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ABSTRACT 

American black bears (Ursus americanus) were extirpated from the 

Cumberland Plateau in Tennessee and Kentucky in the late 19th to early 20th 

centuries due to habitat loss and overexploitation. Eastridge and Clark (2001) 

experimentally translocated 14 female black bears from Great Smoky Mountains 

National Park to Big South Fork National River and Recreation Area (BSF) from 

1996 to 1997. In 2010–2012, a population estimate based on DNA extracted 

from hair samples collected at barbed wire hair traps revealed that the population 

had expanded to 190 individuals in Tennessee and 38 in Kentucky. The 

population was thought to have expanded its range in the Cumberland Plateau, 

so an updated estimate of bear density and abundance was needed across a 

wider spatial extent to direct future management. 

I used spatially explicit capture-recapture (SECR) to estimate bear density 

and abundance within and surrounding BSF in northern Tennessee and southern 

Kentucky. Barbed-wire sampling stations (i.e., hair traps) were constructed in a 

3- × 3-trap layout per cluster with 2 km between hair traps within a cluster and 16 

km between cluster centers. I used DNA from hair samples obtained from hair 

traps to identify individual bears and establish genetic capture histories. I utilized 

spatial covariates to model inhomogeneous densities within the study area. 

Population abundance estimates across the 36,035-km2 study area were 436.2 

males (95% CI = 234.1–812.5) and 450.9 females (95% CI = 295.0–689.1) for a 

total of 887.1 (95% CI 607.5–1,295.3) bears, excluding cubs. Average density 
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estimates were 0.012 (95% CI = 0.007–0.023) male bears/km2 and 0.013 (95% 

CI = 0.008–0.020) female bears/km2, totaling 0.025 (95% CI = 0.017–0.037) 

bears/km2. The mean annual growth rate was 20.4% since 1998. Based on my 

population estimates, growth rates, and harvest reports, harvest rates in 

Kentucky averaged 4.2% from 2013 to 2019 ranging from 1.8% to 6.1% annually. 

In Tennessee, harvest rates from 2014 to 2019 averaged 12.2% ranging from 

4.8% to 23.5%. Kentucky has seen greater population growth than Tennessee 

(31.1% and 15.0%, respectively), possibly due to more restrictive harvest 

regulations and availability of contiguous forested federal lands.  
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INTRODUCTION 

American black bears (Ursus americanus) were extirpated from the 

Cumberland Plateau in the late 19th to early 20th century primarily due to habitat 

loss and overexploitation. While bears began to return to some portions of the 

Cumberland Plateau in Kentucky near the Virginia border in the late 1980’s as a 

result of forest recovery and increased human tolerance (Unger et al. 2013), 

bears in Big South Fork National River and Recreation Area (BSF) were thought 

to be extirpated. The Tennessee Wildlife Resources Agency (TWRA), Kentucky 

Department of Fish and Wildlife Resources (KDFWR), National Park Service 

(NPS), U.S. Fish and Wildlife Service, and the University of Tennessee formed a 

working group interested in restoring bears to BSF in early 1987 (Eastridge 

2000). To assess the feasibility of reintroducing bears to BSF, researchers 

performed habitat suitability studies and concluded that habitat conditions were 

adequate for sustaining a black bear population (van Manen 1990, van Manen 

and Pelton 1997). In 1996 and 1997, Eastridge and Clark (2001) experimentally 

reintroduced black bears into BSF from Great Smoky Mountains National Park. 

Homing by bears is a significant issue when releasing bears into a new area 

because they can travel hundreds of kilometers back to their original home 

ranges (Beeman and Pelton 1976, McArthur 1981, Rogers 1988, Landriault et al. 

2006). To mitigate against this homing instinct, Eastridge and Clark (2001) 

evaluated 2 methods used to reintroduce these bears: summer release using 

acclimation pens and winter release of pre-parturient and post-parturient females 
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into dens. Winter-released post-parturient bears displayed the most restricted 

movements and highest survival rates following release. Of the 14 adult bears 

and cubs reintroduced to BSF, 3 adult founders left BSF and an additional 4 died, 

but reproduction was documented in 1999 (Eastridge 2000). Adult female 

survival was estimated at 0.66 (SE = 0.12; Eastridge and Clark 2001), which 

according to Gusset’s (2009) definition constitutes a short-term success. About 

18 bears (4 subadult females, 6 subadult males, and 8 adult females resided in 

and adjacent to BSF in 1998 (J. Clark, U.S. Geological Survey, unpublished 

data), and Eastridge and Clark (2001) estimated that the BSF bear population 

had a 24% chance of extinction without additional augmentation.  

 Many carnivore reintroduction failures are attributed to poor planning, 

small founder size, and absence of post-release monitoring (Hayward and 

Somers 2009, Weise et al. 2014, Seddon 2015). In Kentucky in 2010, Murphy 

(2011) performed a follow-up study of the reintroduced bears at BSF by 

collecting DNA from hair samples obtained via 126 barbed wire enclosures (i.e., 

hair traps). He then used those data to estimate the population size of bears in 

and immediately adjacent to BSF (i.e., McCreary County, Kentucky). In 2012, 

TWRA conducted a similar study in and adjacent to the Tennessee portion of 

BSF in Scott, Fentress, Morgan, and Pickett counties. Bear population estimates 

in Kentucky and Tennessee were 38 (95% CI = 31–66) and 190 (95% CI = 170–

219), respectively, and growth rates were high, averaging 18.3% annually 

(Murphy et al. 2015) based on the Tennessee estimates alone. Murphy et al. 

https://wildlife.onlinelibrary.wiley.com/doi/full/10.1002/jwmg.21144#jwmg21144-bib-0045
https://wildlife.onlinelibrary.wiley.com/doi/full/10.1002/jwmg.21144#jwmg21144-bib-0132
https://wildlife.onlinelibrary.wiley.com/doi/full/10.1002/jwmg.21144#jwmg21144-bib-0103
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(2015) found that genetic diversity in the BSF bear population was not 

significantly reduced and suggested that the rapidly growing population and 

overlapping generations improved retention of genetic diversity and helped 

mitigate potentially deleterious genetic effects following the reintroduction. 

Moreover, genetic data revealed that the bear population at BSF showed little 

ingress from neighboring bear populations, suggesting that bears at BSF were 

overwhelmingly the product of the reintroduction effort (Hast 2010).  

While these studies provided valuable insight into the status of black bears 

in BSF, there were some shortcomings. First, the Kentucky and Tennessee 

studies were executed during different years using slightly different methods. 

Trap densities and coverage differed, and the studies did not take place 

concurrently, so bear populations in Kentucky and Tennessee had to be 

separately estimated. Also, these studies were focused on BSF with limited trap 

coverage in areas further from the park (Figure 1, all tables and figures are 

located in the appendices). Finally, the estimates were not spatially explicit, so 

the extent of the population and heterogeneous densities could not be estimated.  

 Early performance of a reintroduced population may not be indicative of 

overall population viability over time, as these populations typically go through 3 

stages: establishment, growth, and regulation (Sarrazin 2007). Now past the 

establishment phase and into the growth and regulation phases, officials need an 

updated estimate of the BSF bear population to continue to monitor population 

trajectory. Wildlife managers are not only interested in biological carrying 
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capacity but also the wildlife acceptance capacity of the people that live in the 

home ranges of these bears (Decker and Purdy 1988).  

Black bear management in around BSF falls under 3 different jurisdictions: 

KDFWR, TWRA, and NPS. The NPS manages bears within the borders of BSF 

in both Kentucky and Tennessee but KDFWR and TWRA manage bears outside 

the park in their respective states. Bear hunting seasons were opened in the 

counties surrounding BSF (there is no bear hunting within the National Park, 

Figure 2) in Kentucky in 2013 and Tennessee in 2014. Since the establishment 

of regulated hunting, 64 and 195 bears have been harvested in Kentucky and 

Tennessee, respectively, in the hunting zones adjacent to BSF (Table 1). 

However, no updated population estimate was available for estimating harvest 

rates. Consequently, managers needed better information on the extent of bear 

range and how densities spatially varied to better manage black bears for human 

acceptance, recreational harvest, and wildlife viewing opportunities. 

 

Objectives and Hypotheses 

 My study objectives were to utilize spatially explicit capture-recapture to 

test the hypotheses that: 

1. The bear population continues to grow, 

2. The bear population is centered at BSF and continues to expand its range, 

3. Spatial covariates help refine heterogeneous bear densities at BSF, and 
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4. Bear hunting in Kentucky and Tennessee is sustainable at the most recent 

levels. 

 

STUDY AREA 

 Bear managers in Kentucky and Tennessee were asked to submit maps 

of where they were interested in estimating bear abundance and what was 

considered as primary and secondary range in each respective state. The 

intention of having primary and secondary study areas was to have high 

sampling intensity in areas of greater density (i.e., primary) while still providing 

some information on population expansion in areas where densities were lower 

(i.e., secondary).  I refer to these collective areas plus a 24-km buffer around all 

trap locations as the BSF Study Area. 

Our primary study area encompassed 14,911 km2 along the southern 

Kentucky and northern Tennessee borders including and surrounding the 507-

km2 BSF (Figure 3). This area was characterized by a mosaic of forested areas, 

developed land, and agriculture made up of predominantly upland hardwood 

communities. With variable elevation ranging from 150 to 1070 m, steep slopes 

and nearly horizontal ridge tops are common within BSF but fade into rolling 

foothills of the Cumberland Plateau farther from the park boundaries. Mild, cool 

winters and hot, humid summers were common for this region. Average annual 

precipitation was 133 cm and average annual temperature was 13°C (Shaw and 

Wofford 2003). Public lands made up 55.5% (8,266 km2) of the study area, of 
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which 2,322 km2 was state-managed in the form of wildlife management areas 

and state parks, and 5,944 km2 was federally managed as national parks and 

national forests. My research was conducted in Bell, Clinton, Jackson, Knox, 

Laurel, Lincoln, McCreary, Pulaski, Rockcastle, Russel, Wayne, and Whitley 

counties in Kentucky and Anderson, Blount, Campbell, Claiborne, Clay, 

Cumberland, Grainger, Fentress, Morgan, Jefferson, Knox, Overton, Pickett, 

Putnam, Roane, Scott, Union, Van Buren, and White counties in Tennessee.  

Officials at TWRA were interested in estimating bear abundance and 

density in both primary and secondary areas, whereas Kentucky was interested 

in just the primary study area. The secondary area in Tennessee spanned 

roughly 8,750 km2 immediately adjacent to the southern, eastern, and western 

boundaries of the primary study area in Tennessee. Officials with the agency 

collected DNA samples from hair traps constructed and analyzed identically with 

my study except that the sampling took place in 2018 and trap clusters were 24 

km apart on center to reduce the number of hair traps in the secondary area. I 

added those captures to the primary data set and analyzed the pooled data. 

Including the 24-km buffer around primary and secondary hair trap locations, the 

BSF Study Area was 36,035 km2 in size.  

  



 

7 
 

MATERIALS AND METHODS 

Hair Snare Design and Construction 

 DNA extraction from passive collection of hair samples has been an 

effective tool for estimation of bear population size (Woods et al. 1999, Mowat 

and Strobeck 2000, Boersen et al. 2003). Initial studies using DNA extraction 

from hair samples utilized traditional capture-recapture methods (Murphy et al. 

2015). However, estimating density or even the spatial extent of the population is 

problematic because the area effectively sampled by the traps is difficult to 

estimate (Royle et al 2014). Spatially explicit capture-recapture (SECR) methods 

for estimating density have since been developed which combine the individual 

capture histories with spatial distribution of captures to directly infer density 

without the need for defining an effective trapping area (Borchers and Efford 

2008).  

In the past, the expense of creating a trapping array for studies over large 

(landscape-level) extents has been prohibitive (Settlage et al. 2008). However, 

spatially explicit models are robust to gaps in detector spacing allowing for 

cluster sampling of large study areas (Sollmann et al. 2012, Efford and Fewster 

2013, Sun et al. 2014, Clark 2019). Animal densities can vary with land use, land 

cover, management jurisdiction, and topographic variations. The use of SECR 

allows for utilization of covariates to model inhomogeneous density across the 

interstitial space between trap clusters, thus providing a more refined density 

estimate. SECR has successfully been used with cluster sampling to estimate 
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black bear populations and densities in recent years (Wilton et al. 2014, Humm et 

al. 2017, Humm and Clark 2020). 

Clark (2019) conducted simulations to assess the configuration of traps 

and clusters on precision and bias of density estimates. The sampling design 

consisting of a 3- x 3-cluster of traps with 2,000 m between traps, 16,000 m 

between cluster centers, and checked for 6 consecutive weeks (occasions) 

performed well and has been used in recent studies of other black bear 

populations (Humm et al. 2017, Humm and Clark 2020). I utilized this hair snare 

cluster configuration in the primary sampling area and, I projected proposed trap 

sites onto a GIS map layer provided by wildlife managers as possible black bear 

range (Figure 4). I obtained permission to construct hair snare sites and collect 

data throughout the field season on public land from the National Park Service, 

U.S. Forest Service, and numerous state parks. For private lands, I first identified 

landowners using county tax data associated with each site and sent a postcard 

to the address on file. The postcard briefly explained the nature of the study, 

what I proposed to do, the time frame, and requested return of the postage paid 

postcard indicating if permission was granted. If postcards were unsuccessful, I 

followed up with phone calls, and if that was also unsuccessful, we went door-to-

door to request permission. I directed field personnel to locate a suitable site with 

properly spaced trees as close to the proposed location as possible. If a suitable 

hair trap site could not be located because of property access, geographic 

obstacles, or human development, we selected another site within 500 m. I 
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adjusted the location of traps within clusters if necessary, so that at least 5 traps 

per cluster could be constructed, as per Humm et al. (2020). The same hair-trap 

configuration was used in the secondary area by TWRA, except that trap clusters 

were 24 km apart on center to reduce the number of traps in areas where bear 

densities were expected to be lower. 

Each hair snare consisted of 2 strands of 15.5-gage, high tensile barbed 

wire with (4 prongs per barb with spacing of 12.7 cm between barbs [Goucho®, 

Bekaert Corporation, Marietta, GA, USA]). We wrapped the wire tightly around 3–

6 trees creating a roughly 25-m2 enclosure (Woods et al. 1999). We placed the 

wire strands 35–40 and 65–70 cm above the ground. Where the terrain was 

inconsistent (e.g., small ditches, mounds) we excavated, backfilled, or blocked 

low or high areas with vegetation and woody debris (Laufenberg et al. 2016, 

Humm et al. 2017, Humm and Clark 2020). We suspended bakery sweets in the 

center of the enclosure from a line about 2 m in height except for the sites within 

the national park boundary, where we used sardines. From the same line, we 

also suspended strips of cloth soaked in a concentrated flavoring used in drinks 

and candies (Mother Murphy’s Laboratories, Inc., Greensboro, NC, USA) as a 

scent attractant. We marked any hair snares constructed on public lands with 

flagging tape and a warning sign to prevent people from inadvertently stumbling 

into the barbed wire. Each site was labeled with its own numeric code to ensure 

proper labeling on sample forms (Supplement 1). 
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Sample Collection and Genetic Analysis 

 Technicians, TWRA, KDFWR, and NPS personnel, and I collected hair 

samples once per week for 6 consecutive weeks from June 2019 to August 2019 

in the primary sampling area and from June 2018 to August 2018 in the 

secondary area. All hair on a single barb was considered a sample. We 

examined each barb along each strand of wire for hair samples and used forceps 

to collect the hair sample. We placed the sample into a coin envelope which was 

labeled with site identifier, top or bottom strand, barb number, week of sampling, 

and date. We sterilized forceps and all barbs with a flame after sample collection 

to avoid cross contamination of genetic material. 

 I sent all collected hair samples to Wildlife Genetics international (WGI; 

Nelson, British Columbia, Canada) for genotyping. Before genotyping, WGI 

personnel first conducted visual assessment of the samples discarding any that 

obviously did not come from a bear and those that did not contain guard hairs or 

>5 underfur hairs. We used a set of 8 microsatellites (G10B, G10H, G10J, G10P, 

G10M, G10L, MU23, and a ZFX/ZFY sex marker), many of which were used in 

previous projects from the region (Hast 2010, Murphy 2011, Murphy et al. 2015). 

A different set of microsatellites were used to genotype the secondary samples 

(G1A, G1D, G10H, G10J, G10L, G10M, MU50, MU59 and a sex marker 

ZFX/ZFY) because this effort was part of a larger project (Humm et al. 2020). 

Four loci (G10H, G10J, G10L, and G10M) were common between the 2 

analyses. Genotyping consisted of a first pass, cleanup, and error-check, as 
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detailed by Paetkau and Strobeck (1994) and Paetkau (2003). WGI technicians 

first purified the DNA using QIAGEN DNeasy Blood and Tissue kits under the 

tissue protocol. WGI discarded samples that had low confidence scores at >3 

markers on the first run of amplification. Samples that had incomplete genotypes 

after the first pass, but that had not been culled (i.e. those with high-confidence 

data for 4–7 markers), went through at least 1 round of reanalysis to resolve 

incomplete genotypes for some markers. The error-check consisted of an 

evaluation of pairs of genotypes that were similar and could have arisen through 

genotyping error (Paetkau 2003). Errors produce genotypes that match at all but 

1 or, more rarely, all but 2 markers, so the error-check protocol essentially 

prevents the identification of false individuals (Kendall et al. 2009).  

 

Population Analysis 

 Recently developed spatially explicit capture-recapture (SECR) methods 

for estimating density (D) hold an advantage over traditional mark-recapture 

(Efford 2004). The traditional method tends to overestimate density if the 

assumption of a closed population is violated due to individuals along the 

periphery of the study area moving in and out of the effective trapping area. This 

results in low-biased capture probabilities and high-biased estimated abundance 

(Boulanger and McLellan 2001). However, SECR incorporates the spatial 
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distribution of captures and capture histories of individuals into maximum 

likelihood-based models (Borchers and Efford 2008).  

 After the hair samples were genotyped to identify individuals, I created 

individual capture histories (Supplement 2) for use in spatially explicit estimation 

methods incorporated into the R-based (R Core Team 2020) software package 

‘secr’. Package ‘secr’ works by estimating home range parameters and activity 

centers based on captures of individual animals at different traps and recapture 

rates across the 6-week sampling period. Based on where and the number of 

occasions in which an animal was detected, the activity center of detected 

animals can be estimated along with a scaling parameter (σ) that relates to home 

range.  Based on the frequency by which individual animals were detected, 

detection probabilities can be estimated based on a half-normal detection 

function (g(d) = g0exp(-d2/2σ2)), where g is probability of detection, g0 is the 

probability of detection if the trap was placed at the activity center, d represents 

the distance from a hair snare to an animal’s activity center, and σ is a spatial 

scaling parameter determining the rate of decrease in detection rate with d.  

 One of the advantages of SECR methods is that animals can have varying 

detection rates based on the location of their activity centers.  Animals with 

activity centers near hair traps have a higher probability of being captured than 

those with activity centers distant to traps, based on the detection function.  That 

also means that some animals may have low or even zero probabilities of 

detection; this enables sampling based on clusters of hair traps, with large areas 
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with no hair traps.  Inference in the non-sampled areas is based on the 

assumption that the clusters are deployed in bear habitats and non-habitats in 

proportion to their availability.  Environmental covariates can then be used to 

model inhomogeneous density. 

 I separately estimated male and female densities because home range 

size, detection rates, and trap heterogeneity often differ by sex in bears. As a 

polygamous species, bear harvest and growth models are often exclusively 

based on female demographics (Humm et al. 2020). However, as this is a 

reintroduced population that may be rapidly growing, male density and 

abundance estimates are useful for estimating expansion because male bears 

typically disperse farther and at higher rates than females. Although the 

secondary study area was sampled in 2018, 1 year prior to the primary study 

area, I pooled all primary and secondary study area data across years assuming 

that population densities would not substantially change from 2018 to 2019 and 

that there would be no captures of individual bears in >1 trap cluster in different 

years or zones. This enabled me to maximize statistical power by jointly 

estimating g0 and σ across both sampling periods. 

 To estimate density, I created a discretized mask based on a 1,000-m 

resolution or mesh size (i.e., 30-m pixel values within a 1,000- x 1,000-m window 

were reduced to 1 central point with attributes of the surrounding cells) and a 

24,000-m buffer around the traps. I assigned landscape covariates based on the 

National Landcover Dataset (NLCD, Yang et al. 2018). I grouped some of the 
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land cover types into categories to reduce the number of covariates and to 

expedite the modeling process. First, I grouped crops into attractive (Attract_cr) 

versus non-attractive crops (Noattractc) to bears. I defined attractive crops as 

those that are eaten by bears during the sampling period (i.e. corn, sorghum, and 

peanuts); all others were considered non-attractive (i.e. soybeans, tobacco, and 

cotton). My expectation was that bear densities would be higher in areas 

associated with attractive crops. I grouped open water, woody wetlands, and 

emergent herbaceous wetlands into a water layer. My hypothesis was that bear 

densities would be higher near water. I grouped developed, open space; 

developed, low intensity; developed, medium intensity; and developed, high 

intensity into a development layer (developed_). My prediction was that bear 

densities would be lower in developed areas. Bear densities are usually higher in 

forests, so I combined deciduous forest, evergreen forest, and mixed forest into a 

forest layer (forest_cov). Evergreen forest areas were few and immediately 

adjacent to mixed forest areas; therefore, I combined evergreen forests with 

mixed forest to create a mixed forest layer (mixed_for_). For the development, 

forest, deciduous forest, mixed forest, water, and attractive crop data layers, I 

performed a focal mean calculation in ArcMap 10.6 (ESRI, Redlands, CA, USA) 

using a 1,000- x 1,000-m moving window on the map layer to produce average 

percent coverage layers (i.e. Avg_Dev, Avg_For, Avg_Dec_Fo, Avg_Mix_Fo, 

Avg_water, and AvgAtrCrop). I performed a Euclidean distance calculation on the 

attractive crop, water, development, and the BSF layers to produce ‘distance to’ 
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covariates. I scaled those covariates using the scale function in R which 

subtracted the mean of the vector from the covariate value then divided by the 

standard deviation (e.g., (Dist_Dev-mean)/SD). This scaling was done to 

facilitate convergence of the maximum likelihood estimator in ‘secr’.   

 I followed model building procedures based on Zhang (2016). I first 

performed a correlation analysis to eliminate 1 of any pair of environmental 

covariates on D with correlation coefficients >0.7. I then evaluated the remaining 

covariates singly holding the base detection rate (g0) and the home-range scaling 

parameter (σ) constant (g0~1, σ~1). I used Akaike’s Information Criterion 

adjusted for small sample size (AICc, Burnham and Anderson 1998) to assess 

whether effects were supported and used 95% confidence intervals of the 

covariate effects (i.e., β values) to determine if the slopes included 0 (i.e., no 

effect). I considered models to be supported if the AICc value was within 2.0 AICc 

of the top model (Burnham and Anderson 1998). After I identified the individual 

covariates on D that were supported, I combined biologically reasonable 

covariates into additive models and assessed these models with effects on 

detection parameters. I considered covariates to be biologically reasonable if the 

combination of the covariates would feasibly influence black bear density and 

were not redundant (despite correlation coefficients <0.7).  For example, Avg_For 

+ Avg_Mix_For in an additive model would be redundant whereas Avg_For + 

Scale_Dist_Dev would be biologically reasonable. I evaluated whether g0 or σ 

were affected by a site-specific behavioral response (bk) and by a 2-factor finite 
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mixture model of individual capture heterogeneity (h2, Pledger 2000). Once 

density estimates were obtained, I estimated abundance (N) by summing the 

estimated densities for all mask points within a respective jurisdiction. My 

estimates do not include cubs of the year, as supported by Laufenberg et al. 

(2016) who utilized long-term live capture coupled with hair sample data to 

conclude cubs were not captured using the same barbed-wire configuration.  

 To estimate population growth rate, I used the growth rate equation Nt = 

Noλt to estimate λ (the finite annual growth rate) based on 18 bears residing in 

BSF in 1998 (N0), Nt being my abundance estimate, and t being the elapsed time 

(years) between Nt and N0 (t = 21). I used the delta method to estimate SEs for 

combined estimates by sex with the R package ‘emdbook’ (Bolker 2020). I used 

model averaging to estimate real and beta parameters if >1 model was supported 

(Symonds and Moussalli 2011), and constructed asymmetric 95% CIs for N 

based on Williams et al. (2002). 

 I used Program CERVUS (version 3.0.3; Kalinowski et al. 2007) to 

estimate mean expected heterozygosity. I used the chi-square test with 

Bonferroni correction in CERVUS to test for deviance from Hardy Weinberg 

equilibrium for each locus for bears in the BSF Study Area. I estimated genetic 

diversity as expected heterozygosity, which I compared to the estimate in Murphy 

et al. (2015). 
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RESULTS 

Technicians, agency personnel, and I constructed 440 (217 in Tennessee 

and 223 in Kentucky) of the proposed 492 hair snares in May-June 2019 

arranged in 59 clusters of 4–9 traps/cluster. We collected 2,018 hair samples 

during the 6-week sampling period from mid-June to the end of July in 2019. Hair 

samples were collected from 213 (48.4%) hair snares but only 100 (22.7%) sites 

provided samples that met our minimum standards for analysis (i.e., guard hairs 

or >5 underfur hairs and passed visual inspection to be bear hair). The 138 hair 

traps sampled by TWRA in 2018 produced only 2 detections of bears. 

Of the 2,018 samples sent to WGI, 516 (26%) lacked suitable material for 

analysis and 392 (19%) did not pass visual inspection for species identification. 

Of the remaining samples (1,110), 4 contained hair from >1 bear, 294 (15%) 

failed genotyping. The remaining 812 (40%) hair samples were analyzed at WGI 

using the microsatellites G10B, G10H, G10J, G10P, G10M, G10L, MU23, and a 

ZFX/ZFY sex marker for individual identification. All individuals were successfully 

genotyped at 8 microsatellites with no missing loci. The 812 samples were 

assigned to 169 individual bears (74F:95M; Table 2), 2 of which were previously 

genotyped from the 2012 TWRA data set used in Murphy et al. (2015). The 

TWRA hair snares produced only 2 individual male captures. Although only 4 loci 

were common to both data sets, the genotypes differed at 3 of the 4 loci so I 

considered those to be unique individuals. I incorporated those 2 capture events 

in the secondary area into my analysis.  
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For males, 2 models were supported based on AICc scores (Table 3). In 

both models, individual heterogeneity modeled as a 2-class finite mixture (h2) 

and site-specific behavioral response (bk) were supported as additive terms for 

g0. For σ however, the top model supported individual heterogeneity (h2) 

whereas the second-ranked model supported both individual heterogeneity (h2) 

and a site-specific behavioral response (bk).  I averaged those 2 models and the 

result supported a negative association between density and distance to BSF 

(Scale_dist_BISO; β = -0.894, 95% CI = -1.263–-0.525) and a positive 

association between density and percent forest (Avg_For; β =9.124, 95% CI = 

0.595–17.653). Effects of distance to development were marginal as the 95% CI 

included zero after model averaging (Scale_Dist_Dev; β = 0.092, 95%CI = -

0.161–0.345).  

Females were similar in that 2 models were supported based on AICc 

scores (Table 4). Again, in both models, individual heterogeneity modeled as a 2-

class finite mixture (h2) and site-specific behavioral response (bk) were 

supported as additive terms for g0. For σ however, the top model supported 

individual heterogeneity (h2) and site-specific behavioral response (bk), whereas 

the second supported only individual heterogeneity (h2). The same covariate 

associations were supported for females (Scale_dist_BISO, β = -1.534, 95% CI = 

-2.048–-1.019; Avg_For, β = 11.117, 95% CI = 1.986–20.249), but with a 

stronger relationship with Scale_Dist_Dev, β = 0.236, 95% CI = 0.053–0.420), 

than for males.  
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Excluding cubs of the year, model averaged mean abundance (expected 

N) was 436.2 (95% CI = 234.1–812.5) males (0.012 males/km2 [95% CI = 0.007–

0.023]) and 450.9 (95% CI = 295.0–689.1) females (0.013 females/km2 [95% CI 

= 0.008–0.020]) in the 36,035-km2 BSF Study Area (including the 24,000-m 

buffer around the traps). The total number of bears estimated on my study area 

was 887.1 (95% CI = 607.5–1,295.3) bears of both sexes (0.025 bears/km2 [95% 

CI = 0.017–0.037]). I estimated 58.4 males (95% CI = 32.1–106.5) and 106.6 

females (95% CI = 67.2–169.1) within the BSF boundary. Kentucky’s estimated 

population in the study area was 336.0 bears (170.2M, 95% CI = 89.1–325.3; 

165.7F, 95% CI = 106.8–257.2) when BSF was included and 297.8 (156.4M, 

95% CI = 80.9–302.4; 141.3F, 95% CI = 89.7–222.8) excluding bears within 

BSF. The number of bears in the Cumberland Plateau in Tennessee was 541.8 

(256.6M, 95% CI = 144.7–487.8; 285.2F, 95% CI = 187.5–433.8) including bears 

in BSF and 423.9 (221.0M, 95% CI = 118.0–413.9; 202.9F, 95% CI = 129.9–

317.1) excluding bears found within BSF (Table 5). Based on an estimated 18 

bears in the population in 1998, the average annual growth rate of the 

reintroduced population was 20.4%. Bear densities tended to be higher within 

and adjacent to BSF and in forested areas farther from development. Male 

density ranged up to 0.28 males/km2 (Figure 6), whereas the maximum female 

density was 1.35 females/km2 (Figure 7). Male densities were higher in areas 

distant to BSF than female densities. Genetic diversity as indicated by expected 

heterozygosity was 0.745. 
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DISCUSSION 

My mean density estimates were lower than those for many other bear 

density estimates in the Southeast (Table 6). However, many of the other studies 

were performed in relatively small study areas where well-established bear 

populations were present. Humm et al. (2017) and Humm and Clark (2020) 

utilized similar methods to those that I used and similarly sampled much larger 

study areas intentionally including areas where density and occupancy were 

expected to be low, and their estimates are more similar to my estimates than 

those using non-spatial methods, which tend to overestimate density (Gerber et 

al. 2012). The highest densities I estimated were closely associated with the 

original release sites from Eastridge and Clark (2001), particularly for females. 

The highest estimated bear densities for males were lower than for females but 

densities of males were higher in more areas more distant from BSF, resulting 

from the assumed dispersal of males across the landscape. This finding is 

supported by black bear ecology whereby males have a higher propensity to 

disperse than do females, whereas females typically do not disperse as widely 

and frequently share a portion of their mother’s home range (Rogers 1987). 

Murphy et al. (2015) estimated an average annual mean population 

growth rate for the Tennessee population of 18.3% (95% CI = 17.4–19.5) in BSF 

from 1998 to 2012. My average annual growth rate estimate from 1998 to 2019 

was 20.4%, which suggests that the high rate of growth for this reintroduced 

population has continued. This rate of population growth is high but within what is 
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biologically feasible for black bears (Bunnell and Tait 1981). Griffith et al (1989) 

suggested that ample habitat quantity and quality were crucial to reintroduction 

success, even more so than founder size or supplementation. Availability of large 

contiguous tracts of forested lands with high hard mast productivity could be one 

of the most crucial factors for the sustained growth of this reintroduced 

population. A habitat suitability study by van Manen and Pelton (1997) predicted 

nearly half of all hard mast producing trees would obtain peak production age 

within 10 years. This is likely why percent forest (Avg_For) was highly informative 

in the top models for males and females. My estimate of genetic diversity (HE = 

0.745) was higher than that which Murphy et al. (2015) estimated (HE = 0.729) for 

the BSF population. 

Regulated bear hunting seasons within my study area were initiated in 

Kentucky and Tennessee in 2013 and 2014, respectively, with no bear hunting in 

BSF. From 2013 to 2019, hunters in Kentucky killed 61 (46M:15F, 75.4% males) 

bears (8.7 bears/yr) in Bell, Knox, McCreary, Pulaski, Wayne, and Whitley 

counties. From 2014 to 2019, hunters in Tennessee harvested 195 (121M:74F, 

62.1% males) bears (32.5 bears/yr) in Cumberland (North of I-40), Fentress, 

Morgan, Pickett (East of Hwy 111), and Scott (West of Hwy 27) counties (Table 

1). Numerous studies have found male-biased vulnerability to harvest for 

American black bears (McIlroy 1972, Fraser et al. 1982, Kohlmann et al. 1999, 

Malcolm and Van Deelen 2010). Based on my population estimates, growth 

rates, and harvest reports, harvest rates in Kentucky from 2013 to 2019 
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averaged 4.8%, ranging from 2.1% to 6.9% annually. In Tennessee, harvest 

rates from 2014 to 2019 averaged 12.5% ranging from 4.9% to 24.4% (Table1). 

Overall, the percentage of females in the harvest in Tennessee has been higher 

(39.7%) than in Kentucky (24.6%).  

Officials in Kentucky utilized a quota system to limit female bear harvest. 

Once the set quota of females was harvested, the bear hunting season in 

Kentucky was halted.  Tennessee officials, in contrast, had pre-established 

hunting seasons, with no quotas on number of females taken by hunters. The 

bear population growth rate of bears in Tennessee and Kentucky since the 

Murphy et al. (2015) estimates were 15.0% and 31.1%, respectively. The 

difference in growth rates is likely attributable to the differing management 

strategies implemented shortly after that study. The more liberal hunting 

regulations in Tennessee may have slowed population growth, whereas 

Kentucky has seen extremely high growth, possibly because of more 

conservative harvest regulations and the availability of contiguous forest lands of 

Daniel Boone National Forest. These high growth rates in Kentucky may be 

above what is thought to be biologically achievable for the species, so it is 

possible that the Murphy et al. (2015) population estimate was biased low, likely 

because of the restricted sampling extent and because the widely spaced trap 

layout used during that study resulted in areas between traps that were not 

sufficiently sampled. 
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CONCLUSIONS AND MANAGEMENT IMPLICATIONS 

 My results indicate positive population growth at rates similar to those 

reported by Murphy et al. (2015), which suggests that vital rates have not yet 

begun to decline due to density effects. Population estimates alone are not 

necessarily augury of population health; therefore, I suggest a continued 

assessment of abundance over time should be conducted. This population of 

black bears has been studied several times since its reintroduction and continued 

monitoring will be invaluable for future management in Tennessee and Kentucky 

and illustrates the growth potential for this species in high quality habitat with few 

competitors. Further, more detailed landscape covariates would further refine the 

density estimates and better inform wildlife agencies as to what management 

strategies are most advantageous. Utilization of spatially explicit capture-

recapture methods using DNA samples offers opportunities to be integrated with 

other data types to be used to estimate other informative parameters such as 

survival and fecundity (Royle et al. 2014, Chandler and Clark 2014). Previous 

genetic studies have showed retention of genetic diversity and my estimates of 

expected heterozygosity remain high; however, continued monitoring of genetic 

diversity and assessment of immigration for the BSF population should continue 

to be evaluated at BSF (Hast 2010, Murphy 2011, Murphy et al. 2015, Murphy 

2016). Comparison of harvest rates and growth rates between Tennessee and 

Kentucky indicate that this population can withstand harvest and still have 

positive growth. If an agency’s goal is to maintain a high population growth rate 
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and range expansion of black bears, conservative regulations like those in 

Kentucky are beneficial. The population is still primarily centered around the 

original release sites within BSF from the 1996–1997 reintroduction by Eastridge 

and Clark (2001). This suggests that BSF will continue to act as a source 

population for harvest outside of the park; therefore, current harvest rates are not 

likely to reduce the population to the point of no recovery.  
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Table 1. Black bear harvest and harvest rates in Kentucky and Tennessee within 

the Big South Fork Study Area, 2018–2019.  

State Year 

Total 

harvest Male Female % female 

Harvest 

rates Estimated N1 

TN 2014 14 9 5 35.7% 8.2% 170 

TN 2015 48 25 23 47.9% 23.5% 204 

TN 2016 34 27 7 20.6% 13.9% 245 

TN 2017 14 12 2 14.3% 4.8% 294 

TN 2018 61 32 29 47.5% 17.3% 353 

TN 2019 24 16 8 33.3% 5.7% 424 

TN 2014-19 195 121 74 38.0% 12.2%* -- 

KY 2013 2 2 0 0.0% 1.8% 113 

KY 2014 7 6 1 14.3% 5.2% 135 

KY 2015 9 7 2 22.2% 5.6% 162 

KY 2016 9 6 3 33.3% 4.6% 194 

KY 2017 6 6 0 0.0% 2.6% 233 

KY 2018 17 12 5 29.4% 6.1% 280 

KY 2019 11 7 4 36.4% 3.3% 336 

KY 2013-19 61 46 15 24.6% 4.2%* -- 

* Values with asterisks indicate average harvest rate across all years since respective hunting 
seasons began. 
1 Estimated N was derived from applying the estimated annual growth rate backward from the 
2019 population estimate. 
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Table 2. Capture summaries for female and male bears in the Big South Fork 

Study Area, 2018–2019.  

Female Capture Summary 

Occasion (sample collection period) 1 2 3 4 5 6 Total 

n (no. individuals detected) 15 23 24 22 26 24 134 

u (no. individuals unmarked) 15 19 14 9 9 8 74 

f (no. time captured) 42 18 5 5 3 1 74 

M(t+1) (no. marked and released) 15 34 48 57 66 74 74 

Losses 0 0 0 0 0 0 0 

Detections 16 24 27 25 35 28 155 

Detectors visited 14 22 21 18 29 25 129 

Detectors used 578 579 579 579 579 579 3473 

Male Capture Summary 

Occasion (sample collection period) 1 2 3 4 5 6 Total 

n (no. individuals detected) 19 23 27 27 31 30 157 

u (no. individuals unmarked) 19 18 18 13 14 14 96 

f (no. time captured) 63 17 9 4 1 2 96 

M(t+1) (no. marked and released) 19 37 55 668 82 96 96 

Losses 0 0 0 0 0 0 0 

Detections 20 28 29 28 38 34 177 

Detectors visited 20 22 23 24 32 32 153 

Detectors used 578 579 579 579 579 579 3473 
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Table 3. Top models used to fit spatially explicit capture-recapture models to 

capture histories of male black bears at hair trap sites in the Big South Fork 

Study Area, 2018–2019.  

Model 

No. 

parameters 

Log 

likelihood AICc ΔAICc 

AICc 

weight 

D1~Avg_For2 + Scale_Dist_Dev3 

+ Scale_dist_BISO4; g0
5~bk6 + 

h27; σ~h28; pmix9~h2 10 -709.29 1441.16 0.00 0.5036 

D~Avg_For + Scale_Dist_Dev + 

Scale_dist_BISO; g0~bk + h2; 

σ~bk + h2; pmix~h2 11 -708.02 1441.19 0.03 0.4964 

D~Avg_For + Scale_Dist_Dev + 

Scale_dist_BISO; g0~bk + h2; 

σ~1; pmix~h2 9 -725.65 1471.40 30.24 0 

D~Avg_For + Scale_Dist_Dev + 

Scale_dist_BISO; g0~bk; σ~1 7 -733.56 1482.40 41.23 0 

  
 

1 Density 
2 Percent forest 
3 Scaled distance to developed land cover 
4 Scaled distance to the BSF 
5 Detection probability at activity center 
6 Site-specific behavioral response 
7 Home range scaling parameter 
8 Two-class finite mixture model of individual heterogeneity 
9 Proportions if classes in h2 
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Table 4. Top models used to fit spatially explicit capture-recapture models to 

capture histories of female black bears at hair trap sites in the Big South Fork 

Study Area, 2018–2019.  

Model 

No. 

parameters 

Log 

likelihood AICc ΔAICc 

AICc 

weight 

D1~Avg_For2 + 

Scale_Dist_Dev3 + 

Scale_dist_BISO4; g0
5~bk6 + 

h27; σ8~bk + h2; pmix9~h2 11 -524.40 1075.07 0.00 0.74 

D~Avg_For + Scale_Dist_Dev 

+ Scale_dist_BISO; g0~bk + 

h2; σ~h2; pmix~h2 10 -526.81 1077.11 2.04 0.26 

D~Avg_For + Scale_Dist_Dev 

+ Scale_dist_BISO; g0~bk + 

h2; σ~1; pmix~h2 9 -546.79 1114.39 39.32 0.00 

D~Avg_For + Scale_Dist_Dev 

+ Scale_dist_BISO; g0~bk; 

σ~1 7 -553.59 1122.89 47.82 0.00 

 
1 Density 
2 Percent forest 
3 Scaled distance to developed land cover 
4 Scaled distance to the BSF 
5 Detection probability at activity center 
6 Site-specific behavioral response 
7 Two-class finite mixture model of individual heterogeneity 
8 Two-class finite mixture model of individual heterogeneity 
9 Proportions if classes in h2 
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Table 5. Estimates of black bear abundances excluding cubs, Big South Fork Study Area, 2019.   

 
1 Big South Fork National River and Recreation Area 
95% confidence interval are in parenthesis  

  Males Females Total 

BSF1 58.4 (32.1–106.5) 106.6 (67.2–169.1) 165.1 (30.5–892.0) 

KY including BSF 170.2 (89.1–325.3) 165.7 (106.8–257.2) 336.0 (129.9–896.0) 

KY not including BSF 156.4 (80.9–302.4) 141.4 (89.7–222.8) 297.8 (103.5–856.7) 

TN including BSF 265.6 (144.7–487.8) 285.2 (187.5–433.8) 550.8 (302.0–1004.7) 

TN not including BSF 221.0 (118.0–413.9) 202.9 (129.9–317.1) 423.9 (196.4–914.7) 
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Table 6. Estimated densities of black bears in the southeastern US.  

Location Bears/km2 Reference 

Eglin, FL 0.025 Humm (2017) 

Big South Fork KY & TN 0.03 Murphy (2011) 

Carvers Bay, SC 0.04 Drewry (2010) 

Eglin, FL 0.041 Simek et al. (2005) 

Apalachicola, FL 0.082 Humm (2017) 

Southern Appalachian Bear Study SC 0.118, 0.002* Humm & Clark (2020) 

Southern Appalachian Bear Study TN 0.119, 0.017* Humm & Clark (2020) 

Southern Appalachian Bear Study GA 0.121, 0.011* Humm & Clark (2020) 

Osceola, FL 0.127 Humm (2017) 

Ocala/St. Johns, FL 0.127 Humm (2017) 

Southern Appalachian Bear Study 

(GA, NC, SC, TN) 0.13 Humm & Clark (2020) 

Big Cypress, FL 0.132 Humm (2017) 

Big Cypress, FL 0.131 Simek et al. (2005) 

Osceola, FL 0.14 Simek et al. (2005) 

Southern Appalachian Bear Study NC 0.141, 0.026* Humm & Clark (2020) 

Upper Atchafalaya River Basin, LA 0.15–0.18 Lowe (2011) 

White River National Wildlife Refuge, 

AR 0.22–0.25 Clark et al. (2010) 
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Ocala, FL 0.24 Simek et al. (2005) 

Lewis Ocean Bay, SC 0.31 Drewry (2010) 

Tensas River Basin, LA 0.66 Hooker (2010) 

 
*Densities with asterisks represent secondary study areas (e.g. primary, secondary; i.e. areas sampled 
separately that were suspected to have lower densities).

  

Table 6 Continued. 
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Appendix B: Figures 
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Figure 1. Locations of 233 black bear hair traps and 106 visited hair traps where Murphy 

et al. (2015) collected hair samples near the Big South Fork in Kentucky (2010), and 

Tennessee (2012), USA.  
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Figure 2. Bear Hunt Zones in Tennessee and Kentucky, Big South Fork Study Area, 

2018–209 hunting season.  
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Figure 3. Map of primary and secondary black bear hair snare study areas on the 

Cumberland Plateau, Big South Fork Study Area in Tennessee and Kentucky, 2018–

2019. 
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Figure 4. Proposed 492 black bear hair snare locations, Big South Fork Study Area, 

2019 
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Figure 5. Locations of 578 black bear hair snares constructed, Big South Fork Study 

Area in Kentucky and Tennessee, USA in 2018 (blue dots) and 2019 (green dots). Hair 

snares are roughly spaces 2 km within clusters and 16 km from cluster center to center 

for 2019 and 24 km cluster center to center for 2018. 
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Figure 6. Density of males (bears/km2) excluding cubs, Big South Fork Study Area, 

2018–2019. Stars indicate approximate release sites of the 1996–1997 reintroduction.  
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Figure 7. Density of females (bears/km2) excluding cubs, Big South Fork Study Area, 

2018–2019. Stars indicate approximate release sites of the 1996–1997 reintroduction.  
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Appendix C: Supplementary Data 
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Supplement 1. List of hair snare identifiers and coordinates of construction in latitude-

longitude and UTM, Big South Fork Study Area 2018–2019. 

Year Site_ID Latitude Longitude Easting  Northing 

2019 1.2 35.93272 -84.870 692173.8 3978584 

2019 1.3 35.93022 -84.848 694183.3 3978350 

2019 1.5 35.91655 -84.875 691706.6 3976779 

2019 1.6 35.90833 -84.855 693522.3 3975907 

2019 2.1 36.09662 -85.050 675527.6 3996426 

2019 2.2 36.08837 -85.029 677440.2 3995549 

2019 2.3 36.08757 -85.006 679516.8 3995503 

2019 2.4 36.07821 -85.058 674868.8 3994369 

2019 2.5 36.07317 -85.033 677103.1 3993855 

2019 2.6 36.07152 -85.012 679015.7 3993711 

2019 2.7 36.05955 -85.053 675382.7 3992308 

2019 2.8 36.06003 -85.033 677139.8 3992397 

2019 3.1 36.07571 -84.874 691466.9 3994439 

2019 3.2 36.08033 -84.852 693429.1 3994996 

2019 3.3 36.07443 -84.828 695607.4 3994389 

2019 3.4 36.06259 -84.880 690974.8 3992973 

2019 3.5 36.05983 -84.857 692968.9 3992710 

2019 3.6 36.05636 -84.828 695669.9 3992385 

2019 3.7 36.04459 -84.874 691478.6 3990985 

2019 3.8 36.04232 -84.856 693102.1 3990769 

2019 3.9 36.04172 -84.839 694682.4 3990738 

2019 4.1 36.05860 -84.700 707154.5 3992897 

2019 4.2 36.05527 -84.672 709645.8 3992586 

2019 4.3 36.05501 -84.654 711313.6 3992598 

2019 4.4 36.04061 -84.699 707326.8 3990905 

2019 4.5 36.04196 -84.676 709328.5 3991102 

2019 4.6 36.03949 -84.652 711492.1 3990879 

2019 4.7 36.02590 -84.698 707458.7 3989274 

2019 4.8 36.02025 -84.680 709061.0 3988685 

2019 4.9 36.01837 -84.657 711147.1 3988526 

2019 5.1 36.04533 -84.519 723472.2 3991825 

2019 5.2 36.03989 -84.492 725957.0 3991285 

2019 5.3 36.04005 -84.475 727450.7 3991341 

2019 5.4 36.03034 -84.521 723329.3 3990157 

2019 5.6 36.02573 -84.474 727571.4 3989754 



 

54 
 

Supplement 1 Continued. 

2019 5.7 36.00953 -84.521 723389.1 3987848 

2019 5.8 36.00649 -84.502 725151.8 3987555 

2019 6.1 36.25435 -85.210 660846.4 4013647 

2019 6.2 36.24876 -85.189 662715.9 4013062 

2019 6.3 36.25205 -85.165 664819.6 4013467 

2019 6.4 36.23319 -85.214 660512.5 4011293 

2019 6.5 36.23291 -85.195 662241.0 4011294 

2019 6.6 36.23101 -85.171 664373.6 4011123 

2019 6.7 36.21835 -85.219 660096.8 4009639 

2019 6.8 36.21610 -85.195 662278.3 4009429 

2019 6.9 36.21730 -85.173 664207.9 4009598 

2019 7.1 36.23383 -85.031 676913.4 4011682 

2019 7.2 36.23847 -85.010 678828.6 4012236 

2019 7.4 36.21800 -85.031 676944.9 4009926 

2019 7.6 36.21456 -84.988 680844.5 4009624 

2019 7.7 36.19857 -85.034 676756.6 4007766 

2019 7.9 36.23303 -84.986 680959.1 4011677 

2019 7.9 36.19893 -84.988 680847.5 4007889 

2019 8.1 36.22276 -84.854 692922.2 4010793 

2019 8.4 36.19984 -84.853 693060.4 4008253 

2019 8.5 36.20091 -84.836 694571.9 4008404 

2019 8.7 36.18551 -84.859 692540.8 4006650 

2019 8.8 36.18189 -84.836 694616.4 4006294 

2019 8.9 36.17844 -84.815 696525.7 4005954 

2019 9.1 36.20585 -84.673 709221.5 4009293 

2019 9.2 36.19801 -84.651 711236.5 4008470 

2019 9.3 36.19688 -84.635 712675.8 4008380 

2019 9.4 36.18333 -84.673 709217.7 4006792 

2019 9.5 36.18287 -84.654 710942.3 4006782 

2019 9.6 36.18522 -84.634 712782.4 4007088 

2019 9.7 36.16959 -84.680 708700.9 4005254 

2019 9.8 36.16379 -84.653 711086.1 4004668 

2019 9.9 36.16591 -84.631 713082.5 4004951 

2019 10.1 36.18110 -84.497 725138.3 4006941 

2019 10.2 36.18083 -84.473 727246.4 4006966 

2019 10.3 36.18013 -84.457 728661.8 4006924 

2019 10.4 36.16888 -84.496 725193.1 4005586 

2019 10.5 36.16873 -84.482 726474.7 4005602 
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2019 10.6 36.16651 -84.454 729026.0 4005422 

2019 10.7 36.14867 -84.505 724432.3 4003323 

2019 10.8 36.14871 -84.478 726902.3 4003391 

2019 10.9 36.14507 -84.460 728549.3 4003029 

2019 11.1 36.16877 -84.323 740824.9 4005990 

2019 11.2 36.16735 -84.292 743535.9 4005908 

2019 11.4 36.15218 -84.319 741169.6 4004158 

2019 11.5 36.15257 -84.299 742985.8 4004252 

2019 11.7 36.13619 -84.324 740803.4 4002373 

2019 12.1 36.39592 -85.190 662328.9 4029386 

2019 12.4 36.37620 -85.187 662588.9 4027202 

2019 12.5 36.37695 -85.166 664477.1 4027321 

2019 12.7 36.35678 -85.193 662160.4 4025039 

2019 12.8 36.35401 -85.171 664071.4 4024767 

2019 12.9 36.35396 -85.155 665564.6 4024791 

2019 13.1 36.38062 -85.010 678529.3 4028006 

2019 13.2 36.37382 -84.985 680788.3 4027299 

2019 13.3 36.37456 -84.965 682566.1 4027418 

2019 13.4 36.36462 -85.012 678328.0 4026227 

2019 13.5 36.35771 -84.996 679833.4 4025491 

2019 13.6 36.35550 -84.968 682329.4 4025298 

2019 13.7 36.34005 -85.014 678235.6 4023498 

2019 13.8 36.34309 -84.994 679986.4 4023872 

2019 13.9 36.33882 -84.973 681915.5 4023437 

2019 14.1 36.36197 -84.834 694353.8 4026277 

2019 14.2 36.36264 -84.810 696529.1 4026400 

2019 14.3 36.35692 -84.790 698328.3 4025807 

2019 14.4 36.34047 -84.836 694168.5 4023887 

2019 14.5 36.34137 -84.812 696359.9 4024036 

2019 14.6 36.33895 -84.791 698243.3 4023810 

2019 14.7 36.32831 -84.837 694122.6 4022536 

2019 14.8 36.32684 -84.812 696418.2 4022424 

2019 14.9 36.32142 -84.793 698149.7 4021862 

2019 15.1 36.34119 -84.652 710759.6 4024354 

2019 15.2 36.34376 -84.628 712829.8 4024689 

2019 15.3 36.33974 -84.608 714680.3 4024289 

2019 15.4 36.32844 -84.653 710707.9 4022937 

2019 15.5 36.32699 -84.635 712325.6 4022816 
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2019 15.6 36.32274 -84.610 714522.6 4022398 

2019 15.7 36.30972 -84.659 710143.6 4020845 

2019 15.8 36.30327 -84.637 712181.9 4020179 

2019 15.9 36.30819 -84.616 714051.3 4020771 

2019 16.1 36.33054 -84.472 726935.4 4023579 

2019 16.2 36.32275 -84.449 728992.6 4022769 

2019 16.3 36.32159 -84.432 730561.4 4022682 

2019 16.4 36.31038 -84.480 726289.4 4021324 

2019 16.5 36.30983 -84.456 728423.0 4021319 

2019 16.6 36.30964 -84.438 730049.1 4021340 

2019 16.7 36.29252 -84.482 726147.1 4019338 

2019 16.8 36.29310 -84.456 728478.8 4019463 

2019 16.9 36.28842 -84.438 730057.2 4018985 

2019 17.1 36.30943 -84.295 742829.3 4021666 

2019 17.2 36.30655 -84.275 744689.4 4021398 

2019 17.3 36.30596 -84.248 747101.6 4021400 

2019 17.4 36.29435 -84.300 742460.9 4019981 

2019 17.5 36.29231 -84.276 744607.8 4019815 

2019 17.6 36.28712 -84.253 746697.2 4019298 

2019 17.7 36.27454 -84.299 742628.0 4017785 

2019 17.8 36.26931 -84.282 744161.3 4017248 

2019 17.9 36.26780 -84.257 746397.9 4017144 

2019 18.1 36.53814 -85.171 663680.1 4045195 

2019 18.2 36.53731 -85.147 665864.1 4045144 

2019 18.3 36.53191 -85.127 667705.7 4044581 

2019 18.4 36.52298 -85.171 663785.4 4043514 

2019 18.5 36.52071 -85.151 665574.9 4043297 

2019 18.6 36.51322 -85.124 667968.5 4042512 

2019 18.7 36.50511 -85.172 663734.5 4041530 

2019 18.8 36.49723 -85.153 665451.8 4040688 

2019 18.9 36.49776 -85.125 667900.7 4040795 

2019 19.1 36.52400 -84.990 679925.1 4043950 

2019 19.2 36.51980 -84.965 682191.5 4043531 

2019 19.3 36.51390 -84.947 683817.4 4042911 

2019 19.4 36.50160 -84.989 680066.6 4041466 

2019 19.5 36.49830 -84.966 682170.3 4041144 

2019 19.6 36.49560 -84.949 683663.6 4040876 

2019 19.7 36.48540 -85.000 679145.5 4039649 
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2019 19.8 36.48010 -84.979 681057.1 4039101 

2019 19.9 36.48340 -84.949 683701.4 4039523 

2019 20.1 36.50379 -84.810 696108.0 4042060 

2019 20.2 36.50079 -84.790 697919.6 4041768 

2019 20.3 36.49896 -84.766 700046.5 4041614 

2019 20.4 36.48391 -84.810 696177.4 4039854 

2019 20.5 36.48444 -84.792 697835.5 4039951 

2019 20.6 36.48240 -84.768 699939.3 4039772 

2019 20.7 36.46790 -84.818 695533.3 4038063 

2019 20.8 36.46473 -84.796 697440.6 4037754 

2019 20.9 36.46507 -84.773 699519.8 4037839 

2019 21.1 36.48770 -84.629 712395.6 4040659 

2019 21.2 36.48229 -84.607 714330.4 4040106 

2019 21.3 36.48100 -84.591 715800.8 4040000 

2019 21.4 36.47041 -84.638 711653.5 4038721 

2019 21.5 36.46485 -84.610 714163.9 4038165 

2019 21.6 36.46798 -84.588 716126.3 4038562 

2019 21.7 36.45447 -84.638 711654.9 4036952 

2019 21.8 36.45150 -84.616 713641.8 4036671 

2019 21.9 36.44840 -84.593 715747.8 4036379 

2019 22.1 36.46750 -84.457 727827.3 4038810 

2019 22.2 36.46840 -84.428 730425.3 4038979 

2019 22.3 36.46579 -84.403 732660.1 4038749 

2019 22.4 36.45198 -84.461 727525.8 4037079 

2019 22.5 36.44714 -84.428 730511.6 4036620 

2019 22.6 36.44374 -84.413 731841.3 4036278 

2019 22.7 36.43594 -84.454 728210.1 4035316 

2019 22.8 36.43263 -84.439 729609.5 4034985 

2019 22.9 36.43306 -84.414 731819.3 4035092 

2019 23.1 36.44864 -84.276 744170.5 4037162 

2019 23.2 36.45428 -84.252 746235.1 4037847 

2019 23.3 36.44678 -84.234 747882.3 4037061 

2019 23.4 36.43048 -84.276 744204.1 4035147 

2019 23.5 36.43477 -84.258 745759.8 4035667 

2019 23.6 36.42703 -84.229 748424.1 4034884 

2019 23.7 36.41927 -84.279 743952.3 4033895 

2019 23.8 36.41679 -84.257 745979.7 4033677 

2019 23.9 36.41267 -84.235 747891.4 4033274 
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2019 25.1 36.68211 -85.146 665656.6 4061211 

2019 25.2 36.67551 -85.123 667762.3 4060519 

2019 25.3 36.67626 -85.101 669725.9 4060642 

2019 25.4 36.66480 -85.152 665165.6 4059280 

2019 25.5 36.66090 -85.126 667442.3 4058891 

2019 25.9 36.64024 -85.109 669071.9 4056631 

2019 26.1 36.65898 -84.969 681559.7 4058966 

2019 26.2 36.66204 -84.942 683942.4 4059357 

2019 26.3 36.65609 -84.929 685142.8 4058722 

2019 26.4 36.64541 -84.967 681763.8 4057464 

2019 26.5 36.64193 -84.944 683831.0 4057122 

2019 26.6 36.64267 -84.928 685228.2 4057233 

2019 26.7 36.62346 -84.980 680635.1 4055004 

2019 26.8 36.62376 -84.949 683435.1 4055096 

2019 26.9 36.62492 -84.931 685019.6 4055259 

2019 27.1 36.64868 -84.795 697080.2 4058165 

2019 27.2 36.64273 -84.766 699724.3 4057566 

2019 27.3 36.63824 -84.745 701639.3 4057112 

2019 27.4 36.63089 -84.789 697655.0 4056204 

2019 27.6 36.62709 -84.750 701143.8 4055863 

2019 27.7 36.61333 -84.793 697381.4 4054248 

2019 27.8 36.60667 -84.772 699232.4 4053552 

2019 27.9 36.60602 -84.749 701323.6 4053528 

2019 28.1 36.62661 -84.606 714041.1 4056122 

2019 28.2 36.62504 -84.587 715756.3 4055990 

2019 28.3 36.62497 -84.567 717533.6 4056027 

2019 28.4 36.61502 -84.615 713331.6 4054817 

2019 28.5 36.61064 -84.586 715877.8 4054395 

2019 28.6 36.60313 -84.565 717756.0 4053608 

2019 28.7 36.59490 -84.620 712858.3 4052572 

2019 28.8 36.58983 -84.589 715654.9 4052079 

2019 28.9 36.59004 -84.569 717511.8 4052149 

2019 29.2 36.61223 -84.411 731574.4 4054980 

2019 29.3 36.60402 -84.387 733680.8 4054125 

2019 29.5 36.59007 -84.409 731801.3 4052525 

2019 29.6 36.58934 -84.384 734074.3 4052506 

2019 29.7 36.57258 -84.438 729241.1 4050515 

2019 29.8 36.57506 -84.417 731112.7 4050840 
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2019 29.9 36.57099 -84.387 733799.6 4050461 

2019 30.1 36.59764 -84.249 746091.9 4053764 

2019 30.2 36.59246 -84.224 748313.8 4053252 

2019 30.3 36.59249 -84.203 750200.6 4053310 

2019 30.4 36.56989 -84.253 745835.6 4050675 

2019 30.5 36.57695 -84.235 747413.9 4051504 

2019 30.6 36.57007 -84.215 749220.4 4050792 

2019 30.7 36.56146 -84.260 745252.6 4049721 

2019 30.8 36.55949 -84.231 747794.4 4049575 

2019 30.9 36.54989 -84.214 749392.0 4048556 

2019 31.1 36.57260 -84.075 761752.4 4051445 

2019 31.2 36.57513 -84.050 763934.1 4051793 

2019 31.3 36.56827 -84.026 766114.6 4051098 

2019 31.4 36.55829 -84.081 761263.7 4049841 

2019 31.5 36.55873 -84.056 763447.4 4049957 

2019 31.7 36.54491 -84.078 761529.9 4048363 

2019 31.8 36.54014 -84.057 763428.2 4047891 

2019 32.1 36.56061 -83.894 777957.9 4050622 

2019 32.2 36.55408 -83.873 779848.1 4049958 

2019 32.3 36.55632 -83.849 782063.0 4050279 

2019 32.4 36.53709 -83.897 777835.4 4048005 

2019 32.5 36.53897 -83.876 779688.6 4048274 

2019 32.6 36.53854 -83.850 782022.9 4048303 

2019 32.7 36.52722 -83.897 777808.0 4046908 

2019 32.8 36.52451 -83.878 779548.1 4046663 

2019 32.9 36.52014 -83.857 781422.5 4046239 

2019 33.3 36.81576 -85.084 670856.4 4076148 

2019 33.4 36.79907 -85.129 666920.9 4074217 

2019 33.5 36.80120 -85.105 669097.4 4074496 

2019 33.6 36.79870 -85.084 670979.5 4074256 

2019 33.7 36.78445 -85.135 666378.9 4072583 

2019 33.8 36.78563 -85.115 668194.1 4072750 

2019 34.1 36.80042 -84.943 683518.2 4074707 

2019 34.2 36.80245 -84.929 684740.4 4074959 

2019 34.3 36.80103 -84.901 687293.2 4074857 

2019 34.4 36.79232 -84.956 682335.5 4073783 

2019 34.5 36.78285 -84.931 684608.0 4072780 

2019 34.6 36.78260 -84.907 686772.1 4072800 
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2019 34.7 36.77015 -84.952 682736.8 4071331 

2019 34.8 36.76669 -84.929 684836.4 4070992 

2019 34.9 36.76605 -84.906 686935.8 4070966 

2019 35.4 36.76336 -84.773 698782.2 4070935 

2019 35.5 36.76505 -84.751 700707.8 4071168 

2019 35.6 36.76751 -84.724 703135.0 4071498 

2019 35.7 36.74974 -84.774 698721.6 4069423 

2019 35.9 36.74851 -84.728 702823.5 4069382 

2019 36.1 36.76660 -84.589 715172.3 4071693 

2019 36.2 36.76732 -84.567 717196.8 4071823 

2019 36.3 36.76779 -84.544 719190.9 4071926 

2019 36.4 36.75195 -84.590 715152.8 4070065 

2019 36.5 36.75348 -84.573 716690.4 4070274 

2019 36.6 36.74866 -84.547 719015.8 4069799 

2019 36.7 36.73186 -84.591 715117.9 4067834 

2019 36.8 36.73640 -84.570 716941.5 4068384 

2019 36.9 36.72958 -84.548 718945.4 4067678 

2019 37.1 36.75304 -84.410 731221.5 4070606 

2019 37.2 36.75134 -84.386 733318.2 4070475 

2019 37.3 36.74767 -84.363 735395.9 4070124 

2019 37.4 36.73457 -84.413 731009.3 4068550 

2019 37.5 36.73150 -84.391 732987.2 4068262 

2019 37.6 36.73068 -84.365 735319.8 4068235 

2019 37.7 36.71767 -84.416 730741.6 4066666 

2019 37.8 36.71644 -84.394 732785.4 4066585 

2019 37.9 36.71425 -84.369 734989.6 4066401 

2019 38.1 36.73552 -84.230 747376.1 4069113 

2019 38.2 36.73391 -84.208 749297.1 4068990 

2019 38.3 36.72949 -84.189 750985.8 4068549 

2019 38.4 36.71506 -84.229 747484.4 4066843 

2019 38.5 36.71160 -84.215 748724.4 4066495 

2019 38.6 36.71109 -84.190 751013.8 4066506 

2019 38.7 36.70175 -84.231 747399.5 4065363 

2019 38.8 36.69785 -84.214 748920.3 4064974 

2019 38.9 36.69770 -84.194 750714.6 4065010 

2019 39.1 36.71650 -84.051 763395.8 4067479 

2019 39.2 36.71547 -84.026 765668.7 4067435 

2019 39.3 36.71140 -84.000 767924.0 4067054 
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2019 39.4 36.69933 -84.052 763384.1 4065571 

2019 39.5 36.69493 -84.031 765232.7 4065140 

2019 39.6 36.69867 -84.005 767538.8 4065627 

2019 39.8 36.68152 -84.029 765493.1 4063659 

2019 39.9 36.67823 -84.009 767303.3 4063349 

2019 40.1 36.69718 -83.875 779226.8 4065835 

2019 40.2 36.69937 -83.848 781585.3 4066156 

2019 40.3 36.69204 -83.825 783692.9 4065411 

2019 40.4 36.68610 -83.875 779267.3 4064605 

2019 40.5 36.67968 -83.850 781505.1 4063965 

2019 40.6 36.67881 -83.823 783861.2 4063947 

2019 40.7 36.66187 -83.873 779494.7 4061921 

2019 40.9 36.65738 -83.831 783234.4 4061545 

2019 42.4 36.86197 -84.206 749046.9 4083205 

2019 43.1 36.92924 -84.745 700825.5 4089399 

2019 43.2 36.92741 -84.723 702792.2 4089243 

2019 43.3 36.92843 -84.699 704981.2 4089408 

2019 43.4 36.90836 -84.751 700379.7 4087070 

2019 43.6 36.90873 -84.708 704172.7 4087201 

2019 43.7 36.89736 -84.751 700425.6 4085850 

2019 43.8 36.89420 -84.730 702232.3 4085542 

2019 43.9 36.89155 -84.707 704333.8 4085298 

2019 44.1 36.91012 -84.563 717085.3 4087676 

2019 44.2 36.90882 -84.542 718941.9 4087579 

2019 44.3 36.90765 -84.520 720918.0 4087500 

2019 44.4 36.89560 -84.567 716795.7 4086056 

2019 44.5 36.89339 -84.547 718544.1 4085855 

2019 44.6 36.88917 -84.527 720408.0 4085435 

2019 44.7 36.87735 -84.572 716437.6 4084020 

2019 44.8 36.87595 -84.546 718679.9 4083923 

2019 44.9 36.87276 -84.526 720518.2 4083616 

2019 45.1 36.89360 -84.388 732707.9 4086255 

2019 45.3 36.88995 -84.342 736830.5 4085964 

2019 45.4 36.88087 -84.391 732528.8 4084837 

2019 45.5 36.87365 -84.366 734793.3 4084097 

2019 45.6 36.87204 -84.344 736724.8 4083972 

2019 45.7 36.85959 -84.396 732101.0 4082462 

2019 45.8 36.85725 -84.373 734227.9 4082260 
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2019 45.9 36.85777 -84.343 736840.6 4082391 

2019 46.1 36.87517 -84.207 748924.9 4084668 

2019 46.2 36.87382 -84.183 751043.1 4084580 

2019 46.3 36.87464 -84.154 753656.1 4084748 

2019 46.5 36.86276 -84.184 751019.4 4083351 

2019 46.6 36.85870 -84.165 752759.3 4082952 

2019 46.7 36.84134 -84.216 748293.0 4080892 

2019 46.8 36.83857 -84.186 750904.9 4080660 

2019 46.9 36.83996 -84.175 751882.4 4080844 

2019 48.1 37.07191 -84.725 702277.4 4105272 

2019 48.4 37.05354 -84.727 702089.6 4103229 

2019 48.6 37.04048 -84.748 700241.4 4101735 

2019 48.8 37.03239 -84.714 703352.8 4100911 

2019 48.9 37.03127 -84.682 706173.8 4100854 

2019 49.1 37.05320 -84.538 718905.9 4103610 

2019 49.2 37.05412 -84.518 720659.1 4103757 

2019 49.4 37.03508 -84.545 718380.3 4101584 

2019 49.7 37.01655 -84.547 718256.4 4099524 

2019 49.8 37.01284 -84.530 719712.1 4099149 

2019 49.9 37.01594 -84.506 721881.7 4099550 

2019 50.1 37.03565 -84.363 734526.4 4102079 

2019 50.2 37.03443 -84.342 736394.1 4101996 

2019 50.3 37.03200 -84.322 738240.6 4101778 

2019 50.4 37.02004 -84.363 734599.7 4100349 

2019 50.5 37.01822 -84.345 736227.2 4100192 

2019 50.6 37.01824 -84.322 738263.4 4100251 

2019 50.7 37.00058 -84.367 734312.6 4098180 

2019 50.8 36.99648 -84.351 735714.1 4097763 

2019 50.9 36.99440 -84.324 738157.3 4097601 

2019 51.1 37.01787 -84.188 750205.6 4100555 

2019 51.4 37.00238 -84.188 750214.4 4098835 

2019 51.5 37.00028 -84.163 752410.0 4098666 

2019 51.6 36.99719 -84.147 753926.1 4098368 

2019 51.7 36.98109 -84.192 749939.2 4096461 

2019 51.8 36.98002 -84.167 752193.6 4096409 

2019 51.9 36.97839 -84.141 754447.9 4096296 

2019 52.1 37.22544 -84.697 704356.6 4122368 

2019 52.3 37.22345 -84.651 708391.8 4122247 
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2019 52.4 37.21356 -84.693 704746.0 4121059 

2019 52.8 37.19490 -84.677 706146.8 4119021 

2019 52.9 37.18878 -84.657 707975.8 4118386 

2019 53.1 37.19631 -84.518 720279.3 4119536 

2019 53.2 37.19291 -84.497 722120.8 4119208 

2019 53.3 37.18815 -84.482 723547.3 4118716 

2019 53.4 37.17508 -84.523 719886.7 4117168 

2019 53.5 37.17906 -84.507 721342.1 4117649 

2019 53.7 37.15889 -84.528 719487.6 4115361 

2019 53.8 37.15952 -84.508 721283.3 4115478 

2019 53.9 37.15482 -84.482 723603.0 4115017 

2019 54.1 37.17899 -84.341 736055.1 4118041 

2019 54.2 37.18057 -84.319 737976.7 4118271 

2019 54.3 37.17055 -84.299 739820.3 4117210 

2019 54.4 37.16222 -84.350 735332.5 4116158 

2019 54.5 37.15502 -84.326 737492.8 4115420 

2019 54.6 37.15475 -84.300 739798.8 4115454 

2019 54.7 37.14386 -84.350 735385.9 4114121 

2019 54.8 37.14157 -84.323 737811.9 4113934 

2019 54.9 37.14261 -84.301 739724.6 4114104 

2019 55.1 37.16101 -84.161 752112.4 4116510 

2019 55.2 37.15909 -84.138 754173.9 4116358 

2019 55.4 37.14478 -84.168 751512.2 4114689 

2019 55.5 37.14407 -84.140 754058.9 4114687 

2019 55.7 37.12549 -84.167 751721.9 4112553 

2019 55.8 37.12214 -84.144 753774.1 4112242 

2019 55.9 37.12077 -84.123 755615.9 4112145 

2019 56.1 37.33779 -84.502 721302.1 4135273 

2019 56.2 37.33316 -84.481 723142.0 4134808 

2019 56.3 37.33205 -84.458 725203.6 4134740 

2019 56.4 37.31731 -84.506 720993.3 4132992 

2019 56.5 37.31525 -84.483 723073.8 4132818 

2019 56.6 37.31384 -84.462 724920.0 4132710 

2019 56.7 37.29953 -84.511 720590.4 4131006 

2019 56.8 37.30383 -84.482 723127.9 4131551 

2019 56.9 37.29902 -84.460 725129.1 4131071 

2019 57.1 37.31929 -84.320 737437.8 4133662 

2019 57.2 37.31624 -84.300 739245.6 4133374 
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2019 57.3 37.31905 -84.273 741646.3 4133755 

2019 57.4 37.30664 -84.322 737353.3 4132254 

2019 57.5 37.30302 -84.300 739288.1 4131908 

2019 57.6 37.29749 -84.274 741597.9 4131359 

2019 57.7 37.42405 -84.309 738153.9 4145317 

2019 57.7 37.28087 -84.328 736929.1 4129380 

2019 57.8 37.28501 -84.300 739342.6 4129909 

2019 57.9 37.28282 -84.278 741323.3 4129722 

2019 58.1 37.29900 -84.140 753486.0 4131878 

2019 58.2 37.30426 -84.117 755482.5 4132523 

2019 58.3 37.29677 -84.095 757525.0 4131754 

2019 58.4 37.28610 -84.142 753375.9 4130443 

2019 58.5 37.28226 -84.122 755191.0 4130070 

2019 58.6 37.28065 -84.101 757034.9 4129949 

2019 58.7 37.26855 -84.148 752866.9 4128477 

2019 58.8 37.26369 -84.122 755170.5 4128007 

2019 58.9 37.26345 -84.102 756980.0 4128036 

2019 59.1 37.46313 -84.295 739259.3 4149689 

2019 59.2 37.46046 -84.278 740750.6 4149435 

2019 59.3 37.45849 -84.249 743363.3 4149293 

2019 59.4 37.44189 -84.306 738371.6 4147304 

2019 59.5 37.44176 -84.273 741263.3 4147374 

2019 59.6 37.43974 -84.250 743278.8 4147207 

2019 59.8 37.42615 -84.280 740655.4 4145622 

2019 59.9 37.42107 -84.254 742982.3 4145125 

2018 AC1 36.48407 -85.489 635349.0 4038701 

2018 AC2 36.48552 -85.466 637411.0 4038894 

2018 AC3 36.48657 -85.448 639023.0 4039037 

2018 AC4 36.46674 -85.487 635561.0 4036782 

2018 AC5 36.46662 -85.469 637186.0 4036794 

2018 AC6 36.46932 -85.448 639041.0 4037124 

2018 AC7 36.44768 -85.489 635380.0 4034664 

2018 AC8 36.45040 -85.468 637291.0 4034996 

2018 AC9 36.45127 -85.444 639410.0 4035126 

2018 AE1 36.26896 -85.478 636710.0 4014855 

2018 AE2 36.26941 -85.454 638837.0 4014939 

2018 AE3 36.26667 -85.433 640778.0 4014664 

2018 AE4 36.25139 -85.475 637037.0 4012909 
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2018 AE5 36.25306 -85.450 639255.0 4013129 

2018 AE6 36.25361 -85.438 640377.0 4013209 

2018 AE7 36.23250 -85.482 636446.0 4010804 

2018 AE8 36.23222 -85.457 638668.0 4010808 

2018 AE9 36.23278 -85.436 640589.0 4010901 

2018 AF1 36.04940 -85.467 638120.0 3990514 

2018 AF2 36.05362 -85.448 639813.0 3991009 

2018 AF3 36.05250 -85.425 641907.0 3990919 

2018 AF4 36.03466 -85.469 637971.0 3988876 

2018 AF5 36.03362 -85.439 640610.0 3988803 

2018 AF6 36.03433 -85.424 641951.0 3988904 

2018 AF7 36.01574 -85.467 638134.0 3986780 

2018 AF8 36.01681 -85.436 640914.0 3986943 

2018 AF9 36.01713 -85.419 642448.0 3987003 

2018 AG1 36.06082 -85.201 662043.0 3992191 

2018 AG2 36.06397 -85.179 664009.0 3992578 

2018 AG3 36.06502 -85.157 665948.0 3992731 

2018 AG4 36.04405 -85.198 662325.0 3990336 

2018 AG5 36.04361 -85.178 664153.0 3990321 

2018 AG6 36.04609 -85.156 666094.0 3990632 

2018 AG7 36.02586 -85.197 662437.0 3988318 

2018 AG8 36.02883 -85.175 664424.0 3988685 

2018 AG9 36.02719 -85.153 666456.0 3988542 

2018 AH1 35.83889 -85.432 641616.0 3967213 

2018 AH2 35.83959 -85.411 643517.0 3967321 

2018 AH3 35.83702 -85.389 645461.0 3967068 

2018 AH4 35.81930 -85.435 641366.0 3965035 

2018 AH5 35.82149 -85.408 643814.0 3965318 

2018 AH6 35.82514 -85.384 645942.0 3965758 

2018 AH7 35.80249 -85.432 641654.0 3963175 

2018 AH8 35.80195 -85.407 643940.0 3963152 

2018 AH9 35.79750 -85.384 645998.0 3962692 

2018 AI1 35.84564 -85.190 663460.0 3968339 

2018 AI2 35.85100 -85.169 665344.0 3968969 

2018 AI3 35.84748 -85.139 668031.0 3968629 

2018 AI4 35.82909 -85.188 663703.0 3966507 

2018 AI5 35.82903 -85.161 666080.0 3966545 

2018 AI6 35.83136 -85.148 667245.0 3966825 
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2018 AI7 35.81055 -85.192 663380.0 3964444 

2018 AI8 35.81458 -85.164 665874.0 3964937 

2018 AI9 35.81491 -85.142 667870.0 3965012 

2018 AJ3 35.85819 -84.881 691330.0 3970292 

2018 AJ5 35.84119 -84.900 689671.0 3968369 

2018 AJ6 35.84215 -84.877 691766.0 3968521 

2018 AJ8 35.82396 -84.898 689918.0 3966462 

2018 AJ9 35.82078 -84.872 692214.0 3966159 

2018 F1 36.54218 -83.619 265565.0 4047277 

2018 F2 36.53970 -83.596 267597.0 4046947 

2018 F3 36.53835 -83.573 269680.0 4046741 

2018 F4 36.52340 -83.616 265809.0 4045185 

2018 F5 36.52501 -83.594 267714.0 4045312 

2018 F6 36.52428 -83.571 269814.0 4045175 

2018 F7 36.50321 -83.617 265632.0 4042948 

2018 F8 36.50707 -83.593 267751.0 4043319 

2018 F9 36.50437 -83.575 269429.0 4042975 

2018 K1 36.32439 -83.611 265657.0 4023093 

2018 K2 36.32565 -83.593 267265.0 4023188 

2018 K3 36.32536 -83.566 269657.0 4023093 

2018 K4 36.30638 -83.610 265657.0 4021093 

2018 K5 36.30686 -83.588 267097.0 4021093 

2018 K6 36.30734 -83.565 269657.0 4021093 

2018 K7 36.28837 -83.609 265657.0 4019093 

2018 K8 36.28885 -83.587 267657.0 4019093 

2018 K9 36.28455 -83.561 269990.0 4018552 

2018 L1 36.33614 -83.875 241923.0 4025069 

2018 L2 36.33659 -83.853 243895.0 4025061 

2018 L3 36.34069 -83.831 245897.0 4025458 

2018 L4 36.31961 -83.878 241661.0 4023242 

2018 L5 36.32209 -83.855 243711.0 4023456 

2018 L6 36.31740 -83.836 245383.0 4022886 

2018 L7 36.29917 -83.874 241951.0 4020963 

2018 L8 36.30141 -83.854 243737.0 4021159 

2018 M1 36.31154 -84.145 756363.0 4022287 

2018 M2 36.30987 -84.121 758518.0 4022166 

2018 M3 36.31106 -84.097 760685.0 4022363 

2018 M4 36.29353 -84.144 756487.0 4020291 
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2018 M5 36.29412 -84.122 758482.0 4020415 

2018 M6 36.29464 -84.098 760584.0 4020535 

2018 M7 36.27617 -84.143 756635.0 4018367 

2018 M8 36.27748 -84.118 758835.0 4018578 

2018 M9 36.27822 -84.098 760667.0 4018714 

2018 Q1 36.10910 -83.607 265308.0 3999197 

2018 Q2 36.10876 -83.583 267461.0 3999102 

2018 Q5 36.09219 -83.580 267747.0 3997255 

2018 Q7 36.07190 -83.597 266122.0 3995045 

2018 Q8 36.07416 -83.582 267442.0 3995261 

2018 Q9 36.07285 -83.558 269609.0 3995058 

2018 R1 36.10325 -83.867 241867.0 3999207 

2018 R2 36.10458 -83.852 243292.0 3999313 

2018 R3 36.10630 -83.826 245633.0 3999436 

2018 R4 36.08341 -83.871 241446.0 3997016 

2018 R5 36.08505 -83.851 243281.0 3997144 

2018 R6 36.08918 -83.825 245604.0 3997535 

2018 R7 36.06171 -83.870 241459.0 3994606 

2018 R8 36.06452 -83.849 243380.0 3994862 

2018 R9 36.06980 -83.828 245303.0 3995392 

2018 S1 36.07922 -84.116 759724.0 3996586 

2018 S2 36.07781 -84.092 761845.0 3996492 

2018 S3 36.05905 -84.073 763650.0 3994463 

2018 S4 36.06281 -84.109 760384.0 3994783 

2018 S5 36.06311 -84.094 761767.0 3994857 

2018 S6 36.05909 -84.073 763647.0 3994467 

2018 S9 36.04467 -84.065 764367.0 3992887 

2018 V1 35.81464 -84.103 761738.0 3967262 

2018 V2 35.81464 -84.079 763937.0 3967328 

2018 V3 35.81524 -84.057 765934.0 3967455 

2018 V4 35.79891 -84.057 765988.0 3965642 

2018 V5 35.81524 -84.057 765934.0 3967455 

2018 V6 35.79800 -84.058 765836.0 3965537 

2018 V7 35.78378 -84.103 761860.0 3963839 

2018 V8 35.78147 -84.078 764129.0 3963650 

2018 W2 35.87597 -84.369 737550.0 3973389 

2018 W3 35.87694 -84.345 739728.0 3973555 

2018 W4 35.85723 -84.389 735753.0 3971260 
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2018 W5 35.85450 -84.369 737630.0 3971006 

2018 W8 35.83937 -84.366 737885.0 3969334 

2018 X1 35.86606 -84.657 711515.0 3971626 

2018 X2 35.86887 -84.639 713159.0 3971977 

2018 X3 35.86952 -84.615 715290.0 3972101 

2018 X4 35.84586 -84.653 711966.0 3969395 

2018 X5 35.84710 -84.635 713555.0 3969570 

2018 X6 35.84848 -84.614 715496.0 3969770 

2018 X7 35.82727 -84.657 711631.0 3967323 

2018 X8 35.82954 -84.634 713763.0 3967626 

2018 X9 35.83205 -84.617 715293.0 3967942 
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Supplement 2. Capture histories for each individual black bear identified utilizing genetic 

data collected from hair snares in the Big South Fork Study Area in 2019. 

Individual # of Samples Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 

550 8 1 1  1    

4593 3 1       

4776 5  1  1    

4550 5 1     1 

4595 1 1       

348 1 1       

3302 3 1 1      

4616 1  1      

284 2   1  1   

2268 5   1     

2266 7   1 1    

56 1     1   

4848 17   1 1 1 1 

4950 2     1   

321 4 1 1   1   

4867 1     1   

4054 1      1 

3698 1      1 

527 4  1      

1504 6 1   1 1 1 

1503 1 1       

1506 10 1 1 1 1 1   

572 10 1  1  1   

243 5 1   1    

249 30 1 1 1 1 1 1 

4607 9 1  1     

4664 4 1       

26 4 1 1      

3251 1 1       

3273 24 1   1 1 1 

3223 3 1  1     

3260 11 1   1 1   

3213 1 1       

4557 1 1       

4555 1 1       
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4549 8 1   1  1 

4551 4 1       

4687 1 1       

4685 7 1    1 1 

4721 25 1 1 1 1 1   

4713 4 1  1  1   

4689 22 1 1 1 1 1 1 

2256 21 1   1 1 1 

3209 1 1       

3197 7 1       

2764 26 1 1 1 1 1 1 

1512 1  1      

183 2  1      

186 1  1      

162 6  1      

163 3  1 1     

152 3  1      

543 14  1   1 1 

614 34  1 1  1 1 

286 1  1      

261 2  1      

4723 2  1    1 

486 7  1   1 1 

30 3  1      

3014 9  1  1 1 1 

3016 1  1      

3293 3  1      

3295 9  1 1     

3274 9  1  1  1 

3309 27  1 1 1 1 1 

3303 8  1 1     

3281 1  1      

3045 9  1      

3018 26  1 1 1 1 1 

3039 1  1      

3040 1  1      

4568 4  1      

4761 1  1      
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4567 3  1 1     

4765 3  1      

4769 2  1      

4757 2  1      

431 3  1 1     

3525 8  1 1     

4785 3  1 1     

1522 10   1 1 1 1 

1519 10   1 1 1 1 

189 3   1     

1524 2   1     

270 3   1  1   

4692 1   1     

4799 3   1  1   

4800 5   1     

4803 1   1     

475 6   1 1    

33 1   1     

3073 10   1  1 1 

3067 1   1     

3096 1   1     

3082 2   1     

3088 7   1 1    

4513 1   1     

340 3   1     

330 1   1     

344 2   1     

432 3   1 1  1 

4570 21   1 1 1   

4537 1   1     

3108 10   1 1 1 1 

2627 6   1  1   

1540 5    1  1 

1535 3    1    

1537 2    1  1 

192 3    1    

258 2    1    

251 9    1 1   
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Supplement 2 Continued. 

491 5    1  1 

353 1    1    

34 4    1    

3144 1    1    

3146 1    1    

3124 7    1 1   

3147 3    1  1 

4915 2    1    

4826 5    1 1   

4816 1    1    

3815 4    1    

2787 1    1    

2795 8    1 1 1 

1559 2     1 1 

1560 2     1   

255 1     1   

256 3     1   

4933 3     1 1 

4931 1     1   

4993 1     1   

4992 1     1   

448 5     1   

3864 1     1   

3211 4     1   

3344 4    1 1   

3882 1     1   

4857 3     1   

4845 2     1   

4846 3     1 1 

4853 2     1   

4946 4     1 1 

334 1     1   

3571 1     1   

173 2      1 

1592 3      1 

102 1      1 

4832 2      1 

4838 3      1 
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Supplement 2 Continued. 

4830 2      1 

397 3      1 

403 1      1 

3485 2      1 

3409 1      1 

4960 5      1 

2891 2      1 

331 2      1 

3556 1      1 

4997 3      1 

3699 2      1 

2887 1      1 

2912 5      1 

2916 5      1 

2909 1      1 

3323 1    1    

3313 3   1 1    

3314 1    1    

3355 1 1       

3328 2     1       
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