground and measuring the time it takes for the energy to return to the transmitter. Depending on the object or boundary between different materials, the energy may be reflected, refracted, or scattered. For example, wet clay tends to reflect. The RADAR signal also reflects off of metal, creating a ringing effect in the data because of its high electrical conductivity. The transmitter records the variations in return signal and builds a radargram of these variations (Conyers 2012).

Not all materials are conducive to GPR imagery. The electrical conductivity of the ground and the transmitter frequency may limit the depth range of the GPR. Some soils are also more conducive to GPR survey than others. Wet clay does not conduct electricity as well as polar ice or dry sands. The GPR also requires a reasonably smooth surface and must be clear of larger vegetation. The antenna must be touching the earth’s surface continuously to collect accurate data. Surface conditions that prevent good antenna contact with the earth’s surface such as heavy vegetation, tree roots, or large rocks can create voids in the data set (Conyers 2012; Geophysical Survey Systems, Inc. 2018).

Because artifacts were collected in different ways, either by shovel test, test unit excavation, or surface collection, they are also presented here in a number of different ways. I use a GIS format to show artifact density in shovel test areas. These maps provide an overall comparison of where different types of artifacts cluster to give an indication of where houses or
structures are located on the landscape. Artifact classes are also discussed in terms of counts and diagnostic elements to determine date ranges of use at each settlement area. An in-depth artifact analysis is not part of the current scope of work included here but should be the focus of future research. Artifact classes presented include bricks, nails, glass, and ceramics. I rely primarily on the European ceramic assemblages at both Peachtree and Rochelle for date ranges of occupation at each settlement area. Date ranges and general ceramic types are presented in the table below and more specific ceramic types with associated date ranges are also discussed in the body of the text (Figure 51).

Surface collections are represented by bar graphs of different diagnostic ceramics. Though they are in secondary context, they do give an indication of the time period of use at both Peachtree and Rochelle. It is important to note that, while there is a regional stoneware tradition, Edgefield, in South Carolina, it does not begin until the mid-19th century.

<table>
<thead>
<tr>
<th>Ceramic Type</th>
<th>1600</th>
<th>1650</th>
<th>1700</th>
<th>1750</th>
<th>1800</th>
<th>1850</th>
<th>1900</th>
<th>1950</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin glazed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhenish Stoneware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Stoneware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Midlands Slipware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Saltglazed Tableware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonoware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astbury</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jackfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Stoneware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creamware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearlware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow ware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whiteware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron stone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 51. General ceramic types with associated date ranges found at both Peachtree and Rochelle (jefpat.maryland.gov).
Edgefield is characterized by unique potting techniques utilizing local clays, decorative slips, and is generally alkaline glazed (Baldwin 2014). I have not observed any of this type of stoneware to-date at either Peachtree or Rochelle.

Waterhorn Plantation

Waterhorn Plantation sits at the confluence of the South Santee River and Wambaw Creek (Figure 4). The plantation was originally owned by Daniel Huger (pronounced ewe-jee) and his wife Margurite, by a land grant of 300 acres from the Lords Proprietors in 1686. It was originally known as Watahan, after the place name given by the local Sewee Indians, and the earliest of accounts by French Huguenot settlers refer to it as such. Over time, the plantation came to be known as Waterhorn (Bates and Leland 2015). The Hugers were one of the first families of French Huguenots to settle on the Santee and were living on the plantation by 1688 when their son Daniel was born. The Hugers expanded their holdings at Waterhorn to include another two parcels, and by 1705 they owned the entire peninsula, at the confluence of Wambaw Creek and the South Santee River, totaling 690 acres (Shlasko 1997; Figure 52).

The early years were spent raising livestock and it was not until Waterhorn passed out of the Huger family that rice was cultivated. Daniel Huger also acquired grants for four town lots in Charleston and had sufficient means to acquire labor. In addition to his French servants, he also held African and Indian slaves (Shlasko 1997). During this time, Waterhorn was considered the eastern extent of French Huguenot settlement on the Santee River (Bates and Leland 2015:168). The Mayrant family, also French Huguenots, bought the plantation from Daniel Huger, Jr. in 1716 for the sum of £300 and began experimenting with rice. Waterhorn stayed in the Mayrant family until 1765.
During this time, they amassed a fortune as Susannah Mayrant’s estate inventory, taken after her death, listed field equipment, livestock, corn, 40 slaves, and 2,400 bushels of rice (Shlasko 1997). Waterhorn was not the family seat during the Mayrant time period; however, during this time, rice was firmly established as the primary export crop in the Lowcountry and was likely being grown at Waterhorn as a cash crop.

In 1765, John, the son of James Nicholas and Susannah Gaillard Mayrant, who had inherited the estate from his mother upon her death in 1736, sold the plantation to Elias Horry II. Horry was the grandson of Daniel Huger, the original settler of Waterhorn. Horry paid £11,000 for Waterhorn, a good indicator that rice was productive and a lucrative commodity during the first half of the 18th century. Elias Horry II married Margaret Lynch, daughter of Colonel Lynch.
and younger sister of Thomas Lynch Sr. of nearby Peachtree Plantation. Elias bought Waterhorn as part of a series of parcels he was collecting for his sons, Elias III and Thomas; it was not the primary plantation for the Horrys as they spent their winter months at Milldam Plantation on the North Santee, near the Marsh Plantation (Shlasko 1997). According to the will of Elias Horry II, Waterhorn was split between the brother’s sons, Elias Lynch Horry and Elias Horry IV. Elias IV married Mary Rutledge Shubrick, sister of Elizabeth Shubrick who was the wife of Thomas Lynch, Jr. of Peachtree Plantation. During the brothers’ ownership, Waterhorn received an upgrade in housing and a re-arrangement of buildings occurred (Figure 53, Figure 54). Waterhorn stayed in the Horry family until 1834 when they were forced to sell it to pay off debts after the passing of Elias IV (Shlasko 1997).

The plantation was sold to an extended family member, Frederick Rutledge, for $12,000. Family letters indicate rice was under cultivation during this time period as well. Rutledge lost Waterhorn after the Civil War when he was unable to pay the mortgage on it. From there, the property passed through a series of owners, including several timber companies. The US Forest Service acquired it in 1934 and it is now part of the Francis Marion National Forest (Shlasko 1997).

There is no extant architecture on the landscape today. Known structures that were removed in the 20th century include a rice mill, which was dismantled and removed by the Forest Service in the 1930s, and a monument to Daniel Huger, which was removed from the plantation in the 1960s. The rice mill timbers were used in construction of a church in Georgetown and the monument now resides at the St. James Santee Episcopal Church (Shlasko 1997).
Maps

Maps associated with the colonial era of Waterhorn include the 1787 and 1794 plats (Figures 53 and 54). These are informative for understanding where structures were located on the landscape and their relationship to nearby rice fields. The Waterhorn main house is located on the first rise above the river just southeast of Waterhorn Creek and approximately 150 feet from the rice fields. Enslaved settlements are in close proximity to the main house and less than 150 feet from the rice fields. The main house was a later build than the original early 18th century post-in-trench house; however, 18th-century artifacts were found in features within this area suggesting the later house, likely constructed in the 1770s, could be an addition to the earlier house or was constructed on the footprint of the original house (Shlasko 1997:42). There is another enslaved settlement and overseer’s house on the point of Waterhorn plantation approximately 2,100 feet southeast of the main house. This settlement is also less than 200 feet from the rice fields.

By 1794, the configuration of the domestic core of Waterhorn had changed, with the enslaved settlement forming two rows instead of a cluster of buildings. The Point settlement appears to be in similar condition to the 1787 map. By 1794, the Horry’s had extended their holdings to the middle of the Santee River and at least 11 fields were under cultivation by this time period, in addition to the five located at the bend of the point at the Santee River and Wambaw Creek (Figure 54). The detail of the 1794 map shows other improvements to the land such as cleared pastures for cattle, several roads in the highlands, and a clear demarcation between the Pine Lands and the High Lands. This separation could indicate a separate use for this land, such as upland rice cultivation; however, there is no firm evidence for inland rice in this area and LiDAR data do not indicate any supporting rice field infrastructure in this area.
Figure 53. 1787 plat of Waterhorn overlaid on a modern USGS quadrangle (Charleston County Register of Mesne Conveyances).
Figure 54. 1794 revised plat of Waterhorn overlaid on a modern USGS quadrangle (Charleston County Register of Mesne Conveyances).
LiDAR Imagery

Because Waterhorn is on the cusp of Charleston, Georgetown and Berkley counties, in addition to being in the Francis Marion National Forest, the LiDAR imagery available for study was abundant. The Georgetown County hillshade was helpful for understanding the landscape at a distance in this portion of the Santee River. Francis Marion National Forest generously provided fine-grained imagery for study. These data are presented to show remnant tidal rice fields as well as a closer view of the Waterhorn landscape (Appendix B). Figure 164 shows the Waterhorn parcel in 1794 overlaid on the Georgetown County hillshade for orientation. Figure 165 shows the same view for locations of remnant rice fields predominantly in the Santee Swamp between the Santee River branches. Also of note, toward the southeast portion of the image, are the remnant rice fields related to Hampton Plantation.

Detailed views of portions of the Waterhorn landscape provide a few additional details worthy of further discussion. The anomalies present near the main road in the southern extent of the image are modern push piles related to clearing activities. The close-up view of the plantation domestic core shows remnant field divisions not readily apparent on more distant views (Appendix B). These are very faint dikes but fields are still clearly denoted. The flat area next to the settlement is a combination of marsh and plowed field. The Forest Service regularly plants this area in grasses to support wildlife a (Robert Morgan, personal communication, 2017). Also of note on this riverside view of the plantation domestic core is a remnant related to rice production on Wambaw Creek.

An inland view of Waterhorn also provides some insight into landscape use over time (Figure 168). A remnant field division in the northwestern portion of the image is not depicted on the 1794 plat of Waterhorn. Documentary evidence indicates rice was produced during the
Mayrant occupation in the early part of the 18th century. This canal may be related to an early attempt at inland rice before tidal flows along the Santee were fully understood. The other linear feature, which appears to connect with the canal is likely either a dike or raised road. Another remnant canal is also present parallel and just east of the dike. In the 1794 plat overlay of this portion of Waterhorn, the land is labeled as Highland. Therefore, these features are either early indications of rice production at Waterhorn, or later alterations to the landscape. Documentary evidence suggests Waterhorn was a legacy plantation by the antebellum period, so an earlier time frame for these features is plausible.

Archaeology

In 1978, the Forest Service documented two brick rubble piles, indicating the remains of the main house and detached kitchen, but no other archaeological testing was conducted until a joint U.S. Forest Service and Yale University project in the 1990s. This work is summarized by Ellen Shlasko in her dissertation, which is based on Waterhorn Plantation. She conducted a shovel test survey of the majority of the Wambaw Neck on which much of the domestic core sat. She confirmed the remnants of the main house and kitchen building the Forest Service had identified and registered with the State Historic Preservation Office in 1978. She also found evidence of the earliest occupation, which included post-in-trench buildings. Shlasko attributes this particular style on the Waterhorn Plantation to the French Poteaux-en-terre building technique that is prominent among French settlements along the Mississippi River (Shlasko 1997).

Based on Shlasko’s excavations, there is archaeological evidence for two separate building phases in three areas at Waterhorn. The first phase was the earliest, representing the original Huger occupation of the latter part of the 17th century. This phase consists of a small
cluster of impermanent buildings, which were wooden mortise and tenon structures with wattle and daub exteriors, as well as the main house, which is thought to be of Poteaux-en-terre construction. These structures appear to be associated with a single building episode and were likely meant only to last until more permanent housing could be built. The next phase occurred later in the 18th century when a large main house and kitchen were constructed overlooking the Santee River. This building episode may have incorporated elements of the original main house as it shares part of the footprint of the earlier building. A new enslaved settlement of wooden cabins was also constructed on the periphery of the plantation domestic core, just behind a ridge. Archaeological evidence indicates they were built in the 1770s and occupied until the 1830s (Shlasko 1997:75). There is little evidence, based on Shlasko’s excavations, of occupation in this area of Waterhorn after the mid-19th century.

Waterhorn Interpretations

Waterhorn represents an early French Huguenot settlement with some of the only evidence to-date of a French style Poteaux-en-terre construction, which is characterized by post-in-trench building foundations. The combination of archival evidence and Shlasko’s excavations show how the plantation transformed over time from primarily livestock grazing to rice production. The plantation was re-arranged in the latter part of the 18th century under the Horry ownership, likely in response to changing tastes in architecture and to display wealth. The new main house, constructed of brick, replaced the impermanent, older wooden house and may have incorporated some of the original elements. A separate kitchen house was also built during this time period and the enslaved settlement was moved to the periphery of the plantation domestic core. The new domestic core would have been quite noticeable to passers-by on the Santee River and thus a display of wealth for the Horry family, in keeping with the Georgian ideal.
In the span of six years, from 1787 to 1794, the plantation was transformed from a livestock enterprise to a rice plantation, evident from the addition of rice fields on Wambaw Creek and on the island opposite the main settlement, in the middle of the river. Though rice may have been in production when the 1787 map was produced, the fact that there were no fields drawn denotes its lack of importance. By 1794, rice production dominated the Waterhorn landscape, under the ownership of the Horry cousins, and likely continued at least until they were forced to sell the property.

By the time the Horry cousins sold Waterhorn in the 1830s, it likely did not hold the sentimental meaning that it had for their fathers. They were cultivating the rice fields, but it was not considered a main residence and the family did not stay at the main house for any length of time. Frederick Rutledge held the property for over 30 years. However, based on the archaeological evidence, the enslaved settlement was abandoned in the 1830s, perhaps in response to abandoning the rice fields on Wambaw Creek. Rutledge may not have produced rice on this plantation at all and moved the enslaved workers to another plantation or rented them out to another planter.

Peachtree Plantation

Peachtree Plantation is approximately three miles downriver from Waterhorn (Figure 4). It was originally a 2,200-acre tract owned by Colonel Thomas Lynch by 1733.24 Named for his Irish grandfather, Colonel Thomas Lynch was born in 1675. After his first wife’s death, he married Sabinah Vanderhorst, daughter of John Vanderhorst, with whom he had seven children - three

24 There are three Thomas Lynches in the Lynch family in the colonial period. They are referred to in the literature as Colonel Lynch, who was the oldest, followed by his son Thomas Lynch, Sr. and the youngest, Thomas Lynch, Jr. The three are often confused; for the sake of clarity, they are referred to in this document as Col. Lynch, Lynch, Sr, and Lynch Jr.
boys and four girls (The American Society of Learned Studies 1943). Thomas Lynch, Sr., born in 1726, was the only surviving male and the heir. Margaret, one of his younger sisters, married Elias Horry II of nearby Waterhorn Plantation.

Colonel Lynch was granted at least 3,000 acres of land in Berkeley County by 1725. From these holdings, he expanded toward the Santee River and Georgetown. By the time of his death in 1737, Colonel Lynch was a well-known planter and politician whose holdings included Hopsewee, Indian Bluff, Pleasant Meadows, Peachtree, The Marsh, New Ground, Brick House, and The Swamp (Records of Wills and Misc. Inventories 1687-1785; Bridges and Williams 1997). Brick House and The Swamp were located on the Wando River near Charleston, while the other plantations were all on the Santee River.

An inventory of Peachtree at the time of Colonel Lynch’s death shows horses and cattle, a rice boat, a canoe, 24 hoes, 23 reap hooks, an auger, cooperage tools, and other general carpentry tools. These are all of the tools necessary to clear fields, produce rice, build barrels for shipment, and also build houses. It seems likely that enslaved quarters were present or in the process of being built in proximity to work areas, though it is unclear if the Peachtree tract contained buildings during this time period. The 1738 inventory of Colonel Lynch’s estate is the first mention of Peachtree as a plantation, yet during this time it was also the most productive (Table 5). By the time of Colonel Lynch’s death, the majority of his plantation interests were in the Santee rather than closer to the main port of Charleston, which is a good indicator that rice was more lucrative in the Santee Delta than on other river systems, even in 1737.

Brick House was the family seat during the life time of Colonel Lynch and it is clear, based on the numbers in Table 5 that it was not under cultivation but meant to be a place of residence and/or business headquarters.
Table 5. Plantations owned by Col. Lynch in 1737 with numbers of enslaved people and rice quantities.

<table>
<thead>
<tr>
<th>Number of Enslaved</th>
<th>Hopsewee</th>
<th>Indian Bluff</th>
<th>Pleasant Meadows</th>
<th>Peachtree</th>
<th>New Ground</th>
<th>Brick House</th>
<th>The Swamp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>25</td>
<td>44</td>
<td>39</td>
<td>31</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>Barrels of Rice</td>
<td>28</td>
<td>56</td>
<td>61</td>
<td>72</td>
<td>23</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Bushels of Rough Rice</td>
<td>200</td>
<td>1040</td>
<td>210</td>
<td></td>
<td>530</td>
<td></td>
<td>280</td>
</tr>
<tr>
<td>Bushels of Seed Rice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

The Lynch plantation holdings during the first half of the 18th century also show that Colonel Lynch was prospecting. He must have known, or seen bigger potential, for rice cultivation on the Santee River and was buying large tracts of delta lands.

Thomas Lynch, Sr. inherited the bulk of his father’s property and added to it during the course of his lifetime. By the time his son, Thomas Lynch, Jr. came of age, the family holdings were quite extensive and also included lands adjacent to The Marsh near the mouth of the Santee Delta as well as more lands in Georgia and Florida. By 1774, Lynch, Sr. had acquired land grants of at least 10,000 acres and the majority of them were in Craven County (Bridges and Williams 1997). Lynch, Sr. constructed a ferry and causeway across the Santee, at the northwestern extent of Lynch’s Island. The ferry crossing was one of the only convenient ways to travel by land between Georgetown and Charleston (Figure 55). He was involved in several disputes with the colonial government because they refused to re-pay him for the effort and, at one point, had

25 Craven County was one of the original three counties designated by the Lords Proprietors. It was divided over the course of the 18th century and now forms parts of Charleston and Georgetown counties on the Santee River (Bridges and Williams 1997; Edgar 1998).
Figure 55. Overlay of Lynch’s Island, plat 32-53-14, dated 1820. A red arrow points to Lynches causeway, the northwest linear feature on the plat between the two branches of the Santee. The gold outline is the current Peachtree property boundary (plat courtesy of the South Carolina Historical Society, map by the author).
his enslaved field workers tear up the road on the island. Evidently he felt some remorse, and had them reconstruct it not too long afterward (Bridges and Williams 1997; Linder and Thacker 2001). Lynch, Sr. also owned interests in several schooners, frequently loaned money, and owned several race horses in Charleston, where he owned a townhouse but chose to rent the Rhett mansion at 54 Hasell Street (Moore 1969; Butler 2018). Like many other planters during this time period, Lynch, Sr. diversified his business interests into other arenas as well as displaying his wealth and elevating his standing in society.

Thomas Lynch, Sr. married Elizabeth Alston, with whom he had three children, Sabinah, Esther, and Thomas, Jr. After Elizabeth’s death, Lynch, Sr. married Hannah Motte in 1755. Together they had one child, Elizabeth. Hannah was the daughter of his good friend, and treasurer of the colony, Jacob Motte. Lynch, Sr. died in 1776 from the effects of a cerebral hemorrhage, which he suffered while conferring with General Charles Lee and the Committee of Safety in Philadelphia. Had he survived, he would have signed the Declaration of Independence. A space was left between the signatures of Edward Rutledge and Thomas Heyward, Jr. for his signature (Rogers 1990; Edgar 1998). His son Thomas Lynch, Jr., who was elected as an affiliate delegate to the Second Provincial Congress to assist his father after his stroke, did sign. On August 2, 1776, Thomas Lynch, Jr. became the 52nd signer of the Declaration of Independence. He was 26 years old and the second youngest to sign the document (Rogers 1990; Bridges and Williams 1997; Edgar 1998).

By the time Thomas Lynch, Sr. died, Peachtree was established and considered the home of Thomas Lynch Jr. and his wife Elizabeth Shubrick. Thomas Lynch, Sr. and Hannah Motte Lynch took up residence in Charleston full time when they gave Peachtree to their son. Though no exact date of construction is known, popular accounts place it between 1760 and 1762 (Isley...
et al. 1987; Smith 1999; Linder and Thacker 2001). Also included with the tract was Lynch’s Island in the middle of the Santee Delta (Figure 55). Lynch, Jr. and his wife Elizabeth were lost at sea in 1779 and they had no surviving heirs (Rogers 1990; Bridges and Williams 1997; Edgar 1998).

The will of Thomas Lynch, Jr. specified, like his father’s, that in the event there were no male heirs, Peachtree Plantation should pass to the oldest surviving male heir to change his name to Lynch to continue the family line (Moore 1969). Lynch, Jr.’s oldest sister Sabinah had one son with her husband John Bowman. Their son Jonathan agreed to this stipulation and inherited Peachtree on his 18th birthday.

Sabinah Lynch Bowman and her husband John Bowman were guardians of Peachtree until Jonathan came of age. John Bowman was an entrepreneur as well as an established planter and property owner. In 1794, he commissioned Jonathan Lucas Sr. to build a water-powered rice mill at Peachtree. This was the first mill of its kind in the Lowcountry; it revolutionized the way planters harvested rice, and dramatically increased production levels (Bull 1978; Linder and Thacker 2001).

John Bowman died in 1807 and left much of his estate to his three daughters and wife Sabinah. According to the stipulation of the Lynch wills, his son Jonathan changed his name to Bowman Lynch and thus inherited Peachtree and the bulk of his uncle’s holdings. Jonathan Bowman Lynch is not well known in the literature but is often referred to as Dr. Lynch. He married Miss Campbell of Nashville, Tennessee, with whom he had three sons and four daughters (Groves 1901). Dr. Lynch moved to Tennessee with his wife prior to 1835 and leased Peachtree as well as the neighboring plantation, Peafield, to Stephen Doar. Doar eventually bought Peafield, where he built a home. It was said that he refused to live in the Peachtree house
out of concern that something would happen to it under his tenancy (Bridges and Williams 1997). However, Doar continued to rent Peachtree and cultivate rice there. Mary Rachel Doar Lucas, the daughter of Stephen Doar, wrote in her memoirs, “About the year 1840 it was supposedly accidentally burned by servants or caretakers” (Groves 1901). Several accounts indicate the fire started in the kitchen and archaeological investigations have confirmed these accounts (Bridges and Williams 1997; Linder and Thacker 2001; Altizer 2014).

Jonathan Bowman Lynch had one surviving daughter, Sabinah. She married Paul Dismukes and they had nine children. Paul Dismukes administrated the will of Dr. Lynch in 1879 and continued to lease Peachtree to the Doar family (Charleston County Register of Mesne Conveyance, Book E18, 44; McCrady-Dismukes settlement Book U25, 244; McCrady Family Archives). The Peachtree tract stayed in the Dismukes family, though portions of it were bought and sold among family members. In the 1930s, the majority of the tract was sold to Booth-Boyle Livestock Company, with the exception of a 481.2 acre parcel, which stayed with the McCrady line of the Dismukes family until 1944 (RMC Book X, 37; Book E36, 301; Book E36, 245; McCrady Family Archives). In 1955, Booth-Boyle sold the larger Peachtree Tract to Atlantic Creosote Company.

Atlantic Creosote owned the larger Peachtree tract until 1986 when it was sold to White Oak Forestry, the current property owner (RMC Book X158, 582). The McCradys sold the smaller parcel to Helen Stewart in 1944, who then sold it to DeWitt King in 1947. The King family kept the property until 1989 when it too was conveyed to White Oak Forestry (RMC Book J45, 21; Book C48, 525; Book R125, 295; Book F190, 868).

White Oak Forestry placed a conservation easement on the Peachtree tract, which states that no development or other ground-disturbing activity may happen within 100 feet of the
Peachtree ruin and also protects it from being torn down. However, this easement does allow for archaeology and other academic research (Conservation Easement Baseline Documentation Report, Peachtree Tract n.d.). The Peachtree tract is also currently under a forestry management plan and is leased to the Santee Hunt Club.

Previous accounts and documentation of the Peachtree landscape are very limited; these include a small number of photos, family correspondence, and several visitor accounts. Previous documentation of the ruin includes a small survey in the early 1970s (Bull 1973), and a measured drawing set of existing conditions with management recommendations, which were part of a Preservation Studio project conducted by the Master of Science in Historic Preservation program through Clemson University and the College of Charleston (MSHP) (Preservation Studio 2013). The body of work produced by the MSHP Preservation Studio project provided the platform for my Master’s thesis, which included Lynch family and Peachtree history, the results of archaeological investigations on the ruin interior, which were conducted to determine room uses at the time of the fire in 1840, and a preservation plan for the ruin (Altizer 2014). A recent discovery of family correspondence and photos led to a revision to what is known of the floor plan, construction, and room uses of the main house (McCrady Family Archives).

The Peachtree main house ruin measures 54 feet 4 inches by 61 feet 9 inches and originally enclosed 8,949 square feet of living and work space on three levels (Figure 56). The existing structural remnants give no indication of a third floor; however, family correspondence describing the interior spaces of the Peachtree main house discuss living space by room and floor (McCrady Family Archives). Family photos dating to 1873 show the ghost mark of the roofline on a chimney stack indicating a third story, which was likely clapboard, or some other type of wooden cladding, capped by a cypress shingle roof that burned in the fire of 1840 (Figure 57).
Figure 56. Peachtree main house ruin, before stabilization (photo by the author).

Figure 57. Peachtree ca. 1873 showing the ghost mark of the roof (image courtesy of the McCrady Family Archive).
True to its Palladian design, the Peachtree house is symmetrical in composition and fenestration. Blind windows balance the absence of true window openings on the ground level and serve to maintain symmetry. All entrances are centrally located on elevations; however, there is no entrance on the east elevation. The west elevation contains the only exterior entrance to the ground level. Peachtree was designed with porticos on the short axis, similar to Cedar Grove and Drayton Hall.

The house is constructed entirely of English bond brick and the exterior is stuccoed and scored to resemble stone. The variety of brick quality, and seemingly random placement within walls, along with flat, irregular mortar joints, indicates the house was always intended to have a stucco finish. Principal floor window openings measure over seven feet tall and three feet wide and there is evidence of shutter dogs. Ground floor windows and blind windows measure three to three-and-a-half feet tall and approximately three feet wide. A water table, present along the entire perimeter of the house, defines the first and second floor levels.

A depression, centrally located in the ruin interior, near the riverside portico block, is likely the filled-in remnant of a well, which can also be seen on LiDAR imagery (Appendix B). Drainage system remnants are present on the landside portico block interior, at the base of the door opening. They appear as stucco-lined drainage pipes in the masonry. There is no evidence of a roof system or cladding at Peachtree; however, the presence of an internal drainage element may be an indicator of an English style “M” or “W” system, similar to the original roof of Drayton Hall. This type of roof system allowed for internal drainage into a cistern. Family correspondence indicates that Peachtree had both a well and a cistern. Both were likely needed because well water along the Santee River is heavy with sulfur. The well water was likely used
for cleaning, cooking, and gardening, while the cistern water would have been used for drinking and bathing.

In 2015, the Peachtree ruin was stabilized by the current property owner (Figure 58). The intent was two-fold, both as a safety precaution for hunters who lease the land but also to allow researchers to continue study of the landscape and the house ruin. The Peachtree main house is the second largest known colonial era dwelling in the Lowcountry; the largest is Drayton Hall. It is unique in construction and design; its floor plan is like no other known dwelling of this era. It was also built for one of the wealthiest colonial families in the Lowcountry and was home to a signer of the Declaration of Independence. Additionally, archaeological excavations indicate the potential for intact sealed deposits that can inform important research queries regarding slavery and plantation life. Material culture related to the colonial and antebellum periods of Peachtree can aid in interpretation of the landscape and the experiences of the enslaved, whose historic importance is hidden due to later alterations to the property. For all of these reasons, the Peachtree ruin is eligible for listing on the National Register of Historic Places under all four criteria of significance (Altizer 2014).26

Maps

Because there is no extant structure on the Peachtree landscape, except for the main house ruin, historical documents and LiDAR imagery provide the only known sources for understanding the historical landscape outside of archaeological survey. The only known map of Peachtree that shows structures is the 1873 U.S Coast Survey map, which includes the mouth of the Santee Delta up river, just past Peachtree, to Montgomery Plantation (Figure 59).

26 The NRHP designation only covers the ruin; the rice mill location is now part of an adjacent parcel with a different property owner.
Figure 58. The Peachtree ruin, post-stabilization (photo by Hillary King).
Figure 59. US Coast Survey 1873 map, Reg. 1308, showing the Santee Delta. Peachtree is located at the top of the map (image courtesy of the University of Alabama Cartography Lab).
This map is important because of its detail with respect to rice field layout and plantation infrastructure. It provides one of the only overviews of the extent of human manipulation of the Santee Delta as seen during the 19th century.

For Peachtree and Rochelle, this map is particularly important because it is the only detailed map available to show where people may have been living during this time period. In the absence of colonial plats that show structures, it can also give an indication of possible colonial period settlements and infrastructure that were still in use at the end of the Civil War. Archaeological investigation, presented below, served as a ground truthing tool to look at these types of details.

A close inspection of this map shows tremendous detail of the rice fields, including their dikes and canals (Figure 59 and 60). Remnants of these fields are still present on the landscape and can be seen in modern aerial imagery as well as LiDAR (Figure 61, Appendix Figure 168). The 1873 U.S. Coast Survey map can serve as guide to understanding some rice fields, which are no longer extant, as well as help to fill in gaps within fields which are currently either inundated or missing some elements of their previous construction. The map also shows infrastructure related to plantation landscapes (Figure 59). However, there is no legend to explain the symbols and there is no way of knowing if surveyors captured every structure on the landscape at the time of their work, which would have likely occurred just after the end of the Civil War. Therefore, it is unclear which areas are housing, work areas, main plantation houses, and supporting outbuildings. In some areas, the symbols for structures appear uniform and in others, they are graduated. Structures at Peachtree present on the 1873 U.S. Coast Survey map, in addition to the main house, appear on the map in at least four clusters. Without archaeological survey
Figure 60. Detail of 1873 US Coast Survey Map, overlaid on a modern aerial map (ESRI 2019), showing the current Peachtree parcel, in gold, and the location of rice fields in vicinity to the parcel (image courtesy of the University of Alabama Cartography Lab; map by the author).

Figure 61. Modern aerial imagery showing remnant rice fields along the north and south branches of the Santee River in proximity to the Peachtree parcel, which is outlined in gold (ESRI 2019; map by the author).
and testing, their function and time period of use would be unknown. This map provided a way forward for testing the landscape without shovel testing the entire parcel.

The Peachtree main house sits on the highest rise of the tract and is 50 ft. from tidal rice fields (Figure 62). The closest cluster of structures to the main house is approximately 1000 feet south. This cluster is also 650 feet from the South Santee River and a short boat ride across the river to the larger rice fields. Another cluster, consisting of at least seven structures, is present approximately 1,500 feet southwest of the main house and sits at the edge of a rice field on Montgomery Creek. An enslaved cemetery, the only one known for Peachtree, is also present in this area. Another cluster of at least eight structures is present 2,400 feet southwest of the main house and is 1,600 feet to the rice fields along Montgomery Creek. The original main approach to the house passed in close proximity to this cluster. A fourth area, affectionately referred to as The Smudge as seen on the U.S. Coast Survey map, is located along the Santee River bank just east of the main house and in close proximity to another cluster; it appears to be a circular structure or could be a mistake on the map. There are two structures in proximity to this round feature, which sit on the edge of the river (Figure 62).

LiDAR Imagery

In the absence of historical map data, LiDAR imagery provides another line of evidence to understand the Peachtree landscape. LiDAR imagery available for the Santee River is not as fine grained as that on the Ashley and some data are missing. These shortcomings, combined with only minor fluctuations in elevation over much of the delta, make the imagery appear

27 Though its location is known, this cluster and cemetery are not included in the current project due to time constraints.
Figure 62. Detail of 1873 US Coast Survey Map, overlaying a modern aerial map (ESRI 2019), showing the extent of the current Peachtree parcel, in gold, and the locations of structure clusters outside of the main plantation domestic core (image courtesy of the University of Alabama Cartography Lab; map by the author).
devoid of features in some areas. However, there are several areas in the data worthy of note at Peachtree. The main house presents on the landscape as two depressions, which likely represent the well next to the landside portico and a cistern or perhaps cellar next to the riverside portico. Both of these depressions are on the interior of the ruin (Appendix B). Also of note are alterations to the river front, which appear as abrupt lines along the river. Remnant terracing is visible on the grounds flanking the house ruin to the northwest. Remnants of canals as well as modern two-track roads are visible as well.

The LiDAR imagery for the two inland sets of clusters does not contain as many features as other areas depicted on the landform closer to the river’s edge (Appendix B). A number of modern two-track roads are visible, and the area of the southern cluster is almost completely flat. A modern deer feeder is located in this part of the parcel, and the area has recently been timbered with the intent of re-planting in Longleaf pine. In 2013, a controlled burn on the southern extent of the Peachtree parcel re-ignited and burned the section closest to Rutledge Road. A fire break was bull-dozed just southwest of the southern cluster and remnants of the break can be seen in the southwestern portion of the detail LiDAR map (Appendix B). Fortunately, the fire was contained and extinguished before it reached any of the structure clusters depicted on the U.S. Coast Survey map. These modern disturbances, in addition to historical timbering activities by previous property owners, have altered the original landscape in this area of the parcel.

The northern cluster sits on the edge of Montgomery Creek just south of a rice dike and associated field. Present in its vicinity are a several two-track roads. Of note, and associated with these rice fields, are two large depressions located just east of the northern cluster (Appendix B). There are drains present on the northern and southern extent of the eastern depression, though they appear faint on the LiDAR imagery. When comparing them, the eastern depression has been
dug out. This feature could be an early reservoir system for water storage, perhaps for accumulation of reserve water if the natural depression went dry. In tandem, these would have created a predictable water source, before the use of tidal flows. The clay dredged from the eastern depression may have been used to make bricks for the Peachtree main house and dependencies.

Archaeology

The work presented in detail here was conducted to ground truth possible enslaved settlement and work areas based on the 1873 U.S. Coast Survey map. Over the course of the past six years, I have conducted pedestrian survey and shovel testing in the vicinity of the clusters discussed above. For ease of identification, I named the clusters that were tested. In proximity to the main house, are the South Settlement and the Smudge. Farther away to the southwest is the Enslaved Street. I did not test the area in proximity to the cemetery. Other excavations within the main house and its dependencies are summarized below, followed by the results of shovel testing within the cluster areas.

It should be noted that, with the exception of the main house excavations, a small Native American component was encountered at each of the clusters shovel tested, as well as within the units excavated in proximity to the dependencies. Artifacts recovered that are related to Native American use of the parcel include a very small quantity of chert debitage, coarse grit tempered, low-fired undecorated pottery, complicated-stamp pottery, and several gaming pieces. No pre-Contact features were encountered during the course of shovel testing and block excavation.
Though the Native American component is present and important to the landscape, it is not discussed in this document because it is out of the scope of the current project.28

I previously conducted excavations within the Peachtree main house ruin to determine the floor plan and room uses at the time of the fire in 1840 (Altizer 2014). Artifacts recovered range in date from the early 18th century to the first half of the 19th century and support a date of ca. 1840 for the fire. Excavations confirmed that there was a kitchen on the ground level of Peachtree and the fire appeared to originate there. It appears the chimney flues were altered in the hearth sometime after the house was constructed and inadequate drafting may have been the cause of the fire.

Dependencies

In 2015, systematic pedestrian survey for visible remnants of structures in close proximity to the house ruin yielded two areas of high potential; these are located approximately 60 meters (about 200 feet) south and the same distance to the west, from the corners of the main house, and are dependencies to the house, based on the principles of Georgian-Palladian symmetry (Figure 63). These are referred to as Pavilions in the Lynch, Jr. inventory of 1780 (Moore 1969). A total of nine, 5-ft-x-5-ft test units were excavated in proximity to these two outbuildings over the course of two field seasons. These were placed to determine how the Peachtree dependencies were constructed, what their purpose may have been, and if there was any indication of when and how they were taken down.

28 Full reports for the Peachtree parcel are in progress. These will be complete within five years of the publication of this dissertation and available upon request.
Figure 63. 1873 U.S. Coast Survey map overlaying a topographic map of a portion of the Peachtree parcel showing the location of the main house and dependencies (image courtesy of the University of Alabama Cartography Lab; map by the author).
I placed three units in proximity to each of the dependencies (Outbuilding 1 and Outbuilding 2; Figure 63). The observed ground surface of Outbuilding 1 presents as a depression indicating where the foundation of the building was located (Figure 64). This continuous depression was thought to be a looter’s trench, which formed as brick looters dismantled the dependency. A mounded area is also present on the northern side of this feature; however, it has not yet been tested. Archaeological units were strategically placed to capture the foundation of the structure, the interior of the structure, and a random area outside of the structure (Figure 65). This methodology was used for comparative purposes between artifacts recovered from the interior and exterior of the structure, as well as to examine the foundation. I excavated Test Units 1, 2, and 3 in summer 2015 and placed Test Unit 7 in Winter 2015, based on the summer’s findings.

Following this same methodology, I also placed three units in proximity to Outbuilding 2 (Figure 66). Though there were no visible intact foundation remnants of this dependency, shovel testing in proximity to brick scatters in the vicinity recovered European ceramics and glass artifacts, which warranted further testing. In Summer 2015, Test Units 5 and 6 were placed within artifact concentration areas and Test Unit 4 was placed across the two-track path in proximity to a dense brick scatter, which I thought may have been a foundation corner. Test Units 8 and 9 were excavated in Winter 2015, based on the summer’s findings.

Excavation Methodology

Test units were excavated by set levels and each of these were 4 inches in depth, with a datum placed 3 inches above ground at the southwest corner of each unit. All measurements included here are below datum (BD). I excavated by set level for vertical control because I was
Figure 64. Outbuilding 1, red arrows show the looter’s trenches still present on the landscape, view north (photo by the author).

Figure 65. Detail of Outbuilding 1 showing test unit placement. Solid color indicates the hypothesized outline of the structure (map by the author).
unsure of the stratigraphy at that time. After excavating Test Units 1 and 2, I combined levels 1 and 2 because they appear to be timber/plow zone. Level 3 occurs at approximately 8 inches below the ground surface and contains the bulk of the cultural layer, which is very evident in photos. The first two inches of level 4 contain the bottom of the cultural layer, the bottom of levels 4 and 5 are clean sand with very few, if any, artifacts. I excavated Test Unit 4 to the bottom of level 6 because there was some staining present, which I thought could be a feature but was later dismissed as root staining. In Outbuilding 1, Test Unit 7, a large feature was encountered in level 4. The feature was mapped and covered with plastic; we did not complete excavations due to time constraints. This feature will be re-visited at a future date.
Outbuilding 1

The first unit excavated, Unit 1, was placed to straddle the building foundation. As expected, the looters’ trench and building footing were encountered along with a number of very large tree roots, which spanned the unit in several places (Figures 67 and 68). Brick rubble was evident in the looters’ trench while the building foundation was present as a few larger intact clumps of mortar and brick rubble. There was not enough left to determine a brick pattern. The trench in the profile photo below is the builder’s trench, which is 8 inches wide (Figure 69).

Artifacts recovered are included in Table 6 and are generally metal artifacts, which appear to be related to livery, as well as a small quantity of 18th to early 19th-century ceramics. Wrought iron nails (n=37), green bottle glass (n=40), and flat colorless glass (n=32) and colorless flat window glass dominated the assemblage. A total of 8.93 kg of brick and mortar were recovered from this unit.

Test Unit 2 was placed abutting Test Unit 1, on its east side, within the interior of the dependency. A possible feature, Feature A, was encountered at approximately 9 inches BD, which presented as a hard packed area of sand with a few bricks and rubble in the southwest corner of the unit (Figure 70). No artifacts were recovered in this feature. Another feature, Feature B, was encountered in Level 5 at the northeast corner of the unit, which presented as a black stain with charcoal flecking and larger chunks of brick (Figure 71). These were collected and the soil was sampled for later analysis. A few ceramics were recovered from this stain; however, they were not burned, suggesting they were a later deposition. This unit was excavated to the bottom of level 6 and no other features were encountered, though Feature B persisted and the stain was still ephemeral at unit termination. Feature B is interpreted as a post mold.
Figure 67. Test Unit 1, Level 5, showing a portion of the looters trench, and remnant foundation (photo by the author).

Figure 68. Plan view Test Unit 1, bottom of level 5 on the left, south wall profile on the right (map by Michael Angst).
Figure 69. Test Unit 1, south profile, post excavation. The red arrow indicates the location of the looter’s trench, also noted by the dark staining and loose rubble filled sandy loam (photo by the author).
Table 6. Summary of artifacts recovered from Test Unit 1.

<table>
<thead>
<tr>
<th>Test Unit 1</th>
<th>Level 1-2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>2</td>
<td>23</td>
<td>9</td>
<td>3</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Horseshoe Nails</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Metal fastener</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Metal rivet</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Metal Hook w/ Eyelet</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bridle or Saddle Buckle</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Flat Glass</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>6</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Curved Colorless Glass</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mirror Glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Green Bottle Glass</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Leaded glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>British Stoneware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>North Midlands Slipware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>White Salt Glazed Stoneware Tableware</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Colonoware</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Pearlware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>White Ball Clay Pipe Stem Fragment</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>64</td>
<td>35</td>
<td>21</td>
<td>2</td>
<td>150</td>
</tr>
</tbody>
</table>
Figure 70. Test Unit 2, southeast profile. The red arrow points to Feature A.

Figure 71. Test Unit 2, northwest profile showing the location of Feature B (photo by the author).
The stratigraphy in Unit 2 consists of Zone A, which is 4 to 8 inches thick, Munsell 10YR 2/2 very dark brown sandy loam with brick and mortar rubble included. Feature A was within Zone A and, in profile, appears to be a fill episode. It consisted of 10YR 5/4 yellowish brown hard packed sand. Zone B consists of a cultural layer, Munsell 10YR 3/2 very dark grayish brown sandy loam with roots and rootlets, and very little brick and mortar. Zone 3 was the bottom layer, which contained few artifacts, and consisted of 10YR 7/4 very pale brown sand with orange clay inclusions (Figure 70). Artifacts recovered are similar to those of Test Unit 1 with a livery component as well as ceramic artifacts ranging from the 18th to the early 19th centuries (Table 7). A total of 7.11 kg of brick and mortar were recovered.

Test Unit 3 was placed outside of the dependency with the idea of exploring the stratigraphy outside of the building (Figure 72). The south wall profile is representative of the unit; no features were encountered. A large number of artifacts (n=204) were recovered, similar to those found in Test Units 1 and 2 (Table 8). A partial horse bit was recovered from this unit and higher quantity of colonoware was also encountered. Level 3 contained the majority of artifacts recovered from Test Unit 3 and could represent the 18th- to early 19th-century yard area of the dependency. Only 5.42 kg of brick and mortar were recovered from Test Unit 3 and the majority of this was documented in the first two levels.

Test Unit 7 was placed next to Test Unit 2, on return to Peachtree in the winter of 2015 and was excavated to 18 inched BD. A large feature was encountered in the western portion of the unit (Figures 73 and 74). A layer of brick and mortar were present just on top of the feature. The majority of artifacts recovered were found in levels 1 and 2 and are typical of this dependency (Table 9).
Table 7. Summary of artifacts recovered from Test Unit 2.

<table>
<thead>
<tr>
<th>Test Unit 2 Artifacts</th>
<th>Level 1-2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Feature A</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Metal rivet</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Metal Strap Hinge</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Brass tack</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Flat Glass</td>
<td>17</td>
<td>13</td>
<td>7</td>
<td>2</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Green Bottle Glass</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Leaded glass</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Tin Glazed</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>British Stoneware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>North Midlands Slipware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Nottingham Stoneware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Salt Glazed Stoneware Tableware</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Colonoware</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td>2</td>
<td>14</td>
<td>7</td>
<td>1</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>American Stoneware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pearlware</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Coarse earthenware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Ball Clay Pipe Bowl Fragment</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
<td>58</td>
<td>18</td>
<td>3</td>
<td>3</td>
<td>123</td>
</tr>
</tbody>
</table>
Figure 72. Outbuilding 1, Test Unit 3, south wall profile (map by Michael Angst).

Legend
I. Brick/mortar II. Root

Profile Strata
Zone A1: same as A2, but with looser consistency
Zone A2: 10YR 4/2 (dark grayish brown) sandy loam; brick and mortar fragments; roots common
Zone B: 10YR 4/4 (yellowish brown) sandy loam; primary cultural layer, brick and mortar fragments, compact; roots common
Zone C: 10YR 6/3 (pale brown) sand with few artifacts
Table 8. Summary of artifacts recovered from Test Unit 3.

<table>
<thead>
<tr>
<th>Test Unit 3</th>
<th>Level 1-2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>4</td>
<td>27</td>
<td>10</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>Horseshoe Nails</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Metal horse bridle parts</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Metal fastener</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Lead</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Brass tack</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Brass Shoe Buckle</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Brass Furniture Pull</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Flat Metal</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Flat Colorless Glass</td>
<td>5</td>
<td>15</td>
<td>15</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>Green Bottle Glass</td>
<td>3</td>
<td>21</td>
<td>5</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Leaded Glass</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>British Stoneware</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>North Midlands Slipware</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>White Salt Glazed Stoneware Tableware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Colonoware</td>
<td>1</td>
<td>18</td>
<td>9</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Astbury</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pearlware</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Red coarse earthenware</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>White Ball Clay Pipe Stem Fragment</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>White Ball Clay Pipe Bowl Fragment</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>117</td>
<td>58</td>
<td>12</td>
<td>204</td>
</tr>
</tbody>
</table>
Figure 73. Test Unit 7, plan view bottom level 4, with large feature, view northwest (photo by the author).

Figure 74. Test Unit 7, plan view bottom level 4, with large feature on the left side; north wall profile with soil descriptions on the right (map by Michael Angst).
Table 9. Summary of Artifacts recovered from Test Unit 7.

<table>
<thead>
<tr>
<th>Test Unit 7 Artifacts</th>
<th>Level 1-2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>18</td>
<td>1</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>Metal fastener</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Flat Metal</td>
<td>12</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Wire</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Possible Scythe</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Brass Tacks</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Flat Glass- Colorless</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aqua Flat Glass</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Curved Colorless Glass</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Green Bottle Glass</td>
<td>32</td>
<td>5</td>
<td>14</td>
<td>51</td>
</tr>
<tr>
<td>Leaded glass</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tin Glazed</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Colonoware</td>
<td>1</td>
<td>4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td>4</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>American Stoneware</td>
<td>13</td>
<td>3</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Creamware</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pearlware</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Ball Clay Pipe Bowl</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Ball Clay Pipe Stem</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>101</td>
<td>19</td>
<td>22</td>
<td>142</td>
</tr>
</tbody>
</table>
A portion of long bone was also recovered from level 4, which appears to be a small mammal. A total of 5.04 kg of brick and mortar were recovered from this unit. The unit was terminated at the top of the large feature and will be re-excavated at a later date.

Outbuilding 2

Test Unit 4 was placed on the opposite side of the two-track road from the other test units in proximity to this dependency because there was a concentration of brick scatter in this area that looked potentially like it could be the corner of a structure. The majority of brick and mortar was recovered from this vicinity, in total 3.96 kg. Very few artifacts were recovered from this unit and the majority came from a hard-packed sandy area in the northwest corner of the unit. No staining was present, the area was pedestalled and carefully excavated but no feature was present. Because this unit was placed at the edge of the road, the hard packed area could be related to it, or the edge of yard space for the dependency. Test Unit 4 was dug to level 6 to investigate other staining in the unit that was determined to be root burn (Figure 75). In general, Zone A was 10YR 4/4 dark yellowish brown sandy loam capping several layers of loamy sands (10YR 7/3 very pale brown sand and 10YR 5/3 brown mottled with orange clay inclusions); these included iron concretions toward the bottom of the unit. The unit was terminated at 24 inches BD. Artifacts recovered consist of small quantities of nails and glass in various colors with green bottle glass dominating. Ceramics recovered from Test Unit 4 date to the 18th and early 19th centuries (Table 10). An oyster shell was recovered form level and a small rodent animal bone was recovered from level 3.
Figure 75. Test Unit 4, post excavation, south wall profile.
Table 10. Summary of artifacts recovered from Test Unit 4.

<table>
<thead>
<tr>
<th>Test Unit 4 Artifacts</th>
<th>Level 1-2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>9</td>
<td>5</td>
<td>12</td>
<td>3</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>Horseshoe Nails</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Flat Glass</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Curved Colorless Glass</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Green Bottle Glass</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>North Midlands Slipware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Salt Glazed Stoneware Tableware</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Colonoware</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Jackfield</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pearlware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Red Coarse Earthenware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Ball Clay Pipe Bowl Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ballast Fragment</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>5</td>
<td>2</td>
<td>69</td>
</tr>
</tbody>
</table>

Test Unit 5 was placed on a light brick scatter in the area estimated to be a dependency location. The majority of the 7.2 kg of brick and mortar recovered from this unit were contained to the upper levels (5.0 kg recovered from the surface and levels 1 and 2). No features were observed and artifacts seemed to be distributed evenly across each level. Stratigraphy was typical for this area as well (Figure 76). Green bottle glass \((n=124) \) dominates the artifact assemblage recovered from this unit, followed by nails \((n=53) \). Of note, a brass button was recovered from Zone A. Colonoware dominates the ceramic assemblage \((n=15) \) with smaller quantities of
European ceramics and Chinese export porcelain (Table 11). The ceramic assemblage is similar to that recovered from Outbuilding 1 with a date range of 18th through the early 19th centuries.

Figure 76. Test Unit 5, south wall profile. I is brick and mortar and II is root (map by Michael Angst).
Table 11. Summary of artifacts recovered from Test Unit 5.

<table>
<thead>
<tr>
<th>Test Unit 5 Artifacts</th>
<th>Level 1-2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>28</td>
<td>15</td>
<td>8</td>
<td>2</td>
<td>53</td>
</tr>
<tr>
<td>Metal fastener</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Metal Square Washer</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Brass tack</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Brass Button</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Flat Metal</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Misc. metal</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Flat Glass</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Green Bottle Glass</td>
<td>87</td>
<td>30</td>
<td>7</td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>Possible Hearth Brick</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tin Glazed earthenware</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Colonoware</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>British Stoneware</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>North Devon Gravel Tempered</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>White Salt Glazed Stoneware</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Tableware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Stoneware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pearlware</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Creamware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Red Coarse Earthenware</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Ball Clay Pipe Stem</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Ball Clay Pipe Bowl</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Fragment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>144</td>
<td>56</td>
<td>32</td>
<td>2</td>
<td>234</td>
</tr>
</tbody>
</table>
Test Unit 6 was placed between the two-track road and what was thought to be the interior of the dependency. Stratigraphy was very similar to Test Unit 5; however, it was much shallower, only extending to 21 inches BD and only contained 4.8 kg of brick and mortar rubble. Of note in this unit was a black, charcoal-like feature in the west wall, which extended from the base of Zone A all the way through the bottom of Zone B (Figure 77). A total of 25 Native American pottery sherds were recovered from this unit and the majority were recovered from this stain within levels 1 and 2. No European artifacts were found within it.

Also similar to Unit 5, green bottle glass (n=32) and nails (n=26) dominated this assemblage, though in much smaller quantities. Only a very small quantity of European ceramics (n=23) were recovered (Table 12). Based on the small quantity of artifacts and the presence of a Native American feature, this unit appears to be outside the dependency.

Figure 77. Test Unit 6, west wall profile showing a large black stain. Small brick fragments are present just underneath it (photo by Ashley Chapman).
Table 12. Summary of artifacts recovered from Test Unit 6.

<table>
<thead>
<tr>
<th>Test Unit 6 Artifacts</th>
<th>Level 1-2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>21</td>
<td>5</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Metal Strap Hinge</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Brass tack</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Flat Glass</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Green Bottle Glass</td>
<td>26</td>
<td>4</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>Leaded glass</td>
<td>10</td>
<td>2</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>North Midlands Slipware</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Colonoware</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>White Salt Glazed Tableware</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>American Stoneware</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Red Coarse Earthenware</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pipe Stem Fragment</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pipe Bowl Fragment</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Native American Pottery Sand Tempered</td>
<td>14</td>
<td>8</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>94</td>
<td>25</td>
<td>7</td>
<td>126</td>
</tr>
</tbody>
</table>

Of all the units excavated in both dependencies, Test Unit 8 was the most dense in artifacts, with the largest variety of kitchenwares. The majority of artifacts were green bottle glass (n=147) (Table 13). Most of these fragments were recovered from levels 1 and 2, within the bottom of Zone A and into Zone B. A large quantity of colonoware (n=16) and white salt glazed stoneware tableware (n=18) was also recovered, in addition to smaller amounts of 18th- to early 19th-century European ceramics. Of note in the assemblage were several large oyster shells recovered from levels 1 and 2. The unit was terminated in sterile sand at 15 inches BD. Stratigraphy was similar to that of Unit 5 and no features were observed (Figures 76 and 78). A total of 1.1 kg of brick and mortar were recovered from Test Unit 8.
Table 13. Summary of artifacts recovered from Test Unit 8.

<table>
<thead>
<tr>
<th>Test Unit 8 Artifacts</th>
<th>Level 1-2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>27</td>
<td>32</td>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>Flat Metal</td>
<td>1</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Brass Tacks</td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Flat Colorless Glass</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Curved Colorless Glass</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Dark Green Bottle Glass</td>
<td>93</td>
<td>44</td>
<td>10</td>
<td>147</td>
</tr>
<tr>
<td>Leaded Glass (Opaque)</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dark Aqua Glass</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Light Green Glass</td>
<td>41</td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Flat Aqua Glass</td>
<td>6</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Curved Aqua Glass</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tin Glazed</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Delft</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>North Midlands Slipware</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Salt Glazed Stoneware Tableware</td>
<td>13</td>
<td>5</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Colonoware</td>
<td>15</td>
<td>1</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td>8</td>
<td>1</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>American Stoneware</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Creamware</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Creamware Cauliflower</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Industrial Slipware (Pearlware)</td>
<td>4</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Pearlware</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Refined Earthenware</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Ball Clay Pipe Stem Fragment</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>White Ball Clay Pipe Bowl Fragment</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>223</td>
<td>101</td>
<td>22</td>
<td>346</td>
</tr>
</tbody>
</table>
Test Unit 9 was placed on the southeast corner of Test Unit 5 in proximity to another scatter of brick. A large amount of brick and mortar were recovered from this unit, 15.7 kg in total, and there appeared to be a partially fallen wall or pile of brick and rubble in a large portion of the unit. A dark stain was observed underneath the layer of brick, which persisted throughout excavation. Because it was directly under the rubble or wall remnant it may have been a water stain. The stratigraphy in this unit was similar to Units 5, 6, and 8 (Figures 79 and 80).

Artifacts recovered from Unit 9 are similar to those from Unit 8 with a large quantity of green bottle glass and smaller quantities of European ceramics of the 18th and early 19th
Figure 79. Test Unit 9, bottom of level 5, note staining in the northeast portion, under the brick layer. The stain in the southeast portion of the unit is a root (photo by Meggie Ellis).

Figure 80. Test Unit 9, bottom of level 5 plan view on the left, north wall profile on the right (map by Michael Angst).
Table 14. Summary of artifacts recovered from Test Unit 9.

<table>
<thead>
<tr>
<th>Test Unit 9 Artifacts</th>
<th>Level 1-2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nails</td>
<td>34</td>
<td>37</td>
<td>13</td>
<td>84</td>
</tr>
<tr>
<td>Bridle or Saddle Buckle</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat Colorless Glass</td>
<td>3</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Curved Colorless Glass</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Curved Leaded Colorless Glass</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Leaded glass- Flat Opaque Colorless</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Light Aqua Glass</td>
<td>2</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Green Bottle Glass</td>
<td>87</td>
<td>33</td>
<td>7</td>
<td>127</td>
</tr>
<tr>
<td>Tin Glazed earthenware</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>British Stoneware</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Delft</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>North Midlands Slipware</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Salt Glazed Stoneware Tableware</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Colonoware</td>
<td>7</td>
<td>16</td>
<td>8</td>
<td>31</td>
</tr>
<tr>
<td>Chinese Export Porcelain</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Red Bodied Stoneware</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>American Stoneware</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Creamware</td>
<td>4</td>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Industrial Slipware (Pearlware)</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Terracotta</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>White Ball Clay Pipe Stem Fragment</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Ball Clay Pipe Bowl Fragment</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>147</td>
<td>106</td>
<td>38</td>
<td>291</td>
</tr>
</tbody>
</table>
centuries. A larger quantity of Chinese Export Porcelain (n=12) was recovered from this unit, the most of any test unit excavated within these dependencies (Table 14). Several oyster shells and one cow rib bone were recovered in level 3. As in Test Unit 6, a large quantity of Native American pottery (n=36) was recovered from this unit as well as several tertiary flakes and a tested cobble.

Outbuilding Interpretations

Given the evidence to date, general interpretations can be made regarding the Peachtree dependencies. Both buildings measure approximately 20-ft-x-30-ft, based on the looters trench observed in Outbuilding 1, and were aligned to mirror the position of the main house. Though only Outbuilding 1 could be definitively measured, Georgian-Palladian symmetry dictates that both dependencies would be the same size and of similar construction. Based on the very remnant foundation encountered in Unit 1, the walls of these dependencies were approximately two bricks wide, or 10 to 12 inches thick with mortar. This is less than the main Peachtree house, which is 18 to 24 inches thick, and indicates the walls reached less than two full stories in height. There was not enough intact foundation uncovered to determine a bond pattern for the brick. Additionally, the presence of window glass indicates the buildings had window openings and glass panes. There is no evidence of slate or any other probable roofing material and the main house roof is thought to have been constructed capped with shaker shingles of cypress or pine.

The majority of artifacts collected as a result of archaeological excavations within the interior of the structures are very small, remnant pieces of tablewares, bottle glass, horse tack, and furniture fasteners. These are all things that could have fallen through the floorboards over time. Larger pieces, such as the bridle bit and furniture pull recovered in Test Unit 3, were located in what would have been the dependency yard area. My preliminary interpretations are
that both dependencies were 1 or 1½ stories in height, with wooden floor boards, and shake shingle roofs. The date range of artifacts, from the 18th to the early 19th centuries, supports an interpretation that these dependencies were constructed during the occupation of the main house. There is very little material culture to support an earlier time period and nothing to suggest the buildings were in use in the latter part of the 19th century. They are not present on the 1873 U.S. Coast survey map.

The proliferation of metal and horse tack items in Unit 3, outside of Outbuilding 1, indicates this may have been a quartering or stable area for horses or other animals; however, there were no features such as postmolds or other evidence of fencing to indicate an enclosed area. Some metal, rivets and fasteners were also recovered from the interior of the building. The terraced gardens are located on the other side of the main house from this dependency so, manure from stables or enclosed pens would have had to be carted farther. Of note is the large feature exposed in Unit 7. Further analysis of this area of the building, in addition to investigation of the mounded area at its northern extent, may yield a more definitive use for this dependency, other than a storage area, though a change in use over time from a stable or livery to a storage area, or possibly both uses, are possibilities.

The larger quantity of fine ceramics, including Chinese Export porcelain and white salt glazed stoneware tablewares (n=67), large quantity of green bottle glass (n=448), and other more utilitarian stonewares suggest that Outbuilding 2 could have functioned as a kitchen in addition to storage. Test Units 5, 8, and 9 Outbuilding 2 yielded the largest number of artifacts (combined n=871), with possible burnished brick and some burned ceramics also present. There is a notable lack of faunal remains other than a few larger oyster shells and a piece of cow rib bone. If this was the early kitchen at Peachtree, before it was moved into the main house, its use may have
changed over time. Colonoware is present in a slightly larger quantity (n=68) within Outbuilding 2; however, there were no other features or artifacts to suggest that enslaved labor were living in the building. If it were used as a kitchen, it seems likely one or more slaves lived in the building. No remnant building foundations were encountered during the course of excavation, though, based on the types and numbers of artifacts recovered, it appears that Units 4 and 6 were outside of the structure, while Units 5, 8, and 9 were inside of the structure. The space between Units 5 and 6, if excavated, could contain foundation remnants.

Based on these excavations, it appears the outbuildings did function as pavilions; however, their use may have changed through time. Outbuilding 1 may have served as a stable before it was deconstructed and Outbuilding 2 could be the original kitchen for Peachtree. The date range of artifacts indicates these buildings were torn down in the first quarter of the 19th century. Further excavation should provide additional data to definitively resolve these questions related to building use.

South Settlement

A total of 69 shovel tests were excavated in the vicinity of the cluster of structures south and east of the main house, at the periphery of the plantation domestic core (Figures 62 and 81). The area is characterized by large oak trees, magnolia trees along the high rise toward the Smudge, and stands of thick privet and briar. Several ditches are also present, which seem to bound the south and southeastern extent of the settlement. Whether they are modern or historical is unknown as they are not presently in use and do not connect to any known fields. Standing structures related to hunting activities are also present in this area. Artifacts were observed on the surface along the two-track road, which connects this portion of the parcel with the main
Figure 81. Shovel Tests at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey map (image courtesy of the University of Alabama Cartography Lab; map by the author).
approach to the ruin. Artifacts were also observed in sandy areas nearest two deer feeders and a
deer blind (Figure 82). These were collected and include olive green bottle glass, aqua container
glass, one sherd of Chinese export porcelain, undecorated pearlware, creamware, creamware and
pearlware industrial slipwares, yellow ware, whiteware, and white ball clay pipe stem and bowl
fragments, and two hoe bases.

Shovel testing in this area was conducted in two phases. The first phase was conducted in
May 2017 as part of a field program for The University of the South history students, and the
second phase occurred in October 2017 after the shovel test data recovered from the first phase
were analyzed. The second phase was conducted to delineate the extent of the South Settlement
and to determine if it continued into the Smudge. Based on this phase of testing, it appears that
the housing was present on a slightly higher rise, which wraps around a depression toward the
river and the area of the Smudge. This depression can be seen on LiDAR imagery (Appendix B).

Figure 82. Surface collected ceramics in vicinity of the South Settlement.
There are two gaps between shovel testing. One of these occurs within the South Settlement and is a thick stand of oak and magnolia trees, heavy briar, and a deer stand with nearby hog trap. Two depressions were observed next to the deer stand along the ditch present on the south side of the settlement. The second gap occurs between the South Settlement and the Smudge. This is at the edge of the depression and the soils are eroded clay pan. The types and densities of artifacts recovered from each area indicate separate functions. Generally, soils are much shallower in this portion of the Peachtree parcel and most shovel testing was terminated in sterile soils at 12 to 15 inches below surface. Stratigraphy is similar to the dependencies with a topsoil layer of overburden and heavy root mat of sandy loam to 4-5 inches below surface. This layer caps a general cultural layer of 10YR 4/3 brown sandy loam with few roots between 7 and 10 inches thick. Most artifacts were observed in these upper two layers, which are followed by a sandy subsoil of 10YR5/4 yellowish brown sand, loose to compact, mottled with iron concretions and orange clay inclusions. Shovel testing near the depression encountered mottled sandy clay subsoil from 8 to 10 inches below surface. Artifacts recovered in these areas were generally observed just beneath the ground surface.

Artifacts recovered during archaeological testing at the South Settlement indicate that this could be the site of an overseer’s house in addition to enslaved dwellings (Figure 62). Diagnostic artifacts give a date range of mid-18th century to the 20th century. The majority of artifacts recovered include colonoware, a very small quantity of Chinese export porcelain, creamwares, industrial slipwares, undecorated as well as shell edged pearlwares, and whitewares (Figures 83-89). Other types of artifacts recovered include white ball clay pipe stem and bowl fragments, a blue beveled glass bead, at least two partial leaded glass tumblers, a metal button base, a hoe base, and a large quantity of unidentifiable flat metal fragments. Heat density maps provide
Figure 83. Types and quantities of ceramics recovered from shovel testing at the South Settlement.

Figure 84. Brick, by weight in grams, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey map (image courtesy of the University of Alabama Cartography Lab; map by the author).
Figure 85. Nails, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey map (image courtesy of the University of Alabama Cartography Lab; map by the author).

Figure 86. Glass, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey map (image courtesy of the University of Alabama Cartography Lab; map by the author).
Figure 87. Ceramics, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author).

Figure 88. Heat density map of brick and mortar by weight at the South Settlement and the Smudge overlaid on a detail of the 1873 U.S Coast Survey map. Darker colors represent concentrated areas of brick and mortar rubble (Image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author).
Figure 89. Heat density map of nails, glass, and ceramics by weight at the South Settlement and the Smudge overlaid on a detail of the 1873 U.S Coast Survey map. Yellow and red colors represent concentrated areas of nails, glass, and/or ceramics (Image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author).

Figure 90. Heat density map of all artifacts at the South Settlement and the Smudge overlaid on a detail of the 1873 U.S Coast Survey map. Darker colors represent concentrated areas of artifacts (Image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author).
visual aids for artifact densities, by brick and mortar weight and artifact count, in this area (Figure 88-Figure 90).

One shovel test yielded a large quantity of diagnostic artifacts including a blue glass bead, the only in-situ Chinese export porcelain sherd, the only piece of North Midlands slipware, creamware, pearlware, colonoware, and a concentration of brick and mortar. No whiteware was recovered from this shovel test and surrounding shovel tests contained significantly fewer artifacts; the majority of recovered material was brick, mortar, and nails. This shovel test was excavated in the vicinity of the deer blind and feeder and almost on top of a structure depicted on the 1873 U.S. Coast Survey map, just south and east of another line of structures (Figure 87).

Brick, mortar, and nails represent the architectural elements recovered from shovel testing (Figures 84, 86, 88). Most nails were either fragmented or heavily corroded, making identification difficult; however, several wrought iron rose head nails were identified in the assemblage. A total of 17.48 kilograms of brick and mortar was recovered in the South Settlement shovel tests (Figures 84 and 88). Overall, architectural elements were not found in any great quantity, suggesting houses were likely wooden structures atop brick and mortar piers. Based on observation of other extant enslaved housing in the Santee Delta, the Peachtree South Settlement enslaved houses were likely duplexes with a central chimney to heat each room, though no evidence of a hearth or fireplace foundation has been found in this area, to date. This style of housing is typical of the late colonial era and antebellum time period on the Santee Delta and the ceramic assemblage for the South Settlement supports this date range. Shovel testing coincides with the structures located on the 1873 U.S. Coast Survey map reasonably well (Figure 87).
The Smudge

A total of 23 shovel tests were excavated in this area and very little diagnostic material was recovered. General soil stratigraphy in this area is 7 to 9 inches of sandy loam with heavy roots and few artifacts followed by a more compact layer of loamy sand and clay with a few iron concretions. Typical shovel tests were dug from 20 to 24 inches. Testing was terminated at the water table. Most artifacts were observed from 4 to 15 inches below surface.

The majority of artifacts encountered were brick, mortar, and green bottle glass, with a smaller quantity of nails and ceramics (Figures 84-87). A total of 35.6 kilograms of brick and mortar were recovered during shovel testing. A green bottle fragment and two pieces of white salt-glazed stoneware, which were rim sherds of a plate, were surface collected; however, colonoware dominates the ceramic assemblage recovered from shovel testing (Figure 91).

The assemblage indicates that this area was likely not a domestic site but rather a work area, or perhaps not even a structure but ephemeral scatter from the nearby South Settlement area.

Figure 91. Types and quantities of ceramics recovered by shovel testing at The Smudge.
The heat density maps presented in Figures 88-90 provide a good visual indication of the lower artifact distribution in this area. Diagnostic artifacts give a date range of mid-18th century to the 20th century. The shovel test survey in this area was bounded by low lying swamp toward the northwest and a modern grassy front yard, to the east, which is not part of the Peachtree parcel.

Enslaved Street

The Enslaved Street is located along what is now the main approach to the plantation house. Historically, this settlement was on the periphery of the main approach, which was likely along the high ridge, which the house sits. A deer feeder is in proximity to the shovel test area and several artifacts have been collected here over the past few years. Green bottle glass dominates the surface collect assemblage with several pieces of whiteware, 2 industrial slipped pearlware, 1 axe head, 1 small slate fragment, 1 hoe, and 1 metal button embossed with a sunburst pattern design.

A total of 51 shovel tests were placed on both sides of the existing two track road based on the structures depicted on the 1873 U.S. Coast Survey map (Figure 92). Generally, shovel tests were dug to 24 inches. Typical soil stratigraphy consists of 2 to 3 inches of leaf litter overburden with sandy loam root mat followed by plow zone of 2 to 4 inches intermixed with a cultural layer, typically loamy sand. Typical Munsell color of the cultural layer/plowzone is 10YR 4/2 dark grayish brown. This layer caps a sand layer of 10YR 6/4 or 6/6 with iron concretions and some orange clay mottling at the bottom extent. Few artifacts are typically found in this layer, and are generally in the upper extent.

Artifacts recovered at the Enslaved Street were similar to the South Settlement, with a high quantity of brick, mortar, and nails (Figure 93-Figure 100).
Figure 92. Detail of 1873 US Coast Survey Map with shovel tests located at the Enslaved Street overlaid (image courtesy of the University of Alabama Cartography Lab; map by the author).
Figure 93. Types and quantities of ceramics recovered by shovel testing at the Enslaved Street.

Figure 94. Brick, by weight, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author).
Figure 95. Nails, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author).

Figure 96. Glass, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author).
Figure 97. Ceramics, by quantity, recovered from shovel testing at the South Settlement and Smudge overlaid on a detail of the 1873 US Coast Survey Map (image courtesy of the University of Alabama Cartography Lab; map by the author).

Figure 98. Heat density map of brick and mortar by weight at the Enslaved Street overlaying a detail of the 1873 U.S Coast Survey map. Darker colors represent concentrated areas of brick and mortar rubble (image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author).
Figure 99. Heat density map of nails, glass, and ceramics by count at the Enslaved Street overlaying a detail of the 1873 U.S Coast Survey map. Yellow and red represent concentrated areas of nails, glass, and/or ceramics (image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author).

Figure 100. Heat density map of all artifacts at the Enslaved Street overlaying a detail of the 1873 U.S Coast Survey map. Darker colors represent concentrated areas of artifacts (image courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; map by the author).
A total of 7.2 kg of brick and mortar were recovered during shovel testing in this area. Colonoware, creamwares, undecorated and decorated pearlwares, olive green glass, and American salt-glazed stoneware dominate this assemblage. Based on the artifacts recovered, this area likely contained similar housing to that of the South Settlement with a similar date range of occupation. Like the South Settlement, additional block excavation may give a better indication of individual housing areas. Garden plots in this area may also be a possibility as the site sits on higher ground than the South Settlement and Smudge. This portion of the Peachtree parcel has been timbered and has also been impacted by livestock and anthropogenic activity. All of these factors likely contribute to the paucity of artifacts from this area.

Of note is the small slate piece found on the surface near the deer feeder. Slate pieces similar to the one found at the Enslaved Settlement were also found in situ under the main Rochelle house during the summer of 2018 house raising project. These were used as shims to aid in leveling the sill beams on the brick and mortar piers. It seems plausible that this slate piece could have served the same function at an enslaved or freed person’s cabin.

Peachtree Interpretations

Overall, the test unit data for the dependencies are reflective of a shorter time span of use than the data recovered during shovel testing at the South Settlement, The Smudge, and the Enslaved Street. The data recovered positively identified a dependency flanking the southeast side of the main house and provided strong evidence for a matching dependency on its northwest side. Based on archaeological data, both dependencies were likely 1-1 ½ stories in height with window sash containing glass; they were likely capped by cypress or shake shingle roofs and had interior wooden floorboards. The material culture indicates they were likely used as storage, as the Lynch inventories seem to indicate, but also served other functions in keeping with
household needs. It is possible that Outbuilding 1 served as a horse stable or livery and Outbuilding 2 may have been the early kitchen serving the main house at Peachtree. Enslaved workers likely lived in these buildings though their presence is, as yet, elusive. Additional work within these two buildings, particularly in Unit 7, may yield more evidence of their daily lives.

The U.S. Coast survey map of 1873 was instrumental in locating enslaved housing areas on the Peachtree parcel. Unfortunately, this is the only known historical map that shows structures on Peachtree. The only other way to locate historic infrastructure no longer present on the landscape is by systematic shovel test survey of the entire parcel, which was out of the scope of the current project. However, limited shovel testing supports the accuracy of the map in settlement locations to within approximately 50 to 100 feet. It is plausible that this map represents at least a similar number of houses for each area. Additional testing and larger scale excavation will give a better indication of how the housing was configured on the landscape, how many cabins may have been in each settlement, and whether there were garden and livestock plots related to them.

The artifacts recovered from the South Settlement and the Enslaved Street are similar but suggest different periods of occupation. A larger quantity of material culture, with a broader time span of mid-18th century through the early 20th century, suggests a longer period of occupation at the South Settlement. Diagnostic ceramics clustered in the 19th to early 20th century date range, though only a small quantity, indicate people were living here after the Civil War. Of note, Chinese export porcelain and white salt glazed stoneware, in very small quantities, were recovered from this settlement but not from the Enslaved Street. Their presence could indicate that enslaved house servants lived here, or that those living here after the house burning in 1840 recovered material goods from the main house for their own use.
By contrast, the Enslaved Street artifacts were fewer and, based on diagnostic ceramics, suggest a date range of the mid-18th century through the mid-19th century. There were several pieces of whiteware surface collected but none were found in situ. Though housing is present on the U.S. Coast Survey map, it may have been abandoned by the end of the Civil War. Timbering and livestock activities have impacted the Enslaved Street area, as well as modern hunting activities. These anthropogenic activities have also impacted the archaeological record in this area and additional shovel testing or block excavation may help to understand the date range at this site in more detail.

The artifacts recovered from the Smudge were mostly architectural elements, including brick, mortar and nails with a small quantity of green and clear bottle glass, as well as a few diagnostic ceramics, which give a similar date range to the South Settlement. There was no remnant foundation, other than a few brick scatters, to suggest this could have been a structure related to rice production or some other type of work area. The artifacts recovered are similar enough to the South Settlement that they could be related to that area.

Given the remoteness of the Santee Delta and the lack of industry and stable job market after the Civil War into the 20th century, it seems likely that at least a few formerly enslaved people continued to live at Peachtree and farm while earning a wage for cultivating rice for the Doar family. Correspondence between David Doar and Sarah and Sallie McCrady in the first quarter of the 20th century indicate there were at least two tenants during this time period. Their correspondence also indicates the Lynch descendants had trouble getting and keeping tenants who could pay the rent (McCrady Family Archive).
The Marsh Plantation

Of the three plantations on the Santee River discussed here, the least is known of the largest of them. The Marsh Plantation sits near the mouth of the Santee Delta, approximately 5.9 miles downriver from Peachtree and on the north side of the North Santee River (Figure 4). The Marsh was established by Col. Lynch in 1731 from a land grant by the Lords Proprietors. The Marsh is not listed in the inventory of Col. Lynch; however, considering that Lynch, Sr. was only 11 at the time of his father’s death and it was uncommon for women to buy and sell property on their own during this time period, it is probable this plantation was purchased but not yet productive at the time of Col. Lynch’s death. The Marsh originally consisted of 4,500 acres, which extended west from the intercoastal waterway to at least Pleasant Meadows Creek. Though the grant specified 4,500 acres, the total acreage was as much as 5,400 (Baldwin Papers SCHS; 1897 Plat Map Addendum to Title for The Marsh; Linder and Thacker 2001).

At Lynch Sr.’s death, his plantations, including The Marsh, were passed to his son Thomas Lynch, Jr. When Lynch Jr. was lost at sea, his younger sister Esther inherited £10,000 from his estate, as well as 957 acres on the north side of Minim Creek and 1,127 acres on Minim’s Island, which comprised almost half of the original Col. Lynch holding (Linder and Thacker 2001). Per instructions in Lynch Jr.’s will, parts of The Marsh were sold to pay debts from his estate (Moore 1969). By 1793, Esther Lynch had re-acquired much of the original tract (Baldwin Papers SCHS; 1897 Plat Map Addendum to Title for The Marsh; Linder and Thacker 2001).

Esther Lynch was known as Ms. Hetty on the Santee Delta and was one of the only female planters on this river during the antebellum period. She spent part of every year at The Marsh where she supervised the planting. She held 150 slaves in bondage between The Marsh
and her house in Charleston. Upon her death, she freed two of her servants, George her carriage
driver and Sylvia her personal maid, and left both a legacy. Sylvia received $40 a year and
George $30 a year until their deaths (Moore 1974). Ms. Hetty was active in the local churches
and held a pew at St. Michael’s Church in Charleston (Linder and Thacker 2001). She likely also
attended services at Brick Church on the Kings Highway, where the Lynches are also known to
have kept a pew.

Ms. Hetty died in 1823 and left 220 acres and one third of the highlands of Duck Point to
each of her nieces, Elizabeth, Mary, and Esther Bowman; the remainder of The Marsh Plantation
was left to her nephew, Dr. John Bowman Lynch. In 1830, Dr. Lynch sold to James Reid
Pringle, the port collector of Charleston, and moved to Tennessee. Pringle was port collector
until his death in 1840. His wife inherited The Marsh lands as did her four children after Mrs.
Pringle’s death. Under their ownership, The Marsh was further divided into smaller plantations.
The Ravenel plantation was owned by the Pringle sisters, Rosamund and Eliza. Eliza married
Charleston rice factor William Ravenel in 1836 and the Ravenel plantation contributed
substantially to their wealth. This smaller plantation of 600 acres produced 300,000 pounds of
rice in 1850. James Reid Jr. bought out his brother’s share of the inheritance and renamed the
eastern portion Pine Grove. He added to those lands in 1848 when he purchased Eliza Bowman’s
220 acres known as Duck Point and an additional 82 acres owned by Dr. Lynch (Baldwin Papers
SCHS; 1897 Plat Map Addendum to Title for The Marsh; Linder and Thacker 2001).

By 1863, George Trenholm, Confederate Secretary of the Treasury and infamous
blockade runner, had purchased Ravenel and Pine Grove plantations from the Pringles and the
Ravenels (Baldwin Papers SCHS; 1897 Plat Map Addendum to Title for The Marsh; Linder and
Thacker 2001). He passed these plantations to his son Alfred in 1868, when he began
prospecting for phosphate on the Ashley River (McKinley 2014). By 1897, Arthur Manigault had purchased all of the Bowman lands—much of these at public auction for pennies on the dollar of their original worth. In 1899, the heirs of Ravenel also sold to Arthur Manigault, who re-named it Rochelle after La Rochelle, the name of the town in France where the Manigault family lived before moving to the Lowcountry in the 1680s (Linder and Thacker 2001). Ravenel was sold to a hunt club in 1919 and then repurchased by the Robert Manigault, Arthur’s son, in the early 1950s. It remains in the Manigault family today (Linder and Thacker 2001; Pierre Manigault, pers. comm., 2017).

By 1898, Pine Grove was owned by Georgetown County and was then sold to SW Ward and Co., a rice syndicate, for rice cultivation. They owned it until 1932 when it was sold to Kinloch Gun Club. Robert Manigault also purchased Pine Grove in the early 1950s, around the same time as he re-acquired Rochelle, and it too remains in the family today (Baldwin Papers SCHS; 1897 Plat Map Addendum to Title for The Marsh; Linder and Thacker 2001). Rochelle, like many of the other former plantations on the Santee Delta, is under conservation easement and is active in the management of water fowl habitat.

Maps

Like Peachtree, there are very few known maps that show structures on The Marsh. This is, in part, because a number of colonial records were lost when the municipal buildings in Georgetown were burned in the Civil War. The Marsh is located in present day Georgetown County so it is very likely, if there were additional plats or surveyors maps, they burned with those records. The maps that are known include the U.S. Coast Survey map of 1873; the 1896 United States Coast and Geodetic Survey, Coast Chart No. 152, Murell's Inlet to Cape Romain Including Winyah Bay, South Carolina; and the 1897 Addendum to Title map, for The Marsh. It
is important to note that there is another version of the 1873 U.S. Coast Survey map, which includes Winyah Bay to the north of the Santee River. It does not give additional information about the North Santee River and is not included in this study.

As with Peachtree, the 1873 U.S. Coast Survey map serves as a guide to understand where structures were located on what is now Rochelle (Figure 101). These include clusters of structures, which likely represent housing areas, work areas, and possibly the locations of main houses. Within the modern boundaries of what is now Rochelle Plantation none of these structures are present on the landscape today, though some settlement areas were extant as late as the 1980s including those in the northern area in proximity to River Road (Pierre Manigault, pers. comm., 2016). Surface scatters of artifacts can be found in their vicinity after heavy rains, and limited shovel testing has been conducted in these areas to help define the extent of occupation. These are further discussed in the archaeology section below.

The 1896 United States Coast and Geodetic Survey Coast Chart is based on the 1873 U.S. Coast Survey map and does not show additional structures, or any absence of those from the 1873 map, at least in what is now within the modern boundaries of Rochelle (Figure 102). However, the 1896 map provides better resolution in a GIS map overlay. I use it here as a visual tool to identify individual houses in settlement areas that are not as clear on the 1873 map.

The 1897 Addendum to Title map for The Marsh is interesting in a number of ways (Figure 103). First, it is the only known plat of the parts of the original Marsh plantation that
Figure 101. Portion of 1873 U.S. Coast Survey Map 1308. The red circles indicate housing areas and other structures within the modern property boundary of Rochelle plantation (image courtesy of the University of Alabama Cartography Lab, map by the author).

Figure 102. Portion of the 1896 United States Coast and Geodetic Survey, Coast Chart No. 152. Murrell's Inlet to Cape Romain Including Winyah Bay, South Carolina. The red circles indicate housing areas and other structures within the modern boundary of Rochelle plantation (map courtesy of the South Carolina Historical Society; map overlay by the author).
Figure 103. Portion of 1897 Addendum to Title plat of the Marsh overlain on modern aerial imagery (ESRI 2019). The gold line is the modern Rochelle property boundary on the north side of the Santee River. Note the three squares, which likely represent structures (plat courtesy of the South Carolina Historical Society, map by the author).
shows where some structures were located and it also gives clear property boundaries, which are not available for the original Marsh parcel. It also shows the location of three structures in the general vicinity of those indicated on the U.S. Coast Survey map. Brick scatters are present in these areas, suggesting potential for archaeological deposits. All three of these structures were tested as part of data collection in support of this dissertation and are discussed in the archaeology section below.

The Marsh outbuildings sit approximately 550 ft. from the rice fields and enslaved settlements are away from the fields concealed by the tree lines in the US Coast Survey maps. The northern settlement is over 4,000 ft. away from the main houses and farther still from the tidal rice fields, while the western settlement is approximately 600 feet from an outbuilding and 850 ft. from the nearest rice field.

LiDAR imagery and hillshade views for Georgetown County are currently low resolution. White Oak Forestry expects to conduct high resolution fly over scans of their holdings, including Peachtree and Rochelle, in 2020. Because there is no real information to obtain from the current data, I have not included Rochelle LiDAR imagery here.

Archaeology

Over the course of the past two years, I have conducted pedestrian survey, controlled shovel testing, and excavated three, 5-x-5-ft test units and one 2.5-x-5-ft test unit in five areas at Rochelle Plantation. These areas are located on the mainland portion of the property, located on the north side of the Santee River. All of this work was conducted to ground truth the 1873 U.S. Coast Survey map and the 1897 Addendum to Title Map. I wanted to identify the structures depicted on the maps and determine if the maps themselves were accurate. I also wanted to know
if any of the structures on the 1897 map were Esther Lynch’s original plantation house. The areas where archaeological investigation took place are the Rochelle 1958 house, Rochelle Front Yard, the East Field, Kinloch Field, Triangle Field, and the River Road Residences (Figure 104).

Rochelle 1958 House

The Manigault family has indicated that the modern house, built in 1957-1958, was constructed on the foundation of an older house, which Arthur Manigault identified as an overseer’s house (Pierre Manigault, personal communication, 2017). There are several structures on the 1873 U.S. Coast Survey map, which are in the vicinity of the modern house and could be either a main plantation house or an overseer’s house, or perhaps the use changed over time. During deconstruction of this older house, elements that could be re-used were re-purposed into the new house. These included interior hardware such as door knobs and locks as well as the brick from the chimney (Figure 105). This is a very common practice on the Santee River because of its remoteness.

During the summer of 2018, the Rochelle 1958 house was raised 12 ft. off the ground to bring it out of the flood zone (Figure 106). I monitored initial earth moving activities in May 2018 after the house was raised, to record the remnants of the previous house foundation, as well as document any artifacts recovered. The construction plan called for complete demolition of any remaining foundation elements to prepare for a large concrete slab. The contractor overseeing the construction documented the presence of at least two previous building episodes underneath the modern house as a series of intact foundations (Figure 107). His careful measured drawing, taken before the house was prepared for raising, shows the original house foundation, as well as a later remodel or expansion. Features of note from the architecture are an interior tri-fireplace, which is
Figure 104. Aerial imagery of the modern Rochelle main land property boundary on the north Santee River, showing the locations of areas in which archaeological testing was conducted (ESRI 2019; map by the author).
Figure 105. Previous Rochelle house, taken during deconstruction in 1957, view northeast (photo courtesy of Pierre Manigault).

Figure 106. Northeast elevation of Rochelle, during house raising, note the pile of colonial brick in the foreground, which was re-used in the reconstruction of the exterior chimney; view southwest (photo by author).
Figure 107. Measured drawing of the Rochelle house foundation before deconstruction (drawing courtesy of Jake McClellan).
thought to date to the mid- to late 18th century as part of the original house construction, and a later bay addition on the riverside piazza, which is indicative of the latter part of the 19th century, ca. 1870s-1880s (Figure 108). A photo of the wooden house, taken in 1957 as it was being deconstructed, does not yield adequate evidence that this bay was still present; however, the large 2/2 double-hung windows, which can be seen in the photo, are also indicative of the latter part of the 19th century (Figure 105).

Though artifacts recovered are considered surface finds because they are in a disturbed context, they represent a long period of occupation and support the architectural evidence of an 18th-20th century occupation at this location. When the modern Rochelle house was built over top of the previous house in 1957-1958, the contractors placed a vinyl vapor barrier over the original ground surface in preparation for the new house, whose foundation was pier and beam construction with a brick veneer skirt around the exterior. Archaeologically, this vapor barrier gives a good cap for artifact deposition.

Figure 108. Tri-fireplace foundation present underneath modern Rochelle house; the void on the left side of the feature is where a steel I-beam, used during the house raising, was placed (photo by the author).
As expected, the majority of modern artifacts recovered were related to the fill dirt brought in to keep the vapor barrier in place. With the help of the contractors, who also work in historic preservation, over 900 artifacts were recovered. The majority of these are household ceramics and glass but also include white ball clay pipe stems and bowl fragments, wrought and cut nails, strap hinges, a brass thimble, ceramic insulators for knob and tube wiring, a few pieces of brass furniture hardware, several Prosser pressed buttons, and a molded glass cuff link.

Ceramics represent the majority of the assemblage and are also the best indicator of the date range of occupation at this house (Figure 109). As the graph below indicates, there is a small early 18th-century component of tin glazed wares, Rhenish wares, North Midlands slipware, American stoneware, white salt-glazed stoneware, Chinese export porcelain, and Jackfield; however, the majority of diagnostic ceramics fall firmly in the late 18th to early 20th century date range with a large quantity of pearlwares in many different styles including hand painted, feather edged, plain, and transfer printed. Also present in lesser quantities are whitewares with transfer print, hand painted polychrome, plain, sponged, and flown decorations; industrial slipwares in designs spanning their entire period of production; yellowwares, ironstone, and a small quantity of tortoiseshell fireplace surround tiles from the early 20th century.

Household bottle glass is also well represented in the assemblage, the majority of which is green bottle glass dating to the 18th and 19th centuries. A few glass objects were whole; however, the majority of these are fragments. A few pieces of leaded tableware fragments, as well as colorless window glass representing at least two time periods, earlier cylinder glass, and later machined flat glass, were also present.
Other types of glass include fragments of aqua medicine bottles from the 19th century, light bulb fragments dating to the early 20th century, amber case glass, and one fragment of colorless leaded glass from an oil lamp.

Rochelle Front Yard

Archival research indicated the possibility that two structures in the vicinity of the modern Rochelle house could be the main house and kitchen associated with the time period of Esther Lynch, if the house underneath the modern Rochelle house was an overseer’s house (Agnes Baldwin Papers SCHS; Pierre Manigault, personal communication, 2017). The 1873 U.S. Coast Survey map and the 1897 Addendum to Title map both show structures in close proximity to the current modern house, the Front Yard, the East Field, and Kinloch Field. Recent
excavations within portions of the structures in these test areas are inconclusive regarding
definite use; however, a lack of domestic artifacts such as tablewares, bottle glass, and other
types of household goods, indicates these buildings were likely not used as residences. When
comparing data between the Rochelle 1958 house and these areas, it seems likely these are work
areas and not domestic locations.

To locate these structures, a series of shovel tests were placed in each area. A total of 18
shovel tests were placed in the Rochelle Front Yard (Figure 110). Generally, the stratigraphy in
this area consists of a 2 to 4 inch top layer of sod, sandy loam, and root mat, followed by 3 to 9
inches of plow zone mixed with few artifacts. Underneath this layer is a mottled fill layer of 3 to
12 inches, which caps the original cultural layer. The cultural layer is 3 to 7 inches thick and caps
a subsoil layer of gray to orange sandy clay, which perks when the tide is high. The profile of
Test Unit 2 provides a good example of the stratigraphic sequence and Munsell colors in this
field (Figure 122).

Though the majority of the shovel tests were positive, the material culture was
inconclusive. Diagnostic artifacts were restricted to a few nails, green bottle glass, colonial-era
brick fragments (Figures 111-114). Indeterminate flat metal was also recovered from this area. A
total of 66.54 kg of brick and mortar were recovered in this area, suggesting the presence of at
least one structure. The shovel tests located in proximity to the canal at the southwestern extent
of the study area yielded a few artifacts near the surface. While some of these tests were
relatively deep, over two feet in some areas, the stratigraphy was mostly fill material
representing canal dredging activities over time.
Figure 110. Close-up of shovel test locations in the Front Yard and East Field displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red boxes represent test unit locations (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).
Figure 111. Brick, by weight, recovered from the Front Yard and East Field displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red boxes represent test unit locations (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).

Figure 112. Nails, by quantity, recovered from shovel testing in Rochelle Front Yard and East Field displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red boxes represent test unit locations (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).
Figure 113. Glass, by quantity, recovered from shovel testing in Rochelle Front Yard and East Field displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).

Figure 114. Ceramics, by quantity displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).
Heat density maps provide a visual of artifact concentrations in the Front Yard and the East Field. These are overlaid on the 1897 Addendum to Title for the Marsh to illustrate the relationship between the structures and concentrations (Figures 115-117). Darker areas indicate higher concentrations of artifacts. Note the lack of ceramics, glass and nail density in Figure 116 compared with brick and mortar density in Figure 115.

Front Yard Ground Penetrating Radar

To better understand the archaeological data, shovel testing was halted and a Ground Penetrating RADAR (GPR) survey was conducted in the Rochelle Front Yard with the intent of locating a large structure and targeting specific anomalies for additional shovel testing or large block excavation.29

Figure 115. Heat density map of brick and mortar by weight in the Front Yard and East Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh. Darker colors represent concentrated areas of brick and mortar rubble and red squares are test units (plat courtesy of the South Carolina Historical Society, GIS map by the author).

29 RADAR stands for Radio Detection And Ranging.
Figure 116. Heat density map of ceramics, glass, and nails by count in the Front Yard and East Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh. Yellow represents more concentrated areas of ceramics, glass, and nails and red squares are test units (plat courtesy of the South Carolina Historical Society, GIS map by the author).

Figure 117. Heat density map of brick, mortar, ceramics, glass, and nails in the Front Yard and East Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh. Darker colors represent concentrated areas of all artifacts and red squares are test units (plat courtesy of the South Carolina Historical Society, GIS map by the author).
GPR is a remote sensing technique used by archaeologists to aid in the identification of specific areas for further archaeological excavation. This method is often used when the extent of archaeological deposits is unknown; it can also be used to better define areas where archaeological deposits could be located.

The Rochelle Front Yard and East Fields are both composed of sandy, silty clay loam and are relatively flat and mostly free of large vegetation as they are regularly landscaped. They both provided an ideal opportunity to conduct GPR. In the Front Yard, eight grids measuring 40 m-x-40 m were collected for the purpose of understanding if the remnant of a large structure, similar to that represented on the 1897 Addendum to Title map was present, but also to investigate whether there were any additional features, which may be of archaeological interest. The results of this survey are provided in Figure 118 and Figure 119. Data were collected using a GSSI 4000 GPR unit with a 350MHz antenna and was post-processed using Radan software. Data presented here are in 10 cm slices.

Based on the GPR imagery, the structure located in the Rochelle Front Yard had a continuous brick foundation. At least three building episodes appear to have taken place. Subsequent excavation of three test units, which were placed based on the GPR data, exposed these foundation remains as an ephemeral stain in the soil with large quantities of brick and mortar fragments, as well as milled wood remains and nails. Window glass and green bottle glass were also recovered, though in much smaller quantities.

The best imagery of multiple building episodes of the structure occurs at 40 cmbs. At the deepest level, 50 cmbs, a number of other anomalies associated with the structure are also evident. These were not tested as part of the current body of research so their function and extent is unknown. However, based on the visual inspection of the remnant foundation recovered within
Figure 118. GPR imagery overlaying a modern aerial photo (ESRI 2019) of the Rochelle domestic core (super 3D, 41 cmbs +/- 10.5 cm, 12 gain; map by Michael Angst).

Figure 119. Rochelle Front Yard, GPR time slice imagery at 30 cmbs, 40, cmbs, and 50 cmbs. The arrows point to different anomalies (maps by Michael Angst).
two test units, it is likely that these anomalies are either accumulations of brick and mortar debris or represent the remnants of chimneys or portico blocks.

There are a number of other anomalies, detected by the GPR, that show up at different depths (Figure 119). Of note at 30 cmbs are a large metal pipe that spans the width of the field and likely still operates as a drain; the original approach to the building; an angled anomaly at the top of the image; a small circular anomaly next to the canal at the southern extent of the front yard; the main portion of the structure discussed above; and a linear anomaly that flanks its east side.

After GPR data was collected and analyzed, two 5-ft-x-5-ft units were placed in proximity to the wall intersection at mid-structure on its east side, based on the data collected. The first unit was placed within the yard itself and the second was placed to capture the foundation (Figure 120). Very few artifacts were recovered from either unit, other than brick, mortar and nails, indeterminate metal, and few pieces of flat colorless glass, which is consistent with shovel testing in this area. The wall profiles and staining on the floor of Unit 2 were the most informative (Figures 121-123). These show the ghost mark of the foundation, a possible post mold, and a fill event after the structure was taken down. Previous shovel testing recovered burned non-diagnostic metal and the staining in Test Unit 2 indicates the structure did burn as there are clear burn marks on the unit floor. Also of note is an intact piece of wood, possibly flooring, just underneath a partial brick in the side wall (Figure 122).

East Field

To look for evidence of the smaller structure represented on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps, eight shovel tests and one 5-ft-x-5-ft test unit were excavated
Figure 120. Rochelle Front Yard and East Field showing shovel test and test unit locations in red squares on modern aerial imagery. Test units and shovel tests in the Front Yard are overlaying a GPR time slice at 50 cmbs, 12 gain (ESRI 2019; map by the author).
Figure 121. Rochelle Front Yard, Test Unit 2, view north (photo by the author).

Figure 122. Rochelle Front Yard Unit 2, west wall profile (photo by the author).
Figure 123. Test Unit 2, plan view with foundation staining on the left and west wall profile drawing on the right (map by Michael Angst).
in the East Field (Figures 110-117; Figure 120). Shovel testing in the East Field recovered very few artifacts. The majority of recovered materials were brick and mortar fragments and nails. A total of 3.8 kg of brick and mortar were recovered from the East Field. Smaller quantities of green, amber, and aqua glass, two shards of colonoware, one creamware, and one flown blue whiteware were also recovered. Stratigraphy was quite different than that of the Front Yard with shovel tests varying from 2 to 3 inches of plow zone, consisting of sandy loam over subsoil clays, to deeper shovel test of almost 20 inches. The deeper shovel tests were characterized by a 7 to 8 inch top layer of sandy loam plow zone, Munsell color 10YR 3/3 dark brown, over an 8 to 10 inch cultural layer, Munsell color slightly darker at 10YR 2/2 very dark brown loamy sand. The bottom layer was generally dark yellowish-brown 10YR 4/6 sandy clay. Heat density maps also show a general lack of material culture in this area of the East Field, despite the presence of a partially intact foundation (Figures 115-117).

A remnant foundation was exposed within one of these shovel tests, which was expanded into a test unit to determine how intact the foundation was and to determine orientation of the structure (Figures 124 and 125). The foundation sits just below the ground surface and has been impacted by previous plowing in this field as well as modern landscaping activities. The brick was made by hand and is part of an intact foundation in its northeastern section, unlike the larger structure in the front yard. Based on this section, it appears the original foundation was also continuous. The pattern of the brick in the exposed section indicates the possibility of a hearth or chimney in this area. The only diagnostic ceramic artifact recovered from the test unit placed in this section of the structure was a small piece of flown blue whiteware, which was present directly on top of the foundation remnant. No artifacts were recovered from the builder’s trench, which is present on the north side of the foundation remnant.
Figure 124. Foundation remnants, East Field structure, view northwest (photo by the author).

Figure 125. Close-up, foundation remnant, English bond. The hole in the upper left corner is a shovel test, the two smaller holes on the lower left are small core tests. The changes in soil color next to the foundation are the builders’ trench and backfilling after the foundation was constructed (photo by the author).
Rather than shovel test the entire East Field, GPR was conducted in the southern extent with the hope of detecting the majority of the structure. A total of seven, 40-m-x-40-m grids were placed in the field; however, the data collected were largely inconclusive. At the time of data collection, there was standing water in parts of the field, which may have impacted data quality. Additionally, the root mass of the two large oak trees in the vicinity of the foundation may also have distorted the collection process.

Kinloch Field

The third structure of note on this landscape was located on the high ground west of these two structures, within the parcel given to the Lynch nieces after Ms. Hetty’s death (Figure 103). Shovel testing and limited excavations within the modern field, now known as Kinloch Field, uncovered the remnant of a large structure, at least 70-ft-by-15-ft. A total of 50 shovel tests were placed at the southern extent of this field toward the rice fields (Figure 104). These were placed in the general area of the structure depicted on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps. Generally, stratigraphy in Kinloch field is predominantly plow zone consisting of 2 to 8 inches of a 10YR 3/3 dark brown plow zone, with some intact cultural layer in areas, followed by 3 to 4 inches of sterile sand mottled with orange clay. Some charcoal and burned wood was noted; however, the fields at Rochelle are routinely burned before they are plowed.

The foundation remnant in Kinloch Field was identified in the central portion of the shovel testing grid (Figure 126). As with the other large structure in the Rochelle Front Yard to the east, the foundation is continuous and there are very few artifacts associated with it, other than a large quantity of brick and mortar (Figure 127). The brick used to construct this foundation is machine extruded and very dense, indicating it was constructed at a later date, likely in the 1870s or later as bricks made by machine were not prominent in the southeastern
Figure 126. Close-up of shovel test locations in Triangle Field, in the upper left, and Kinloch Field, in the bottom central portion of the maps, overlaid on the 1873 U.S Coast Survey and 1897 Addendum to Title for The Marsh maps. The red rectangle represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).
Figure 127. Kinloch Field 2.5-ft-x-5-ft test unit showing remnant foundation, view north (photo by the author).
United States until after the 1870s (McKee 1973). However, the mortar appears to be locally produced as it is quick lime made from oyster shell and sand aggregate material. Kinloch Field is plowed regularly and the foundation sits just beneath the plow zone. Of note, recovered during limited excavations, were the presence of a large number of cinders, likely related to the burning of coal. Other types of artifacts recovered during shovel testing include a large amount of brick and mortar, nails, and, in smaller quantities, window glass and green bottle glass (Figures 128-135). Though the material culture is sparse, the size of the structure and presence of cinders could indicate it was used as a work area to house later machinery related to rice processing.

The structure aligns most closely with the 1897 Addendum to Title map (Figure 129). Note that the map is skewed to the east in the GIS overlay. Given the date of manufacture for the machine-made bricks, the structure depicted on the 1873 U.S. Coast Survey map is likely older than the structure depicted on the 1897 map. Shovel testing in proximity to what could be an older structure produced very little material culture, with the exception of nails; the majority of these were corroded and difficult to assign rough dates. The shovel tests in the northern-most row produced only a few bricks, a very small quantity of glass, one sherd of colonoware, two eroded refined earthenware, and one sherd of undecorated pearlware.

The large quantity of nails in the northwestern section of shovel tests could represent the structure on the 1873 U.S. Coast Survey map (Figure 130). Of note, the quantity of brick fragments found in Kinloch Field outside of the foundation remnant concentration area were a mixture of machine made and handmade bricks. A total of 35.5 kg of brick and mortar were recovered from Kinloch Field; the majority of these were recovered in the shovel tests around the exposed foundation remnant (Figure 133). Based on the overlay of both maps, combined with the
Figure 128. Plan view drawing of 2.5-ft-x-5-ft test unit with Munsell colors and soil textures (image by Michael Angst).

Figure 129. Kinloch Field and Triangle Field shovel tests with brick quantities displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red rectangle represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).
Figure 130. Kinloch Field and Triangle Field shovel tests with nail quantities displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red rectangle represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).

Figure 131. Kinloch Field and Triangle Field shovel tests with glass quantities displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red rectangle represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).
Figure 132. Kinloch Field and Triangle Field shovel tests with ceramic quantities displayed on the 1873 U.S. Coast Survey and 1897 Addendum to Title maps overlay. The red rectangle represents the shovel test containing the remnant foundation (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).

Figure 133. Heat density map of brick and mortar by weight in Kinloch Field and Triangle Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh and 1873 U.S Coast Survey maps. Darker colors represent concentrated areas of brick and mortar rubble and the red rectangle represents a test unit (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).
Figure 134. Heat density map of ceramics, glass, and nails by count in Kinloch Field and Triangle Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh and 1873 U.S Coast Survey maps. Yellow and red represent concentrated areas nails, glass, and/or ceramics and the red rectangle represents a test unit (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).

Figure 135. Heat density map of all artifacts recovered from Kinloch Field and Triangle Field overlaying a detail of the 1897 Addendum to Title plat of The Marsh and 1873 U.S Coast Survey maps. Darker colors represent concentrated areas of artifacts and the red rectangle represents a test unit (maps courtesy of the University of Alabama Cartography Lab and the South Carolina Historical Society; GIS map by the author).
archaeology, there is a good possibility that two separate structures with different dates of construction once occupied Kinloch Field (Figures 134 and 135).

Triangle Field

Triangle Field is located one field west of Kinloch Field and, based on the 1873 U.S. Coast Survey map, appeared to contain two rows of structures. Pedestrian survey in the freshly plowed field recovered a large variety of surface finds, most of these were ceramics produced in the late 18th century through the 19th century. A total of 19 shovel tests were placed in this field, of these 14 were positive (Figure 126). These were excavated to determine the extent of the artifact scatter as well as to probe for intact subsurface foundation remnants or features. Generally, shovel tests in the tree line consisted of 1 to 3 inches of leaf litter and root mat with loamy sand, followed by 2 to 4 inches of sandy loam with root inclusions; the cultural layer is generally from 4 to 6 inches thick of sandy loam, which appears in the Munsell color sequence 10YR 5/1 and 10YR 2/1 in various hues of gray, very dark gray, brown, and black. Shovel testing in the plowed field consisted of 2 to 7 inches of a 10YR 3/1 very dark gray sandy loam cultural layer followed by 3 to 4 inches of sterile sand mottled with orange clay. Those shovel tests located on the western perimeter were the most productive and the four, southern-most shovel tests were wet at the bottom. Brick, mortar, and nails were recovered in larger quantities in addition to other domestic artifacts including window and bottle glass, late 18th- to 19th-century ceramics, and colonoware (Figure 136).

No intact foundations were identified, and the quantity of brick and mortar is indicative of pier footings (Figures 129 and 133). No chimney bases were identified and there was no intact brick, which could mean the residences were torn down and all of the usable brick re-purposed in other areas or used to repair the rice dikes. Based on the types and quantities of artifacts,
Triangle Field appears to have once been home to a number of enslaved people; however, how many there were and what their names were is unknown. Their residences are depicted on the 1873 U.S. Coast Survey map (Figures 130-132, 134, and 135). Because no intact subsurface features were identified to aid in the interpretation of architectural elements, additional large-scale excavation should be conducted in this field to determine how many houses may have existed in this area.

The majority of artifacts recovered from Triangle Field were surface collected over several seasons, just after the field was plowed. Artifacts were found near the tree line at the western perimeter of the field, in proximity to the most productive shovel tests in the tree line. Over 160 artifacts were collected on the surface and the majority of these were ceramic fragments (Figures 132 and 136). A smaller quantity of glass was also collected including green bottle glass dating to the 18th and 19th centuries and a small quantity of colorless window glass was also present (Figure 131). Other types of glass include fragments of aqua medicine bottles from the 19th century as well as a few pieces of amber case glass. Other artifacts collected include white ball clay pipe stem fragments, an English gun flint, a Prosser pressed button, a hoe base, and the foot of a cast iron kettle or pot. Ceramics represent the majority of the Triangle Field surface collection assemblage and are useful in providing a date range of occupation, particularly for those found in situ (Figures 132 and 136). As the graph above indicates, there is a small early-to-mid- 18th century component of tin glazed wares, North Midlands slipware, Chinese Export Porcelain, and white salt glazed stonewares; however, the majority of diagnostic ceramics date firmly to the last quarter of the 18th through the 19th and early 20th centuries, with a large quantity of pearlwares in many different styles including hand painted, feather edged, plain, and transfer printed. Also present in lesser quantities are whitewares with transfer print, hand
painted polychrome, plain, and sponged; industrial slipware in designs spanning their entire period of production; yellowware, and ironstone. No colonoware was observed during surface collection activities.

River Road Residences

A total of 113 shovel tests were excavated in the area on the east side of the Rochelle main entrance and south of River Road (Figures 104 and 137). These shovel tests were placed based on the density of structures depicted on the 1873 U.S. Coast Survey map closest to the intersection of River Road and the Rochelle main entrance. Generally, the stratigraphy in this area consists of 2 to 3 inches of leaf litter and root mat with loamy sand, followed by 2 to 4 inches of sandy loam with root inclusions; the cultural layer is generally from 4 to 9 inches thick of sandy loam, which appears in the Munsell color sequence 10YR 5/1 and 10YR 2/1 in various hues of gray, very dark gray, brown, and black. The bottom 2- to 4 inches of shovel tests were
Figure 137. Location of River Road Residences shovel testing over top of the 1873 U.S. Coast Survey map (courtesy of the University of Alabama Cartography Lab; GIS map by the author).
generally sterile sand, sandy clay, or orange clay. Shovel tests averaged from 18 to 20 inches in depth.

Of all the testing conducted at Rochelle, this area was by far the densest in terms of artifact distribution; over 1,800 artifacts were recovered. Pedestrian survey identified a number of brick scatters and a few pieces of ceramics including colonoware, salt glazed stoneware, pearlware, yellowware, and whiteware. The majority of shovel tests were positive and recovered architectural and household artifacts with a consistent date range of the late 18th century through the 20th centuries (Figures 139-145). Two shovel tests contained features and were very dense in artifacts; the majority of these were brick, mortar, nails, and bottle glass, creamware, and industrial slipwares, undecorated pearlware, and whiteware. On the maps below, these two areas are indicated by red squares. Other artifacts observed within these two shovel tests included leaded glass ware, amber case glass, colorless glass, and white ball clay pipe stem fragments. Pierre Manigault indicated that some of these buildings were standing in the 1980s; however, there is little evidence left of them on the landscape today.

As Figure 138 indicates, the majority of diagnostic ceramics are from the 19th century, with only a few pieces firmly attributed to the 18th century. These include two sherds of tin glaze, one Astbury, and four creamware. There are also 39 pieces of undecorated pearlware, which span the latter part of the 18th century through the first quarter of the 19th century. Other artifacts recovered from shovel testing include a whole white ball clay tobacco pipe bowl refit from five pieces, 24 fragments of white ball clay pipe stems and bowls, two metal buttons, one Prosser pressed button, one metal buckle, two cast iron kettle feet, and a few pieces of turtle bone. Like those residences in Triangle Field, based on the quantity of brick and mortar, as well as personal conversations with Mr. Manigault, these houses were also pier foundation and likely
Figure 138. Types of Ceramics found by shovel testing at River Road Residences.

Figure 139. Brick, by weight, recovered from shovel testing at River Road Residences, the red rectangle indicates two shovel tests with features (courtesy of the University of Alabama Cartography Lab; GIS map by the author).
Figure 140. Nails, by quantity, recovered from shovel testing at River Road Residences, the red rectangle indicates two shovel tests with features (courtesy of the University of Alabama Cartography Lab; GIS map by the author).

Figure 141. Glass, by quantity, recovered from shovel testing at River Road Residences, the red rectangle indicates two shovel tests with features (courtesy of the University of Alabama Cartography Lab; GIS map by the author).
Figure 142. Ceramics, by quantity, recovered from shovel testing at River Road Residences, the red rectangle indicates two shovel tests with features (courtesy of the University of Alabama Cartography Lab; GIS map by the author).

Figure 143. Heat density map of brick and mortar by weight recovered from River Road Residences overlaying a detail of the 1873 U.S. Coast Survey Map. Darker colors represent concentrated areas of brick and mortar rubble and the red rectangle is the location of features in two shovel tests (maps courtesy of the University of Alabama Cartography Lab; GIS map by the author).
Figure 144. Heat density map of nails, glass, and ceramics by count recovered from River Road Residences overlaying a detail of the 1873 U.S. Coast Survey Map. Yellow and red represent concentrated areas of nails, glass, and/or ceramics and the red rectangle is the location of features in two shovel tests (maps courtesy of the University of Alabama Cartography Lab; GIS map by the author).

Figure 145. Heat density map of all artifacts recovered from River Road Residences overlaying a detail of the 1873 U.S. Coast Survey Map. Darker colors represent concentrated areas of artifact concentrations and the red rectangle is the location of features in two shovel tests (maps courtesy of the University of Alabama Cartography Lab; GIS map by the author).
had central chimneys as well. They would have been clad with clapboard siding and were likely only two rooms with a central, double fire place for heating and cooking. This type of construction is consistent with other enslaved housing in this region.

Rochelle Interpretations

Based on the archaeology presented above, some general interpretations can be made about the historical landscape of what was part of The Marsh plantation. The artifacts recovered from the Rochelle 1958 house raising project are consistent with a continuous occupation from the early part of the 18th century through the 20th century. The types of artifacts recovered are an indicator of comfortable households with access to material goods.

The foundation documented under the current house represents at least two building episodes. The first of these was likely an 18th-century build while the second was likely associated with updating or expansion of the original footprint. This second building episode could also indicate a change in ownership and style updating to reflect the time period. The type of modification, a bay on the front piazza combined with the large 2/2 window sash shown in the 1957 photo, indicates this could have occurred in the last quarter of the 19th century; perhaps during the ownership of Alfred Trenholm (Figure 105). The house appears to have been occupied through the early part of the 20th century and may have been a weekend residence for Arthur Manigault and his family after his purchase of the property in 1897. By 1957, the older house appears abandoned and may have been structurally unsound at the time of demolition (Figure 105).

Though there is only a small quantity of early to mid-18th-century diagnostic ceramics, including tin glazed and North Midlands slipware, these fragments, combined with the large
quantity of dark green bottle glass, Chinese export porcelain and some earlier pearlwares suggest an 18th-century occupation (Figure 109). Additionally, there are only very small quantities of ceramics generally interpreted as high style or indicators of status, such as Chinese export porcelain and white salt glazed stoneware, which supports documentary accounts that Ms. Hetty’s plantation home was comfortable but not luxurious or extravagant. These artifacts, in addition to the early foundation present, indicate this location could be the original home of Esther Lynch, which then became an overseer’s house after her death in 1823. Though she gave two parcels of The Marsh to her nieces, there is no evidence to-date indicating they ever built houses or lived at their inherited parcels for any length of time. More than likely, they hired overseers to keep track of day-to-day plantation activities.

Though there was little diagnostic material culture recovered from the structure located in the front yard, some general interpretations can be made when combined with the GPR data collected in this field. It appears the structure was quite large and seemed to have been expanded over time. The imagery indicates a central rectangular structure, with an addition and what appears to be a fenced in area or perhaps a third addition. The foundation was continuous brick and excavations showed its ghost mark but no intact foundation, as well as evidence that the structure burned (Figure 121). Construction materials are commonly re-used in the Santee Delta because it is difficult to get material out to building sites even today; therefore, it is likely that the foundation was taken apart and the brick re-used elsewhere. This would also explain some of the larger anomalies in the GPR data, which look like they could be brick fall but are probably piles of rubble related to demolition. All of the brick rubble recovered appeared to have been hand-made, indicating that this structure was likely built before the Civil War. Its exact use is
unknown but, the absence of household material culture indicates it was likely used as a storage area for rice or perhaps a barn.

The foundation feature was capped by a fill layer of subsoil, likely brought in when the field was placed under rice cultivation in the late 1950s (Pierre Manigault, pers. comm. 2017; Phil Wilkerson, pers. comm., 2018). This is likely also the time period when the structure was torn down, perhaps at the same time the modern Rochelle house was being built. If the structure was taken down during this time, the bricks were likely re-used in the brick veneer cladding that is currently on the house. The modern house includes a mixture of handmade brick and machine-extruded brick in its veneer siding and chimney stacks. Phil Wilkinson (pers. comm. 2018), a local resident who visited the property and the original house as a child before the present construction, remembers a barn in the area of this structure. The small number of household related artifacts supports Mr. Wilkinson’s remembrance of this area of Rochelle.

The foundation remnant in the East Field was more elusive in GPR imagery, even though the portion exposed by 5-ft-x-5-ft unit excavation appeared relatively intact. The bricks were all handmade but very little material culture was recovered in this vicinity and the only diagnostic ceramic artifact, a single sherd of flown blue whiteware recovered from the top of the foundation remnant, gives little indication of building use or time period of construction. This area of the Rochelle parcel is prone to flooding during seasonal freshets and it is likely that the sherd of whiteware is a secondary deposit related to a flood event. Based on the configuration of the foundation, this building likely contained a chimney at some point and could have been housing for enslaved, a kitchen, or some other type of outbuilding in support of the plantation domestic core. Additional block excavation may help to clarify both time period and use of this structure.
Like the Front Yard structure, the building located in Kinloch field also yielded very little diagnostic material culture. However, unlike the Front Yard structure, a large remnant foundation was exposed in this field. The brick was machine extruded and quite dense, compared to other areas at Rochelle, indicating it was constructed later in the 19th or early 20th century as brick machine manufacturing was not prominent in the south until at least the 1870s (McKee 1973). A large number of cinders were recovered in the vicinity of the exposed foundation indicating the use of coal in this structure, which was likely powering machinery related to rice production. Based on the 1873 U.S. Coast Survey map and the 1897 Addendum to Title map it appears there could be two separate structures in this area. Unfortunately shovel testing did not locate the older structure and additional work is warranted for this area. GPR survey could yield better results than shovel testing in the northern part of the field.

The Triangle Field and River Road Residences yielded diagnostic material culture from the late 18th century through the early 20th century. The types and quantities of diagnostic ceramics present in both areas indicates they were in use predominantly in the 19th and early part of the 20th century. As the 1873 U.S. Coast Survey map suggests, these areas were likely enslaved housing, which continued to be used after the Civil War by freedmen. Though the exact number of houses is unknown, they are likely similar to those depicted on the map. No intact foundations or chimney fall were encountered; however, most enslaved housing in this area of the delta was two rooms divided by a central, double fireplace. The foundations were typically pier and beam with wooden clapboard siding and shake shingle roof of a local material such as cypress or pine. Block excavations in these areas may help understand house layout and perhaps shed additional light into the everyday lives of African Americans living on this landscape.
The historical maps used to guide this study were generally accurate. However, some of the interpretation was unexpected. Usually, plat maps, if they do depict structures, show the general location of main houses and outbuildings associated with a plantation domestic core. In this case, the 1897 Addendum to Title map, drawn when Arthur Manigault purchased the parcels, only shows work-related structures. While the intent is unknown, this map may have been meant as a supplement to an earlier map, or set of maps, which do not survive. The Front Yard and East Field structures do appear on the 1873 U.S. Coast Survey map; however, the archaeological evidence of a newer structure in Kinloch field, combined with the presence of structures on the both the of the historical maps, shows a good possibility for two separate structures in this field.

Santee River Discussion

Like the Ashley River study subjects, the elite planter families discussed above also intermarried during the colonial period. The Horrys and Lynches were related by marriage during the early part of the 18th century when Elias Horry II married the younger sister of Thomas Lynch, Sr. As neighbors and colleagues in regional political arenas, they likely would have given each other advice regarding rice production and plantation infrastructure. However, the landscapes of their plantations are much different because of the way they were being utilized during the colonial and antebellum periods.

The main houses of Waterhorn and Peachtree sit relatively close to rice fields on the highest rise of their respective landforms, close to water bodies. The main house for The Marsh has not been positively identified but could be located where the modern Rochelle house now stands. The earliest landscape of Waterhorn, during the Huger occupation, places enslaved housing near the main house, while a later revision moves the settlement to the domestic core
periphery. Enslaved housing settlements at Peachtree are farther away from the main house, yet still in proximity to work areas. The change in landscape at Waterhorn is reflective of changing conditions and planter preferences for creating social barriers between themselves and the majority of their slaves. By contrast, Peachtree was constructed much later than Waterhorn and was likely designed with the majority of enslaved settlements away from the domestic core. Enslaved servants were likely living in the main house as well as the dependencies; however, the majority of the field labor were likely living in the outer settlement areas. The distance between enslaved areas and main houses is likely a function of changing attitudes between planters and those they saw as property and thus also reflective of social change over time.

The use of the Waterhorn main house likely also changed over time. Later owners were not in residence much of the time and the main house was probably occupied by an overseer for most of the year. Elias Horry writes that he rarely visited the property after the family moved to Limerick plantation and he employed a white overseer to manage Waterhorn (Shlasko 1997). He probably kept the property out of a sense of familial obligation because it was settled by his grandfather. Horry erected a monument to his Huger ancestors on the property, which the Forest Service has since relocated to a nearby church. The property became a legacy to the family and was eventually sold to pay debts. It passed through a series of owners and was timbered before its acquisition by the U.S. Forest Service in the first half of the 20th century. Waterhorn is representative of many other plantation landscapes along the Santee that did not survive the post-bellum period.

There is some evidence for early rice cultivation at Peachtree, before tidal rice was being widely utilized, in what could be a reservoir system near Montgomery Creek. The feature is angular with drainage features at either end suggesting it was being utilized for water control
purposes. If this is a reservoir system, it is also likely that it continued to be used even after the introduction of tidal rice to keep the inner rice fields in production in addition to those along the South Santee. While the tides would have had an impact on irrigation on Montgomery Creek, the reservoir system could have served as an insurance policy to ensure fresh water was available as needed.

As with the Ashley River study subjects, the Peachtree enslaved settlements can be seen as a display of wealth. Visitors to the main house traveling by road would have entered the property by a long oak-lined allée with panoramic pastoral views and they would have passed by the Enslaved Street at a distance on their approach to the house. There are written accounts of a well-manicured landscape, with English gardens near the main house on its northwest side; remnant garden terracing is still present in this area. By river, the house would be seen as a sign of elite status, with its grand Palladian design and exterior stuccoed walls, which were scored to look like stone in the fashion of Charleston townhouses. Opposite the main house, visitors would have observed well-kept tidal rice fields with enslaved labor working to keep those fields and their irrigation systems in optimal production. This display of wealth would have been important to the Lynches, given their political and economic status in the colonies.

After Dr. Lynch moved to Tennessee in the 1830s, the house was occupied by a series of caretakers and servants and the parcel was rented for rice production by the Doar family. It burned in 1840 and was not re-built, emphasizing the demise of the Lynch family, whose prominence waned after the death of Lynch, Jr. During the 19th century, rice production continued much as it had before and, after the Civil War, newly freed people and tenant farmers likely occupied previously enslaved residences while working for the Doar family and farming for themselves. Like much of the Santee Delta, rice ceased to be a commodity at Peachtree by
the early part of the 20th century as descendants sought ways to keep the taxes on their inherited property up-to-date. The sale of the Peachtree parcel to a cattle company and, later a timber company, is representative of many former plantations on the delta during this time period as former rice planters were searching for ways to make a living.

The layout of The Marsh infrastructure is similar to Peachtree but the location is more remote. Though not much is currently known of the original main residence, because it was not the family seat, it was likely not as extravagant as Peachtree in design and construction. A few accounts of Ms. Hetty state that she was comfortable but not extravagant; The Marsh residence was not indicative of high style material wealth and the inventory of the house taken after her death also provides evidence of comfort and not luxury (Linder and Thacker 2001; McCrady Family archives). However, she did occupy the house much of the year and had a direct hand in planting activities (Linder and Thacker 2001).

The Marsh original main house is likely represented by the foundation, which the modern Rochelle house was constructed upon. The location is in close proximity to the fields so she could oversee those efforts personally. The small quantity of higher end ceramics, such as Chinese export porcelain and white salt glazed stoneware, supports the interpretation that this was Ms. Hetty’s house. The Marsh house was probably used by a series of overseers after Ms. Hetty’s death in 1823, then possibly remodeled and used as a weekend country retreat by the Trenholm family after Civil War. Enslaved settlements were likely constructed in the mid-to-late 18th century much farther away, yet still within line of sight or easy walking distance to the main house and fields. The Triangle field settlement likely housed rice field enslaved workers and house servants or those working in nearby rice mills, while the River Road residences are much farther away and likely housed field workers. Additionally, other types of crops or inland rice
may have been in production in the highlands. Perhaps the River Road residences are related to these.

The large size of The Marsh, and its remoteness, suggests there would have been infrastructure in place to enable a self-sustaining plantation enterprise in addition to those related to rice production. The cinders recovered from the structure is Kinloch field may be evidence of a piece of machinery related to rice production or another type of work area that needed a constant hot fire to operate effectively. The size of the structure and its brick foundation indicate it could have housed more than one type of work area; however, the artifacts recovered are not clear indicators of any specific tasks.

Though there is no LiDAR imagery currently available for analysis, the rice fields flanking Rochelle are all in working order to support waterfowl habitat. Aerial imagery also shows the remnants of tidal fields on Minim Island, just across Minim Creek from Rochelle. There is no evidence of inland rice on this part of the Santee River and conversations with local residents in the area confirm the lack of documentary evidence for this (Phil Wilkerson, pers. comm., 2018; Mike Prevost, pers. comm., 2019).

Even though Waterhorn, Peachtree, and The Marsh are different forms, they are representative of the general trend on the Santee River in the evolution of the plantation system and its demise after the Civil War. Waterhorn is representative of an early French Huguenot presence on the Santee and some of its early housing forms are indicative of this French influence on the river. LiDAR imagery also shows some limited evidence for early attempts at rice planting in the highlands of the parcel. When the plantation ceased to be a primary mode of income, it was kept in the family because of ancestral connections until it was no longer economically feasible to do so. Tidal rice fields associated with the colonial and antebellum
periods can still be seen on the landscape today and are quite evident in LiDAR imagery and hillshade views. Waterhorn’s history in the latter part of the 19th century is indicative of the larger trend in the region of northern timber interests looking south for economic gain and southern planter families adjusting to the aftermath of the Civil War.

Peachtree, once the family seat of the one of the wealthiest colonial planters in the Lowcountry, ceased to be so during the antebellum period when the family patriarch moved to Tennessee. Even so, the plantation enterprise was still productive under the tenancy of the Doar family and evidence of this can still be seen on the landscape and in the swamp between the river branches. Though plantation journals do not survive, limited family correspondence along with archaeological evidence indicate that enslaved and later free people were living and working on the plantation through the early part of the 20th century, though not in any great numbers. Like the Waterhorn owners in the latter part of the 19th century, The Lynch descendants eventually sold the Peachtree lands to a corporation when they could no longer pay the taxes.

The Marsh lands are representative of larger plantation operations on the Santee Delta during the colonial era, which were thriving at the height of tidal rice cultivation and continued on, much as they had before, during the antebellum period. Also, like many other plantations on the Santee, The Marsh lands were parceled and sold to pay debts, then reunited by Ms. Hetty Lynch, then parceled again as inheritance property and family income after her death. The smaller plantations remained viable through the antebellum period and, after the Civil War, struggled to find a viable way to continue cultivation. As with Waterhorn and Peachtree, corporate interests with a northern influence in the form of a rice syndicate lay claim to parts of the original Marsh lands in the latter part of the 19th century but only for a few years until the property was purchased by Arthur Manigault for a family retreat. Also because of northern
influence, the property was bought by a hunt club in the early part of the 20th century before being re-purchased by the Manigault family who still preserve it today for the purpose of maintaining the historical landscape in addition to waterfowl habitat management. Though they all evolved in different ways, all three of the plantations included in this study are indicative of larger economic influences that shaped the Santee River in very different ways than the Ashley River.
Chapter Six: Intra-regional Comparisons and Avenues for Future Research

The concept of intra-regional variability, utilizing a historical ecological framework, provides an avenue for understanding the differences in plantation landscapes and development between the Ashley and Santee river systems of the Carolina Lowcountry. My analysis of these landscapes, based on a sample of three plantations from each river system, shows that the Ashley and the Santee rivers did develop differently over time based on a number of environmental, cultural, historical, and economic factors.

Overall, the plantations examined in this study appear very similar; each was occupied by successive generations of elite planter families from the early 18th century well into the 19th century. During the colonial period, family patriarchs were all active in local or national politics. They owned multiple plantations and most built large opulent houses on their primary plantations to display their wealth. These families all intermarried by the early 19th century and all continued to produce rice for consumption in the larger Atlantic World until it was no longer economically viable to do so. After the Civil War, those who retained their lands learned to adapt to the changing economy. However, this suite of attributes is where the similarities among them end; a closer look shows there are distinct differences that make these plantations unique and, collectively over time, they represent distinct developments on the river systems, which they occupy.

Methodology

Overall, environmental, cultural, historical, and economic factors that characterize each river system are of great importance to intra-regional variability. Hydrological differences
inherent between black and brown water rivers are the most prominent of these factors. The Ashley River is a black water river that originates on the Coastal Plain. Typical of black water rivers, it has a high marl content and a vertically homogenous estuary. This means that it does not have a large volume of freshwater flow and does not create the same type of salt and freshwater mix as brown water rivers, such as the Santee, which are more conducive to cultivating tidal rice (Hilliard 1978; Kovacik and Winberry 1987; Edgar 1998; Porcher and Judd 2014). The estuary in the Ashley is not as wide and does not contain the quantity of salt marsh needed to produce tidal rice on a large scale. Therefore, opportunities for tidal rice production were much fewer than for inland rice, though tidal rice was produced on the Ashley River where ever possible. Marl content is an indicator of phosphate mineral deposits, which were a very important economic resource on the Ashley River in the postbellum period.

By contrast, the Santee River is a brown water river originating in the Blue Ridge Mountains of North Carolina. It has a broad basin, encompassing almost 40% of the region, and a wide salt wedge estuary at its delta (Hilliard 1978; Kovacik and Winberry 1987; Edgar 1998; Porcher and Judd 2014). This estuary was the perfect environment for tidal rice, though some inland rice was also produced early in the colonial period. As tidal rice culture was refined, it took precedent over inland rice on the Santee River. Also of note, there is no significant marl content on the Santee River.

Because of these factors, the Ashley and Santee river systems evolved in different ways as planters exploited their resources. On the Ashley, tidal rice never dominated economic pursuits, while inland rice persisted through the Civil War until it was supplanted by phosphate mining, which was much more lucrative. Planters on this river diversified their holdings by purchasing plantations on other river systems that could produce tidal rice because it was much
more profitable, yet they kept their Ashley River plantations as country seats and business headquarters. By contrast, on the Santee, large commercial rice plantations dominated the river system through the Civil War. These were the types of plantations Ashley River planters bought because they were so profitable. A few persisted into the last quarter of the 19th century when several years of bad weather and changing economic conditions dictated that rice was no longer profitable. After the Civil War, planters on the Santee relied on northern interests for timber products and later for leasing large amounts of former plantation lands for waterfowl hunting.

A cultural factor considered as part of intra-regional variability in the Lowcountry is plantation layout, particularly during the colonial and antebellum periods. The design of the domestic core of each plantation was dependent on the wealth of the family who oversaw the construction, and whether the plantation was considered the family seat, or country seat to oversee the family businesses. On the Ashley River, Cedar Grove, Middleton Place, and Drayton Hall all contained large plantation houses that were either originally constructed in the Georgian Palladian manner with symmetrical details or were later modified to reflect the Georgian ideal. The main houses of Cedar Grove and Drayton Hall were both built in the Georgian Palladian manner. Cedar Grove had dependencies on the landside elevation in the outer yard; these were present even after the domestic core was burned in the Civil War. The main house of Middleton Place was Jacobean in style; however, Henry Middleton added flanker buildings in 1755 to add symmetry (Woolson 1879; Lewis and Hardesty 1979). Drayton Hall was built with flanker buildings, which were likely damaged in the 1886 earthquake and dismantled shortly afterward (Lewis 1985; Zierden and Anthony 2007).

On the Santee River, Peachtree was built in the Georgian Palladian manner complete with dependencies and ornate English gardens, much in the manner of the study plantations on the
Ashley River (Altizer 2014). Waterhorn was constructed during the early settlement period with evidence of French-style architecture. The domestic core was later re-configured to reflect changing tastes and the enslaved settlement was moved toward its periphery (Shlasko 1997). The style of architecture for the later construction is unknown but the landscape does not reflect the Georgian-Palladian style. The Marsh was not a primary family seat or country residence and the main house is thought to have been more utilitarian in nature. If the foundation under the modern Rochelle house is the original Marsh main house, it contained some Georgian features, but material culture does not allow a positive identification of that style of architecture. Whether the original domestic core contained dependencies is also unknown.

Ubiquitous across all six plantations are enslaved settlements in proximity to rice fields, domestic cores, and other work areas. More data are needed to effectively compare enslaved settlements between the plantations. Currently, there is only one known settlement at Drayton Hall, but there is a possibility that other settlements existed near early inland rice fields across the Ashley River Road away from the domestic core. Similarly, there are likely additional enslaved settlements in proximity to inland rice fields at Middleton Place as well as Waterhorn, Peachtree, and The Marsh on the Santee River.

To quantify the data provided in this dissertation, I have provided a table based on a number of economic and historical factors that have a time element. Though there were a myriad of factors to choose from, those presented in Table 15 are considered the most valuable in showing intra-regional variability between the Ashley and the Santee Rivers. For ease of assessment, I have broken down these factors by time period to include early settlement of the Carolina Lowcountry through the 20th century. I have removed the time periods associated with the Revolutionary and Civil Wars. Though there are factors that are important in these periods
such as the overall proximity to Charleston, which resulted in Ashley River plantations being looted and/or burned and those on the Santee remaining mostly intact, the economy was severely stunted in the South during both wars, which affected planters equally on both river systems. Because of the unstable economy and lack of reliable field hands during wars, most planters were not producing rice in any great quantity and had trouble shipping it even when they could produce it (Coclanis 1989; Edgar 1998). There are also data, which would be important, such as the volume of rice production on each river system during the colonial period, that are not available. In the table, I have also included the latter half of the 20th century to further emphasize the evolution of each river system into the modern period.

To rank each factor, I considered archival, archaeological, and landscape evidence. For each factor, I gave a score between 0 and 4 for each river overall, as well as each study subject. The scoring system is based on whether a factor was present or absent in these multiple lines of evidence, where 0 means “no” and there are multiple sources to corroborate it, there is either clear archival evidence that the event did not happen, a lack of archival evidence to support the event, lack of archaeological evidence for it, and no landscape evidence present to support it. A score of 1 means there is little evidence for the factor; generally, only one archival source, which was possibly unreliable, there is little or no archaeological evidence to support it, and little or no landscape evidence for it. A score of 2 means there was moderate evidence including several archival sources and there is some archaeological evidence, or some landscape evidence to support it. A score of 3 means there was good evidence based on multiple sources both archival and archaeological, and some landscape evidence. A score of 4 means the event was widely known, there are multiple lines of evidence including archaeological and landscape contexts. The overall score given for both river systems and plantations was the mean of the quantifying
variables. The quantifying scoring system used for each river system and individual plantations is included in Appendix D.

There are two sets of data contained within the table below (Table 15). Comparisons are presented by overall river system and then by plantations along each river. River systems were scored differently because a) they may have contained factors that were not necessarily present in the context of each study plantation but still contribute to the overall concept of intra-regional variability or b) there were data available for study subject plantations that were unknown for the river system. If no data were available for the overall river system, the cell was left blank.

The following sections contain a discussion of intra-regional variability by time period. Graphs of comparisons by river system and between study plantations along each river system are also provided to aid in assessment of variability. To represent the study subject plantations in similar format, the mean of the study plantation factors was taken for each river system.

Intra-regional Variability During the Settlement Period 1670-1710

Intra-regional variability can be seen from the beginning of European settlement in the region based on social factors as colonists settled into a new environment and learned to live in an ethnically diverse region. The Ashley River was the point of debarkation for the first European settlers of the Lowcountry; however, with in just a few years, they were exploring nearby areas and branching out into the Santee River system (Edgar 1998; Bates and Leland 2015). Early settlers of the Ashley River were primarily from Barbados, the second and third sons of Barbadian planters with a few other English and French Huguenot families as well. The Santee River, settled less than 10 years later, was composed primarily of French Huguenot immigrants who were feeling the effects of English ethnocentrism on the Ashley River.
Table 15. Quantitative data for intra-regional variability*

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Ashley River</th>
<th>Cedar Grove</th>
<th>Middleton Place</th>
<th>Drayton Hall</th>
<th>Santee River</th>
<th>Waterhorn</th>
<th>Peachtree</th>
<th>The Marsh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Settlement</td>
<td>1670-1710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barbadian Settlers</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>French Huguenot Settlers</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3.3</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>4</td>
<td>0</td>
<td>0.6</td>
<td>0.6</td>
<td>1.3</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colonial Period</td>
<td>1711-1776</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elite Wealthy Planters</td>
<td>1.3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3.6</td>
<td>2.6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Planter Economic Diversification</td>
<td>1.3</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Plantation Acreage +1000</td>
<td>4</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>2.3</td>
<td>1.3</td>
<td>2.6</td>
<td>2.6</td>
<td>0.3</td>
<td>2</td>
<td>1.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>2</td>
<td>0</td>
<td>2.6</td>
<td>0.3</td>
<td>4</td>
<td>2.6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Antebellum Period</td>
<td>1786-1861</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elite Wealthy Planters -same family</td>
<td>3.3</td>
<td>0.6</td>
<td>4</td>
<td>4</td>
<td>0.6</td>
<td>2.3</td>
<td>2.6</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Plantation subdivided for heirs or</td>
<td>2.6</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>3</td>
<td>4</td>
<td>1.3</td>
</tr>
</tbody>
</table>

* The table presents quantitative data for intra-regional variability across different time periods. The data includes factors such as Barbadian and French Huguenot settlers, inland and tidal rice production, elite wealthy planters, and changes in plantation acreage. The data is organized for three rivers (Cedar Grove, Middleton Place, Drayton Hall, Waterhorn, Peachtree, The Marsh) and shows variability over historical periods (Early Settlement 1670-1710, Colonial Period 1711-1776, Antebellum Period 1786-1861).
<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Ashley River</th>
<th>Cedar Grove</th>
<th>Middleton Place</th>
<th>Drayton Hall</th>
<th>Santee River</th>
<th>Waterhorn</th>
<th>Peachtree</th>
<th>The Marsh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.6</td>
<td>1.3</td>
<td>4</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>2</td>
<td>1.3</td>
<td>2.6</td>
<td>0</td>
<td>4</td>
<td>2.6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Postbellum Period 1866-1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elite Planters -same family</td>
<td>0.6</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Phosphate Production</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>2.6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Early 20th Century 1901-1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elite Planter Descendants -same family</td>
<td>0.6</td>
<td>0</td>
<td>1.3</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.3</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0.6</td>
<td>0</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
<td>2.6</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 15. Continued.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Ashley River</th>
<th>Cedar Grove</th>
<th>Middleton Place</th>
<th>Drayton Hall</th>
<th>Santee River</th>
<th>Waterhorn</th>
<th>Peachtree</th>
<th>The Marsh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
<td>0.6</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rebuilding English</td>
<td>1.3</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Gardens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forestry and</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>2.6</td>
<td>3.3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Timber Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late 20th</td>
<td>Elite Planter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Century 1951-2000</td>
<td>Descendants -same</td>
<td>1</td>
<td>0</td>
<td>2.6</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Encroaching Urban</td>
<td>4</td>
<td>4</td>
<td>2.6</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>House Museums</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>1</td>
<td>0</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
<td>2</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>fowl and deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forestry and</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
<td>4</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Timber Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservation Easements</td>
<td>1.3</td>
<td>0</td>
<td>1.3</td>
<td>2.6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>or other protected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Scale 0-4
0 = No - multiple sources, clear evidence the event did not happen
1 = little evidence - 1 source, possibly unreliable, or little archaeological evidence, or little landscape evidence
2 = moderate evidence - several sources, some archaeological evidence, or some landscape evidence
3 = good evidence - multiple sources, clear evidence
4 = Yes – widely known through all lines of evidence
They settled near Jamestown and by 1695, were beginning to migrate toward the delta. Waterhorn was the eastern frontier of the French Huguenot settlement by the turn of the 18th century (Edgar 1998; Bates and Leland 2015).

As the graphs below indicate, Barbadian planters were more prevalent on the Ashley while French Huguenots were more prevalent on the Santee during early settlement (Figure 146). A closer look at the comparisons between the study subjects on each river shows a different trend. On the Ashley River, the earliest settlers at Cedar Grove, Middleton Place, and Drayton Hall were all English settlers and not Barbadian planters, while the study subjects of the Santee are more representative of the early settlement trend on this river system (Figure 147).

The early Lowcountry years were full of experimentation as settlers tried to find crops that would emulate the sugar plantations in the Lesser Antilles. They wanted desperately to participate in the broader Atlantic World trade. Rice was an early commodity that showed much promise; however, there is little evidence to suggest what kind of rice was being grown. Where it was growing is somewhat better known. Because there is no evidence of tidal rice, which is not known in primary sources until 1738 (Carney 2001; Porcher and Judd 2014), only inland rice is included in the graphs below. As is shown, it was produced on both the Ashley and Santee Rivers. Waterhorn is the only study subject during this period that was known to be cultivating rice; it represents rice production on the Santee River (Figure 147).
Figure 146. Intra-regional variability between the Ashley and Santee Rivers in the early settlement period.

Figure 147. Intra-regional variability between Ashley and Santee River study subjects in the early settlement period.
Intra-regional Variability During the Colonial Period 1711-1776

The combination of environmental factors and proximity to Charleston contribute significantly to intra-regional variability in the Lowcountry during the colonial and antebellum periods. The Ashley River developed quickly because of its proximity to Charleston and direct access to Atlantic World trade. After the introduction of tidal rice, elite planters living on this river system diversified because they were hindered by the environmental constraints of a black water river. They expanded into other mercantile business interests, invested in shipping, and owned or managed multiple plantations on other river systems where tidal rice was more productive (Edgar 1998; Beach 2014; Figure 148).

The Izards, Middletons, and Draytons all held multiple business interests, in addition to owning more lucrative plantations on other river systems. Because of the proximity to Charleston, they used their Ashley River plantations as business headquarters and country retreats, though rice was still produced on a smaller scale where feasible. Middleton Place produced inland rice until after the Civil War (Doyle et al. 2008). These plantations were symbols of material wealth and social status as evidenced by elaborate gardens, architectural details, and main house proximity to the river’s edge for the purpose of displaying that wealth to others utilizing the Ashley River. Material culture recovered from all three study subject plantations, such as high style Chinese porcelains and other tablewares, provide another line of evidence, in addition to the remnant built landscape and archival documentation, of these endeavors.

By contrast, the Santee River plantations were productive, large-scale tidal rice plantations that developed into increasingly commercial enterprises. These were the plantations that Ashley River planters sought when buying additional properties. There are a few examples
of high-style plantation houses, which developed in the colonial period such as Hampton on the South Santee just across Wambaw Creek from Waterhorn (Linder and Thacker 2001). However, Peachtree was the most opulent, and built for the purpose of expressing wealth and social status. Its fine architectural detail, English gardens, and prominence on the landscape above the South Santee River is testimony to this intent and, in this way, it is more reminiscent of Ashley River plantations. After it was built, it was the Lynch family seat, despite its remoteness. Perhaps the Lynch family hoped to develop the Santee River in similar fashion to the Ashley, with prominent country seats along the river banks in proximity to Georgetown. Lynch, Sr. was active in the Georgetown community, in addition to Charleston, and his development of the first school in the area, in addition to his investments on the Santee River, could be testament toward this idea. Lynch, Sr. always listed himself in public records as a Craven County planter, which is the county where Peachtree was located during the colonial period.

The Lynches and the Horrys each held at least five plantations on the Santee at one point, indicating these families knew where tidal rice was most productive and were banking on this agricultural commodity to grow their family fortunes and solidify their social standing within the broader Atlantic World (Bridges and Williams 1998; Linder and Thacker 2001). Rice was lucrative and the primary interest for most planters on the Santee, though they did diversify to a certain degree as well. The Lynches and Horrys both invested in schooners and Lynch, Sr. loaned money, built a causeway and ferry system across the delta, and owned part of an island in Georgia, which also cultivated rice.

The end of the colonial period saw the peak of rice production and likely was also the high note of the elite planter life style (Coclanis 1989). During this time period, all of the study subjects contained plantation main houses with multiple enslaved settlements (Figure 149).
Figure 148. Intra-regional variability between the Ashley and Santee Rivers in the colonial period.

Figure 149. Intra-regional variability between Ashley and Santee River study subjects in the colonial period.
They were all productive in either inland or tidal rice with the exception of Drayton Hall, and some, including Middleton Place and Waterhorn, were producing in both types of fields. With the exception of Waterhorn and The Marsh, these landscapes were Georgian-Palladian domestic cores with elaborate landscapes meant to prominently display wealth and status. Waterhorn and The Marsh were large productive plantations, consisting of well over 1,000 acres each; however, they were not family seats or plantation headquarters of business and there was no need for such prominent displays of wealth. As a result of all of these factors, intra-regional variability is not as prevalent during the colonial period but can still be readily identified (Figure 149).

Intra-regional Variability During the Antebellum Period 1786-1861

The effects of a closed society can be seen in the antebellum period of the Lowcountry. These effects are significant because they contribute to the inability of most elite planters to continue commercial rice production after the Civil War. Though surficial production numbers appeared promising, per capita rice production was in decline (Coclanis 1989). The effects of this decline can be seen on the landscape by the sale of lesser plantation properties and, as the old guard of elite planters passed on, subsequent parcel divisions in plantation lands to family members on both the Ashley and the Santee Rivers (Figure 150). Rice was still in production on both river systems, though by the antebellum period tidal rice was by far the larger producer and the study subjects of the Santee River had likely stopped producing inland rice in any great quantity (Figure 151). Also, during this time period, one of the only effects in the South of the Industrial Revolution can be seen on the landscape in the form of larger infrastructure to house new processing technologies (Porcher and Judd 2014).

30 There is also evidence on LiDAR imagery for a reservoir at Peachtree that could be related to inland rice; however, further research is needed for positive identification.
Figure 150. Intra-regional variability between the Ashley and Santee Rivers in the antebellum period.

Figure 151. Intra-regional variability between Ashley and Santee River study subjects in the antebellum period.
On both river systems, remnants of these technological innovations can still be seen today as piles of what look like scrap metal among brick scatters in more remote locations.

During the antebellum period, Middleton Place and Drayton Hall were likely at the peak of their existence as country seats of elite planters, while Cedar Grove was parceled for the heirs of Mary Middleton and then subsequently passed out of the family a few years later. On the Santee River, Waterhorn was no longer the family seat or primary plantation interest and passed out of the family in 1834. Peachtree was under tenancy and also no longer the family seat; the main house burned in 1840. The Marsh was subdivided and sold off in pieces after the death of Ms. Hetty in 1823.

Intra-regional Variability During the Postbellum Period 1866-1900

The Civil War brought big changes to the Lowcountry and rice planters struggled to recover from the effects of war and the evolution of the economy as a result of the end of slavery. These attempts to adapt can be seen on the landscape. This time period represents a key contribution to intra-regional variability because planters on the Ashley and the Santee modified their landscapes and their methods of production based on the natural environments of the river systems they occupied (Figure 152). It is important to note that, overall, it is unknown how many colonial-period planter families on each river retained their plantation lands or had sold them by the antebellum period; the information displayed on the comparison between rivers is reflective of the study subjects for which this information is available. A more accurate representation of this factor can be seen in study plantation comparisons between rivers (Figures 152 and 153).

All three Ashley River study plantations are representative of the evolution of the Ashley River over time, but this is particularly evident after the Civil War.
Figure 152. Intra-regional variability between the Ashley and Santee Rivers in the postbellum period.

Figure 153. Intra-regional variability between Ashley and Santee River study subjects in the postbellum period.
Because of their proximity to Charleston, the Ashley River plantations were all affected by large scale looting and property destruction as Union troops passed through. The domestic cores of Cedar Grove and Middleton Place were both burned while Drayton Hall was spared by rumors of smallpox.

In the last quarter of the 19th century, phosphate mining became the primary mode of production on the Ashley River. With the financial help of northern industrialists, this fertilizer helped many planters out of the economic recession they faced after the Civil War. Though it was only lucrative for a short time period, it enabled some former rice planters, including the Middletons and the Draytons, to transition out of planting, keep their lands, and rebuild some of their material wealth. Some planters on the Ashley River, including the Vardell family and Cedar Grove, never recovered from the Civil War. Forestry products were of lesser importance on this river system than in other areas, though they were harvested on some Ashley River plantations. Williams Middleton sold forestry products to the Confederate cause during the Civil War and likely continued to harvest for other entities after the war was over.

On the Santee River, tidal rice production continued, though not on the scale of the antebellum period, until the last quarter of the 19th century when it ceased to be a lucrative commodity (Edgar 1998; Beach 2014). After 1875, rice was planted in support of waterfowl habitat to promote the interests of outdoor sportsmen and very little was produced for commercial purposes. Northern industrialists came for the forestry products on the Santee and they stayed for the ducks. In the last years of the 19th century, hunt clubs proved a viable source of income for the Lowcountry and the Santee River in particular, as northerners teamed up with local plantation owners to open hunting clubs (Beach 2014; Lockhart 2017). On the Santee, water fowl was in abundance and northern businessmen were enthralled with the prospect of

353
hunting in the wilds of former planation lands. Local former planters were happy to accommodate, and the result was a partnership that ultimately conserved much of the Santee Delta. Hunting clubs supported by northern industrialists and local plantation owners ensured that large portions of the Santee Delta remained undeveloped. These clubs breathed life into a slowly recovering economy and provided badly needed jobs for local residents. Formerly enslaved people were hired by the clubs as guides, drivers, groundsmen, cooks, and laundry maids.

Unlike the Ashley River, which was recovering because of phosphate mining, during the latter half of the 19th century, the Santee River struggled to find an economic foothold. Based on the Chief Engineers of the U.S. Army report to the U.S. House of Representatives in 1895, it appeared that the Santee River had reverted to an early colonial period economy as it tried to find a way to produce something for export. Listed as items for export from 1891 to 1895 were cotton from farther up river, resin, turpentine, timber, shingles, lumber, railroad ties, wool, hides, seed oats, wood cord and staves, game and fish, and a small amount of rice (Chief of Engineers, U.S. Army 1895:1414-1415). Because the South had not evolved with the rest of the United States during the Industrial Revolution, there was no industry to add fuel to the economy. The Santee River eventually found theirs in forestry products but only with the help of Northern industrialists.

Forestry products were important on the Santee River in last half of the 19th century and well into the 20th century. Waterhorn was sold at auction to pay debts and eventually was bought by a timber company. Peachtree was retained by the Lynch family descendants, though they struggled to maintain the property taxes. They sold turpentine tapped from the Long Leaf pines in addition to renting to tenant farmers. The Doar family also continued to rent some of the rice
fields into the 1870s. Parts of The Marsh continued to produce rice, and Pine Grove was sold at auction to a rice syndicate for commercial production. What is now Rochelle was owned by the Trenholm family and produced rice at least until it was acquired by Arthur Manigault at the turn of the 20th century.

Intra-regional Variability During the Early 20th Century 1901-1950

The early 20th century saw a partial recovery of the economy due to the effects of phosphate mining, forestry products, and the broader impacts of transportation due to the expanded railroad system in the latter part of the 19th century (Figure 154). During the early 20th century, proximity to Charleston and the rise of the tourist industry had the biggest effect on the Ashley River. Tourism specifically impacted Middleton Place and Magnolia plantation, which was also owned by the Drayton family (Doyle et al. 2008; Beach 2014). The Middletons meticulously rebuilt their gardens, as did the Draytons at Magnolia, and opened them up to visitors. These two plantations seem to be the exception; over all, the Ashley River recovered economically because of phosphate and other mineral mining, not because of tourism.

Hunt clubs centered on waterfowl could have potentially had an impact on the Ashley River, except that phosphate mining and the stripped landscape it left behind severely impacted waterfowl habitat. Hunt clubs on the Ashley were hunting deer and were not as much of an economic driver as they were on the Santee (Beach 2014, Lowndes 2019). They were fostered as a means to keep hunting traditions alive by local residents and were not driven by northern interests (Lowndes 2019). The Middleton Deer Hunt was founded in 1908 and continued, with much tradition, until 2018 (Kathy Hall, pers. comm., 2019; Lowndes 2019; Figure 155).
Figure 154. Intra-regional variability between the Ashley and Santee Rivers in the early 20th century.

Figure 155. Intra-regional variability between Ashley and Santee River study subjects in the early 20th century.
During the early 20th century, the Santee River experienced a proliferation of hunt clubs and tidal rice was produced, as in the postbellum period, to support waterfowl habitat (Beach 2014; Lockhart 2017). It was cultivated by a combination of hired descendants of enslaved Africans, white wage laborers, and machinery that made processing less labor intensive and more efficient (Porcher and Judd 2014). Labor was hard to find and keep because of the pull of cities where work was less strenuous. However, many descendants of enslaved Africans stayed on the Santee because of cultural ties with their community.

Former planter families leased their lands to hunt clubs, while others sold or leased to timber companies and rice syndicates such as the S.M. Ward Company, which operated on the Santee River (Porcher and Judd 2014:306). Waterhorn passed through a series of timber companies in the early part of the 20th century before it was purchased by the U.S. Forest Service in 1934 (Shlasko 1997). Also, in this decade Peachtree was sold to a livestock company (Altizer 2014). Parts of The Marsh were sold out of the Manigault family to a hunt club in 1919.

Intra-regional Variability During the Late 20th Century 1951-2000

Intra-regional variability can also be seen during the modern period as residents on both the Ashley and Santee Rivers continue to respond to historical economic drivers (Figure 156). On the Ashley, urban development, which began in the 1950s, continues to be problematic. The Ashley River district is now predominantly subdivisions, though some former plantation lands have been conserved due in large part to the stewardship of Middleton Place, Drayton Hall, and several other private owners along the corridor. Historic Charleston Foundation has also helped to retain some historical plantation lands by nominating the corridor as a National Register Historic District in the 1990s. This was updated in 2012 to include almost 26,000 acres of land along both sides of the Ashley River (Felzer et al. 2012).
There are still several hunt clubs in operation on the Ashley River. Middleton Deer Hunt is still active but no longer hosted by Middleton Place (Strauch 2002; DiBenadetto 2012; Kathy Hall, pers. comm., 2019). Charles Duell began a fox hunt, also at Middleton Place, in the early 1970s. Like the Middleton Deer Hunt, the Middleton Fox Hunt no longer utilizes Middleton lands but does hunt by scent on other nearby lands. Lavington Hunt club is also in operation on the Ashley River (Kathy Hall 2019, pers. comm., 2019).

Cedar Grove succumbed to the effects of population pressure and urban development by the 1980s; it is representative of many other historic plantations on the Ashley River, which have met a similar demise. Middleton Place and Drayton Hall both opened house museums in the 1970s. Middleton Place recreated the colonial domestic core and stable yard complex and the south flanker is now a museum and the Middleton Place Foundation archives. Drayton Hall was acquired by the National Trust for Historic Preservation in the early 1970s and opened as a house museum by the end of the decade. The main house has never been restored and its preservation plan is to keep it intact, as is, for future generations (Figure 157).

The Santee River has evolved much differently than the Ashley River. Hunt clubs and forestry products still underpin much of the economy of the Santee River. Rice is still grown in inland contexts for waterfowl management practices and much of the former plantation lands on both sides of the river are now under conservation easement (Figure 156). Tidal rice is no longer a viable economic enterprise because of the Santee-Cooper Hydroelectric project farther up river. The project dammed part of the river to create power from the flowing water of the Santee River. The result at the mouth of the river is decreased water flow and increased salinity from the Atlantic Ocean. One of the results is that rice can no longer be grown using tidal water flows (Kovacik and Winberry 1989).
Figure 156. Intra-regional variability between the Ashley and Santee Rivers in the late 20th century.

Figure 157. Intra-regional variability between Ashley and Santee River study subjects in the late 20th century.
During the 1980s, several large corporations bought a large portion of former plantation lands with the interest of profiting from sustainable forest products as well as hunting. White Oak Forestry acquired Peachtree in 1986, and parts of The Marsh plantation, including Pine Grove. Both plantations are leased for hunting (Altizer 2014). Turner Foundation purchased Kinloch Gun Club and it still operates as a hunting facility, utilizing the club house built in the 1920s (Beach 2014). Next door to Kinloch, Rochelle is still owned by the Manigault family and used as family retreat as well as hunting grounds.

Drawing inspiration from other Lowcountry house museums, several well-preserved colonial houses are now open to the public on the Santee River. Hampton Plantation is now a state park and welcomes visitors to tour the plantation house and gardens. The house is preserved as it was left to the park by the Rutledge family in the 1960s. On the north side of the river, Hopsewee, also originally a Lynch family plantation, welcomes visitors. The house is fully restored and also contains two original enslaved houses as part of its domestic core. Unlike Peachtree, the house is a simple four-over-four room, central hall floorplan building with black cypress clapboard siding and a metal roof atop a brick English daylight basement (Snell 1971).

The Peachtree ruin has recently been stabilized and is under conservation easement so future generations may visit and study. The parcel is still utilized by the Santee Gun Club and they understand the historical importance of the lands they hunt. Large portions of the delta, specifically the marsh lands between the two branches of the river, are now owned by the South Carolina Department of Natural Resources and are a nature preserve. Though none of the original families that purchased these lands on the Santee River retain them today, those who do have them understand their historical value and strive to be good stewards and preservationists. The result is the protection, in perpetuity, of a large portion of the Santee Delta to ensure that
encroaching development, which will happen in the not too distant future, does not negatively affect the natural landscape as it has on the Ashley River.

Conclusions

It is ironic that Peachtree is one of the best preserved of the study plantation landscapes included here but is virtually unknown because of its location. Meanwhile, Middleton Place is largely a 20th-century construct of preservation, which attracts visitors by the thousands each year because of its proximity to Charleston. Both plantations are historically important and both are reflective of the intra-regional differences discussed in this dissertation.

Historically, the Lowcountry was never a homogenous region and it is important to recognize that the degree of variation, which evolved on the Ashley and Santee Rivers was in direct correlation with the ability to produce rice efficiently during the Colonial and Antebellum periods. Differences in hydrology and water salinity between the rivers provide the platform for the evolution of them over time. On the Ashley inland rice was produced early and continued because the infrastructure was in place to do so, even after tidal rice was introduced and proved much more efficient. Tidal rice was not as lucrative on the Ashley because the hydrology did not support this type of production on most of the river. Ashley River planters diversified early yet kept their plantations on this river because of the proximity to Charleston. On the Santee, what was initially a frontier for French Huguenots escaping the politics of Charles Towne in the early settlement years became a commercial complex of large tidal rice plantations in the late colonial and antebellum periods when tidal rice production techniques were in wide use. The hydrology proved perfect for this type of endeavor and tidal rice persisted on the Santee through the latter half of the 19th century.
The Ashley River did not produce rice in any great quantity after the Civil War and
instead focused on phosphate mining as the main source of income and recovery from a
changing economic system. Though it only lasted a short period, phosphate mining helped some
Ashley River plantation owners recover financially. The Santee River did not contain phosphate
minerals and planters turned to other forms of land use such as large scale timbering. Northern
industrialists helped by investing in Lowcountry timber and also stayed for the rich hunting
grounds the Santee Delta offered. Santee River planters who still owned their lands in the latter
part of the 19th century were forced to turned to other economic endeavors because of successive
years of bad weather, which impacted crop production. A few more enterprising planters
partnered with northern investors to form hunt clubs and preserve their plantation lands.

Socially, elite planters intermarried early and by the third or fourth generation most were
related to one another by marriage or blood. Elite planters displayed their status on both river
systems in similar ways. The study subject landscapes are a reflection of those who built them or
later acquired and altered them, as well as their production capacity. Plantation enslaved
settlements on both river systems seem to be in proximity to work areas, as would be expected.
On the Ashley, Cedar Grove, Middleton Place, and Drayton Hall were all family seats and these
landscapes are reflective of the wealth of the colony particularly in the height of rice production.
Though they were not high rice producers, they represent a display of wealth and social status.

On the Santee, Waterhorn was acquired by the Horry family and the domestic core was
altered to reflect changing tastes and likely also to display wealth and status. The domestic core
would have been seen from the South Santee River by passersby, much like Peachtree though not
as opulent. Peachtree represents a similar display of social status and wealth as those family seats
on the Ashley and many other planters emulated the Lynch family by also building high style
homes and opulent gardens on the Santee; however, the majority of these were not built until the antebellum period. The Marsh represents a large commercial rice plantation, like many others toward the mouth of the delta. However, because it was not the family seat, the main house and domestic core are thought to be much more utilitarian in design. Peachtree was likely where the Lynch’s received visitors and hosted social events, while the Marsh was a working commercial enterprise with housing accommodations that were comfortable and not excessive. Ms. Hetty likely kept the house as it was when her father had it constructed.

Social alliances were an important factor during the colonial and antebellum periods; however, as the economy changed and material wealth declined, so did the display of wealth. By the latter half of the 19th century, the Middletons and the Draytons were the only original elite planter families still residing in their colonial houses and they were struggling to keep their lands.

This dissertation has shown the utility of intra-regional variability by comparing three plantations on the Ashley River with three plantations on the Santee River. The goal was to use existing data sets from plantations on the Ashley River, which have been previously studied and compare them with data sets on the Santee River, which are not as well known. The intent was to show that river systems developed differently over time because of micro-environmental influences in rice production and unique economic drivers, which forced elite planters living within each river system to adapt differently. Overall, intra-regional variation in the South Carolina Lowcountry can be quantifiably demonstrated.

This particular study shows the value in considering an historical ecological approach when researching Lowcountry history. By utilizing multiple lines of evidence, micro-environmental differences and historical trajectories can be better defined. The utility of intra-
regional variability is in presenting a new comparative method that documents the complex historical development of two important subregions of the Lowcountry. By comparing river systems across the region, notable differences can be seen over time such as the evolution of inland and tidal rice in the colonial and antebellum periods, and planter diversification because of the evolution of rice. Additionally, changing economic strategies can also be seen during the postbellum period as the entire region tried to recover from the effects of the Civil War and the transition from a slave society to wage labor. This study shows that these differences are distinct and warrant additional study and comparisons between other river systems. These studies should be pursued to give a more fine-grained historical overview of the Lowcountry. Intra-regional variability is a viable way to approach Lowcountry history.

Avenues for Future Research

This study on intra-regional variability is replicable and can be used as a framework for future comparisons among different river systems in the region. Similar studies that could prove fruitful include comparisons between more remote river systems such as the Black, PeeDee, and Waccamaw, which are farther from Charleston but in close proximity to Georgetown. The development of Georgetown as a secondary port for rice shipment in the Lowcountry resulted from planter demand from these nearby river systems. The Santee plantations used Georgetown for shipping, though not exclusively. The Lynch family had townhouses in both Charleston and Georgetown and Lynch, Sr. was a founding member of the Winyah Indigo Society in Georgetown; Lynch, Jr. attended school there before he was sent to England for a gentlemen’s education. There are likely more examples, similar to the Lynches, that could help to understand whether planters preferred using the Georgetown port exclusively in the northern river systems.
of South Carolina or whether there were better reasons to go to directly to Charleston for shipment.

There were other river systems south of Charleston that were more productive than the Ashley River in rice cultivation and were able to practice tidal rice like the Santee. An intra-regional comparison with one or more of these river systems, such as the Combahee, Edisto, or Savannah, may also show micro-historical differences based on environmental and social factors. Additionally, comparisons between rivers that practiced predominantly inland rice methods, such as the Ashley, Wateree, Stono, and Congaree rivers, may show some interesting variations as well.

Comparative data sets could be analyzed to look at unique social alliances during the early years of European settlement in the Lowcountry. Do notable cultural differences exist within each river system such as Barbadian customs on the Ashley River versus French Huguenot traditions on the Santee River? The data sets used in this dissertation could not answer these particular questions. Cedar Grove, Middleton Place, and Drayton Hall were all owned by previous settlers in the area before they were acquired by the planters discussed in this document. An earlier domestic core is known at Drayton Hall, which predates the standing Georgian Palladian building. Henry Middleton’s father-in-law, John Williams, owned Middleton Place before Henry acquired it. John Williams likely built the Jacobean main house while Henry added the flanker buildings in the mid-18th century. These early settlement period data sets along with study of the families associated with them, when compared with settlement period French Huguenot data sets along the Santee River such as Waterhorn, may yield information that could contribute to a deeper understanding of how the two river systems developed in the early
settlement and colonial periods. More archaeological data from earlier contexts will be required to fully answer these questions.

The effects of sea level rise should be considered in all avenues of future research and the Santee Delta should be a priority. As mentioned above, systematic archaeological survey should be conducted to record an accurate inventory of resources before they are no longer available for terrestrial inspection. Work has just begun at Peachtree and what was The Marsh but is now referred to as Rochelle. The archaeological data collected in support of this dissertation acts as a fact check for the 1873 U.S. Coast survey map, which has proven to be relatively accurate at least in terms of presence or absence of settlement areas within each plantation. However, systematic shovel test survey combined with additional remote sensing techniques, such as GPR, will help to define the extent of these settlements as well as how the spaces in between them were utilized. Cochran and Honerkamp (2017) have shown that the 1873 U.S. Coast Survey map is inaccurate on the Sea Islands in Georgia; surveyors overlooked several areas of enslaved housing that were extant on the landscape during the mapping surveys just after the Civil War. Archaeological survey and limited testing showed that there were structures present in areas, which were not documented on the map.

Additional archaeological data collection at Peachtree and Rochelle may show additional settlements, which were not included on this portion of the 1873 U.S. Coast Survey map. These data could also speak to different types of activities such as single use sites related to enslaved subsistence activities or acts of resistance. These types of sites will help understand the people that lived, work, and died at these plantations, for which there is currently little or no information. Additionally, we do not know where most of the enslaved are buried on either
plantation. Systematic shovel testing, pedestrian survey, and remote sensing can help discover possible sites of interment.

At Peachtree, additional shovel testing and block excavation should take place in the South Settlement to better define the area and possibly understand how many houses were located here. Additional shovel testing should also take place within the Smudge to attempt to locate a structure or house in this area. Remote sensing at the Enslaved Settlement should also be pursued. This area is relatively flat, sandy, and clear of large vegetation; it presents an important opportunity to conduct GPR in this area. There is another settlement, known by the local community to have been a tenant settlement, which is on the 1873 U.S. Coast Survey map near the enslaved cemetery on Montgomery Creek. Shovel testing in this area should ground truth these reminiscences.

At The Marsh, additional work should be conducted at Kinloch Field to determine if there were multiple structures located in this field and what their uses may have been. To the east, toward Annandale plantation, there are several large grassy lawns that would be optimal for remote sensing survey and one of these shows structures on the 1873 U.S. Coast Survey map. Minim Island, across Minim Creek from the domestic core of what is now Rochelle, has never been systematically surveyed. There is a possibility that enslaved people were living and working on the island at least semi-permanently. While the survey would be challenging because of the inhospitable environment, the opportunity to investigate the potential for intact archaeological deposits related to enslaved lifeways centered primarily around the production of rice presents the opportunity to piece together part of the history of the Santee Delta that remains untold. This dissertation has begun the task of identifying enslaved use of the landscape. It sets a
framework for future, more fine-grained studies of enslaved lifeways, which are currently lacking in the Santee Delta.

Fine-grained data analysis of the material culture related to both of these sites should also be conducted in the near future to aid in the interpretation of lifeways during each historical period of plantation use and occupation. The information presented in this dissertation provides a platform to continue with more in-depth analysis of the material culture recovered from Santee Delta plantation enslaved contexts. Additional analyses may show important differences between settlements, which are not clearly understood based on the results of the broader landscape analysis presented here.

In conclusion, the study of intra-regional variability is a useful method to compare how different river systems evolve over time. This study has shown that there were specific micro-environmental and historical drivers, which pushed planters to adapt and utilize their plantation lands in different ways over time. These drivers were different for each river system and consequently, they evolved into very different landscapes over time. Historically, the Ashley River’s proximity to Charleston dictated that wealthy planters settled here and began producing rice for export. Over several generations, they diversified their business interests and oversaw construction of elaborate plantations utilizing enslaved labor. The wealth concentration on the Ashley River was the largest in the colonies by the time of the American Revolution and the majority of that wealth was in humans held in bondage. Today, this proximity to a commercial center is now a detriment to the plantation landscape as increasing population pressure and infrastructure development continue to consume the Ashley River corridor.

Because of its remoteness, the Santee River has evolved quite differently. Historically, it was a frontier and a mostly commercial enterprise for the large-scale production of tidal rice
utilizing a large enslaved labor force. At its zenith, the Santee River was one of the top three producers of tidal rice in the Lowcountry but not a principal place of residence for most planters. Today, it is this remoteness that has saved many of the historic plantation landscapes and most current owners of plantation lands prefer it this way. The delta is a fragile ecosystem as well as one of the last places to study plantation landscapes without the effects of modern disturbances.

Why Should We Care?

While this dissertation shows the utility of intra-regional variation as a useful way to study the past, there is a more emergent reason to care about the historical nuances of the Lowcountry. Recent studies on the effects of sea level rise due to climate change indicate the majority of the Southeastern coast line will experience at least a 4-to-5-ft rise in sea level by the turn of the next century (Climate Central 2016; Anderson et al. 2017). This means the majority of the coast line, as well as parts of the Santee and Ashley river corridors, will be under water by the year 2100, including parts, or all, of the study plantations in this document (Figure 158, Figure 159).

The Lowcountry is already experiencing the effects of climate change in the form of more frequent and intense seasonal storms, frequent flooding events, and higher king tides, which inundate the Charleston peninsula seasonally (www.charleston-sc.gov). Preservation advocates, including Historic Charleston Foundation and Preservation Society of Charleston, have succeeded in lobbying local politicians to take climate change and resulting sea level rise seriously; so much so that it was a major campaign talking point for mayoral candidates.

31 King tides are higher than average tidal events, which occur because of the alignment of gravitation pull between the moon and the sun (www.charleston-sc.gov; NOAA).
Figure 158. Sea level rise and coastal flood exposure predictive map of the greater Charleston area with the Ashley River pointed out by a red arrow. Areas in dark blue are predicted to be below water and areas in green are predicted as isolated areas below water by the year 2100. The red dots indicate Cedar Grove, Middleton Place, and Drayton Hall (image courtesy of Climate Central).
Figure 159. Sea level rise and coastal flood exposure predictive map of the Santee River Delta and surrounding coastal areas between Mount Pleasant and Georgetown. Areas in dark blue are predicted to be below water and areas in green are predicted as isolated areas below water by the year 2100. The red dots indicate Waterhorn, Peachtree and Rochelle (image courtesy of Climate Central).
Regionally, scholars are also looking at the probability of archaeological sites being lost due to sea level rise. Anderson et al. (2017) have predicted that a three-foot rise in seal level will result in the loss of over 13,000 recorded archaeological sites in the Gulf and Atlantic southern sea coast states, which includes standing structures and other types of cultural properties. These numbers are based on data available through the Digital Index of North American Archaeology (DINAA); however, unrecorded sites are not considered in the estimate, which makes the numbers even greater. Additionally, Emily Murray, Meg Galliard, and Sarah Miller co-chaired a recent symposium at the Southeastern Archaeological Conference annual meetings on the adaptation and mitigation efforts to save at-risk heritage in the southeast. Included in the session were papers on mitigating the impact of climate change on the archaeological record and educating the public regarding sea level rise and its effects on heritage sites (Anderson 2019; Galliard 2019).

Climate change will adversely affect both the Ashley and the Santee River historical landscapes, and the loss of resources will be catastrophic. Some residents are already preparing for this eventuality by raising their houses out of the flood zone, as the owner of Rochelle has done. It is imperative that we, as researchers and scholars, collect as much data as possible to, at the very least, preserve some aspects of these landscapes. Our knowledge of enslaved people living and working on these landscapes is rudimentary at best and the quest to retrieve additional information about them, particularly on the Santee River, will be severely hampered by sea level rise in the coming years. The majority of the fields between the Santee River branches have never been systematically surveyed for archaeological resources. There is a large amount of
documentary evidence that enslaved settlements and support infrastructure for rice production were built in these areas to allow for better access to more remote fields. Remnants of them can be seen in aerial imagery but, at present, we know very little about these areas. Storm towers were also erected in the delta for emergency shelter during storms. There were originally 12 of them; however, only three have been positively identified (Bull 1980). Many enslaved laborers were known to reside in this portion of the delta, some most assuredly year-round, yet we know very little about who they were or what their daily lives were like. A systematic archaeological survey of the Santee Delta will contribute exponentially to what is known of rice culture, enslaved lifeways, and the plantation task system. This survey should be a priority in the coming years as we work to preserve the cultural heritage of this landscape before it is swept away by the rising tides.
References Cited
Altizer, Kendanne M.

Anderson, David G. and Patricia A. Logan
1981 Francis Marion National Forest Cultural Resources Overview, U.S. Department of Agriculture Forest Service, Huger, SC.

Anderson, David G.
2019 Mitigating the Impact of Climate Change on the Archaeological Record: Reservoir Investigations Suggest How to Proceed. Paper presented at the 2019 Southeastern Archaeological Conference meetings, Jackson, MS.

Anschuetz, Kurt F., Richard H. Wilshusen, and Cherie L. Scheick

Armstrong Chelsey Geralda, Anna C. Shoemaker, Iain McKechnie, Anneli Ekblom, Peter Szabó, Paul J. Lane, Alex C. McAlvay, Oliver J. Boles, Sarah Walshaw, Nik Petek, Kevin S. Gibbons, Erendira Quintana Morales, Eugene N. Anderson, Aleksandra Ibragimow, Grezgorz Podrucznyc, Jana C. Vamosi, Tony Marks-Block, Joyce K. LeCompte, Säkhihtowin Awâsis, Carly Nabess, Paul Sinclair, Carole L. Crumley

Bailey, Jr., Ralph and Joshua N. Fletcher

Bailey, Jr., Ralph, Charles F. Philips, Jr. and Eric C. Poplin

Baldwin, Agnes

Baldwin, Cinda K.

Baluha, David, Charles Philips, Jr., Carolyn Rock, and Jacob Wilkerson
Bates, Susan Baldwin and Harriott Cheves Leland

Beach, Virginia Christian

Beard, David

Berlin, Ira

Bull, Elias B.

Burnard, Trevor

Butler, Nic

Bridges, Anne Baker Leland and Roy Williams III

Carney, Judith A.

Carney, Judith A. and Richard Porcher

Carney, Judith A. and Richard Nicholas Rosomoff

Charleston County Register of Mesne Conveyances
1783-1787 Charleston County Inventories, Appraisals and Sales Books, Book 4 1783-1787, Vol. 9, 389.

1787 Plat of Waterhorn Plantation. John McCrady Plat Collection on file at the Charleston County Register of Mesne Conveyances, Charleston, SC.

1794 Plat of Waterhorn Plantation. John McCrady Plat Collection on file at the Charleston County Register of Mesne Conveyances, Charleston, SC.

Chief of Engineers, United States Army

Chisholm, Linda A. and Michael D. Garber

Coclanis, Peter A.

Cochran, Lindsey and Nicholas Honerkamp

Conyers, Lawrence B.
2012 *Interpreting Ground Penetrating Radar for Archaeology*. Left Coast Press, Walnut Creek, CA.

Cooke, C. Wythe

Coombs, John C.

Crisp, E., Nairne, T., Harris, J., Mathews, M. & Love, J.
Crumley, C.L. editor
1994 *Historical Ecology, Cultural Knowledge and Changing Landscapes*. School of American Research, Santa Fe, NM.

Crumley, C.L.

Dethloff, Henry C.

Deetz, James

Deevey, Edward S.

DiBenedetto, David

Dunn, Richard S.

Drayton Hall

Drayton Papers Collection
1790 “Glover Plat” c. 1790, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC.

1790 Drayton Hall c. 1790 Map of Drayton Hall, attributed to Charles Drayton (1743-1820), Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC.

1845 Drayton Hall c. 1845, Lewis Reeve Gibbes, Drayton Papers Collection. Courtesy of Drayton Hall, a National Trust Historic Site, Charleston, SC.

Doyle, Barbara, Mary Edna Sullivan, and Tracey Todd
2008 Beyond the Fields: Slavery at Middleton Place. Middleton Place Foundation, Charleston, South Carolina.

Edelson, Max S.

Edgar, Walter

Epperson, Terrence E.

Espenshade, Christopher and Marian Roberts

Felzer, Lisa D., Gwendolyn Moore, Andrew Agha, Amanda Franklin, Christina Shedlock, J. Tracy Power, and Charles F. Philips, Jr.

Fields, Joseph E.
1956 The Letters of Thomas Lynch. Unpublished Manuscript from the Collections of the South Carolina Historical Society, Charleston, South Carolina.

Fields-Black, Edda L.

Friedlander, Amy

Galliard, Meg
2019 Community Archaeology on a Heritage at Risk Site: Pockoy Island Shell Rings on Botany Bay Plantation Heritage Preserve, Charleston County, South Carolina. Paper presented at the 2019 Southeastern Archaeological Conference meetings, Jackson, MS.

Glen, James
1951 A Description of South Carolina: Containing Many Curious and Interesting Particulars Relating to the Civil, Natural and Commercial History of That Colony (London, 1761) in
Colonial South Carolina: Two Contemporary Descriptions, Chapman J. Milling, editor, University of South Carolina, Columbia, South Carolina.

Gray, Ralph and Betty Wood

Greene, Jack P.

Griffin, Dorothy Gail.
1985 The Eighteenth-Century Draytons of Drayton Hall. Unpublished Ph.D. dissertation, Department of History, Emory University, Atlanta, GA.

Groves, Joseph A. M.D.

Harmon, James M., Mark P. Leone, Stephen D. Prince, and Marcia Snyder

Hatfield, April Lee

Hartley, Michael O.

Heath Barbara J. and Eleanor Breen

Heath, Barbara J.

Hester, Al

Heyward, Duncan Clinch
1993 Seed From Madagascar. University of South Carolina, Columbia, SC.

Hilliard, S.
1978 Antebellum Tidewater Rice Culture, South Carolina in Settlement and Development in North America: Essays on Geographical Change in Honour and Memory of Andrew Hill Clark, edited by James R. Gibson, University of Toronto Press, Toronto.
Hicks, Dan and Mary C. Beaudry

Historic Charleston Foundation
Accessed May 5, 2019

Hudgins, Carter C.

Hudgins, Carter L.

Jackson, Stephen T. and Richard J. Hobbs

Joseph, J.W.

Jurmain, Robert, Lynn Kilgore, Wenda Trevathan, and Eric J. Bartelink

King, Julia A.

Kovacik, Charles F. and John J. Winberry

Laurens, Henry
1968 *The Papers of Henry Laurens*, edited by Philip M Hamer; George C Rogers, Jr.; David R Chesnutt; Maude E Lyles, Vol. II, University of South Carolina Press, Columbia, SC.

Lawson, John

Leone, Mark
Lewis, Lynn

Lewis, Kenneth E.

Lewis, Kenneth E. and Donald L. Hardesty
1979 *Middleton Place: Initial Archeological Investigations at an Ashley River Plantation.* South Carolina Institute of Archaeology and Anthropology, Research Manuscript Series, Book 150. University of South Carolina, Columbia, SC.

Linder, Suzanne Cameron and Marta Leslie Thacker
2001 *Historical Atlas of the Rice Plantations of Georgetown County and the Santee River.* South Carolina Department of Archives and History, Columbia, SC.

Littlefield, Daniel C.

Lockhart, Matthew Allen

Lowe, Patricia

Ludlum, David M.

McCready, John
1711 Plat Representing 4 Tracts of Land in Saint George Parish, Charleston District Belonging to Several Persons Containing 248,441.5, 308.5, and 249.5 Acres. Plat Collection of John McCrady (L10005). Available at South Carolina Department of Archives and History, Columbia, SC.

1868 Middleton, Arthur, Plat of Three Tracts of Land in Saint George parish, Dorchest, Cedar Grove Containing 1,106.72 Acres, Jeny Containing 683 Acres and Canty Containing 638 Acres, Surveyed by William Hume. Plat Collection of John McCrady (L10005). Available at South Carolina Department of Archives and History, Columbia, SC.

McKee, Harley J.

McKinley, Shephard W.

McMillan, Lauren

Middleton Place

Middleton Place Foundation
1715 Plan of Several Tracts of Land Adjoining Each Other in South Carolina, Situate within St. Paul’s, Part in St. Andrews, Part in St. George’s Parishes. Plat on file at the Middleton Place Foundation Archive, Charleston, SC.

1813 Public Canal in Horse and Jack Savannahs, St. Paul’s Parish. Drawn by John Diamond, Sr. Plat on file at the Middleton Place Foundation Archive, Charleston, SC.

1885 A Plat of Various Plantations and Tracts of Land Belonging to the Estate of the Late Williams Middleton dec. Situated in St. Andrews Parish, Berkley County State of South Carolina on the West Side of the Ashley River. Drawn by Frederick L. Smith, Eng. Surveyor. Plat on file at the Middleton Place Foundation Archive, Charleston, SC.

Moore, Caroline T., Editor

Moore, Caroline T., Editor

Morgan, Philip D.

Museum of Early Southern Decorative Arts

Norris, John

Orser, Charles
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1738</td>
<td>The Four Books on Architecture. Translated by Isaac Ware. College of Charleston Addlestone Library Microfilm, Charleston, South Carolina.</td>
<td>Palladio, Andrea</td>
</tr>
<tr>
<td>1992</td>
<td>Cedar Grove research file and notes. On file at the South Carolina Institute of Archaeology and Anthropology, Columbia, SC.</td>
<td>Pinckney, Elise</td>
</tr>
<tr>
<td>1992</td>
<td>Cedar Grove research file and notes. On file at the South Carolina Institute of Archaeology and Anthropology, Columbia, SC.</td>
<td>Poplin, Eric</td>
</tr>
<tr>
<td>1887</td>
<td>Historical and Social Sketch of Craven County, South Carolina, in A Contribution to a History of the Huguenots of South Carolina. Unpublished manuscript, published for private circulation by T. Gaillard Thomas.</td>
<td>Porcher, Frederick A.</td>
</tr>
</tbody>
</table>
Rankin, Hugh F.
1973

Reeves, Matthew
2014
Mundane or Spiritual? The Interpretation of Glass Bottle Containers Found on Two Sites of the African Diaspora, in Materialities of Ritual on the Black Atlantic edited by Akinwumi Ogunderan and Paul Saunders, Indiana University Press, Bloomington, IN.

Records of Wills and Miscellaneous Inventories
1687-1785
Records of Wills and Miscellaneous Inventories, Vol II, pp. 282-292, Charleston, SC.

Rogers, Jr., George C.
1990
The History of Georgetown County, South Carolina. University of South Carolina Press for the Georgetown County Historical Society, Columbia, South Carolina.

Salley, A.S., editor
1928
Records in the British Public Record Office Relating to South Carolina, 1663-1710, Foot and Davis Co., Atlanta, GA.

Sauer, Carl Ortwin
1925

1931

Shaffer, E.T.H.
1939

Shlasko, Ellen
1997
Carolina Gold: Economic and Social Change on a South Carolina Rice Plantation. Dissertation, Yale University, New Haven, CT.

Du Simitière, Pierre Eugène
1765

Singleton, Theresa
1985

Shick, Tom W. and Don H. Doyle
1985
The South Carolina Phosphate Boom and the Stillbirth of the New South, 1867-1920.

Smith, Hayden
2012
Rich Swamps and Rice Grounds: The Specialization of Inland Rice Culture in the South Carolina Low Country, 1670-1871. Dissertation, University of Georgia, Athens, GA.

Smith, Henry A.M.
1919
The Upper Ashley; and the Mutations of Families.
The South Carolina Historical and Genealogical Magazine, Vol. XX, No. 3, July 1919.

Smith, Shelley Elizabeth

Snell, Charles W.

South Carolina Department of Natural Resources

South Carolina Historical Society
1820 Plat of Ashley River Tracts. Plat (blueprint) of Cedar Grove, Canty’s and Jenys tracts, Ashley River, St.George (Dorchester) Parish, Charleston District. Plat 32-52-11 on file at the South Carolina Historical Society, Charleston, SC.

1897 Plan of “The Marsh” Plantation Situate on North Santee River in Georgetown County on Lands Formerly Owned by Miss Esther Lynch. Plat 32-81-04 on file at the South Carolina Historical Society, Charleston, SC.

South Carolina Provincial Congress
1776 *Journal of the Provincial Congress of South Carolina, 1776*, February 1-April 11, 1776, Charles-Town, South Carolina.

South, Stanley and Michael Hartley
1980 Deep Water and High Ground: Seventeenth Century Lowcountry Settlement. Institute of Archaeology/Anthropology, University of South Carolina, Research Manuscript Series 166.

Spencer-Wood, Suzanne M.

Strauch, Ileana

Stroud, Sarah
2009 The Changing Landscape of Drayton Hall. Unpublished paper presented at the annual meeting of the Society for Historical Archaeology, Toronto, ON, Canada.
Styer, Kenneth F.

Switzer, Stephen

Szabó, Pèter

The American Society of Learned Studies, editor

Trinkley, Michael
1993 A Brief Examination of the Middleton Place Mill, Middleton Place Plantation (38DR16): Phase I. Chicora Foundation, Columbia, SC.

Trinkley, Michael and Debi Hacker

Upton, Dell

U.S. Coast Survey
1873 Coast Survey Map of the Santee Rivers and Vicinity, South Carolina. Register No. T-1308. Available through the University of Alabama Cartography Lab, Tuscaloosa, AL.

United States Coast and Geodetic Survey
1896 Coast Chart No. 152. Murrell's Inlet to Cape Romain Including Winyah Bay, South Carolina. Available at the South Carolina Historical Society, Charleston, SC.

Vellend, Mark, Carissa D. Brown, Heather M. Kharouba, Jenny L. McCune, and Isla H. Myers-Smith

van Valkenburgh, Michael and Associates
2003 Drayton Hall Landscape Master Plan. Draft manuscript on file at Drayton Hall.

von Loew, Pete
2001 Cultural Resources Inventory of the Palmetto Park Tract, Dorchester County, South Carolina. Brockington and Associates, Charleston, S.C.

Walsh, Lorena S.

Waterhouse, Richard

Wheaton, Thomas R. and Patrick H. Garrow

Wheaton, Thomas R., Amy Friedlander, and Patrick H. Garrow

Wilkie, Laurie

Williams, G, Ishmael, John S. Cable, and Mary Beth Reed

Winberry, John J.
1997 The Geographic Concept of Landscape: The History of a Paradigm. In *Carolina’s Historical Landscapes*, Linda F. Stine, Martha Zierden, Lesley M. Drucker, and Christopher Judge, editors, pp. 3-16. The University of Tennessee Press, Knoxville, TN.

Wood, Peter H.

Woolson, Constance Fenimore

Yeadon, Richard
1857 Editorial Correspondence. The Charleston Courier, April 18, 1857.

Young, Stacey, L.
2014 *The Hampton Plantation Community Archaeology Project*. South Carolina Department of State Parks, Recreation and Tourism, Columbia, S.C.

2012a *Excavations at Hampton Plantation, 38CH241, Locus 7 Area 2, May 2010-May 2012*. South Carolina Department of State Parks, Recreation and Tourism, Columbia, SC.

Young, Stacey L. and Natalie P. Adams

Zierden, Martha and Kimberly Grimes

Zierden, Martha

Zierden, Martha, Nicole Isenbarger, Jon Jones, Lisa Kealhofer, Greg Lucas, Karl Reinhard, and Elizabeth Reitz

Zierden, Martha A. and Elizabeth J. Reitz

Zierden, Martha A. and Ronald W. Anthony

Appendix
Appendix A: Summary Chain of Title
A-1. Chain of title for study subjects on each river system.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Ashley River</th>
<th>Santee River</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cedar Grove</td>
<td>Middleton Place</td>
</tr>
<tr>
<td>Early Settlement 1670-1710</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Francis Turgis</td>
<td>1684-1701</td>
</tr>
<tr>
<td></td>
<td>Mary and Elizabeth Turgis</td>
<td>1701-1711</td>
</tr>
<tr>
<td>Colonial Period 1711-1786</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walter Izard</td>
<td>1711-1750</td>
</tr>
<tr>
<td></td>
<td>Walter Izard, Jr.</td>
<td>1750-1759</td>
</tr>
<tr>
<td></td>
<td>John Izard</td>
<td>1759-1782</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1764-1787</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

392
<table>
<thead>
<tr>
<th>Time Period</th>
<th>Ashley River</th>
<th>Santee River</th>
<th>The Marsh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cedar Grove</td>
<td>Middleton Place</td>
<td>Drayton Hall</td>
</tr>
<tr>
<td>Cedar Grove</td>
<td>1827-1836</td>
<td>1836-1858</td>
<td>1836-1858</td>
</tr>
<tr>
<td>Archibald and Daniel Pepper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Isaac Wright</td>
<td>1836-1858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>William and Jane Bell Vardell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1858-1912</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postbellum Period 1866-1900</td>
<td></td>
<td>Susan Middleton 1883-1900</td>
<td>Charles Drayton 1866-1924</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1915 Timber Companies and private owners</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthur Manigault 1897</td>
<td>Arthur Manigault 1899-1919</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Booth-Boyle Livestock 1930s-1955</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>McCrady Family 1930s-1944</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Atlantic Creosote 1955-1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Helen Stewart 1944-1947</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DeWitt King 1947-1989</td>
</tr>
<tr>
<td>Time Period</td>
<td>Ashley River</td>
<td>Santee River</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Cedar Grove</td>
<td>Middleton Place</td>
<td>Drayton Hall</td>
<td>Waterhorn</td>
</tr>
<tr>
<td></td>
<td>1980</td>
<td>National Trust 1974</td>
<td></td>
</tr>
</tbody>
</table>
Appendix B: LiDAR Imagery
LiDAR hillshade imagery of the area around two depressions associated with a rice field, circled in red. The red arrows point to drainage features. The house ruin is depicted by the red square. (map by the author).
Digital Elevation Model in vicinity of Middleton Place and Drayton Hall, depicted by the red dots. The areas outlined in green have been strip mined for phosphate. The more prominent areas are pointed out by the red arrows (map by the author).
Cedar Grove 1820 plat overlaid on Dorchester County Digital Elevation Model (image courtesy of NOAA).
Dorchester County Digital Elevation Model showing the location of remnant Cedar Grove landscape features (image courtesy of NOAA).
Waterhorn Plantation hillshade view, with the 1794 map overlaid. The red dot denotes the main house (Charleston County Register of Mesne Conveyances; map by the author).
Overview of Waterhorn Plantation with Georgetown County hillshade, note the remnant rice field divisions in the Santee Swamp across from the main settlement and the large canal connecting Wambaw Creek with the mainland. The red dot denotes the main house (map by the author).
Close-up view of the Waterhorn main settlement showing remnant rice fields and canal systems. Note the flat area around the main settlement (data courtesy of Francis Marion National Forest; map by the author).

Inland view of Waterhorn Plantations showing an additional field and canal system not detailed on the plats data courtesy of Francis Marion National Forest; map by the author.)
Inland view of Waterhorn Plantation showing an additional field and canal system overlaid with the 1794 revised plat (data courtesy of Charleston County Register of Mesne Conveyances and Francis Marion National Forest; map by the author).
Digital Elevation Model, hillshade view of a portion of the Peachtree parcel outlined in gold, showing remnant canals and dikes associated with historical rice fields. The green arrow points to the general location of the Peachtree rice mill (map by the author).
LiDAR hillshade imagery of the area containing the house ruin, outlined with a red square, and the structure cluster, including the round structure, depicted by the red circle. The red arrows point to terracing, a depression, canals, and anomalies (map by the author).
LiDAR hillshade imagery of the area around the two inland sets of clusters, depicted by the red circles. The red arrow points to the remnants of a fire break (map by the author).
Appendix C: Expanded Chains of Title
Cedar Grove Expanded Chain of Title

Cedar Grove originated as a series of land grants beginning when Francis Turgis, a gentleman of means, was granted 350 acres of marsh land near the Ashley River by July 1684. By November 1684 he had brought 21 people over from England and was awarded, by warrant, 1050 acres for his efforts. In 1696, he received an additional 970 acres in four separate land grants. One of these grants was a re-grant, originally owned by an adjacent property owner, Job Bishop, which contained a residence and associated settlement called Cedar Grove (Smith 1988). Sometime after his arrival in the Carolina colony, Francis Turgis married Elizabeth, one of the daughters of Landgrave Daniel Axtell, and they had two daughters, Mary and Elizabeth. Francis Turgis apparently died intestate and Cedar Grove passed to his two daughters Mary and Elizabeth (Smith 1988).

Mary Turgis, daughter of Francis and Elizabeth, married Walter Izard, second son of the Honorable Ralph Izard who immigrated to South Carolina from England in 1682. Ralph Izard had married strategically to Mary Middleton, the widow of the elder Arthur Middleton—a wealthy Barbadian planter who had immigrated to the province. The combined grants of 970 acres, of which the Cedar Grove house and settlement were a part, were re-granted to Mary in August 1701. Lady Elizabeth Blake, Mary’s mother who has remarried after her father’s death, was granted 116 acres in 1711 and she transferred these to her son-in-law Walter Izard in 1714 (Smith 1988).

Walter and Mary occupied Cedar Grove until his death in 1750 and it then passed to his oldest son, Walter. Walter Izard, Jr. was already a man of means, colonel in the militia and politician by the time of his father’s death (Smith 1919). In 1738 he acquired 89 acres adjoining Cedar Grove from his cousin Thomas Diston. In 1756, Colonel Izard bought the adjoining
Cantey plantation of 298 acres, of which the original Cantey family house was a part. The Cantey plantation was then owned by James Baker, who died in 1752 and 298 acres of the original 400 acres grant was conveyed to Colonel Izard in 1756. The Cantey plantation serves as a landmark and identifiable point on many of the earlier maps of the Ashley River and, though the house did not survive, the place name was common through the early part of the 19th century (Smith 1988).

In 1752, Colonel Izard inherited 1,129 acres at the death of his Aunt Elizabeth’s second husband, Paul Jenny’s. He inherited the property with his cousins Thomas and John Izard. Colonel Izard bought out his cousins and the land was subsumed into Cedar Grove, though the family still referred to it as Jenny’s. Colonel Izard died intestate in 1759 and Cedar Grove, which was then 2,419 acres, passed to his only living son John (Smith 1988).

John Izard married Isabella Hume in 1780 and his will stated she would have the property for her life time and then it should be transferred to his sister, Mary. Mary married Arthur Middleton of Middleton Place across the Ashley River. John and Mary’s mother, Isabella, died in 1782 and the property was transferred to Mary. Mary was fond of Cedar Grove and divided her time between there and Middleton Place. In 1812, Mary Middleton divided Cedar Grove and gave 924 acres, parts of which were previously Cantey’s settlement and Jenny’s, to her daughter Septima and new son-in-law Henry Middleton Rutledge. The remaining 1,495 acres, comprising the main house and settlement, Mary gave to her youngest son John Izard Middleton in 1813 and John sold it out of the Izard family to John Parker, Sr. in 1820 (Smith 1988).

Parker held Cedar Grove only a short time and then sold to Archibald and Daniel Pepper around the year 1827. By 1836, when it was conveyed to Dr. Isaac Marion Dwight, many of the gardens were in a dilapidated state and parts of the oak allée approach to the house had been sold.
for timber (Smith 1988, Philips n.d.). Dr. Dwight rebuilt much of the garden spaces between
1836 and 1858 when he sold Cedar Grove to William and Jane Bell Vardell (Smith 1988).

The Vardells owned the property for the last half of the 19th century. It was during their
ownership that the main house burned in 1861 when the Union Army came through the area
(Yeadon 1857; Shaffer 1939; Murray 1970; Smith 1988; Power et al. 1994; Felzer et al. 2012).
They were unable to re-build the main house because William had invested the majority of their
liquid assets in Confederate war bonds, which were useless after the Civil War.

Cedar Grove passed out of the Vardell Family in 1912 and was owned by a series of
private families, and for a time, Ashley Phosphate Works. It was briefly mined for phosphate and
passed again into private ownership in the first quarter of the 20th century; it was donated by
William Gregg to the Coastal Carolina Boy Scouts in 1940 (Riddle 2015; Philips n.d.). The Boy
Scouts renamed it Camp Gregg in honor of the previous owner and held it until 1980 when they
sold it to a group of investors (Riddle 2015). The land was subdivided and sold off to a series of
developers and, today, the majority of the original 2,419 acres is now residential and commercial
property (Philips n.d.).

Middleton Place Expanded Chain of Title

Middleton Place was originally part of a warrant issued to Jacob Wayte (or Waight) for
600 acres in 1675. The next year, he was granted 764 acres abutting the Earl of Shaftsbury’s
lands. Wayte eventually waived his rights to it and 600 acres of this original grant were
warranted to Richard Godfrey by 1700. Godfrey owned the plantation until at least 1715 when
the House of Commons passed a resolution to build a garrison on his plantation. At some point
before 1729, Godfrey sold to John and Sarah Baker and they in turn sold 200 acres of it to John
Williams. By 1750, the entire 600 acres was in Henry Middleton’s possession. He had acquired an additional 1,475 acres on the Ashley River in this vicinity, when he married Mary Williams in 1741. Mary father, John Williams had convey these lands to her upon her marriage to Henry (Smith 1988). These lands then became part of the Middleton Place Tract in addition to all of the other plantations lands that came to the Middleton’s after the death of Mary’s father.
Appendix D: Quantitative Data for Intra-regional Variability
Quantifying data for factors considered in the analysis of intra-regional variability on the Ashley River.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Ashley River</th>
<th>Archival</th>
<th>Archaeological</th>
<th>Landscape</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Settlement 1670-1710</td>
<td>Barbadian Settlers</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>2.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>French Huguenot Settlers</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>2.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Colonial Period 1711-1776</td>
<td>Elite Wealthy Planters</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planter Economic Diversification</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plantation Acreage +1000</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2.66667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Antebellum Period 1786-1861</td>
<td>Elite Wealthy Planters -same family</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plantation sub-divided for heirs or sold</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2.66667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Postbellum Period 1866-1900</td>
<td>Elite Planters -same family</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.66667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phosphate Production</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1.33333</td>
<td></td>
</tr>
<tr>
<td>Time Period</td>
<td>Factor</td>
<td>Ashley River</td>
<td>Archival</td>
<td>Archaeological</td>
<td>Landscape</td>
<td>Total</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early 20th Century 1901-</td>
<td>Hunting Clubs</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1950</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.66667</td>
</tr>
<tr>
<td>Elite Planter Descendants</td>
<td>Elite Planter Descendants -same</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-same family</td>
<td>family</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.66667</td>
</tr>
<tr>
<td>Inland Rice Production</td>
<td>Inland Rice Production</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Tidal Rice Production</td>
<td>Tidal Rice Production</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Hunting Clubs deer</td>
<td>Hunting Clubs deer</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0.66667</td>
</tr>
<tr>
<td>Hunt Clubs water fowl and</td>
<td>Hunt Clubs water fowl and deer</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>deer</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Tourism</td>
<td>Tourism</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Rebuilding English Gardens</td>
<td>Rebuilding English Gardens</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1.33333</td>
</tr>
<tr>
<td>Forestry and Timber Products</td>
<td>Forestry and Timber Products</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Late 20th Century 1951-</td>
<td>Elite Planter Descendants -same</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>family</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Inland Rice Production</td>
<td>Inland Rice Production</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Tidal Rice Production</td>
<td>Tidal Rice Production</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Encroaching Urban Development</td>
<td>Encroaching Urban Development</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>House Museums</td>
<td>House Museums</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Hunting Clubs deer</td>
<td>Hunting Clubs deer</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hunt Clubs water fowl and</td>
<td>Hunt Clubs water fowl and deer</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>deer</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Forestry and Timber Products</td>
<td>Forestry and Timber Products</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Conservation Easements or</td>
<td>Conservation Easements or other</td>
<td>Archival</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other protected status</td>
<td>protected status</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>1.33333</td>
</tr>
</tbody>
</table>
Quantifying data for factors considered in the analysis of intra-regional variability for Cedar Grove.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Cedar Grove</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Archival</td>
</tr>
<tr>
<td>Early Settlement 1670-1710</td>
<td>Barbadian Settlers</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>French Huguenot Settlers</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
</tr>
<tr>
<td>Colonial Period 1711-1776</td>
<td>Elite Wealthy Planters</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Planter Economic Diversification</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Plantation Acreage +1000</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
</tr>
<tr>
<td>Antebellum Period 1786-1861</td>
<td>Elite Wealthy Planters -same family</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Plantation sub-divided for heirs or sold</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>2</td>
</tr>
<tr>
<td>Postbellum Period 1866-1900</td>
<td>Elite Planters -same family</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Phosphate Production</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs</td>
<td>0</td>
</tr>
<tr>
<td>Time Period</td>
<td>Factor</td>
<td>Cedar Grove</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Early 20th Century 1901-1950</td>
<td>Elite Planter Descendants -same family</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rebuilding English Gardens</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>0</td>
</tr>
<tr>
<td>Late 20th Century 1951-2000</td>
<td>Elite Planter Descendants -same family</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Encroaching Urban Development</td>
<td>4 4 4 4</td>
</tr>
<tr>
<td></td>
<td>House Museums</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Conservation Easements or other protected status</td>
<td>0</td>
</tr>
</tbody>
</table>
Quantifying data for factors considered in the analysis of intra-regional variability for Middleton Place.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Middleton Place</th>
<th>Archival</th>
<th>Archaeological</th>
<th>Landscape</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Settlement 1670-1710</td>
<td>Barbadian Settlers</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>French Huguenot Settlers</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.6667</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colonial Period 1711-1776</td>
<td>Elite Wealthy Planters</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Planter Economic Diversification</td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Plantation Acreage +1000</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.3333</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td>Antebellum Period 1786-1861</td>
<td>Elite Wealthy Planters -same family</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Plantation sub-divided for heirs or sold</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td>Postbellum Period 1866-1900</td>
<td>Elite Planters -same family</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.3333</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Phosphate Production</td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Time Period</td>
<td>Factor</td>
<td>Middletons Place</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Archival</td>
<td>Archaeological</td>
<td>Landscape</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Early 20th Century 1901-1950</td>
<td>Elite Planter Descendants -same family</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rebuilding English Gardens</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td></td>
</tr>
<tr>
<td>Late 20th Century 1951-2000</td>
<td>Elite Planter Descendants -same family</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Encroaching Urban Development</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>House Museums</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservation Easements or other protected status</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
<td></td>
</tr>
</tbody>
</table>
Quantifying data for factors considered in the analysis of intra-regional variability for Drayton Hall.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Drayton Hall</th>
<th>Archival</th>
<th>Archaeological</th>
<th>Landscape</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Settlement 1670-1710</td>
<td>Barbadian Settlers</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>French Huguenot Settlers</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.66667</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colonial Period 1711-1776</td>
<td>Elite Wealthy Planters</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Planter Economic Diversification</td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
</tr>
<tr>
<td></td>
<td>Plantation Acreage +1000</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.33333</td>
</tr>
<tr>
<td>Antebellum Period 1786-1861</td>
<td>Elite Wealthy Planters -same family</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Plantation sub-divided for heirs or sold</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Postbellum Period 1866-1900</td>
<td>Elite Planters -same family</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Phosphate Production</td>
<td></td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Time Period</td>
<td>Factor</td>
<td>Drayton Hall</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--------------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Archival</td>
<td>Archaeological</td>
<td>Landscape</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Early 20th Century 1901-1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elite Planter Descendants -same family</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rebuilding English Gardens</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Late 20th Century 1951-2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elite Planter Descendants -same family</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.66667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Encroaching Urban Development</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>House Museums</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservation Easements or other protected status</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
<td></td>
</tr>
</tbody>
</table>
Quantifying data for factors considered in the analysis of intra-regional variability on the Santee River.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Archival</th>
<th>Archaeological</th>
<th>Landscape</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Settlement 1670-1710</td>
<td>Barbadian Settlers</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2.66667</td>
</tr>
<tr>
<td></td>
<td>French Huguenot Settlers</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3.33333</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1.33333</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colonial Period 1711-1776</td>
<td>Elite Wealthy Planters</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3.66667</td>
</tr>
<tr>
<td></td>
<td>Planter Economic Diversification</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
</tr>
<tr>
<td></td>
<td>Plantation Acreage +1000</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.33333</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.33333</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Antebellum Period 1786-1861</td>
<td>Elite Wealthy Planters -same family</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.66667</td>
</tr>
<tr>
<td></td>
<td>Plantation sub-divided for heirs or sold</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.66667</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.66667</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Postbellum Period 1866-1900</td>
<td>Elite Planters -same family</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
</tr>
<tr>
<td></td>
<td>Phosphate Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
</tr>
<tr>
<td>Time Period</td>
<td>Factor</td>
<td>Archival</td>
<td>Archaeological</td>
<td>Landscape</td>
<td>Total</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td>Early 20th Century 1901-1950</td>
<td>Elite Planter Descendants -same family</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.6667</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1.3333</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rebuilding English Gardens</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td>Late 20th Century 1951-2000</td>
<td>Elite Planter Descendants -same family</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.6667</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Encroaching Urban Development</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>House Museums</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Conservation Easements or other protected status</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Quantifying data for factors considered in the analysis of intra-regional variability for Waterhorn.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Waterhorn</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Settlement 1670-1710</td>
<td>Barbadian Settlers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>French Huguenot Settlers</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.6667</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colonial Period 1711-1776</td>
<td>Elite Wealthy Planters</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Planter Economic Diversification</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.3333</td>
</tr>
<tr>
<td></td>
<td>Plantation Acreage +1000</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.3333</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.6667</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td>Antebellum Period 1786-1861</td>
<td>Elite Wealthy Planters -same family</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>2.3333</td>
</tr>
<tr>
<td></td>
<td>Plantation sub-divided for heirs or sold</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td>Postbellum Period 1866-1900</td>
<td>Elite Planters -same family</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Phosphate Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.6667</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Time Period</td>
<td>Factor</td>
<td>Waterhorn</td>
<td>Archival</td>
<td>Archaeological</td>
<td>Landscape</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>-----------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Early 20th Century 1901-1950</td>
<td>Elite Planter Descendants -same family</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rebuilding English Gardens</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
</tr>
<tr>
<td>Late 20th Century 1951-2000</td>
<td>Elite Planter Descendants -same family</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Encroaching Urban Development</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>House Museums</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Conservation Easements or other protected status</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Quantifying data for factors considered in the analysis of intra-regional variability for Peachtree.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>Peachtree</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Settlement 1670-1710</td>
<td>Barbadian Settlers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>French Huguenot Settlers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colonial Period 1711-1776</td>
<td>Elite Wealthy Planters</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Planter Economic Diversification</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
</tr>
<tr>
<td></td>
<td>Plantation Acreage +1000</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1.33333</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Antebellum Period 1786-1861</td>
<td>Elite Wealthy Planters -same family</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2.66667</td>
</tr>
<tr>
<td></td>
<td>Plantation sub-divided for heirs or sold</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0.66667</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Postbellum Period 1866-1900</td>
<td>Elite Planters -same family</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
</tr>
<tr>
<td></td>
<td>Phosphate Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
</tr>
<tr>
<td>Time Period</td>
<td>Factor</td>
<td>Peachtree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Early 20th Century 1901-1950</td>
<td>Elite Planter Descendants - same family</td>
<td>Archival</td>
<td>Archaeological</td>
<td>Landscape</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.66667</td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Rebuilding English Gardens</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3.33333</td>
</tr>
<tr>
<td>Late 20th Century 1951-2000</td>
<td>Elite Planter Descendants - same family</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Encroaching Urban Development</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>House Museums</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Conservation Easements or other protected status</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Quantifying data for factors considered in the analysis of intra-regional variability for The Marsh.

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Factor</th>
<th>The Marsh</th>
<th>Archival</th>
<th>Archaeological</th>
<th>Landscape</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Settlement 1670-1710</td>
<td>Barbadian Settlers</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>French Huguenot Settlers</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colonial Period 1711-1776</td>
<td>Elite Wealthy Planters</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Planter Economic Diversification</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Plantation Acreage +1000</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Antebellum Period 1786-1861</td>
<td>Elite Wealthy Planters -same family</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Plantation sub-divided for heirs or sold</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Postbellum Period 1866-1900</td>
<td>Elite Planters -same family</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Phosphate Production</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1.33333</td>
<td>4</td>
</tr>
<tr>
<td>Time Period</td>
<td>Factor</td>
<td>The Marsh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Early 20th Century</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1901-1950</td>
<td>Elite Planter Descendants -same</td>
<td>Archival</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>family</td>
<td>Archaeological</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>Landscape</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>Total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tourism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rebuilding English Gardens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late 20th Century</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1951-2000</td>
<td>Elite Planter Descendants -same</td>
<td>Archival</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>family</td>
<td>Archaeological</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inland Rice Production</td>
<td>Landscape</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tidal Rice Production</td>
<td>Total</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Encroaching Urban Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>House Museums</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunting Clubs deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hunt Clubs water fowl and deer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forestry and Timber Products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservation Easements or other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>protected status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vita

Kendanne Marie (Boykin) Altizer was born June 6, 1972 in Greenville, Texas. She was raised in a series of small Texas towns and graduated from high school in San Antonio, Texas. After high school she went to technical school in Houston at the Universal Technical Institute where she received a certificate in diesel mechanics. Unable to find work in this male-dominated industry in the early 90s, she worked in a retail store for several years. Kendy went back to junior college several years later and worked her way through remedial math and English classes. She took her first Anthropology class at San Antonio College and never looked back. She transferred to the University of Texas at Arlington where she graduated Cum Laude, receiving a Bachelor of Arts in History and Anthropology. She spent over 10 years working in Cultural Resource Management (CRM) in several regions of the United States mainland, as well as Hawai’i. She went back for a master’s degree because she wanted to be a Principal Investigator. After extensive research into master’s programs she applied to the Master of Science in Historic Preservation program through Clemson University and the College of Charleston.

In Charleston, she fell in love with colonial architecture and met the ruin that would change her life. In 2013, Kendy found her thesis topic at Peachtree Plantation where she used archival research, architectural evidence, and archaeology to piece together the ground level floorplan and proposed room uses of the ruin at the time of the fire in 1840. She also proposed a preservation plan to stabilize and maintain the ruin, short term, until a more permanent solution could be found. The property owners implemented the plan and the ruin was stabilized in 2015. Kendy decided that Peachtree was more important than CRM and she wanted to know more about its landscape so, she decided to pursue a Ph.D. Sound advice from Martha Zierden steered her to Barbara Heath and the University of Tennessee.