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Abstract

In this dissertation, we examine the Lévy measures of non-negative infinitely divisible

processes. For a non-negative infinitely divisible process with no drift, Lévy measure is

the single most important factor characterizing the process. Understanding the structure of

Lévy measure can give more insight about the behavior of the process. However, it is not

always easy to describe the Lévy measure of an infinitely divisible process. The descriptions

of Lévy measures of squared Bessel processes proposed by Pitman and Yor are examples. It

requires deep knowledge from the Ray-Knight theorems and Itô excursion laws to interpret

these descriptions. We use isomorphism identities as the main tool to describe the Lévy

measure of a non-negative infinitely divisible process. The isomorphism identities that we

are interested in connect every non-negative infinitely divisible process to the family of its

random translations. It turns out that the Lévy measure of a non-negative infinitely divisible

process can be written in term of the laws of its random translations. More precisely, we

manage to write the Lévy measure as a series of other Lévy measures which are written in

term of the law of random translations. The special technique that we develop to ensure

the condition distribution of a non-negative infinitely divisible process being consistently

well defined enables us to find the laws corresponds to the component Lévy measures in the

series.
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6.2 Lévy measures of non-negative infinitely divisible processes . . . . . . . . . . 65

Bibliography 75

Appendices 79

A Some Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.1 Markov Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 Transition probability, Potential density . . . . . . . . . . . . . . . . 81

A.3 Continuous Additive Functional . . . . . . . . . . . . . . . . . . . . . 82

A.4 Local time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.5 Gaussian Random Variable, Gaussian Vector, Gaussian Process . . . 83

Vita 87

vii



Chapter 1

Introduction

The concept of infinitely divisibility was introduced in 1929 by Bruno de Finetti, and was first

studied systematically by the pioneers in this area: Kolmogorov, Lévy and Khintchine. It was

Khintchine [14] who gave the first formal definition of an infinitely divisible distribution. It

reads: A distribution of a random variable which for any positive integer n can be represented

as a sum of n identically distributed independent random variables is called an infinitely

divisible distribution. Infinitely divisible distribution has fundamental relation with the

Central Limit Theorem (CLT) which is one of the most important theorems in statistical

mathematics and probability theory. The classical version of the CLT states that under

certain conditions, the sum of a large number of independent identically distributed random

variables with finite non-zero variances approaches normal distribution, regardless the actual

distribution of variables. The power of the classical version of the CLT is that we can apply

probabilistic and statistical methods working for normal distribution to many other types of

distributions. Can the limit distributions in CLT go beyond the normal distribution? If yes,

what are they? The generalized CLT states that under certain conditions, the family of all

possible limit distributions of the sum of a large number of random variables is exactly the

family of infinitely divisible distributions .

Infinitely divisible distributions are also important because of theirs strong connection

with Lévy processes which concern many aspects of modern probability theory and its
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applications. A Lévy process is a stochastic process {Xt, t ≥ 0} defined on probability

space (Ω,F ,P) having the following properties:

a. If t0 < t1 < ... < tn then Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 are independent.

b. If s, t ≥ 0, then Xt+s −Xt is equal in distribution to Xs.

c. With probability 1, t 7→ Xt is right continuous with left limit.

Recall that Brownian motion can be thought of as a stochastic process with independent

and stationary increments, whose sample paths are continuous almost surely and its law at

any fixed time t > 0 is the zero mean normal distribution with variance t. If we replace

the normal distribution at fixed time t in the definition of Brownian motion by an infinitely

divisible distribution, we get a Lévy process. For a Lévy process X, the law of Xt at time

t = 1 is infinitely divisible and it is unique for X. The collection of all infinitely divisible

distributions is in one-to-one correspondence with the collection of all Lévy processes.

Infinitely divisible distributions play an important role in probability theory and have

numerous applications. It is worthy to study its structure thoroughly. A formal definition

of an infinitely divisible distribution in Rd is given as following:

Definition 1.1 (Infinitely Divisible Distribution) A random vector X in Rd is said

to be infinitely divisible (ID) if for all n ∈ N, there exist independent identically distributed

(i.i.d.) random vectors Y 1,n, ..., Y n,n in Rd such that

X
d
=Y 1,n + ...+ Y n,n, (1.1)

where “
d
=” means equality in distribution.

The concept of infinitely divisibility can be equivalently defined in term of probability

measures and characteristic functions as follows:
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• A probability measure µ in Rd is infinitely divisible if for every n ∈ N there exists a

probability measure µn on Rd such that µ can be expressed as the n-th convolution

power of µn.

• A characteristic function φ is infinitely divisible if and only if for every n ∈ N there

exists a characteristic function φn such that φ = (φn)n.

Example 1.2 Using characteristics functions, it is easy to verify that normal, compound

Poisson, geometric, exponential and gamma distributions are infinitely divisible.

Any distribution (not constant) with bounded range is not infinitely divisible. For instance,

binomial and uniform distribution are not ID.

The following theorem gives a representation of characteristic functions of all infinitely

divisible distributions. It is called the Lévy - Khintchine Formula or the Lévy - Khintchine

representation[2].

Theorem 1.3 (Lévy - Khintchine Formula). Let X be an infinitely divisible vector in

Rd. There exists an unique triplet (Σ, ν, b) consisting of a symmetric non-negative definite

d× d matrix Σ, a σ-finite measure ν on Rd satisfying ν({0}) = 0 and
∫
Rd 1∧ ‖x‖2νdx <∞,

and a vector b ∈ Rd such that for every u ∈ Rd

E(exp(i〈u,X〉)) = exp{−1

2
〈u,Σu〉+ i〈b, u〉

+

∫
Rd

(ei〈u,x〉 − 1− i〈u, x〉χ(x))νdx} (1.2)

where χ(x) : Rd → R is the cut-off function. Conversely, given a triplet (Σ, ν, b) as above,

there exists an infinitely divisible distribution X ∈ Rd satisfying the equation (1.2).

The distribution of X is uniquely determined by the triplet (Σ, ν, b) which is called the

generating triplet or Lévy triplet of X . The measure ν is called the Lévy measure and

Σ is called the Gaussian coefficient of X . We often write X ∼ ID(Σ, ν, b). We observe

that ID(Σ, 0, 0) is a centered Gaussian distribution with covariance matrix Σ and ID(0, ν, b)
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is a Poissonian type distribution.

Definition 1.4.(Infinitely Divisible process) A stochastic process {Xt}t∈T over some

arbitrary set T is infinitely divisible (ID) if for any t1, ..., tn ∈ T the random vector

(Xt1 , ..., Xtn)

has an infinitely divisible distribution on Rn, n ≥ 1.

Example 1.5

A Gaussian processes Gt is infinite divisible since for n ∈ N, and any t1, ..., tn ∈ T ,

(Gt1 , ..., Gtn) is a Gaussian vector which has infinitely divisible distribution. A Poisson

process Nt of parameter λ is infinitely divisible since for n ∈ N, and any t1, ..., tn ∈ T ,

(Nt1 , ..., Ntn) has infinitely divisible distribution. In fact, it is easy to verify that all Lévy

processes are infinitely divisible.

If the set T from Definition 1.4 is finite, the stochastic process {Xt}t∈T is just a random vector

and its representation is given by the Lévy Khintchine formula in Theorem 1.3. When T is an

uncountable general index set, it is difficult to define Lévy measure for an infinitely divisible

process over set T . There are two ways to approach this problem. The first way is proposed

by Lee [18] and Maruyama[22]. They defined Lévy measure on the σ−ring generated by

cylindrical subsets of RT \ {0}. This approach leads to substantial conceptual and technical

difficulty. Rosiński [28] suggested the second way to look at Lévy measure on the canonical

path space (RT ,BT ), on which the laws of stochastic processes over T are defined. Recall

that RT = {x;x : T → R} and BT denote the cylindrical σ-algebra of RT . More details of

this approach are discussed in Chapter 2. In this dissertation, we follow the second way.

The Lévy triplet (Σ, ν, b), which characterizes the distribution of an infinitely divisible

process {Xt}t∈T , has the following properties: the Gaussian coefficient Σ is a non-negative

definite function on T × T , the Lévy measure ν is a measure on (RT ,BT ), and drift term
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b is a function in RT . Therefore, for every infinitely divisible process {Xt}t∈T , there exists

mutually independent Gaussian process G = (Gt)t∈T and a Poissonian infinitely divisible

process Y = (Yt)t∈T such that

X
d
=G+ Y

where the centered Gaussian process G is characterized by a covariance function Σ and the

Poisson infinitely divisible process Y is characterized by a Lévy measure ν and the drift

function b.

For a non-negative infinitely divisible process with no drift, the Gaussian part Σ and the

drift part b equal 0, so that Lévy measure is the single most important factor characterizing

the process. Understanding the structure of a Lévy measure can give more insight about

the behavior of the process. Given a non- negative infinitely divisible process, one might ask

what is its Lévy measure? The answer is not always easy. Even for well known processes,

the description of theirs Lévy measures can get really complicated. We look at an example

of the process which is the square of one-dimensional Brownian motion starting from 0. By

the observation of Shiga and Watanabe[30], this process is infinitely divisible. To describe

the Lévy measure of this process, one needs deep knowledge of the Ray-Knight theorems

and Itô excursion theory. In fact, this process is the squared Bessel process starting from 0

with dimension 1 which a member of the family called squared Bessel processes that we will

examine carefully.

We recall that for d ≥ 0, a d-dimensional squared Bessel process starting from x is defined

as the unique strong solution of the stochastic differential equation:

Xt = x+ 2

∫ t

0

√
XsdBs + dt, (1.3)

where B is one dimensional standard Brownian motion. When the dimension d is an integer,

we can think about a d-dimensional squared Bessel process starting at x as the square of

the distance from the origin of d-dimensional Brownian motion starts at b0 where |b0|2 = x.

These processes play an important role in financial mathematics because of their strong
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relation to financial models. Publications related to Bessel processes are numerous. We refer

to papers by Shiga-Watanabe[30], Pitman-Yor[23] and the monograph of Revuz-Yor[25].

One of the most important properties of Squared Bessel processes is the additivity property

which was observed by Shiga and Watanabe[30]. Following from this property, Squared

Bessel processes are infinitely divisible. Denote the Lévy measure of a squared Bessel process

with dimension d starting from x by ν(d,x). By additivity property of squared Bessel processes,

we have:

ν(d,x) = dν(1,0) + xν(0,1). (1.4)

Hence, we only need to describe ν(1,0) and ν(0,1). Pitman and Yor [23] have used Ray-Knight

and excursion theorems as the main tools to approach this problem. Recall that local time

of a process at x up to time t is the accumulated time that process has spent around x

up to time t. Ray-Knight theorems describe the law of local time process of a Brownian

motion at certain stopping time. Using the second Ray-Knight theorem, one can show that

ν(0,1) is the image of the Itô measure n+ of positive excursions by the application which

associates to an excursion u of its local times: u → Lt∞(u), t ≥ 0. Using a variant of the

first Ray-Knight theorem, the Lévy measure of a squared Bessel process starting from 0 with

dimension 1 can be expressed in term of positive Itô measure and Lebesgue measure by the

application:(u, s)→ Lt−s∞ (u), t ≥ 0.

We will describe the Lévy measure of a general non-negative infinitely divisible process

using isomorphism identities as the main tool. The isomorphism identities that we are

interested in are based on random translations. The very first form of these identities

was introduced by E.B.Dynkin[6]. In an effort to explain heuristic methods in quantum

field theory of K. Symanzik [31], Dynkin established the celebrated Dynkin’s Isomorphism

Theorem which relates the cumulative local times process of a Markov process to the squares

of its associated Gaussian process which occur to be infinitely divisible. In an abstract form,

Dynkin’s Isomorphism says that the total accumulated local time of the Markov process is

an admissible translation of one half of the squared associated Gaussian process. Dynkin’s
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isomorphism can be considered as a special case of more general isomorphism identities,

described as follows. Let {Yx}x∈E be a non-negative process. For every a such that E(Ya) > 0,

Yx is infinitely divisible if and only if there exists a non-negative process (Z
(a)
x , x ∈ E)

independent of Y such that:

Y + Z(a) has the law of Y under E(
Ya

E(Ya)
, .). (1.5)

This isomorphism connects every non-negative infinitely divisible process Y to a family of

non-negative processes Z(a) which can be viewed as random translations of Y . More details of

the isomorphism (1.5) and its applications are discussed in Eisenbaum paper[8] and Rosiński

paper[28] . We only focus on the use of (1.5) to find the Lévy measure of Y in a series form.

We develop a special technique to ensure the condition distribution of a non-negative

infinitely divisible process being consistently well defined which will be used in our description

of a Lévy measure. Let Y = (Yx1 , ..., Yxn) be a non-negative random variable in Rn, and

let conditional distribution of (Y |Yx1 = 0) be defined as the weak limit µ0 of probability

measure µk given by

µk(B) =
1

Ee−kYx1

∫
Y ∈B

e−kYx1dP, B ∈ B(Rn
+), k ≥ 1

provided such limit exists. It turns out that if Y = (Yx1 , ..., Yxn) is a non-negative infinitely

divisible random variable with Lévy measure ν and zero drift, then the weak limit of {µk}

exists and the limit distribution µ0 is infinitely divisible with zero drift and Lévy measure

ν1 = 1{yx1=0}ν.

We can write the Lévy measure of a non-negative infinitely divisible vector (Yx1 , ..., Yxn) as

a series:

ν(dy) =
n∑
i=1

ν̃i(dy) (1.6)

where ν̃i has the following form:

ν̃i(dy) =
E(Yxi)

yi
1Ai(y)L (Z(xi))(dy) (1.7)
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here Ai = {y ∈ Rn : yk = 0∀k < i and yi > 0}. Using the conditioning given above, we

identify the law corresponding to the component Lévy measures ν̃i.

It follows from [8] and [28] that to describe the Lévy measure ν of a non-negative infinitely

divisible process Y it is critical to obtain the law of the family of random translations Z(a).

We look at a family of infinitely divisible permanental processes whose random translations

have special form. Recall that a permanental process is a positive gamma process whose

finite dimensional Laplace transforms are given by a negative power of a determinant. A

permanental process is infinitely divisible if and only if it is associated to a Markov process.

More details about permanental processes are discussed in Chapter 3. It can be shown

that random translations of an infinitely divisible permanental process relate to the local

time processes of the Markov process that it is associated with. The example of squared

Bessel process starting from 0 with dimension 1 is just a special case of infinitely divisible

permanental processes.We can look at the squared Bessel process starting from 0 with

dimension 1 as the associated permanental process of a transient Markov process X. By

the Dynkin’s Isomorphism, a random translation Z(a) of squared Bessel process starting

from 0 with dimension 1 is just the total accumulated local times process of X conditioned

to start at a and be killed at its last visits to a.

This dissertation is organized in the following way. In Chapter 2, we give a detailed study

of Lévy measures on path spaces. In Chapter 3, we present an overview of permanental

processes and squared Bessel processes. The definition, general properties of permanental

processes and squared Bessel processes are discussed in this chapter. Chapter 4 is devoted

to examine the description of Lévy measures of squared Bessel processes using Ray-Knight

theorems and excursion laws. In Chapter 5, we look at the isomorphism identities based

on random translations whose special case is Dynkin’s Isomorphism. Chapter 6 is devoted

describe Lévy measures of non-negative infinitely divisible processes in general.
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Chapter 2

Lévy measures on path spaces

This Chapter is devoted to study Lévy measures on path spaces. We will show the existence

and uniqueness of Lévy measures for every Poissonian infinitely divisible processes. Lévy

Khinchine representation for an infinitely divisible process is also discussed. Our standard

reference for this Chapter is [28].

2.1 Definitions and preliminaries

There are two natural ways to define Lévy measures for infinitely divisible processes over any

set T . The first one is proposed by Lee and Maruyama [18][22]. It defines a Lévy measure

on σ−ring generated by cylindrical subsets of RT\{0} . The second way is proposed by

Rosiński [28] which considers a Lévy measure on the canonical path space (RT ,BT ), on

which the laws of stochastic processes over T are defined . When T is uncountable, the first

approach can lead to substantial conceptual and technical difficulties. For that reason, we

prefer the second one. We look at Lévy measures as “laws” of processes defined on possibly

infinite measure spaces. Here we are using the development from Rosiński paper[28]. Recall

that RT = {x;x : T 7→ R} and BT will denote the cylindrical (product) σ− algebra of RT .

The law of a stochastic process X = (Xt)t∈T is a probability measure µ on (RT ,BT ) given

by

µ(A) = P{ω : (Xt(ω))t∈T ∈ A}, A ∈ BT ,
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and we write L (X) = µ.

Definition 2.1 (Lévy measure) A measure ν on (RT ,BT ) is said to be a Lévy measure if

the following two conditions hold

C1. for every t ∈ T
∫
RT (|x(t)|2 ∧ 1)ν(dx) <∞,

C2. for every A ∈ BT ν(A) = ν∗(A\0T ), where ν∗ is the inner measure.

The first condition can be found in the Lévy Khinchine formula. It is needed for the integral

to be well-defined. While the first condition is just a technical one, the second condition

ensures “ν does not charge the origin”. If T is countable, then 0T ∈ BT , so that condition (2)

is equivalent to ν(0T ) = 0 which is the usual condition for the uniqueness of ν in the Lévy

Khinchine representation. If T is uncountable, ν(0T ) is undefined since 0T /∈ BT . However,

condition (2) still makes sense and it can be shown that there is a unique measure for any

infinitely divisible process satisfying this definition.

Remark 2.2 There exists a countable set T0 ⊂ T such that

ν{x ∈ RT : xT0 = 0} = 0. (2.1)

Condition (2) is satisfied because for any A ∈ BT

ν(A) ≥ ν∗(A\0T ) ≥ ν(A\{x : xT0 = 0}) = ν(A).

Let T̂ := {I ⊂ T : 0 < Card(I) < ∞} be the family of all finite nonempty subsets of the

index set T, and T̂c := {J ⊂ T : J is nonempty countable} be the family of all countable

nonempty subsets of the index set T.

The next lemma introduces some equivalent conditions to condition (2) which are applicable

in concrete situations.
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Lemma 2.3 Let ν be a measure on (RT ,BT ). The the following conditions are equivalent to

condition (2):

a. for every T0 ∈ T̂c there exists T1 ∈ T̂c such that T0 ⊂ T1 and

ν{x ∈ RT : xT0 = 0} = ν{x ∈ RT : xT0 = 0, xT1 6= 0};

b. for every T0 ∈ T̂c with ν{x ∈ RT : xT0 = 0} > 0 there is t /∈ T0 such that

ν{x ∈ RT : xT0 = 0, x(t) 6= 0} > 0;

c. either ν{x ∈ RT : xT0 = 0} = 0 is satisfied for some T0 ∈ T̂c or there is t /∈ T0 such

that ν{x ∈ RT : xT0 = 0, x(t) 6= 0} > 0 is satisfied.

Condition (a) was originally introduced in the lecture notes by Rosiński work[27].

2.2 Lévy Khintchine Representation

Infinitely divisible random variables are characterized by the Lévy - Khintchine Theorem.

Theorem 2.4 (Lévy - Khintchine). Let X be an infinitely divisible vector in Rd. There

exists a unique triplet (Σ, ν, b) consisting of a symmetric non-negative definite d× d matrix

Σ, a σ-finite measure ν on Rd satisfying ν(0) = 0 and
∫
Rd 1 ∧ ‖x‖2νdx < ∞, and a vector

b ∈ Rd such that for every u ∈ Rd

E(exp(i〈u,X〉)) = exp{−1

2
〈u,Σu〉+ i〈b, u〉+

∫
Rd

(ei〈u,x〉 − 1− i〈u, x〉χ(x))νdx} (2.2)

where χ(x) : Rd → R is the cut-off function. Conversely, given a triplet (Σ, ν, b) as above,

there exists an infinitely divisible distribution X ∈ Rd satisfying the equation above.

Different authors might use a slightly different expressions for the Lévy - Khintchine formula

depending on how they use the cut-off function. The cut-off function χ : Rd 7→ R is a

11



bounded measurable function such that χ(x) = 1 + o(|x|) as x → 0 and χ(x) = O(|x|−1)

as |x| → ∞. The most common forms have been used as the cut-off function are 1(0,1)|x|,

(1 ∨ |x|)−1 and (1 + |x|2)−1. Such a change in the choice of cut-off function only affect

parameter b. We will use the cut-off function χ(x) = 1(0,1)|x| unless we specify otherwise.

The distribution of X is uniquely determined by the triplet (Σ, ν, b) which is called the

generating triplet or Lévy triplet of X. The measure ν is the Lévy measure and Σ is

called the Gaussian coefficient of X . We often write X ∼ ID(Σ, ν, b). We observe that

ID(Σ, 0, 0) is a centered Gaussian distribution with covariance matrix Σ, ID(Σ, 0, b) is a

Gaussian distribution with mean b and covariance matrix Σ; and ID(0, ν, 0) is a compound

Poisson distribution.

Let X = (Xt)t∈T be an infinitely divisible process, so that for every non-empty finite subset

of T , I ∈ T̂ , the random vector XI is infinitely divisible in RI . By theorem 2.4, there exists

a unique Lévy triplet (ΣI , νI , bI) satisfies (2.2).

From the uniqueness of the triplet (ΣI , νI , bI), the following consistency conditions hold: for

every I, J ∈ T̂ with I ⊂ J

1. ΣJ restricted to I × I equals ΣI ,

2. bJ restricted to I equals bI ,

3. νJ ◦ π−1
IJ = νI on BI0,

where πIJ : RJ 7→ RI is the natural projection from RJ onto RI . By the Kolmogorov

Extension Theorem, there exists mutually independent centered Gaussian process G =

(Gt)t∈T and a Poissonian infinitely divisible process Y = (Yt)t∈T such that

X
d
=G+ Y.
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For every I ∈ T̂ , GI ∼ N(0,ΣI), and

E(exp(i〈u, YI〉)) = exp{i〈bI , u〉+

∫
RI

(ei〈u,y〉 − 1− i〈u, y〉χ(y))νIdy}, u ∈ RI . (2.3)

The covariance function Σ of G restricted to I ∈ T̂ is ΣI and there exists b : T 7→ R which

restricted to I equals bI .

Definition 2.5 A family {νI : I ∈ T̂} of finite dimensional Lévy measures is consistent if it

satisfies condition (3) of the consistency conditions above.

Remark 2.6 A consisted family of finite dimensional Lévy measures is not necessarily a

projective system of measures.

Theorem 2.7(Rosiński,[28]) Let Y = (Yt)t∈T be a Poissonian infinitely divisible process as

in (2.3). Then there exist unique Lévy measure ν on (RT ,BT ) and a shift function b ∈ RT

such that for every I ∈ T̂ and u ∈ RI

E(exp(i〈u, YI〉)) = exp{i〈bI , u〉+

∫
RT

(
ei〈u,yI〉 − 1− i〈u, yI〉χ(yI)

)
νdy}. (2.4)

Therefore, for any consistent system of Lévy measures {νI : I ∈ T̂} there exists a unique

Lévy measure ν on (RT ,BT ) such that

ν ◦ π−1
I = νI on BI0, I ∈ T̂ . (2.5)

Furthermore, ν is the smallest among all measures ρ such that ρ ◦π−1
I = νI on BI0, I ∈ T̂ .

Proof The proof of this theorem can be found in [28] under the proof of Therorem 2.8.

This theorem shows the existence and uniqueness of Lévy measures for every Poissonian

infinitely divisible processes. It enables us to write the representation for an infinitely

divisible process.

13



Corollary 2.8 (Lévy Khintchine representation) Let X = (Xt)t∈T be an infinitely

divisible process. Then there exist a unique triplet (Σ, ν, b) consisting of a non-negative

definite function Σ on T × T , a Lévy measure ν on (RT ,BT ) and a function b ∈ RT such

that for every I ∈ T̂ and u ∈ RI

E(exp(i〈u,XI〉))

= exp{−1

2
〈u,ΣIu〉+ i〈bI , u〉+

∫
RT

(ei〈u,xI〉 − 1− i〈u, xI〉χ(xI))νdx}, (2.6)

where ΣI is the restriction of Σ to I × I. (Σ, ν, b) is called the generating triplet of X.

Conversely, given a generating triplet (Σ, ν, b) as above, there exists an infinitely divisible

process X = (Xt)t∈T satisfying (2.6).

It is useful to think about Lévy measures on path spaces as“laws” of processes defined on

possibly infinite measure spaces. The following concept was introduced in [28]

Definition 2.9 (Representations of Lévy measures) Let {νI : I ∈ T̂} be a consistent

family of finite dimensional Lévy measures, which extends uniquely to a Lévy measure ν by

Theorem 2.7. A collection of measurable functions V = (Vt)t∈T defined on a measure space

(S,S, n) is said to be a representation of ν if for every I ∈ T̂

n{VI ∈ B} = νI(B), for every B ∈ BI0.

A representation V is called exact if n◦V −1 = ν or, equivalently, if n◦V −1 satisfies condition

2 in the definition of Lévy measure. Here V is viewed as a function from S into RT given

by V (s)(.) = V(.)(s).

The difference between representations and exact representations of Lévy measures is a

technical one, as we can see in the following Lemma.
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Lemma 2.10 Any representation of a Lévy measure, defined on a σ-finite measure space,

can be modified to an exact representation by restricting it to a smaller domain.

Remark 2.11 The process Vt(x) = x(t), x ∈ RT , t ∈ T is an exact representation of ν on

(S,S, n) = (RT ,BT , ν). However, such representation is too general. It does not give much of

information about the Lévy measure. Therefore, we are seeking more specific representations

on richer structures, such as Borel spaces.

Example 2.12 (Lévy processes) Let Y = (Yt)t≥0 be a Poissonian Lévy process determined

by EeiuYt = etK(u), where K is the cumulant function given by

K(u) =

∫
R
(eiux− 1− iu[[x]])ρ(dx) + iuc.

For every I = {t1, ..., tn} with 0 ≤ t1 < ... < tn, and a = (a1, ..., an) ∈ RI ,

E exp i
n∑
k=1

akYtk = exp
{ n∑
k=1

K(uk)∆tk

}
,

where ∆tk = tk − tk−1, uk =
∑n

j=k aj, and t0 = 0. Therefore, the Lévy measure ν1 of XI is

given by

νI(B) =
n∑
k=1

∫
R

1B(vxk)ρ(dv)∆tk, B ∈ Bn

where xk ∈ Rn, xk = (0, ..., 0, 1, ..., 1), k = 1, ..., n. The first (k − 1) elements of xk are 0,

the remaining are 1. Define V = (Vt)t∈T on the half plan R+ × R equipped with a measure

λ⊗ ρ given by

Vt(r, v) = 1t≥rv, (r, v) ∈ R+ × R
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where λ denotes the Lebesgue measure. Then V is a representation of the Lévy measure ν

of Y . Let I be a finite set of indices , for any B ∈ BI′ we have

(λ⊗ ρ)VI ∈ B =

∫
R

∫ ∞
0

1B(VI(r, v))drρ(dv)

=

∫
R

n∑
k=1

∫ tk

tk−1

1B(1{t1≥r}v, ...,1t≥rv)drρ(dv)

=

∫
R

n∑
k=1

1B(0, ..., 0, v, ..., v)ρ(dv)∆tk = νI(B)

For T0 = N, we have

(λ⊗ ρ){(r, v) : 1{n≥r}r = 0∀n ∈ N} = 0.

Thus, V is an exact representation of ν.

Example 2.13(General Compound Poisson Processes) Let V = {Vt}t∈T be a stochastic

process and let ζ be a Poisson random variable with mean θ. Let {V (n)}n∈N be a sequence

of independent copies of V and independent of ζ. Then,

Yt =

ζ∑
n=1

V
(n)
t

is a Poissonian infinitely divisible process such that for every I ∈ T̂ , a ∈ RI ,

E exp i
∑
t∈I

atYt = exp{θE(ei
∑
t∈I atVt − 1)} = exp{

∫
RI

(ei<a,y> − 1)νI(dy)}.

V = {Vt}t∈T is a representation the Lévy measure ν of Y on (Σ,F , θP).
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Chapter 3

Permanental processes and Squared

Bessel processes

In this Chapter, we focus on permanental processes which serve as generalization of the

squared centered Gaussian processes. We are going to explore the definition of permanental

processes, the connections between a permanental process and the local times of a Markov

process and the characterization of an infinitely divisible permanental process. We also

introduce the squared Bessel processes and their important properties. The standard

references for this Chapter are [10][21][17].

3.1 Definition and Existence of Permanental Processes

A permanental process with parameter space E is a positive Gamma process whose finite

dimensional Laplace transforms are given by a negative power of a determinant[10].

Definition 3.1(Permanental Process) A real-valued positive process (Yx, x ∈ E) is a

permanental process if for every (α1, α2, .., αn) in Rn
+ and every (x1, x2, ..., xn) in En, its

finite-dimensional Laplace transforms satisfy

E
(

exp{−1

2

n∑
i=1

αiYxi}
)

= |I + αU |−1/β, (3.1)
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where I is the n × n-identity matrix, α is the diagonal matrix diag(αi))1 ≤ i ≤ n and

U = (u(xi, xj))1≤i,j≤n, β is a fixed positive number and for an n × n matrix A, |A| is

the determinant of A.

Process (Yx) is called permanental process with kernel (U(x, y), x, y ∈ E) and index β.

Let (φx)x∈E be a centered Gaussian process with covariance U = (u(xi, xj))1≤i,j≤n, then the

finite dimensional Laplace transforms of the process (φ2
x)x∈E is given by:

E
(

exp{−1

2

n∑
i=1

αiφ
2
xi
}
)

= |I + αU |−1/2.

Thus (φ2
x)x∈E is a permanental process with index β = 2 and symmetric positive kernel U .

Remark 3.2 : The right hand side of (3.1) is not unique with respect to matrix U . If P is

a diagonal matrix with non-zero entries, then

|I + αU | = |I + αP−1UP | = |I + αP−1UTP |.

In general, the right hand side of (3.1) might not be a Laplace transform. The natural

question is in which conditions in term of U = (u(xi, xj))1≤i,j≤n and β that (3.1) makes

sense, or that the right hand side of (3.1) is a Laplace transform. Vere-Jones [32] has

answered the question by establishing the necessary and sufficient condition on U for the

existence of Y . They are based on the following definition.

Definition 3.3 For any n× n matrix M :

detβM =
∑
σ∈Sn

βn−ν(σ)

n∏
i=1

Mi,σ(i),

where Sn is the symmetric group of order n and ν(σ) is the number of cycles of σ. For

every multi-index k = (k1, k2, ..., kn), M(k) denotes the derived |k| × |k|-matrix (where

|k| = k1 + k2 + ...+ kn) obtained from M by selecting the first row and column k1 times, the
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second k2 times,..., the nth kn times. For β > 0, a matrix M is said to be β-positive definite

if for all possible derived matrices M(k), detβ(M(k)) ≥ 0

Note that det−1M = |M | the determinant of M , and det1(M) = Perm(M).

The next proposition is Proposition 4.5 in [32].

Proposition 3.4 A permanental vector (Yxi , 1 ≤ i ≤ n) corresponding to U =

(u(xi, xj))1≤i,j≤n and index β exists if and only if for every r > 0:

• |I + rG| > 0 ,

• set Qr = U(I + rU)−1, then Qr(k) is β-positive definite for every k in Nn.

It is impossible to very the proposition 3.3 except in a very special case when U is the

potential density of a transient Markov process that we are going to discuss in section 3.2.

3.2 Permanental processes associated to Markov pro-

cesses

Let (Xt) be a transient Markov process on a nice measure space (E, E), where E is the Borel

sets of E, with α-potential density uα(x, y). See appendix A.2 for more details of Markov

transition semigroup and potential densities.

Theorem 3.5 (Eisenbaum and Kaspi,[10])For every β > 0, there exists a positive process

(Yx, x ∈ E) such that for every (α1, α2, ..., αn) in Rn
+ and every (x1, x2, ..., xn) in En

E
(

exp{−1

2

n∑
i=1

αiYxi}
)

= |I + αU |−1/β

where I is the n × n-identity matrix, α is the diagonal matrix diag(αi))1 ≤ i ≤ n and

U = (u(xi, xj))1≤i,j≤n.
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This theorem says that for every β > 0, there exists a permanental process with index β and

with kernel is the 0-potential density function of X.

Proof of Theorem 3.5: see [10], theorem 3.1 for the proof.

The proof of this theorem use the fact that U−1 is an M -matrix, then all the real eigenvalues

of U−1 are positive. In addition, the matrix Qr = U(I+rU)−1 is a resolvent matrix hence all

its entries are non-negative. It follows that Qr is β-positive definite for all β > 0. Therefore,

the theorem follows Proposition 3.4.

When β = 2, for every fixed x ∈ E, Yx has the law of squared centered Gaussian variable

with a variance equal to u(x, x). If moreover the 0-potential function is symmetric, Y is

the square of a centered Gaussian process with a covariance equal to u(x, y), x, y ∈ E. This

process has been noted and studied by many authors [5][7][21]. This Gaussian process is

referred as “Gaussian process associated” to X.

Definition 3.6 In the general case, we call the process Y the permanental process with index

β associated to X.

The existence of an associated permanental process with index β for every β > 0 implies the

property of infinite divisibility of these process.

Let (Lxt , x ∈ E, t ≥ 0) be local time process of Xt and (u(x, y), (x, y) ∈ E × E) be its 0-

potential density function (or Green function) so that it satisfies u(x, y) = Ex(Ly∞). Let a

be an element of E such that u(a, a) > 0. We define the probability P̃a as follows:

P̃a|Ft =
u(Xt, a)

u(a, a)
Pa|Ft .

Under P̃a, the process X starts at a and is killed at its last visit to a. Expectation with

respect to P̃a is denoted by Ẽa.
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Let Yx, x ∈ E be the permanental process with index 2 associated to the Markov process X,

defined on a probability space unrelated with X. The following theorem relates the law of

Y and the law of Lx∞ under P̃a .

Theorem 3.7 (Eisenbaum and Kaspi,[10])For every a ∈ E such that u(a, a) > 0, for every

functional F on the space of measurable functions from E to R, we have

EẼa(F (Lx∞ +
1

2
Yx;x ∈ E)) = E(

Ya
u(a, a)

F (
1

2
Yx;x ∈ E)). (3.2)

Proof of Theorem 3.7 see [10], Theorem 3.3 for details of the proof.

Now, let X be a recurrent Markov process with a state space E. For a ∈ E, define

Ta = inf{t ≥ 0 : Xt = a} and τr = inf{t ≥ 0 : Lat > r}. Let Sθ be an exponential time with

parameter θ, independent of X. Then X killed at Ta and X killed at τSθ are both transient

Markov processes. We denote by φ and ψ their respective associated permanental processes

with index 2. We have the following identity for the process (Lxτr , x ∈ E)[11].

Corollary 3.8 Let X be a recurrent Markov process. For a ∈ E and every functional F on

measurable function from E to R, we have

EEa
(
F (Lxτr +

1

2
φx;x ∈ E)

)
= E

(
F (

1

2
ψx;x ∈ E)|ψa = r

)
Besides, we have :(ψx;x ∈ E|ψa = 0) = (φx;x ∈ E)

Proof of Corollary 3.8:see [10], Corollary 3.6 for details of the proof.
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3.3 Characterization of the infinitely divisible perma-

nental processes

The natural question is when a permanental process has the property of infinite divisibility?

From the previous section, we know that a permanental process associated to a Markov

process is infinitely divisible. But, is that the only case? This section is devoted to answer

these questions. And the answer is: a permanental process is infinitely divisible if and only

if it is associated to a Markov process.

If a permanental process with index β > 0 is infinitely divisible then the permanental process

with the same kernel and index 2 is also infinitely divisible. Hence, on this section we will

consider the case β = 2.

Definition 3.9 A n× n matrix A is an M−matrix if and only if

• Aij ≤ 0 for i 6= j

• A is non-singular and A−1 ≥ 0(i.e. A−1
ij ≥ 0 for every i, j).

Lemma 3.10 Let (Gi,j, 1 ≤ i, j ≤ n) be a real non-singular n × n matrix. There exists a

positive infinitely divisible random vector (Y1, Y2, ..., Yn) such that for every (α1, α2, ..., αn) ∈

Rn
+,

E(exp{−1

2

n∑
i=1

αiYi}) = |I + αG|−1/2 (3.3)

if and only if , there exists a signature matrix S such that SG−1S is an M−matrix.

If U satisfies (3.3), the its real eigenvalues must be positive.

Proof of Lemma 3.10 see [10], Lemma 4.2 for the proof.

Theorem 3.11 (Eisenbaum and Kaspi,[10])Let (Gi,j, 1 ≤ i, j ≤ n) be a real non-singular

n × n matrix. There exists a positive infinitely divisible random vector (Y1, Y2, ..., Yn) such
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that (3.3) is satisfied, if and only if

G(i, j) = d(i)u(i, j)d(j) (3.4)

for every (i, j), where d is a function on {1, 2, ..., n} and u is the Green function of a Markov

process.

See [10], Theorem 4.3 for the proof.

The property (3.4) is equivalent to the following property[9]

G(i, j) = d−1(i)u(i, j)d(j) (3.5)

where d is a function on {1, 2, ..., n} and u is the Green function of a Markov process. Note

that |I + αG| = |I + αU |. It is saying that Y is a infinitely divisible permanental vector

associated to a Markov process.

Theorem 3.12 (Eisenbaum and Kaspi,[10])Let (k(x, y), x, y ∈ E) be a jointly continuous

function on E × E such that k(x, x) > 0 for every x ∈ E. There exists a positive infinitely

divisible process (Yx, x ∈ E) such that for every (α1, α2, ..., αn) in En,

E(exp{−1

2

n∑
i=1

αiYi}) = |I + αK|−1/2 (3.6)

where K = (k(xi.xj))1≤i,j≤n

if and only if

k(x, y) = d(x)g(x, y)d(y) (3.7)

where d is a positive function and g the Green function of a Markov process.

See [10], Theorem 4.4 for the proof.
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Corollary 3.13 Let (k(x, y), x, y ∈ E) be a jointly continuous function on E × E such that

k(x, x) > 0 for every x ∈ E. Let (Yx, x ∈ E) be a process such that for every (α1, α2, ..., αn)

in Rn
+ and every (x1, x2, ..., xn) in En,

E(exp{−1

2

n∑
i=1

αiYi}) = |I + αK|−1/2 (3.8)

where K = (k(xi.xj))1≤i,j≤n

Then Yx, x ∈ E is infinitely divisible if and only if it is associated to a Markov process.

3.4 Squared Bessel Processes

Definition 3.14 (Squared Bessel Process) For any real number δ ≥ 0 and x ≥ 0 the

square of δ-dimensional Bessel processes started at x, X = {Xt}t≥0 is defined as the unique

solution to the SDE

Xt = x+ 2

∫ t

0

√
XsdWs + δt, (3.9)

where W is one dimensional standard Brownian motion. We will denote X as BESQδ(x).

When the dimension δ is an integer, BESQδ(x) is the square of the distance from the origin

of δ-dimensional Brownian motion starts at B0 where |B0|2 = x. Let B be that Brownian

motion. By the Ito’s formula, we have

|Bt|2 = |B0|2 + 2(
n∑
i=1

∫ t

0

B(i)
s dB

(i)
s ) + δt, (3.10)

For δ ≥ 1, |Bt| is almost surely positive for positive t, we can consider the process:

βt =
n∑
i=1

∫ t

0

B
(i)
s

|Bs|
dB(i)

s

which is a one dimensional Brownian motion since < β, β >t= t. Hence, the equation (3.10)

can be written in the form of (3.16) by taking Xt = |Bt|2.
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The squared Bessel processes become interesting due to the important observation of Shiga

and Watanabe [30].

Theorem 3.15(Shiga and Watanabe [30]) Let X and X ′ be independent stochastic processes

with X a BESQδ(x) and X ′ a BESQδ′(x′), δ, δ′ > 0. Then X +X ′ is a BESQδ+δ′(x+ x′).

Proof : We provide the proof for its simplicity and beauty. The original proof can be found

in [25], chapter 11, theorem 1.2.

Proof. X satisfies (3.16) while X ′ satisfies

X ′t = x′ + 2

∫ t

0

√
X ′sdW

′
s + δ′t

where W ′ is an one dimensional Brownian motion independent of W . The sum Yt = Xt+X ′t

satisfies

Yt = x+ x′ + 2

∫ t

0

(
√
XsdWs +

√
X ′sdW

′
s) + δt+ δ′t, (3.11)

Set

βt =

∫ t

0

√
XsdWs +

√
X ′sdW

′
s√

Ys
.

Then βt is a one dimensional Brownian motion since < β, β >t= t. The integral in (3.18)

becomes
∫ t

0

√
Ysdβs and Yt is a BESQδ+δ′(x+ x′).

Corollary 3.16(Shiga and Watanabe[30]) Squared Bessel Processes are infinitely divisible

Let Xt be a BESQδ
x. For every n ∈ N, there exist i.i.d processes Y

(j)
t which are BESQ

δ/n
x/n,

j = 1, .., n such that X
d
=Y (1) + ...+ Y (n).

Proposition 3.17 If X is a BESQδ
(x), then for any c > 0, the process c−1Xct is a BESQδ

(x/c).

Remarks 3.18

• For δ ≥ 3, the process BESQδ is transient.
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• For δ ≤ 2, the process BESQδ is recurrent.

• For δ ≥ 2, the set {0} is polar which means P (T0 <∞) = 0 where T0 = inf{s : Xs = 0}.

• For δ ≤ 1, the set {0} is reached a.s.

• For δ = 0, {0} is an absorbing point.
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Chapter 4

Lévy measures of Squared Bessel

Processes

This Chapter is devoted to examine the description of Lévy measures of squared Bessel

processes using Ray-Knight theorems and excursion laws.

4.1 Ray-Knight Theorems

There are two Ray-Knight theorems. They describe the relationship of Brownian’s local

times and other independent Brownian motions. The first Ray-Knight theorem is related to

T0 = inf{t : Wt = 0} where Wt is a Brownian motion. It describes the relationship of the

Brownian local times {LrT0 , r ∈ R+} and two independent Brownian motions. This theorem

was provided independently by Ray[24] and Knight[16]. There are many versions of the First

Ray-Knight theorem. We now introduce the version used by Marcus and Rosen which can

be found in Theorem 2.6.3 page 52 of [21].

Let Bt B̄t be two independent standard Brownian motions. Then, the process {B2
t + B̄2

t :

t ∈ R+} and is a two dimensional squared Bessel process.
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Definition 4.1 (Terminal times) A stopping time T is called a terminal time if for every

t

T > t⇒ T = t+ T ◦ θt a.s, (4.1)

Set

uT (x, y) = Ex(LyT ), (4.2)

It is obvious that T0-the first time that a Brownian motion hits 0 is a terminal time. In the

next step, we want to evaluate uT0(x, y) for the Brownian motion.

Lemma 4.2 Let {Lxt , (x, t) ∈ R1 × R+} be the local times of Brownian motion and let uT0

be given by (2.3). Then

uT0(x, y) =

2(|x| ∧ |y|) xy > 0

0 xy ≤ 0

, (4.3)

Proof of Lemma 4.2 See [21], page 42 for the proof.

Lemma 4.3 Let T be a terminal time with potential density (A.2)uT (x, y) as defined above.

Let Σ be the matrix with elements Σi,j = uT (xi, xj), i, j = 1, 2, ..., n. Let Λ be the matrix with

elements {Λ}i,j = λiδi,j. For all λ1, ..., λn sufficiently small and 1 ≤ l ≤ n,

Exlexp
( n∑
i=1

λiL
xi
T

)
=
det(I − Σ̂Λ)

det(I − ΣΛ)
, (4.4)

where

Σ̂i,j = Σi,j − Σl,j, i, j = 1, ..., n., (4.5)

These equation also hold when T is replace by τA(λ), for any CAF, A = {At, t ∈ R+}, and

Ex is replaced by Exλ.
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Proof of Lemma 4.3 See page 49 [21] for the proof.

Theorem 4.4(First Ray-Knight Theorem) Let x > 0. Then under P x × PB,B̄

{LrT0 + (B2
r−x + B̄2

r−x)1r≥x : r ∈ R+} = {B2
r + B̄2

r : r ∈ R+}, (4.6)

Equivalently, under P x, LrT0 between 0 and x has the law of a second dimensional squared

Bessel process Y = {Yr : 0 ≤ r ≤ x} with Y0 = 0, and then proceeds from x as a 0 − th

dimensional squared Bessel process Z = {Zr : x ≤ r < ∞} with Zx = Yx, where Z also has

the property that, conditioned on Yx, it is independent of Y .

Proof of Theorem 4.4 See page 52 of [21] for the proof.

Remark 4.5 There are several important variants of the First Ray-Knight Theorem, among

which is the following

{Lr∞(|B| + L0); r ≥ 0} has the law of second order squared Bessel process starting at

0 .

The second Ray-Knight Theorem is related τ(t) = inf{s : L0
s > t} the right continuous

inverse of the local time at 0 of a standard Brownian motion. Heuristically, it is the amount

of time it takes for the local time at 0 equal to t. The second Ray-Knight Theorem describes

the behavior of the Brownian motion local time Lxτ(t),x≥0 in term of squares of standard

Brownian motion and Brownian motion starting from
√
t. We use the version of the second

Ray-Knight theorem proposed by Marcus and Rosen which can be found in Theorem 2.7.1

of [21].

Lemma 4.6 Let W be a Brownian motion (Ω,F ,Ft, P x) and let {Lyt , (y, t) ∈ R1 ◦ R+}

be the local time of W . Let λ be an exponential random variable with mean 1/α which is
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independent of (Ω,F ,Ft, P x). Then

uτ(λ)(x, y) = Exλ(L
y
τ(λ)) = uT0(x, y) + 1/α (4.7)

where P x
λ := P x × Pλ.

Proof of Lemma 4.6 See page 47 of [21] for the proof.

Theorem 4.7 (Second Ray-Knight Theorem) Let t > 0.The under the measure P 0×PB,

{Lxτ(t) +B2
x;x ≥ 0} = {(Bx +

√
t)2;x ≥ 0}, (4.8)

on C(R+) where {Bx;x ≥ 0} is a real-valued Brownian motion starting at 0, independent

of the original Brownian motion (that is, the Brownian motion with local time Lrτ(t)).

Equivalently, under P 0, {Lrτ(t); r ≥ 0} has the law of a 0 − th order squared Bessel process

starting at t.

Proof of Theorem 4.7 See page 53,54 and 55 of [21] for the proof.

The first and second Ray-Knight theorems are stated in terms of Bessel processes because

this is how they often appear in the literature[25].

4.2 Excursion Laws

4.2.1 Poisson Point Processes

In order to define Poisson Point Processes, we first need to introduce the notion of Poisson

random measures.

Definition 4.8 (Poisson random measures) Let (E, E , µ) be a measurable space with µ

a σ-finite measure. A Poisson random measure (PRM) with intensity measure µ is a family
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of random variables M = {M(A), A ∈ E} defined on some probability space (Ω,F , P ) such

that

• If B ∈ E is such that µ(B) < ∞, then M(B) ∼Poisson(µ(B)), i.e. P (M(B) = k) =

µ(B)k

k!
exp{−µ(B)}, for k=0,1,2...

If µ(B) =∞, then M(B) =∞ a.s.

• Let {Bi} be a sequence of pairwise disjoint sets of E , {M(Bi)} forms a sequence of

independent random variables such that

∞∑
i=1

M(Bi) = M(
∞⋃
i=1

Bi) a.s.

Properties of Poisson random measures

• Superposition property: Let {µn} be a sequence of σ−finite measures, and {M (n)}

are independent PRMs with intensity measures {µn}. If µ =
∑

n>1 µn is also a σ−finite

measure, then M =
∑

n>1M
(n) is a PRM with intensity measure µ.

• Splitting property: Let M be a PRM on (E, E) with intensity µ and {Bn} a sequence

of pairwise disjoint sets of E , then the restrictions {M |Bn} are independent PRMs with

intensity {µ(. ∩Bn)}.

• Image property: Let f : (E, E) → (G,G) be a measurable function, µ a σ−finite

measure on (E, E) and γ the image measure of µ by f . If M is a PRM on (E, E) with

intensity µ, and γ is also σ−finite, and if we define M ◦ f−1(C) = M(f−1(C)) for

C ∈ G. Then M ◦ f−1 is a PRM with intensity measure γ.

One can construct Poisson measures as follows [29]. First, suppose µ(E) < ∞ and define

the probability measure ρ(B) = µ(B)
µ(E)

for measurable set B in E . Let {ξn} be a sequence of

iid random elements on (E, E) with law ρ(.) = µ(.)
µ(E)

, and N be a Poisson random variable
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with parameter µ(E) which is independent of {ξn}. Then the random measure

M =
N∑
i=1

δξi

where δx stands for the Dirac point mass at x ∈ E, is a Poisson measure with intensity ν.

The random measure M is a counting measure for any B ∈ E

M(B) = card{i ≤ N : ξi ∈ B}

When µ is σ−finite, we can construct a Poisson random measure using the splitting

property and superposition property.

The following formula connects the expectation of a function of Poisson random measure to

the integral involving its intensity measure which can be found in [15].

Proposition 4.9 (Campbell’s formula) Let f : E → R+ be a measurable function and

M a Poisson random measure with intensity measure µ. Let’s us define

〈M, f〉 =

∫
E

f(x)M(dx) (4.9)

then

E
(

exp{−〈M, f〉}
)

= exp{−
∫
E

(1− e−f(x))µ(dx)} (4.10)

Let M be a Poisson random measure on [0,∞)× E with intensity measure λ× µ, where λ

is the Lebesgue measure on [0,∞) and µ is a σ finite measure on E

Lemma 4.10 Almost surely, for all t > 0,

M({t} × E) = 0 or 1 (4.11)
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If M({t} × E) = 1 there exists one and only one point 4t ∈ E such that

M |{t}×E= δ(t,4t)

If M({t} × E) = 0 then we define 4t = ∂ where ∂ is an isolated additional point.

Definition 4.11 (Poisson Point Process) The process defined by 4 = (4t, t > 0) is a

Poisson point process with characteristic measure µ.

Exponential Formula Let f be a measurable function on E ∪ ∂ with f(∂) = 0 and

∫
E

|1− ef(x)|µ(dx) <∞

We have for every t ≥ 0

E
(

exp−{
∑

0≤s≤t

f(4(s))}
)

= exp{−
∫ t

0

∫
E

(
1− e−f(x)

)
µ(dx)ds} (4.12)

Proof Exponential formula comes directly from the Campbell’s formula.

Lemma 4.12 Let B ∈ E such that 0 < µ(B) < ∞. The first entrance time of 4 into B,

TB = inf{t ≥ 0 : 4t ∈ B} is a stopping time. Moreover,TB has an exponential distribution

with parameter µ(B). And the random variable 4TB is independent of TB and has the law

µ(. ∩B)/µ(B).

4.2.2 Excursions

In this subsection, we would like to investigate the distribution of the intervals of time during

which a Markov process makes an excursion away from a given point. Here we follow the

construction from the work of Bertoin[2]. We will work with the Skorokhod space of càdlàg

(right continuous and left limit)paths. Let an isolated point ∂ be the cemetery point and
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ζ = inf{t : ω(t) = ∂} be the life time of a strong Markov process Xt. We consider a set of

paths which are right continuous on [0,∞), have left limit on (0,∞) and stay at the cemetery

point after life time.

Ω′ = D
(
[0,∞), E ∪ {∂}

)
.

Let L = {t : Xt = 0} be the zero set of X. Since X is right continuous, if tn ∈ L and tn ↓ t

then t ∈ L. It means every point of cl(L)\L is isolated from the right. Since cl(L)c is open,

it is a countable union of disjoint open intervals. It follows that Lc is a countable union of

disjoint open intervals of the form (u, v) or [u, v). Every of such interval is associated with

an excursion of X.

The excursion interval (g, d) is an open interval which is maximal between open intervals on

which Xt 6= 0. The left end point of the excursion interval g ∈ cl(L), the right end point

d ∈ cl(L) ∪ {∞}, and l = d− g is the length of the excursion interval.

The excursion of X away from 0 is the piece of path of the type (Xg+t : 0 ≤ t ≤ d − g)

corresponding to each excursion interval (g, d). For each h > 0, denote by Uh the set of

excursions with length l > h and by U = ∪h>0U
h the space of excursions. The number of

excursions in Uh is denoted as κh.

Now put ĥ = inf{h > 0; kh = 0 a.s}. For any h ∈ (0, ĥ), we have κh ≥ 1 a.s., and we

may define nh as the distribution of the first excursion in Uh. It means nh is the probability

measure on Uh corresponding to the law of the process {Xg1(h)+t; 0 ≤ t < l1(h)} under P.

Here g1(h),l1(h) are the left end point and the right end point, respectively, of the first

excursion interval with length l > h.

The next result shows how nh can be combined in to a single measure n on U , so call the

excursion law of X[13]. Let n(.|A) = n(. ∩ A)/n(A) whenever 0 < n(A) <∞.
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Lemma 4.13 (Excursion Law, Itô) There exist a measure n on U such that n(Uh) ∈

(0,∞) and nh = n(.|Uh) for every h ∈ (0, ĥ). Furthermore n is unique up to a normalization,

and it is bounded iff the recurrence time is a.s. positive.

Proof of Lemma 4.13 The proof can be found at page 435 of [13].

In order to define the excursion process, we need to introduce the inverse local time.

The inverse Local time The local time L of a Markov process has its right-continuous

inverse

τ(t) = inf{s ≥ 0 : L0
s > t}, t ≥ 0

and its left-continuous inverse

τ(t−) = inf{s ≥ 0 : L0
s ≥ t}, t ≥ 0

Remark 4.14

• For every t ≥ 0,τ(t) and τ(t−) are stopping times.

• The process τ(t) is increasing, right-continuous and adapted to the filtration (Fτ(t)).

• We have a.s for all t > 0,

τ(L0
t ) = inf{s > t : Xs = 0}

and

τ
(
(L0

t )
−1
)

= sup{s < t : Xs = 0}

In the next step, we will introduce the excursion process of X. Let U∂ = U ∪ {∂} where

∂ is a cemetery point. The excursion process e = {et : t ≥ 0} of X takes the values on U∂ is

defined as:

et =


(
Xs+τ(t−) : 0 ≤ s < τ(t)− τ(t−)

)
if τ(t−) < τ(t)

∂ otherwise.

(4.13)

35



The following theorem describes the excursion process due to Itô [12].

Theorem 4.15 (Itô)

• If 0 is recurrent, the excursion process et is a Poisson point process with characteristic

measure n.

• If 0 is transient, then e = (et, 0 ≤ t ≤ L(∞)) is a Poisson point process with

characteristic measure n, stopped at the first point in U∞, the space of excursions

with infinite length.

Proof of Itô theorem: See [2], page 118 for the proof.

Proposition 4.16 If f is a B(R+)⊗ U measurable such that

∫ ∞
0

∫
|f(s, u)|n(du)ds <∞ and f ≥ 0

then

E
(
exp{−

∑
0<s≤x

f(s, es)}
)

= exp{−
∫ x

0

∫ (
1− e−f(s,u)

)
n(du)ds} (4.14)

Proof This Proposition comes directly from the exponential formula.

The Excursion process of Brownian Motion

Let W be the Wiener space, P be the Wiener measure and F be the Borel σ− field. For

w ∈ W , we set:

R(w) = inf{t > 0 : w(t) = 0}.

The space U is the set of these functions w such that 0 < R(w) < ∞ and w(t) = 0 for

every t ≥ R(w). A point δ is cemetery as usual. An excursion of Brownian motion either

lies above or below the time axis, and we will call U+ and U− as corresponding subsets of
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U . The restrictions of the Itô measure n on U+ and U− are n+ and n−, respectively.

Starting for a Brownian motion B, we can define the excursion process of B. Conversely, if

the excursion process is known, we may recover B.

Proposition 4.17 We have

τ(t)(w) =
∑
s≤t

R(es(w)) τ(t−)(w) =
∑
s<t

R(es(w))

and

Bt = es(t− τ(s−)) if τ(s−) ≤ t ≤ τ(s).

Proof. The first two formulas are consequences of the fact that τ(t) =
∑

s≤t(τ(s) − τ(s−)).

For the third one, we observe that if τ(s−) ≤ t ≤ τ(s) for some s, then by the definition of

the excursion process

es(u) = Bu+τ(s−) for 0 ≤ u < τ(s)− τ(s−)

or

Bt = es(t− τ(s−))

4.3 Representation of Lévy measures of squared Bessel

Processes

Denote the Lévy measure of a squared Bessel process with dimension d starting from x by

ν(d,x). By additivity property of squared Bessel processes observed by Shiga and Watanabe,
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we have:

ν(d,x) = dν(1,0) + xν(0,1). (4.15)

Hence, it is sufficient to describe only Lévy measures of BESQ0(1) and BESQ1(0). The

description of these Lévy measures on C(R+) are found in Pitman and Yor[23], Mansuy and

Yor [19].

Representation of Lévy measure of BESQ0(1)

Let U+ be the positive excursion space of Brownian motion and n+ be the Itô measure on

U+. The Lévy measure ν of BESQ0(x)

ν = (x⊗ n+) ◦ S−1, (4.16)

where St(u) = Lt∞(u), u ∈ U+.

Then Lévy measure of BESQ0(1) has the form: ν(0,1) = (n+) ◦ S−1 .

Proof

Proof. By the second Ray-Knight Theorem: (Ltτx(B), t ≥ 0) = BESQ0
x in law. Let Yt be

the square of a zero dimensional Bessel process starting from x.

We have

Ltτx(B) =

∫ τx

0

δt(Br)dr =
∑

0<s≤x

∫ τs

τs−

δt(Br)dr

=
∑

0<s≤x

∫ R(es)

0

δt(es(r))dr.

. (4.17)

Then,

E
(

exp{−
∫ ∞

0

Ytρ(dt)}
)

=E
(

exp{−
∫ ∞

0

Ltτx(B)ρ(dt)}
)

=E
(

exp{−
∑

0<s≤x

∫ ∞
0

∫ R(es)

0

δt(es(r))drρ(dt)}
) (4.18)
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Where ρ is a σ−finite measure on R+. For examples, ρ(dt) = f(t)dt or ρ(dt) =
∑n

i=1 λiδti(dt).

Let F (s, es) =
∫∞

0

∫ R(es)

0
δt(es(r))drρ(dt), then

F (s, u) =
∫∞

0

∫ R(u)

0
δt(u(r))drρ(dt) =

∫∞
0
LtR(u)(u)ρ(dt)

Apply the proposition 4.16, we have :

E
(

exp{−
∫ ∞

0

Ytρ(dt)}
)

=E
(

exp{−
∑

0<s≤x

∫ ∞
0

∫ R(es)

0

δt(es(r))drρ(dt)}
)

= exp
{
−
∫ x

0

∫
U

(
1− exp(−

∫ ∞
0

LtR(u)(u)ρ(dt))
)
n(du)ds

}
= exp

{
− x

∫
U

(
1− e−

∫∞
0 Lt

R(u)
(u)ρ(dt)

)
n(du)

}
= exp

{
− x

∫
U+

(
1− e−

∫∞
0 Lt

R(u)
(u)ρ(dt)

)
n+(du)

}
(4.19)

Since LtR(u) = 0 when t > 0 and u ∈ U−.

Therefore, BESQ0(x) is an infinitely divisible process with the triplet (0, ν, 0) and

ν = (x · n+) ◦ S−1,

where St(u) = Lt∞(u), u ∈ U+.

Or, we can say that the representation of Lévy measure ν is St(u) = Lt∞(u) on the

measure space (U+,U , x · n+).

It is easy to see that the Lévy measure of BESQ0(1) has the form: ν(0,1) = (n+) ◦ S−1 .

Representation of Lévy measure of BESQ1(0)
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Let U+ be the positive excursion space of Brownian motion and n+ be the Itô measure on

U+. The Lévy measure ν of BESQ2(0) has the form:

ν = (2λ⊗ n+) ◦ V −1,

where Vt(s, u) = Lt−s∞ (u), u ∈ U+.

Then Lévy measure of BESQ1(0) has the form: ν(1,0) = (λ⊗ n+) ◦ V −1.

Proof

Proof. By the variance of the First Ray-Knight Theorem: Lt∞(|B|+ L0) = BESQ2
0 in law.

Let Yt be the square of a two dimensional Bessel process starting from 0.

We have:

Lt∞(|B|+ L0) =

∫ ∞
0

δt(|Br|+ L0
r)dr =

∑
0<s<∞

∫ τs

τs−

δt(|Br|+ L0
r)dr

=
∑

0<s<∞

∫ R(es)

0

δt(|es(r)|+ s)dr

(4.20)

Let G(s, es) =
∫∞

0

∫ R(es)

0
δt(|es(r)|+ s)drρ(dt),

then G(s, u) =
∫∞

0

∫ R(u)

0
δt(|u(r)|+ s)drρ(dt) =

∫∞
0
Lt−sR(u)(|u|)ρ(dt).

E
(

exp{−
∫ ∞

0

Ytρ(dt)}
)

=E
(

exp{−
∫ ∞

0

Lt∞(|B|+ L0)ρ(dt)}
)

=E
(

exp{−
∑

0<s≤x

∫ ∞
0

∫ R(es)

0

δt(|u(r)|+ s)drρ(dt)}
)

=E
(

exp{−
∑

0<s<∞

G(s, es)}
)

= exp
{
−
∫ ∞

0

∫
U

(
1− exp(−

∫ ∞
0

Lt−sR(u)(|u|)ρ(dt))
)
n(du)ds

}
(4.21)

= exp
{
−
∫ ∞

0

∫
U+

(
1− e(−

∫∞
0 Lt−s

R(u)
(u)ρ(dt))

)
n+(du)ds
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−
∫ ∞

0

∫
U−

(
1− e(−

∫∞
0 Lt−s

R(u)
(−u)ρ(dt))

)
n−(du)ds

}
= exp

{
− 2

∫ ∞
0

∫
U+

(
1− e(−

∫∞
0 Lt−s

R(u)
(u)ρ(dt))

)
n+(du)ds

}
(4.22)

Therefore, BESQ2(0) is an infinitely divisible process with the triplet (0, ν, 0) and

ν = (2λ⊗ n+) ◦ V −1,

where Vt(s, u) = Lt−s∞ (u), u ∈ U+.

Or, we can say that the representation of Lévy measure ν is Vt(s, u) = Lt−s∞ (u) on the

measure space (R+ ⊗ U+,B ⊗ U , 2λ⊗ n+).

It is easy to see that the Lévy measure of BESQ1(0) has the form: ν(1,0) = (λ⊗n+)◦V −1.
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Chapter 5

Isomorphism Identities

In this Chapter, we investigate isomorphism identities based on random translations. The

very first form of these identities is the celebrated Dynkin’s Isomorphism. We first provide the

preliminaries of the h− transforms which plays an important role in isomorphism identities.

5.1 The h-Transforms

The h-Transforms

The “h-transforms” is an important class of transformations of Markov processes. It is also

known as “h-path processes” or “superharmonic transforms”. J.D.Doob [4]was the first one

introduced the “h-transforms” in his study of the boundary limits of Brownian motion. An

intuitive interpretation of the “h-transforms” are: they have to do with conditioning the

process on its behavior at its lifetime.

We are going to look at a motivating example which is found at page 178 of [1]. Let D

be a domain in Rd and let Xt be a Brownian motion killed on exiting the domain. We would

like to give a precise meaning to the intuitive notion of Brownian motion conditioned to exit

the domain at a certain point. Let h be a positive harmonic function in D (i.e., h is C2 in

D, and 4h = 0 there) and suppose that h is 0 everywhere on the boundary of D except at

one point z. By the Markov property at time t, we have:
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Px(Xt ∈ dy|XτD=z) =
Px(Xt ∈ dy,XτD=z)

Px(XτD=z)

=
Px(Xt ∈ dy)Py(XτD = z)

Px(XτD=z)
(5.1)

where τD = inf{t > 0 : Xt 6∈ D}.

If p0
t (x, dy) represents the probability that Brownian motion started at x and killed on

leaving D is in dy at time t, we then have the probability for Brownian motion conditioned

to exit D at z having the form as h(y)
h(x)

p0
t (x, dy).

As before, let E∂ be a locally compact metric space E with an isolated “cemetery point”

∂ adjoined. Let {Xt, t ∈ T} be a strong Markov process the state space E∂ and transition

semigroup (Pt). A function h is invariant with respect to X if Pth(x) = h(x) for all t and x.

If h is invariant, then by the Markov property we have

Ex
(
h(Xt

)
|Fs) = Ex

(
h(Xt−s ◦ θs|Fs)

)
= EXsh(Xt−s)

= Pt−sh(Xs) = h(Xs). (5.2)

We observe that for each x, h(Xt) is a martingale with respect to Px. Conversely, if h(Xt)

is a martingale with respect to Px for all x,

Pth(x) = Exh(Xt) = h(x) (5.3)

by the definition of martingale, and so h is invariant.

Remark 5.1: The invariant functions with respect to a Brownian motion killed on leaving

a domain are the harmonic function.

Let h be a non-negative invariant function for a strong Markov process Xt with transition

probabilities {pt(x, y)} and transition semigroup (Pt), and let Eh = {x : 0 < h(x) < ∞}.
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Here we follow the construction of the h-transforms of Chung and Walsh in [3].

Definition 5.2

pht (x, y) =


h(y)
h(x)

pt(x, y), if x ∈ Eh

0, if x ∈ E − Eh
(5.4)

Remark 5.3:

1. We have

P h
t f(x) =

∫
E

pht (x, y)f(y)dm(y) =


∫
E
h(y)
h(x)

pt(x, y)f(y)dm(y), if x ∈ Eh

0, if x ∈ E − Eh

=


1

h(x)
Pt(fh)(x), if x ∈ Eh

0, if x ∈ E − Eh
=
1Eh(x)

h(x)
Pt(fh)(x) (5.5)

where we make the convention that 0.∞ = 0

2. We have pht (x,E − Eh) = 0 for all x and t ≥ 0.

If x ∈ E − Eh, this is true by (5.4).

If x ∈ Eh, Pth(x) = h(x) <∞, so

pht (x, {h =∞}) =
1

h(x)

∫
{h=∞}

pt(x, y)h(y)dm(y) ≤ 1

h(x)
Pth(x) = 1.

But the integral can only be 0 or ∞, hence pht (x, {h =∞}) = 0. Thus,

pht (x,E − Eh) = pt(x, h = 0) =
1

h(x)

∫
{h=0}

pt(x, y)h(y)dm(y) = 0.

Proposition 5.4 (P h
t ) is a Markov semigroup on E.
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Proof : see [3], proposition 11.5 page 322 for the proof.

Let A ∈ Ft, then the probability measure corresponds to (P h
t ) is

Px/h(A) =

∫
A

h(Xt(ω))

h(x)
pt(x,Xt(ω))dω = Ex(

h(Xt)

h(X0)
;A) (5.9)

Let Mt = h(Xt)
h(X0)

, then because of the invariance property of function h, Mt is a non-negative

continuous martingale with M0 = 1, as long as h(x) > 0. We also observe that Px/h gives

more mass to paths where h(Xt) is big and less where it is small.

Take some functional F which depends only on the path up to time t, we have:

Ex/h(F ) =

∫
Ω

F (ω)Px/h(dω) =

∫
Ω

F (ω)
h(Xt(ω))

h(x)
Px(dω) =

1

h(x)
Ex(Fh(Xt)) (5.10)

The h-transform for a strong Markov process X when h(x) = u(x,0)

u(0,0)

Let X = (Ω,F ,Ft, Xt, θt,Px) be a strong symmetric Markov process with transition

semigroup {Pt : t ≥ 0} and continuous 0-potential density u(x, y). Let 0 be a fixed element

in E and assume that

h(x) = Px(T0 <∞) =
u(x, 0)

u(0, 0)
> 0 (5.11)

for all x ∈ E.

We are going to construct the process X conditioned to hit 0 and die at its last exist from 0

which turns out to be the h-transform of X. This construction follows the work of Marcus

and Rosen which can be found in 3.9 of [21]. Let

L := sup{s|Xs = 0} (5.12)

with sup ∅ = 0, and

ζ := inf{t > 0|Xt = ∂}. (5.13)
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ζ is the ”death time” of X.

We assume that Ω is the space of right continuous E∂-valued functions {ω(t), t ∈ [0,∞)}

such that ω(t) = ∂ for all t ≥ ζ(ω). Furthermore, we assume that L(ω) < ∞ for all ω ∈ Ω

and that L(ω) is a left limit point of zeros of ω(t) on {L(ω) > 0}.

We define the killing operator kL : Ω 7→ Ω as

kL(ω)(s) =

ω(s), if s < L(ω)

∂, if s ≥ L(ω).

(5.14)

Let Ωh = kL(Ω). We then have

Ωh = {ω ∈ Ω|ζ(ω) = L(ω)}. (5.15)

Note that {L > 0} = {T0 < ∞} and, more generally, {L > s} = θs{T0 < ∞}. For any

f ∈ B(E∂),

f(Xt) ◦ kL := f(kL(X(t))) = f(Xt)1t<L + f(∂)1t≥L, (5.16)

which implies that f(Xt) ◦ kL is F measurable. Thus, for any a < b, we have k−1
L ({a ≤

f(Xt) ≤ b}) = (f(Xt) ◦ kL)−1[a, b] ∈ F . Since the set of the form {a ≤ f(Xt) ≤ b} generate

F0, it follows that k−1
L : F0 7→ F .

We can define the probability measure {P̄x;x ∈ E} on (Ωh,F0) by setting

P̄x(A) =
1

h(x)
Px
(
k−1
L (A) ∩ {L > 0}

)
A ∈ F0. (5.17)

Then, we have

Ēx(F ) =
1

h(x)
Ex(F ◦ kL1L>0) (5.18)

for any positive F0 measurable function F . (5.17) is just the special case of (5.18) in the

case F = 1A with A ∈ F0.
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Consider Ēx(F ) for F = f1(Xt1)...fn(Xtn) with t1 < ... < tn, where fi ∈ B(S), i = 1, ..., n

and recall our convention that functions on E are extended to E∂ by setting fi(∂) = 0. Thus

F ◦ kL = F1{L>tn} = F1{L>0} ◦ θtn (5.19)

Following from (5.18),(5.19) and the Markov property for X that

Ēx(F ) =
1

h(x)
Ex(F1{L>tn})

=
1

h(x)
Ex(FPXtn (L > 0))

=
1

h(x)
Ex(Fh(Xtn)).

(5.20)

Using the abbreviation Fn−1 = f1(Xt1)...fn−1(Xtn−1) in (5.20) we have

Ēx(F ) =
1

h(x)
Ex(Fh(Xtn))

=
1

h(x)
Ex(Fn−1fn(Xtn)h(Xtn))

=
1

h(x)
Ex(Fn−1EXtn−1fn(Xtn−tn−1)h(Xtn−tn−1))

=
1

h(x)
Ex(Fn−1h(Xtn−1)ĒXtn−1{fn(Xtn−tn−1)}

=Ēx
(
Fn−1ĒXtn−1{fn(Xtn−tn−1)}

)
.

(5.21)

Using (5.21) for the first equality and (5.22) for the second, for any tn−1 < tn and fn ∈ B(E)

we have

Ēx(fn(Xtn)|F0
tn−1

) =ĒXtn−1 (fn(Xtn−tn−1))

=
1

h(Xtn−1)
EXtn−1 (fn(Xtn−tn−1)h(Xtn−tn−1))

=
1

h(Xtn−1)
Ptn−tn−1fh(Xtn−1).

(5.22)

Using (5.22), we can verify the following lemma.

Lemma 5.5 X̄ = (Ωh,F0,F0
t , Xt, θt, P̄x) is a right continuous simple Markov process with
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transition semigroup {P h
t ; t ≥ 0}.

It turns out that process X̄ which is X conditioned to hit 0 and die at its last exit from 0 is

the h-transform of X with h(x) = u(x,0)
u(0,0)

. The probability measure P̄ is Px/h.

Let Ūα be the α-potential of X̄. Then, for any f ∈ B(E)

Ūαf(x) =

∫ ∞
0

e−αtP h
t f(x)dt

=
1

h(x)

∫ ∞
0

e−αtPtfh(x)dt

=
1

h(x)
Uαfh(x)

=
1

h(x)

∫
uα(x, y)h(y)f(y)dm(y)

(5.23)

Then X̄ has α-potential density 1
h(x)

uα(x, y)h(y). It is easy to see that α-potential densities

of X̄ is continuous on E×E for each α. The problem we have here is that α-potential of X̄ is

not symmetric which means that X̄ is not strongly symmetric with respect to the reference

measure m. In the next step, we are going to change the reference measure in order to have

symmetric α-potential densities.

LetFh,Fht denote the standard augmentation of F0,F0
t under {Px/h;x ∈ E} and let

X̃ = (Ωh,Fh,Fht , Xt, θt,Px/h). We define the measure m̃ as m̃(dy) := h2(y)dm(y). Then,X̃

is a strong Markov process and has α-potential densities

ũα(x, y) :=
uα(x, y)

h(x)h(y)
(5.24)

with respect to the m̃(dy). It is obvious that the potential density ũα is symmetric with

respect to m̃.

In fact, X̄ and X̃ are the same Markov process. They simply have different α-potentials

with respect to different reference measures. They are both called the h-transform of X. X̃
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has a local time L̃ = {L̃yt , (y, t) ∈ E × R+} that satisfies

Ex/h
( ∫ ∞

0

e−αtdL̃yt
)

= ũα(x, y). (5.25)

We know that L̄yt := g(y)L̃yt is also a local time of X̃ at y, as long as g(y) > 0 and

Ex/h
( ∫ ∞

0

e−αtdL̄yt
)

= g(y)ũα(x, y). (5.26)

Let g(y) = h2(y) > 0. Then

L̄yt := h2(y)L̃yt ∀t ∈ R+ (5.27)

and

Ex/h
( ∫ ∞

0

e−αtdL̄yt
)

= h2(y)ũα(x, y) =
1

h(x)
uα(x, y)h(y) (5.28)

which is the α−potential density of X̄.

Remark 5.6 The role of the killing operator in the definition of probability measure Px/h

on (Ωh,F0) justifies our interpretation of X̃ as the paths of X conditioned to hit 0 and die

on their last exit from 0. For this reason Px/h is often written as Px,0.

5.2 The Dynkin Isomorphism Theorems

In this section, we are going to explore the relationship between a strong symmetric Markov

process and its associated mean zero Gaussian process G (the Gaussian process with

covariance is the 0-potential of X). This relationship is described in several isomorphism

theorems that relate the Markov local times and squares of G.

One of them is the isomorphism theorem due to E. B. Dynkin[6]. It relates local times of

the h-transform of X to the squares of G. Interestingly, Dynkin Isomorphism theorem has

its roots in mathematical physics. It is built from an effort to explain heuristic methods in

quantum field theory of K. Symanzik[31].
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There are many different ways to prove the Dynkin Isomorphism. We find the combinatoric

one is beautiful since it only use combinatorial arguments and calculation of moments.

The combinatorial approach is also used to prove other isomorphisms such as Eisenbaum

Isomorphism and Generalized Second Ray-Knight Theorem. In this section we provide the

proof, both for its intrinsic interest and because understanding them may be fruitful.

We discuss several basic Gaussian moment formulas[21] which serve as the main ingredients

in combinatorial proof. In the following formulas G = {Gx, x ∈ E} is a centered Gaussian

process with covariance function C.

Formula 1

E
( n∏
i=1

Gxi

)
=
∑
p∈Rn

∏
(i1,i2)∈p

C(xi1 , xi2) (5.29)

where Rn is the set of pairing p of the indices [1, n], and the product runs over all pairs in p.

Proof: See [26], page 6 for the original proof.

Case 1: n is odd. Then Rn is empty. Formula (5.1) is true since the left hand side is zero

by symmetry.

Case 2: n is even.

The characteristic function of Gaussian vector (Gx1 , ..., Gxn) where x1, ..., xn ∈ E has the

form:

E exp
(
i

n∑
j=1

zjGxj

)
= exp

(
−

n∑
j,k=1

zjzkC(xj, xk)/2
)
. (5.30)

We take the derivative of (5.2) with respect to z1 and then set z1 = 0 to obtain:

iE
(
Gx1 exp(i

n∑
j=2

zjGxj)
)

=
(
−

n∑
k=2

zkC(x1, xk)
)

exp
(
−

n∑
j,k=2

zjzkC(xj, xk)/2
)
. (5.31)
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We then take the derivative of (6.13) with respect to z2 and then set z2 = 0 to obtain:

−E
(
Gx1Gx2 exp(i

n∑
j=3

zjGxj)
)

=
(
−

n∑
k=3

zkC(x1, xk)
)(
−

n∑
k=3

zkC(x2, xk)
)

exp
(
−

n∑
j,k=3

zjzkC(xj, xk)/2
)

−C(x1, x2) exp
(
−

n∑
j,k=3

zjzkC(xj, xk)/2
)
. (5.32)

By continuing this process with z3, ..., zn, we obtain the left hand side

E
(
Gx1Gx2 ..Gxn

)
and the right hand side ∑

p∈Rn

∏
(i1,i2)∈p

C(xi1 , xi2)

which prove formula 1. �

Formula 2

E
( n∏
i=1

G2
xi

)
=

∑
A1∪...∪Aj=[1,n]

j∏
l=1

2|Al|−1cy(Al), (5.33)

where the sum is over all (unordered) partition A1 ∪ ... ∪ Aj of [1, n] and, if we have Al =

{l1, l2, ..., l|Al|} the the cycle function cy(Al) is defined as

cy(Al) =
∑

π∈P�|Al|

C(xlπ(1) , xlπ(2))...C(xlπ(|Al|) , xlπ(1)), (5.34)

where P�k denotes the set of permutation of [1, k] on the circle. Note that (1, 2, 3), (3, 1, 2)

and (2, 3, 1) are considered to be the same permutation π ∈ P�3 .

Proof: See [26], page 6 for the original proof.
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We are going to use the first formula to explore E
(∏n

i=1 GxiGx
′
i

)
. Eventually, we will set

xi = x
′
i to get the left hand side of (5.34). We consider the paring of 2n indices {xi}ni=1 ∪

{x′i}ni=1. First, let consider x1. If x1 is paired with x
′
1, we set A1 = {1} in which case

cy(A1) = C(x1, x
′
1) and eventually equals to C(x1, x1). This set A1 = {1} is giving a factor

2|A1|−1cy(A1).

Let D(1) be the pair contains x1. If x1 is paired with either xi or x
′
i with i 6= 1, set π(1) = i

and define (yπ(1), zπ(1)) to be (xi, x
′
i) if x1 is paired with xi, but (x

′
i, xi) if x1 is paired with

x
′
i. It follows that D(1) = {x1, yπ(1)}. Next, let D(2) be the pair contains zπ(1). If zπ(1) is

paired with either xj or x
′
j, set π(2) = j and define (yπ(2), zπ(2)) to be (xj, x

′
j) if zπ(1) is

paired with xj, but (x
′
j, xj) if zπ(1) is paired with x

′
j. D

(2) = {zπ(1), yπ(2)}. We continue this

process to get D(1), ..., D(l) until we get to D(l+1), the pair contains zπ(l) and x
′
1. We set

A1 = {1, π(1), ..., π(l)}. The set of pairs {D(1), ..., D(l+1)} is giving a factor

∑
C(x1, yπ(1))C(zπ(1), yπ(2))...C(zπ(l), x

′

1) (5.35)

where the sum is over all permutations of {π(1), ..., π(l)} and over all ways of assigning

(xπ(i), x
′

π(i)) to (yπ(i), zπ(i)). There are 2l ways to make these assignments. Set yπ(i) = zπ(i) =

xπ(i), (5.35) can be written as

2l
∑

π∈P{π(1),...,π(l)}

C(x1, xπ(1))C(xπ(1), xπ(2))...C(xπ(l), x1).

Observe that by adding 1 to a permutation π of {π(1), ..., π(l)} we get a permutation of A1

on circle and 2|A1|−1 = 2l. It follows that the set A1 = {1, π(1), ..., π(l)} is giving a factor

2|A1|−1
∑

π∈P�|A1|

C(x1, xπ(1))C(xπ(1), xπ(2))...C(xπ(l), x1) = 2|A1|−1cy(A1).

Continue with some xk where k 6∈ A1 we will get (5.5). �
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It is useful to write formula 2 as the following form:

E
( n∏
i=1

G2
xi
/2
)

=
∑

A1∪...∪Aj=[1,n]

j∏
l=1

1

2
cy(Al), (5.36)

Formula 3

E
(
GaGb

n∏
i=1

G2
xi
/2
)

=
∑

A⊆[1,n]

ch(A; a, b)
∑

A1∪...∪Aj=[1,n]\A

j∏
l=1

1

2
cy(Al) (5.37)

where the sum is over all (unordered) partitions A1 ∪ ... ∪ Aj = [1, n]\A and if A =

{l1, l2, ..., l|A|} then the chain function ch(A; a, b) is defined as

ch(A; a, b) =
∑
π∈P|A|

C(xa, xlπ(1))C(xlπ(1) , xlπ(2))...C(xlπ(1) , xb) (5.38)

where Pk denotes the set of permutations of [1, k].

Proof: See [26], page 7 for the original proof.

To see this we use the previous procedure but start with the pair contains a and end with the

pair contain b. We have the set of pairs {D(1), ..., D(l+1)} with l ≤ n where D(1) = {a, yπ(1)},

D(2) = {zπ(1), yπ(2)} ... and D(l+1) = {zπ(l), b}.

Let A(D) = {π(1), ..., π(l)} and D = {D(1), ..., D(l+1)}. D is a pairing of the 2l + 2 elements

{xi}i∈C(D), {x
′
i}i∈C(D), a and b. Let B(D) = {1, 2, ..., n}/C(D) and F = {F (1), ..., F (l−1)} is

a pairing of the set of 2(n− l) indices consisting of {xi}i∈B(D) and {x′i}i∈B(D). Using the first

formulas, we have

E
(
GaGb

n∏
i=1

GxiGx
′
i
/2
)

=
1

2n

∑
A∪B={1,...,n}

( ∑
parings of{xi}i∈B∪{x

′
i}i∈B

C(F 1)...C(F |B|)
)
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×
∑

C(a, yπ(1))C(zπ(1), yπ(2))...C(zπ(i), yπ(i+1))...C(zπ(|A|), b) (5.39)

where the last sum is over all permutation (π(1), ..., π(|A|)) of A, and over all ways to

assigning (xπ(i), x
′

π(i)) to (yπ(i), zπ(i)). There are 2|A| ways to make these assignments. If we

set yi = zi = x
′
i = xi, the last sum in (6.21) is

2|A|
∑
π∈P|A|

C(a, xπ(1))C(xπ(1), xπ(2))...C(xπ(i), xπ(i+1))...C(xπ(|C|), b) (5.40)

where the sum is over all permutation π of A.

Using the first formula, we have

∑
parings of{xi}i∈B∪{x

′
i}i∈B

C(F 1)...C(F |B|) = E
(∏
i∈B

GxiGx
′
i

)
(5.41)

Therefore, setting xi = x
′
i in (5.39) and using (5.40) and (5.41), we have

E
(
GaGb

n∏
i=1

G2
xi
/2
)

=
∑

A∪B={1,...,n}

E
(∏
i∈B

G2
xi

2

) ∑
π∈P|A|

C(a, xπ(1))C(xπ(1), xπ(2))...C(xπ(i), xπ(i+1))...C(xπ(|A|), b)

Using (5.36) and (5.37) we have (5.38). �

Theorem 5.7 (Dynkin Isomorphism Theorem) Let X be a strong symmetric Markov

process with continuous 0-potential density u(x, y). Let 0 denote a fixed element of E.

Assume that

h(x) = Px(T0 <∞) =
u(x, 0)

u(0, 0)
> 0 (5.42)

for all x ∈ E. Let X̃ denote the h-transform of X as described in section 2 and let L̄ =

{L̄yt ; (y, t) ∈ E × R+} denote the local time of X̃ , normalized so that

Ex,0
(
L̄y∞
)

=
u(x, y)h(y)

h(x)
(5.43)
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Let G = {Gy; y ∈ E} denote the mean zero Gaussian process with covariance u(x, y). Then,

for any countable subset D ∈ E,

{L̄y∞ +
1

2
G2
y; y ∈ D,Px,0 × PG}

law
= {1

2
G2
y; y ∈ D,

GxG0

u(0, x)
PG} (5.44)

Equivalently, for all x, x1, ..., xn in E and bounded measurable function F on Rn
+, for all n,

Ex,0EG
(
F (L̄xi∞ +

1

2
G2
xi

)
)

= EG{
GxG0

u(0, x)
F (

1

2
G2
xi

)} (5.45)

Here we use the notation F (f(xi)) := F (f(x1)...f(xn)).

Proof of Dynkin Isomorphism Theorem The combinatorial proof is given both for its

intrinsic interest and because understanding them may be fruitful. The proof can be found

in section 8.3 of [21].

Proof. We first show that

Ex,0EG
( n∏
i=1

(L̄xi∞ +
1

2
G2
xi

)
)

= EG{
GxG0

u(0, x)

n∏
i=1

(
1

2
G2
xi

)} (5.46)

for any x1, ..., xn ∈ E, not necessarily distinct.

Using formula 3 (5.9), we have:

E
(
GxG0

n∏
i=1

G2
xi

2

)
=

∑
B∪C={1,...,n}

E
(∏
i∈B

G2
xi

2

) ∑
π∈P|C|

C(X, xπ(1))C(xπ(1), xπ(2))...C(xπ(i), xπ(i+1))...C(xπ(|C|), 0)

=
∑

B∪C={1,...,n}

EG
(∏
i∈B

G2
xi

2

) ∑
π∈P|C|

u(x, xπ(1))u(xπ(1), xπ(2))...u(xπ(i), xπ(i+1))...u(xπ(|C|), 0)

(5.47)
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The left hand side of (5.46) is

Ex,0EG
( n∏
i=1

(L̄xi∞ +
1

2
G2
xi

)
)

=
∑

B∪C={1,...,n}

EG
(∏
i∈B

G2
xi

2

)
Ex,0

(∏
i∈C

L̄xi∞
)

(5.48)

In order to prove (5.46), we need to prove:

u(0, x)Ex,0
(∏
i∈C

L̄xi∞
)

=
∑
π∈P|C|

u(x, xπ(1))u(xπ(1), xπ(2))...u(xπ(i), xπ(i+1))...u(xπ(|C|), 0) (5.49)

From Section 2, we have X̃ is a strong symmetric Markov process with respect to the reference

measure m̃dy = h2(y)dm(y) and has 0-potential density

ũ(x, y) =
u(x, y)

h(x)h(y)
(5.50)

From (5.38), X̃ has a local time L̃ = {L̃yt , (y, t) ∈ E × R+} that satisfies

Ex,0
(
L̃yt
)

= ũ(x, y). (5.51)

From Lemma 4.4 and (4.8), we have

Ex,0
(∏
i∈C

L̃xi∞
)

=
∑
π∈P|C|

ũ(x, xπ(1))ũ(xπ(1), xπ(2))...ũ(xπ(|C|−1), xπ(|C|)) (5.52)

Using (6.50) and (6.60), we have

Ex,0
(∏
i∈C

L̄xi∞
h2(xi)

)
=
∑
π∈P|C|

u(x, xπ(1))

h(x)h(xπ(1))

u(xπ(1), xπ(2))

h(xπ(1))h(xπ(2))
...

u(xπ(|C|−1), xπ(|C|))

h(xπ(|C|−1))h(xπ(|C|))
.

Which is equivalent to

Ex,0
(∏
i∈C

L̄xi∞
)

=
∑
π∈P|C|

h(xπ(|C|))

h(x)
u(x, xπ(1))u(xπ(1), xπ(2))...u(xπ(|C|−1), xπ(|C|))

=
∑
π∈P|C|

1

u(x, 0)
u(x, xπ(1))u(xπ(1), xπ(2))...u(xπ(|C|−1), xπ(|C|))u(xπ(|C|), 0).
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Then (5.49) is proved which establishes (5.46).

Now, let x1, ..., xn be fixed and let µ1 and µ2 be the measures on Rn
+ defined by

∫
F (.)dµ1 = Ex,0EG

(
F (L̄x1∞ +

1

2
G2
x1
, ..., L̄xn∞ +

1

2
G2
xn)
)

(5.53)

and ∫
F (.)dµ2 = EG{

GxG0

u(0, x)
F (

1

2
G2
x1
, ...,

1

2
G2
xn)} (5.54)

for all bounded measurable functions F on Rn
+. The measure µ1 is determined by its

characteristic function

ϕ1(λ1, ..., λn) = Ex,0EG
(

exp(i
n∑
i=1

λi(L̄
xi
∞ +

1

2
G2
xi

))
)
. (5.55)

For λ1, ..., λn fixed, ϕ(λ1, ..., λn) is determined by the distribution of the real valued random

variable ξ =
∑n

i=1 λi(L̄
xi
∞ + 1

2
G2
xi

). The measure µ1 is uniquely determined by the moments

of ξ or, equivalently, by the terms in the left-hand side of (5.46).

Let

ϕ2(λ1, ..., λn) = EG
( GxG0

u(0, x)
exp

(
i

n∑
i=1

λiG
2
xi

))
. (5.56)

By (5.46) and the above argument , we have ϕ1(λ1, ..., λn) = ϕ2(λ1, ..., λn). Hence µ1 = µ2

and (5.45) is proved.

Theorem 3.7 which relates the local time process of a transient Markov process and its

associated permanental process can be viewed as the Dynkin Isomorphism for permanental

processes.
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5.3 Isomorphism Identities

Inspired by Dynkin Isomorphism, Rosiński [28] has established some general identities for

infinitely divisible processes using their random translations.

Theorem 5.8(Rosiński[28] ) Let (Xt, t ∈ T ) be an infinitely divisible process having a

σ−finite Lévy measure ν. Let (Zt, t ∈ T ) be a process independent of X such that the

law of Z, L (Z)is absolutely continuous with respect to ν. Then L (X + Z) is absolutely

continuous with respect to L (X). Hence, there exists a measurable functional g : RE → R+

such that for any measurable functional F : RT 7→ R

EF
(
(Xt + Zt)t∈T

)
= E{F

(
(Xt)t∈T

)
; g(X)} (5.57)

(5.57) can also be viewed as

X + Z has the law of X under E(g(X), .).

Remark 5.9:

• From (5.57), we have the law of (X+Z) and of X are isometric with respect to different

probability measures. This is why the results of this kind are named ”Isomorphism

theorems” or ”Isomorphism identities”.

• The processes Z can be viewed as random translation of X.

Identity (5.57) can be applied in two different ways. One can obtain the properties of Z

through the properties of X via isomorphism (5.57). Follow this direction, Marcus and

Rosen obtained many results for local times of Markov processes using Dynkin isomorphism

theorem [20][21]. The other way to apply this isomorphism is to derive information about

X from Z. This direction is much more difficult.
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We would like to know more about function g in (5.57). Unfortunately, it is not always

specified. Below, we give another more explicit form of g.

Proposition 5.10. Let Y = (Yt)t∈T be a Poissonian infinitely divisible process with Lévy

measure ν and a shift function b. Let N be a Poisson random measure on (RT ,BT ) having

intensity measure ν. Then the process Ỹ = (Ỹt∈T ) given by

Ỹt =

∫
RT
y(t){N(dy)− χ(y(t))ν(dy)}+ b(t) (5.58)

has the same distribution as Y . Ỹ will be called a canonical spectral representation of Y .

Theorem 5.11(Rosiński [28] ) Let X = (Xt)t∈T be an infinitely divisible process given by

X = G+ Y

where G = (Gt)t∈T is a centered Gaussian process independent of a Poissonian process

Y = (Yt)t∈T having a σ-finite measure ν and given by its canonical spectral representation

Ỹt =

∫
RT
y(t){N(dy)− χ(y(t))ν(dy)}+ b(t)

where N is a Poisson random measure with intensity ν. Let Z = (Zt)t∈T be an arbitrary

process independent of N .

(a) Suppose that L (Z) << ν and let q := dL (Z)
dν

be the Randon-Nikodym derivative of Z

with respect to ν. Then for any measurable functional F : RT 7→ R

EF
(
(Xt + Zt)t∈T

)
= E{F

(
(Xt)t∈T

)
;N(q)} (5.59)

where

N(q) =

∫
RT
q(x)N(dx).
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Conversely, for any F as above,

E{F
(
(Xt)t∈T

)
;N(q) > 0} = EF

(
(Xt + Zt)t∈T (N(q) + q(Z))−1

)
. (5.60)

Therefore, if ν{x : q(x) > 0} =∞, then L (X + Z) and X are equivalent.

(b) Suppose that L (Z) << ν+δ0T and let q := dL (Z)
d(ν+δ0T )

be the Randon-Nikodym derivative

of Z with respect to ν + δ0T . Then for any measurable functional F : RT 7→ R

EF
(
(Xt + Zt)t∈T

)
= E{F

(
(Xt)t∈T

)
;N(q) + q(0T )} (5.61)

Conversely, for any F as above,

E{F
(
(Xt)t∈T

)
;N(q) + q(0T ) > 0} = EF

(
(Xt +Zt)t∈T (N(q) + q(Z) + q(0T )1Uc(Z))−1

)
.

(5.62)

where U is any set such that 0T ∈ U ∈ BT and ν(U) = 0. Therefore, L (X + Z) and

X are equivalent if q(0T ) > 0 or ν{x : q(x) > 0} =∞

Proof The proof of theorem 5.8 and 5.11 can be found in Section 6 of [28].

Eisenbaum[8] has established a lemma that enlarge even more point of view on the

Isomorphism Identities.

Lemma 5.12: Let (Yx, x ∈ E) be a positive process. Then, Y is infinitely divisible if and

only if for every a such that E(Ya) > 0, there exists a process (Z
(a)
x , x ∈ E) independent of

Y such that

Y + Z(a) has the law of Y under E(
Ya

E(Ya)
, .) (5.63)

Proof of Lemma 5.12 Since this lemma gives an isomorphism that plays an important

role in our description of the Lévy measure of a non-negative infinitely divisible process, we

will provide the full proof for completeness. See [8], lemma 3.1 for the original proof.
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Proof. If Y is infinitely divisible then for every x = (x1, ..., xn) ∈ En, there exists νx a Lévy

measure of Rn such that
∫
Rn+

(1 ∧ |y|)νx(dy) <∞ and for every α = (α1, ..., αn) in Rn
+

E(e−
∑n
i=1 αiYxi ) = exp{−

∫
Rn+

(1− e−
∑n
i=1 αiyi)νx(dy)} (5.64)

Differentiate both sides of (5.64) with respect to αi, we have:

E
(
Yxie

−
∑n
i=1 αiYxi

)
= exp{−

∫
Rn+

(1− e−
∑n
i=1 αiyi)νx(dy)}

∫
Rn+
yie
−

∑n
i=1 αiyiνx(dy)

Or

E
( Yxi
E(Yxi)

e−
∑n
i=1 αiYxi

)
= E(e−

∑n
i=1 αiYxi )

∫
Rn+

yi
E(Yxi)

e−
∑n
i=1 αiyiνx(dy)

it follows that there exists a process Z(xi) independent of Y such that:

Y + Z(xi) has the law of Y under E(
Yxi

E(Yxi)
, .).

Note that the law of vector (Z
(xi)
x1 , ..., Z

(xi)
xn ) is yi

E(Yxi )
νx(dy).

Conversely, assume that for every a, there exists a process Z(a) satisfying (5.63). By

computing the law of Y under E(YaYb, .), applying the above formula twice, we see that

for every couple (a, b) of E, we must have:

E(Ya)E(Z
(a)
b F (Z(a)

x )) = E(Yb)E(Z(b)
a F (Z(b)

x )) (5.65)

Or

Z(a) under E(E(Ya)Z
(a)
b , .) has the same law as Z(b) under E(E(Yb)Z

(b)
a , .).

To lighten the writing, we set x1 = a. We have

∂
∂α1

E(e−
∑n
i=1 αiYxi )

E(e−
∑n
i=1 αiYxi )

= −E(e−
∑n
i=1 αiZ

(a)
xi )E(Yx1)
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and hence

E(e−
∑n
i=1 αiYxi )

= E(e−
∑n
i=1 αiYxi )|α1=0 exp

(
− E(Yx1)E(

1− e−α1Z
(a)
x1

Z
(a)
x1

e−
∑n
i=2 αiZ

(a)
xi )
)

(5.66)

We now use (5.66) and an induction argument to end our proof. For n = 1 it

follows immediately from (5.64) that E(e−α1Yx1 ) = exp(−
∫∞

0
(1 − e−α1y1)νx(dy1)) where

νx(dy1) =
E(Yx1 )

y1
P(Z

(a)
x1 ∈ dy1).

Assume now that the law of (Yx1 , Yx2 , ..., Yxn−1) is given by

E(e−
∑n−1
i=1 αiYxi ) = exp{−

∫
Rn−1
+

(1− e−
∑n−1
i=1 αiyi)νx(dy)}

with νx(dy) =
E(Yx1 )

y1
P(Z

(a)
x ∈ dy).

By (5.66) νx(dy) =
∫
R+

E(Yxn )
yn

P(Z
(xn)
x ∈ dy, Z

(xn)
xn ∈ dyn) for every xn distinct from

x1, x2, ..., xn−1.

Using (5.66), we obtain:

E(e−
∑n
i=1 αiYxi ) = exp{−

∫
Rn−1
+

(1− e−
∑n
i=2 αiyi)νx(dy)}

× exp{−
∫
Rn+

(e−
∑n
i=2 αiyi − e−

∑n
i=1)αiyi)

E(Yx1)

y1

P(Z(a)
x ∈ dy1dy2...dyn)}

= exp{−
∫
Rn+

(1− e−
∑n
i=1 αiyi)νx(dy)

E(ψx1)

y1

P(Z(a)
x ∈ dy1dy2...dyn)}.

Dynkin’s isomorphism theorem is just a special case of (5.63) when the positive infinitely

divisible process is the squared of Gaussian process which is associated to a transient Markov

process. Lemma 5.12 connects every infinitely divisible process (ψx, x ∈ E) to a family of

its random translation Z
(a)
x , x ∈ E.
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Chapter 6

Lévy measures of non-negative

Infinitely Divisible processes

In this Chapter we will explore the general expression of Lévy measures of nonnegative

infinitely divisible processes using an Isomorphism Theorem based on random translations.

We also look at the special case of infinitely divisible permanental processes whose random

translations have a very special form.

6.1 Conditional Distribution

The concept of conditional distribution will be used in our description of Lévy measures of

non-negative infinitely divisible processes, hence we first need to clarify what do we mean by

the conditional distribution (Y |Yx1 = 0) given that Yx is a non-negative stochastic process.

We begin with conditional probability of events.

Definition 6.1 Given (Ω,F ,P), for sets A,B ∈ F , such that P(B) > 0, the conditional

probability of A given that B has occurred is defined as

P(A|B) =
P(B ∩ A)

P(B)
.
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We need to generalize the definition so as to be able to handle the conditioning by random

variables. Let X be a random variable on (Ω,F ,P), and let A ∈ F . If B ∈ B is such that

P(X ∈ B) > 0, then as above, the conditional probability of A given X ∈ B, is defined by

P(A|X ∈ B) =
P(A,X ∈ B)

P(X ∈ B)
.

Following by these definition, if P(Yx1 = 0) > 0, we have no trouble define the condition

distribution (Y |Yx1 = 0). It has the law L (Y |Yx1 = 0)(dy) = P(Y ∈ dy|Yx1 = 0). We now

have to deal with the case P(Yx1 = 0) = 0 or even cases when L (Yx1) does not have an atom

at 0.

Let Y = (Yx1 , ..., Yxn) be a random vector in Rn
+. Since the conditional distribution of

(Y |Y x1 = 0) is defined only L (Yx1)-a.s, its value can be set arbitrarily when P(Yx1 = 0) = 0.

To assign such value consistently, including cases when L (Yx1) does not have an atom at 0,

we propose the following definition.

Definition 6.2 Let Y = (Yx1 , ..., Yxn) be a non-negative random vector. The conditional

distribution of Y |Yx1 = 0 is defined as the weak limit µ0 of probability measures µk given by

µk(B) =
1

Ee−kYx1

∫
Y ∈B

e−kYx1dP, B ∈ B(Rn
+), k ≥ 1 (6.1)

provided such limit exists.

If P(Yx1 = 0) > 0, the limit distribution µ0 exists and for every B ∈ B, µ0(B) =

limk→∞ µk(B) = P(Y ∈ B|Yx1 = 0), where the right hand side is defined in the usual

way. We would like to show that the conditional distribution of Y |Yx1 = 0 is well defined for

any infinitely divisible random variable in Rn
+.

Proposition 6.3 Let Y = (Yx1 , ..., Yxn) be a non-negative infinitely divisible random vector

with Lévy measure ν and zero drift. Then the conditional distribution of (Y |Yx1 = 0)

is infinitely divisible with zero drift and Lévy measure ν1 given by ν1(dy1, ..., dyn) =
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1{y1=0}(y)ν(dy1, ..., dyn).

Moreover, the conditional distribution of (Y |Yx1 = ... = Yxi = 0) is infinitely divisible with

zero and Lévy measure 1{y1=..=yi=0}(y)ν(dy1, ..., dyn).

Proof of Proposition 6.3

Proof. Recall that µ0 is the weak limit of probability measures µk if

∫
Rn+
e−

∑n
i=1 aiyiµk(dy) −→

∫
Rn+
e−

∑n
i=1 aiyiµ0(dy).

Using the definition 6.2, we have:

∫
Rn+
e−

∑n
i=1 aiyiµk(dy) =

∫
Rn+
e−

∑n
i=1 aiYxi

e−kYx1

Ee−kYx1
P(Y ∈ dy)

=E
e−(k+a1)Yx1e

∑n
i=2 aiYx1

Ee−kYx1
=

Ee−(k+a1)Yx1e
∑n
i=2 aiYxi

Ee−kYx1

=
exp{

∫
Rn+

(e−(k+a1)y1e
∑n
i=2 aiyi − 1)ν(dy1...dyn)}

exp{
∫
Rn+

(e−ky1 − 1)ν(dy1, ..., dyn)}

= exp{
∫
Rn+
e−ky1(e

∑n
i=2 aiyi − 1)ν(dy1...dyn)}.

Take k to infinity, we have:

∫
Rn+
e−

∑n
i=1 aiyiµk(dy) −→ exp{

∫
Rn+

(e−
∑n
i=1 aiyi − 1)1{y1=0}ν(dy1, ..., dyn)}

the existence of this limit shows that µ0 exists, and it if the law of and infinitely divisible

vector in Rn
+ with Lévy measure 1{y1=0}ν(dy1, ..., dyn).

6.2 Lévy measures of non-negative infinitely divisible

processes

Denote by M(E,R+) the set of measurable paths from E in to R+. When E is a separable

metric space w.r.t some metric d, a real valued process (Y (x), x ∈ E) is stochastically
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continuous is for every ε > 0 and every a in E

lim
x→a

P
(
|Y (x)− Y (a)| > ε

)
= 0

as x approaches to a with respect to the metric d.

In the lemma below, we express a Lévy measure of the non-negative infinitely divisible

process as a series of others Lévy measures which can be written in term of the laws of

admissible random translations. We begin with the case of random vectors. The first part

of this lemma is just the Lemma 4.6 of [28].

Lemma 6.4 Let Y = (Yx1 , ..., Yxn) be a non-negative vector with mi = E(Yxi) ∈ (0,∞).

Then, the following are equivalent

(i) Y is infinitely divisible .

(ii) For every i ≤ n, there exists a vector of non-negative random variables Z(xi) =

(Z
(xi)
x1 , ..., Z

(xi)
xn ) independent of Y such that

Y + Z(xi) has the law of Y under E(
Yxi
mi

, .). (6.4)

Moreover, if (ii) holds, Y has Lévy measure ν of the form:

ν =
n∑
i=1

ν̃i (6.5)

where ν̃i has the form:

ν̃i(dy) = 1Ai(y)
mi

yi
L (Z(xi))(dy) (6.6)

and Ai = {y ∈ Rn : y1 = 0, .., yi−1 = 0, yi > 0} are disjoint. The drift of Y is given as :

c = (m1P(Zx1
x1

= 0), ...,mnP(Zxn
xn = 0)). (6.7)
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Furthermore, if Y has zero drift ν̃i is the Lévy measure of the non-negative infinitely divisible

process V (1,..,i) satisfying

(Y |Yx1 = ... = Yxi−1
= 0) = (Y |Yx1 = .. = Yxi−1

= Yxi = 0) + V (1,..,i). (6.8)

Proof of the Lemma

Proof. We follow with some necessary modifications, arguments from [28], Lemma 4.6.

Assume that Y is infinitely divisible, then for every x = (x1, ..., xn) ∈ En and and for every

α = (α1, ..., αn) in Rn
+, the Laplace transform of Y has the form:

φ(α1, ..., αn) = E(e−
∑n
i=1 αiYxi ) = exp{−

n∑
i=1

αici −
∫
Rn+

(1− e−
∑n
i=1 αiyi)ν(dy)} (6.9)

where ci ≥ 0. We have

∂

∂αi
φ(α1, ..., αn) = −φ(α1, ..., αn){ci +

∫
Rn+

yie
−

∑n
j=1 αjyjν(dy)}. (6.10)

Set α1 = ... = αn = 0, we have mi = E(Yxi) = ci +
∫
Rn+
yiν(dy). Let Z(xi) be a vector

independent of Y whose distribution is given by:

L (Z(xi)) =
ci
mi

δ(0,..,0)(dy) +
yi
mi

ν(dy).

Using (6.10), we have

E{exp{−
n∑
i=1

αiYxi};
Yxi
mi

} = E{exp{−
n∑
j=1

αj(Yxj + Z(xi)
xj

)},

It follows that there exists a process Z(xi) independent of Y such that:

Y + Z(xi) has the law of Y under E(
Yxi

E(Yxi)
, .).
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Now assume that for every i ≤ n, there exists a vector of non-negative random variables

Z(xi) = (Z
(xi)
x1 , ..., Z

(xi)
xn ) independent of Y satisfies 6.4, we will prove that Y is infinitely

divisible with Lévy measure and drift given by (6.6) and 6.7. By computing the law of

Y under E(YxiYxj , .), applying (6.4) twice we get for any bounded measurable functional

F : Rn 7→ R and i, j ≤ n

miE(F (Z(xi))Zxi
xj

) = mjE(F (Z(xj))Zxj
xi

). (6.11)

Taking F (y) = 1(yi=0) in (6.11) we get:

miE(1{Z(xi)
xi

=0}Z
xi
xj

) = mjE(1
{Z

(xj)
xi

=0}
Zxj
xi

).

This implies that for every i, j ≤ n,

{Z(xi)
xj

> 0} ⊂ {Z(xi)
xi

> 0}a.s. (6.12)

Applying (6.11) to F (y) = y−1
i 1(yi>0)y

−1
j 1(yj>0), and taking into account (6.12) we obtain:

miE(F (Zi)1{Z(xi)
xj

>0}(Z
xi
xi

)−1) = mjE(F (Zj)1
{Z

(xj)
xi

>0}
(Zxj

xj
)−1). (6.13)

For n = 1, from (6.4) we get

E(e−αY Y ) = mEe−α(Y+Z) = mEe−αYEe−αZ ,

which yields
d

dα
logE(e−αY ) = −mEe−αZ .

Therefore

E(e−αY ) = exp{−mE
∫ α

0

(1Z=0 + e−sZ1Z>0)ds}

or

E(e−αY ) = exp{−αmP(Z = 0)−m
∫ ∞

0

(1− e−αy)1(y>0)y
−1L (Z)(dy)},
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which show our claim.

We proceed by induction. Assuming (ii), suppose that (i) and (6.5), (6.6), (6.7) hold for n−1.

Since Ỹ := Y{x1,...,xn−1} and Z̃(x1) := Z
(xi)
{x1,...,xn−1} satisfy (ii) for n− 1 in the place of n, by the

induction hypothesis Ỹ is infinitely divisible with the Laplace transform

φ̃(α1, ..., αn−1) = exp{−
n−1∑
i=1

αic̃i −
∫
Rn−1
+

(1− e−
∑n−1
i=1 αiyi)ν̃(dy)},

where

c̃ = (m1P(Zx1
x1

= 0), ...,mn−1P(Zxn−1
xn−1

= 0)).

and

ν̃(dy) =
n−1∑
k=1

1{y1=...=yk−1=0,yk>0}mky
−1
k L (Z̃(xk))(dy).

Let φ(α1, ..., αn) = E exp{−
∑n

i=1 αiYi}. Proceeding as before, we get

∂

∂αn
log φ(α1, ..., αn) = mnE exp{−

n∑
i=1

αiZ
xn
xi
}.

Hence

φ(α1, ..., αn) = φ̃(α1, ..., αn−1) exp{−mnE(e−
∑n−1
i=1 αiZ

xn
xi

∫ αn

0

e−sZ
xn
xn ds)}. (6.14)

Notice that Z
(xn)
xi = 0 a.s on the set Z

(xn)
xn = 0 by (6.12). Therefore, the exponent of the last

term on the right hand side of (6.14) can be written as:

−mnE{αn1{Z(xn)
xn =0} + e−

∑n−1
i=1 αiZ

(xn)
xi (1− e−αZ

(xn)
xn )1{Z(xn)

xn >0}(Z
(xn)
xn )−1}

= −αncn −mn

n∑
k=1

E{e−
∑n−1
i=1 αiZ

(xn)
xi (1− e−αZ

(xn)
xn )1{Z(xn)

x1
=...=Z

(xn)
xk−1

=0,Z
(xn)
xn >0}(Z

(xn)
xn )−1}
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which, after applying (6.13) and noticing that the term Z
(xk)
xn > 0 can be replace by Z

(xk)
xk > 0

gives us

= −αncn −
n∑
k=1

mkE{e−
∑n−1
i=1 αiZ

(xk)
xi (1− e−αZ

(xk)
xn )1{Z(xk)

x1
=...=Z

(xk)
xk−1

=0,Z
(xk)
xk

>0}(Z
(xk)
xk

)−1}

= −αncn −
n∑
k=1

mk

∫
Rn+

(e−
∑n−1
i=1 αiyi − e−

∑n
i=1 αiyi)1{y1=...=yk−1=0,yk>0}y

−1
k L (Z(xk))(dy)

= −αncn +

∫
Rn+

(1− e−
∑n−1
i=1 αiyi)ν(dy)−

∫
Rn+

(1− e−
∑n
i=1 αiyi)ν(dy).

Substituting the above into (6.14) show that Y is infinitely divisible and has the Lévy measure

and drift term as in (6.5)(6.6) and 6.7.

Now, we need to show that ν̃i(dy) = 1{y1=...=yi−1=0,yi>0}
mi
yi

L (Z(xi))(dy) is the Lévy measure

of a random vector satisfy (6.8).

Claim:

1{yi>0}(y)ν(dy) = 1{yi>0}
E(Yxi)

yi
L (Z(xi))(dy). (6.15)

Proof of the Claim: We have

L (Z(xi))(dy) =
ci
mi

δ(0,..,0)(dy) +
yi
mi

ν(dy).

or

1{yi>0}(y)L (Z(xi))(dy) = 1{yi>0}(y)
ci
mi

δ(0,..,0)(dy) + 1{yi>0}(y)
yi
mi

ν(dy).

It is easy to see that the first term on the right hand side is zero which yields the claim.
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Applying (6.15) for i = 1, we have

ν̃1(dy) = 1{y1>0}(y)
m1

y1

L (Z(x1))(dy) = 1{y1>0}(y)ν(dy).

It follows that

ν = 1{y1=0}ν + ν̃1.

From proposition 6.3, 1{y1=0}ν is the Lévy measure of (Y |Yx1 = 0). Let V (1) be the random

vector with Lévy measure ν̃1, then

Y = (Y |Yx1 = 0) + V (1).

We can write ν̃i as

ν̃i(dy) = 1{y1=...=yi−1=0,yi>0}(y)
mi

yi
L (Z(xi))(dy) = 1{y1=...=yi−1=0}(y)1{yi>0}

mi

yi
(y)L (Z(xi))(dy).

Applying (6.15) , we get

ν̃i = 1{y1=...=yi−1=0}1{yi>0}ν.

It follows that

1{y1=...=yi−1=0}ν = 1{y1=...=yi−1=0}1{yi=0}ν + ν̃i.

Equivalently, ν̃i is the Lévy measure of the random vector V (1,..,i) satisfy:

(Y |Yx1 = 0, .., Yxi−1
= 0) = (Y |Yx1 = 0, .., Yxi−1

= 0, Yxi = 0) + V (1,..,i).

The following result complements Proposition 4.7 in [28].

Theorem 6.5 Let (Yx, x ∈ E) be non-negative process with mx = EYx < ∞ for every

x ∈ E. Then, Y is infinitely divisible if and only if for every a such that E(Ya) > 0, there
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exists a process (Z
(a)
x , x ∈ E) independent of Y such that

Y + Z(a) has the law of Y under E(
Ya
ma

, .).

If in addition Y is separable in probability with a separant E0 = {xi : i ∈ N} then the Lévy

measure ν of Y is of the form

ν =
∑
i≥1

ν̃i

where ν̃i has the form:

ν̃i(dy) = 1Ai(y)
mxi

yxi
L (Z(xi))(dy)

where Ai = {y ∈ RE : y1 = 0, .., yi−1 = 0, yi > 0}, the the drift is given by

c = (mxP(Z(x)
x = 0))x∈E.

Furthermore, if Y has zero drift ,ν̃i is the Lévy measure of the non-negative infinitely divisible

process V (1,..,i) satisfying:

(Y |Yx1 = 0, .., Yxi−1
= 0) = (Y |Yx1 = 0, .., Yxi−1

= 0, Yxi = 0) + V (1,..,i).

We observe that the family of random translations play a very important role in the

description of Lévy measure of a non-negative infinitely divisible process. We now look at

the case of infinitely divisible permanental processes whose random translations have a very

special form .

We consider a transient Markov process X with state space E, admitting 0-potential densities

(u(x, y), (x, y) ∈ E × E) w.r.t. a σ- finite reference measure m and a local time process

(Lxt , x ∈ E, t ≥ 0) which is normalized to satisfy Ex(Ly∞) = u(x, y). We define the probability

P̃a as follows:

P̃a|Ft =
u(Xt, a)

u(a, a)
Pa|Ft .
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Under P̃a, the process X starts at a and is killed at its last visit to a. In fact, P̃a is the

probability measure of the h− transform of Xt when h(x) = u(x,a)
u(a,a)

. Expectation with respect

to P̃a is denoted by Ẽa.

We have shown in Chapter 3 that for any β > 0 there exists an infinitely divisible permanental

process with kernel u(x, y) index β. It can be also shown that a permanental process is

infinitely divisible if and only if it admits for kernel the 0−potential densities of a transient

Markov process.

Let (Yx, x ∈ E) be the permanental process with index 2 associated to the Markov process

X. Theorem 3.7 says that for every a ∈ E such that u(a, a) > 0, we have

1

2
Y + L(a)

∞ has the law of
1

2
Y under E(

1
2
Ya

E(1
2
Ya)

, .)

where L
(a)
∞ is the local times process of X conditioned to start at a and killed at its last visit

to a. The random translations family of the infinitely divisible process 1
2
Y is {L(a)

∞ }.

In Chapter 4, we describe the Lévy measure of the squared Bessel process starting from 0

with dimension 1 using Ray-Knight theorem and excursion laws. Here we look at the Lévy

measure of the squared Bessel process starting from 0 with dimension 1 from a different

angle: the laws of its random translations family.

When X is a Brownian motion starting from a > 0 and dying at the first time of hitting 0,

then 0- potential function has the form:

uT0(x, y) =

2(|x| ∧ |y|) xy > 0

0 xy ≤ 0

,

It implies that the associated Gaussian process of X is
√

2Bx and the associated permanental

process with index 2 is 2B2
x. Let Yx be the associated permanental process with index 2,
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then 1
2
Yx is B2

x which is the squared Bessel process starting from 0 with dimension 1.

We have the admissible transition process Z(a) is just the local time process of process X

conditioned to start at a and killed at its last visit to a.

For x ≥ a, the process Z
(a)
x is just LxT0 of a Brownian motion under P a. By the first Ray

-Knight theorem, we have:

• When x = a: Z
(a)
a = B2

a + B̄2
a which has an exponential law with parameter 1

2a
.

• When x > a: Z
(a)
x is a 0 dimensional squared Bessel process starting from an

exponential law with parameter 1
2a

.

74



Bibliography

75



[1] Bass, R. F. (2011). Stochastic processes, volume 33. Cambridge University Press. 42
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Sér. Int., Sect. A: Math. et Mécan, 1:6–17. 1
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A Some Basic Definitions

A.1 Markov Process

Definition(Markov Process) The Markov process (Xt, P
x) is a stochastic process

X : [0,∞)× Ω→ E

and a family of probability measures {P x : x ∈ E} on Ω,F satisfying the following:

1. For each t, Xt is Ft measurable.

2. For each t and each Borel subset A of E, the map x→ P x(Xt ∈ A) is Borel measurable.

3. For 0 ≤ s, t, each Borel subset A of E and each x ∈ E we have

P x(Xt+s ∈ A|Fs) = PXs(Xt ∈ A).

Remark

• Condition 3 is called the Markov property. The general version of the Markov property

is

Ex(Y ◦ θs|Fs) = EXs(Y ) P x − a.s

where Y is bounded and measurable with respect to F∞ and {θs} is the shift operator

by s ≥ 0.

• The strong Markov property has the form

Ex(Y ◦ θT |FT ) = EXT (Y ) P x − a.s

where T is a finite stopping time.
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A.2 Transition probability, Potential density

Definittion Markov transition function The collection {Pt(., .), 0 ≤ t < ∞} is a

homogeneous Markov transition function (or semigroup) on (E, E) iff ∀0 ≤ s, t < ∞ we

have

a) ∀x ∈ E: A→ Pt(x,A) is a probability measure on E ,

b) ∀A ∈ E : x→ Pt(x,A) is E-measurable;

c) ∀x ∈ E,∀A ∈ E

Ps+t(x,A) =

∫
E

Ps(x, dy)Pt(y, A). (.1)

When all the measures Pt(x, .) have densities with respect to one given reference measure,

pt(x, y) is transition density and is defined as Pt(x, dy) = Px(Xt ∈ dy).

For a measurable function f , we have

Ptf(x) =

∫
E

f(y)Pt(x, dy) =

∫
E

f(y)pt(x, y)dy. (.2)

For α > 0, the α-potential of X is defined by

Uα(x,C) = Ex(
∫ ∞

0

e−αt1C(Xt)dt) =

∫ ∞
0

e−αtPt(x,C)dt C ∈ E . (.3)

When applied to bounded measurable functions

Uαf(x) =

∫
E

Uα(x, dy)f(y)

it becomes an invertible operator whose inverse is given by αI −A, where I is the identity

operator and A is the infinitesimal generator of the semigroup (Pt). When all the measures

Uα(x, .) have densities with respect to one given reference measure, uα(x, y) is the potential

densities.

uα(x, y) =

∫
e−αtpt(x, y)dt. (.4)
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The 0-potential is denoted shortly as u(x, y).

A.3 Continuous Additive Functional

Definition 5.2 (Continuous Additive functional) Let Xt be a Markov process on

(Ω,F ,Ft). A family A = At; t ≥ 0 of random variables on (Ω,F ,Ft) is called a continuous

additive functional(CAF) of Xt if

1. t → At is almost surely continuous and nondecreasing, with A0 = 0 and At = Aζ for

all t ≥ ζ. Here ζ is referred as the ”death time” of X.

2. At is Ft measurable.

3. At+s = At + As ◦ θt for all s, t ∈ R+ a.s.

A.4 Local time

Definition 5.3 (Local time) The local time of the process Xt is denoted as {Lyt ; (t, y) ∈

R+ × S} and is defined by

Lyt = lim
ε→ 0

∫ t

0

fε,y(Xr)dr, (.5)

where fε,y is an approximate δ-function at y. That is fε,y is an non negative function

supported in B(y, ε) with
∫
fε,y(x)dx = 1. It is easy to see that Ly0 = 0, Lyt is almost

surely continuous and non-decreasing in t, and has the additive property

Lyt+s = Lyt + Lys ◦ θt. (.6)

The following formulas describe the relation of the local time, transition density and α-

potential density of a process Xt

Ex(Lyt ) =

∫ t

0

ps(x, y)ds = u(x, y), (.7)

uα(x, y) = Ex(
∫ ∞

0

e−αtdLyt ), (.8)
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uα(x, y) = Ex(e−αTy)uα(y, y), (.9)

where Ty = inf{s : Xs = y}.

A.5 Gaussian Random Variable, Gaussian Vector, Gaussian Pro-

cess

Gaussian random variable

A real valued random variable X is called a Gaussian random variable if it has

characteristic function of the form:

E exp(iλX) = exp
(
imλ− σ2λ2

2

)
(.10)

where m and σ are some real numbers. Taking the first derivative of (.10) with respect

to λ and the setting λ = 0, we have

E(X) = m. (.11)

Similarly with the second derivative of (.10), we get:

V ar(X) = σ2. (.12)

Gaussian Vector

A random vector X = (X1, X2, ..., Xn) ∈ Rn is a Gaussian random vector if (y,X) is a

Gaussian random variable for each y ∈ Rn. It means the characteristic function of X having

the form:

θX(y)
def
=E exp(i(y,X)) = exp

(
iE((y,X))− V ar((y,X))

2

)
(.13)

for each y ∈ Rn. Let m = (m1,m2, ...,mn). Setting
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EXj = mj and E(Xj −mj)(Xk −mk) = Cj,k. (.14)

Then, (.13) becomes

θX(y) = exp
(
imyt − yCyt

2

)
(.15)

where C = {Cj,k}nj,k=1 is a symmetric n × n matrix with real components. m is called

the mean vector, or the mean, and C is called the covariance matrix of X. The mean vector

and the covariance matrix of a Gaussian vector determine its distribution.

We can always eliminate the mean vector by subtracting m from X. In this chapter, we will

focus on Gaussian vectors with the mean vector E(X) = m = 0. The characteristic function

of those Gaussian vector has the form

θX(y) = E exp(i(y,X)) = exp
(
− yCyt

2

)
= exp

(
− (y, Cy)

2

)
. (.16)

Here, the entries of of the n× n matrix C = {Cj,k}nj,k=1 are

Cj,k = E(XjXk) 1 ≤ j, k ≤ n (.17)

Since E(y,X)2 = (y, Cy), C is positive definite. It follows that the covariance matrix of

a Rn Gaussian vector is a symmetric positive definite n × n matrix. In the next step, we

are going to show that conversely, any symmetric positive definite n × n matrix B is the

covariance matrix of some Gaussian random vector in Rn.

Claim: If B is a real symmetric positive definite n×n matrix, then there exists a symmetric

matrix A such that B = A2.

Proof of the claim:

Since B is real symmetric, there exists an orthogonal matrix P and a diagonal matrix D

such that

B = PDP T
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where the diagonal entries of D are eigenvalues of B and the column vectors of P are the

eigenvectors of eigenvalues of B.

Since B is positive definite, all of its eigenvalues are non-negative. We can define matrix

D1/2 as a matrix with entries D
1/2
i,j =

√
Di,j.

Let A = PD1/2P T , thenB = A2. �

Let X be a vector whose components are independent standard normal random variables.

The covariance of X is the identity matrix I. We define a Gaussian random vector Z by

Z = AX. The characteristic function of Z has the form

E exp(i(y, Z)) = E exp(i(Aty,X)) = exp
(
− (Aty, IAty)/2

)
= exp

(
− (y, AIAty)/2

)
.

Since A is symmetric, AIAt = A2 = B. It follows that Z is a Gaussian vector with covariance

matrix B.

Gaussian Processes

If S is a general set, a stochastic process G = {Gx, x ∈ S} is called a Gaussian process

on S if for any n and any x1, ..., xn ∈ S, (Gx1 , ..., Gxn) is a Gaussian vector. The function

C(x, y) = E(Gx, Gy), x, y ∈ S (.18)

on S × S is the covariance function of G. By the Kolmogorov’s extension theorem, there is

a correspondence between Gaussian processes and symmetric positive definite functions on

S × S.

Example : Let S = R1
+, and let C(s, t) = s ∧ t =

∫
1[0,s](x)1[0,t](x)dx. We have

n∑
i,j=1

C(si, sj)yiyj =

∫ ( n∑
i=1

yi1[0,si](x)
)2
dx. ≥ 0 (.19)
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It follows that C(s, t) is positive definite. Then there exists a Gaussian process B = {Bs, s ∈

R1
+} with covariance function C. In fact, B is a Brownian motion in R1

+.

86



Vita

Vy D Nguyen was born in Lam Dong, Vietnam on December 22nd 1986. In 2007, she came

to the US with her family. She attended Georgia Institute of Technology in Atlanta Georgia

where she obtained a B.S. in Mathematics. After graduating from Georgia Tech in 2013, she

then joined the Department of Mathematics at the University of Tennessee, Knoxville. She

received her Master of Science in Mathematics in 2017. She graduated with her Doctorate

of Philosophy in Mathematics and a Master of Science in Statistics in December 2019.

87


	From Isomorphism Identities to Levy measures of Non-negative Infinitely Divisible Processes
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	2 Lévy measures on path spaces
	2.1 Definitions and preliminaries
	2.2 Lévy Khintchine Representation 

	3 Permanental processes and Squared Bessel processes
	3.1 Definition and Existence of Permanental Processes
	3.2 Permanental processes associated to Markov processes
	3.3 Characterization of the infinitely divisible permanental processes
	3.4 Squared Bessel Processes

	4 Lévy measures of Squared Bessel Processes
	4.1 Ray-Knight Theorems
	4.2 Excursion Laws
	4.2.1 Poisson Point Processes
	4.2.2 Excursions

	4.3 Representation of Lévy measures of squared Bessel Processes

	5 Isomorphism Identities
	5.1 The h-Transforms
	5.2 The Dynkin Isomorphism Theorems 
	5.3 Isomorphism Identities

	6 Lévy measures of non-negative Infinitely Divisible processes
	6.1 Conditional Distribution
	6.2 Lévy measures of non-negative infinitely divisible processes

	Bibliography
	Appendices
	A Some Basic Definitions 
	A.1 Markov Process
	A.2 Transition probability, Potential density
	A.3 Continuous Additive Functional
	A.4 Local time
	A.5 Gaussian Random Variable, Gaussian Vector, Gaussian Process


	Vita

