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ABSTRACT 
 
 

Pregnancy success is a key factor in order for any beef producer to have a 

profitable operation. Subsequently, the ability to detect compromised pregnancies is of 

upmost importance. Currently, pregnancy-associated glycoproteins [PAG], which are 

secreted by the ruminant placenta, remain as the only chemical-based, pregnancy-

specific detection method available on a commercial scale for cattle pregnancy 

diagnosis. Furthermore, PAG cannot be used for diagnosis until day 28 of gestation. 

Small noncoding RNAs, microRNAs [miRNAs], have been successfully used as 

biomarkers for certain human diseases and disorders. It is possible that pregnancy-

associated miRNAs located in bovine serum and uterine flush fluid can be detectable 

prior to PAG. Additionally, management efforts, such as evaluating reproductive tracts 

and estrus expression, can be performed prior to breeding to potentially identify and 

select females with optimal fertility. The aim of the two studies is to determine if 

pregnancy-related miRNAs can be identified in bovine serum and uterine flush fluid on 

day 18 of gestation, and to determine if reproductive tract size and position scores 

[SPS] and estrus are useful predictors of fertility in Bos indicus and Bos taurus cows. 

The first study was able to identify two novel extracellular vesicle-miRNAs as being 

more abundant in pregnant heifers compared with non-pregnant heifers on day 18 of 

gestation in both serum and uterine flush fluid. The second study identified that 
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pregnancy rate, but not pregnancy loss, is interactively influenced by reproductive tract 

SPS and estrus activity.  
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Publication Statement  
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S.L. Speckhart, S.T. Reese, G.A. Franco, T.B. Ault, R.V. Oliveira Filho, A.P. 

Oliveira, J.A. Green, J.L.M. Vasconcelos, and K.G. Pohler. “INVITED REVIEW: 

Detection and management of pregnancy loss in a cow herd.” Professional Animal 

Scientist 34 (2018): 544-557.  

This review highlights various research areas of interest to the corresponding 

author, K.G. Pohler, in addition to his collaborators. S.L. Speckhart was the main author 

and composed a majority of the writing. S.T. Reese provided information on chemical 

methods of pregnancy diagnosis. G.A. Franco provided information on manual methods 

to assess pregnancy status as well as information regarding sire selection for 

management of pregnancy loss. R.V. Oliveira Filho and A.P. Oliveira provided 

information on reproductive tract scoring system for management of pregnancy loss. 

Research from the labs of Green, Vasconcelos, and Pohler were included in the 

manuscript. K.G. Pohler and T.B. Ault provided assistance with the editing process.  

Abstract  

 Various methods and tools have been developed to detect and manage 

pregnancy loss in cattle to maximize reproductive efficiency by increasing pregnancy 

rates and decreasing pregnancy loss. Embryonic mortality constitutes the majority of 

pregnancy loss in cattle and can be divided into 2 periods: early embryonic mortality 

(<28 d of gestation) and late embryonic mortality/early fetal mortality (≥28 d of 
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gestation). Much research has revolved around elucidating causes of early embryonic 

mortality; although little is known about the mechanisms contributing to late embryonic 

mortality/early fetal mortality, its effects can have significant economic consequences. 

Current pregnancy diagnostic tools in cattle vary in accuracy until about d 28 of 

gestation. Refinement of current pregnancy diagnostic tests, with the ability to be 

accurate at approximately the third week of gestation, or the development of new 

methods that are able to assess embryonic viability would both decrease the financial 

ramifications linked to embryonic mortality and increase the reproductive efficiency of 

the herd. The following review will highlight some techniques that have been reported to 

detect and predict pregnancy loss and some of the potential management strategies 

that might mitigate these losses. 

 

Introduction 

Suboptimal reproductive efficiency plagues beef and dairy cow herds, with 

pregnancy loss being the main contributing factor. Negative economic effects stem from 

an increased number of nonpregnant cows accruing maintenance costs, fewer total 

pounds at weaning, and increased culling rates in dairies. Despite these incentives to 

perform pregnancy diagnosis, only 20% of beef producers in the United States do so, 

and most are unaware of the exact pregnancy status of their herd (NAHMS, 2009). 

Even though most dairies perform one or more pregnancy evaluations per female, 
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identifying cows that will ultimately fail to produce milk due to pregnancy loss remains 

an elusive task (NAHMS, 2014). 

The rate of pregnancy loss peaks during embryonic development and decreases 

after d 45 as gestation progresses and active placentation is complete (Diskin and 

Sreenan, 1980; Santos et al., 2004). Embryonic mortality (EM) can be classified as 

early embryonic mortality, occurring before d 28 of gestation, or late embryonic mortality 

(LEM), occurring after 28 d of gestation (Silke et al., 2002). Most pregnancy loss in both 

beef (21.8–35.6%; Maurer and Chenault, 1983; Breuel et al., 1993; Ahmad et al., 1995; 

Dunne et al., 2000; Santos et al., 2004) and dairy (28.9–46.3%; DeJarnette et al., 1992; 

Dalton et al., 2001; Sartori et al., 2002; Santos et al., 2004) cattle occurs during early 

embryonic development. However, LEM between d 28 and 45 remains a significant 

problem resulting in termination of 5 to 17.5% of all cattle pregnancies, with an 

increased negative effect in high producing dairy cattle (Diskin and Sreenan, 1980; 

Vasconcelos et al., 1997; Silke et al., 2002; Galvão et al., 2004; Santos et al., 2004; 

Grimard et al., 2006; Pohler et al., 2016a). Pregnancy loss can be attributed to 

infectious and noninfectious causes. Management and prevention of diseases with 

reproductive ramifications such as, infectious bovine rhinotracheitis, bovine viral 

diarrhea, and leptospirosis, reduce pregnancy losses associated with infectious disease 

(Aono et al., 2013; Pereira et al., 2013). However, this review will focus on detection 

and management of noninfectious, physiological causes of pregnancy loss. 

Physiological mechanisms contributing to pregnancy failure differ between periods as 
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does the effect on production and economic losses. Detecting cows that undergo EM or 

those failing to establish a pregnancy is critical to decrease calving and interbreeding 

intervals. The objectives of this review are to (1) describe methods to detect pregnancy 

loss in cattle (summarized in Table 1 in Appendix I) and (2) discuss management tools 

to decrease the amount of pregnancy losses within a herd (summarized in Table 2 in 

Appendix I). 

 

Review and Discussion: Detection Methods of Pregnancy Loss 

Manual Methods 

Return to Estrus 
Return to estrus after insemination or a positive pregnancy diagnosis is an 

important aspect of reproductive management in dairy and beef operations. A cow’s 

estrous cycle can range from 17 to 24 d but averages 21 d in duration for both Bos 

taurus and Bos indicus cattle (Odde et al., 1980; Bó et al., 2003; Sartori et al., 2004); 

however, lactating dairy cows tend to have a slightly longer estrous cycle of 23 d 

(Sartori et al., 2004). If a cow does not achieve pregnancy after insemination, a return to 

estrus can be observed if she is cycling. If there is no indication of estrus beyond 24 d 

after insemination, it is suggested that conception may have occurred (Youngquist, 

2006). However, this method of determining pregnancy status should be limited 

because there is a high risk of false positives that can be attributed to the following: 

embryonic loss resulting in delayed luteal regression (Wijma et al., 2016), number of 

follicular waves resulting in a longer interestrus interval (Santos et al., 2004; Remnant et 
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al., 2015), resynchronization techniques (Chebel et al., 2006; Giordano et al., 2015), or 

anestrus cows, which can occur due to several factors including but not limited to 

nutritional status, lactation, season, and stress (Short et al., 1990). Regarding detection 

of pregnancy loss, return to estrus may be used effectively after an initial pregnancy 

confirmation to identify potential cows standing in estrus. With the use of automated 

estrus detection systems, these cows could simply be rebred, or a confirmation 

pregnancy test could be conducted. 

 
 
Transrectal Palpation 

During early to mid-gestation, anatomical structures continue to grow and 

develop making rectal palpation a common method of pregnancy diagnosis in cattle. 

The earliest time for accurate pregnancy diagnosis via rectal palpation is between 30 

and 35 d of gestation by detecting a membrane slip or palpation of the amniotic vesicle 

(Roberts, 1986; Momont, 1990). However, there has been a debate as to the use of 

early gestation palpation due to the fragile nature of the amniotic vesicle. Ball and 

Carroll (1963) recommended not conducting early gestation palpation (<35 d) to prevent 

puncturing of the amniotic vesicle resulting in termination of pregnancy. A 1978 survey 

reported rectal palpation, specifically the slipping of chorioallantoic membranes, led to 

an incidence of embryonic loss of 5.8, 6.03, and 0.82% when palpated at <35, 35 to 45, 

and >45 d after insemination, respectively (Paisley et al., 1978); however, it is difficult to 

determine whether any proportion of these losses were due to idiopathic origins or a 
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direct result from palpation. Conversely, a more recent study concluded no difference in 

embryonic loss due to rectal palpation by performing a membrane slip between d 34 

and 41 of gestation compared with females that were not rectally palpated (Romano et 

al., 2007). Nevertheless, rectal palpation exams generally take place between d 45 and 

60 of gestation, which decreases the chance to cause embryonic loss and increases the 

accuracy of pregnancy diagnosis (Santos et al., 2004). Although transrectal palpation is 

reliable and one of the most widely accepted industry methods for pregnancy diagnosis, 

it provides only a static assessment of pregnancy status and cannot be used to assess 

embryonic viability or the absence or presence of a heartbeat. 

 
Transrectal Ultrasonography 

Transrectal B-mode ultrasonography (US) is currently regarded as the gold 

standard for determining pregnancy status and embryonic and fetal viability in cattle 

because it provides potential for visual and morphological assessment of the uterus, 

ovaries, and embryo and fetus. Even though the embryonic vesicle can be visualized in 

the uterine horn ipsilateral to the corpus luteum (CL) as early as d 10 to 17 of gestation 

and the embryo itself from d 19 to 24 of gestation, accurate pregnancy diagnosis using 

B-mode US is not recommended before d 26 to 29 of gestation (Pierson and Ginther, 

1984; Curran et al., 1986a,b; Kastelic et al., 1988; Pieterse et al., 1990). During the d 26 

to 29 window, one can expect to observe an embryo in a prominent “C” shape, followed 

by straightening of the neck and head generating an “L” shaped embryo until d 39 of 

gestation (Curran et al., 1986b). Real-time US has greatly influenced the standard for 



 
 
 

8 
 

future pregnancy diagnostic tests or exams because it allows for the visualization of the 

embryo and heartbeat, which is detectable as early as d 21 to 25 of gestation to assess 

immediate viability (Curran et al., 1986b; Ginther, 1998). Currently, real-time US is most 

often performed between d 28 and 32 as a method of early pregnancy detection in 

cattle. 

The incorporation of new ultrasound technologies, such as Doppler US, enables 

a more detailed assessment of the uterus, ovarian follicles, and CL. Doppler US uses 

blood flow to generate images, which are dependent on the type of Doppler setting 

being applied (i.e., color, power, or spectral). Color Doppler US displays blood flow 

traveling toward, indicated by a red color, and away, indicated by a blue color, from the 

transducer (Herzog and Bollwein, 2007; Matsui and Miyamoto, 2009). Spectral Doppler 

(pulse wave and continuous wave) is unique compared with the other Doppler modes 

because it presents blood flow in wave form instead of a color map. More importantly, 

pulse-wave Doppler uses a gate, which allows for a precise measurement of blood flow 

within the region of the vessel of interest. The use of transrectal color Doppler US for 

reproductive studies in large animals was first described in 1998, and thereafter, several 

studies described the changes in ovarian and uterine blood flow throughout the estrous 

cycle and early gestation in the mare and cow (Bollwein et al., 1998; Acosta et al., 2005; 

Siddiqui et al., 2009; Silva and Ginther, 2010; Herzog et al., 2011; Bollwein et al., 2000, 

Bollwein et al., 2016). Although the technique is predominately used for research 

purposes, incorporation of Doppler US strategies into commercial reproductive 
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programs may aid in increasing reproductive efficiency. In pregnant cows, changes in 

uterine blood flow can be observed beginning in the third week of gestation (Silva and 

Ginter, 2010; Bollwein et al., 2016). Due to the large variation in blood flow between 

animals, a single measurement of uterine blood flow is not accurate enough for early 

pregnancy detection (Pugliesi et al., 2014a). Advancements in US technology and 

quality may provide opportunity to use a combination of color and pulse-wave Doppler 

US simultaneously to assess umbilical artery blood flow using pulsatility index values as 

used in humans. These indices have been able to predict unfavorable pregnancy 

outcomes such as intrauterine growth restriction in humans (Alfirevic et al., 2017; 

Gudmundsson et al., 2017), and there is potential to adapt these concepts to predict 

likelihood of pregnancy loss in cattle. 

In nonpregnant cows that regressed their CL 15 to 18 d after insemination, a 

decrease in blood flow was detected through color Doppler US at d 19 after ovulation 

(Matsui and Miyamoto, 2009). Several studies have shown that evaluating CL blood 

flow during luteolysis or maternal recognition of pregnancy could be an accurate method 

for early detection of pregnancy (Utt et al., 2009; Herzog et al., 2011; Pugliesi et al., 

2014b; Scully et al., 2015). Pugliesi et al. (2012) established criteria to differentiate a 

functional CL from a regressing CL by detecting both reduction in size and blood flow. 

When early pregnancy diagnosis by color Doppler US, evaluating CL area and blood 

flow, was compared with transrectal ultrasound later on in gestation, satisfactory 

sensitivity and accuracy was achieved for pregnancy diagnosis 20 d after insemination 



 
 
 

10 
 

in beef (Pugliesi et al., 2014a) and dairy cows (Siqueira et al., 2013). Even though this 

technique has high accuracy in detecting nonpregnant animals, there is a considerable 

proportion of false positives or cows diagnosed pregnant at d 20 but not pregnant at d 

30 by US. Presence of a functional CL in nonpregnant animals could be related to 

several factors including the delay in ovulation during synchronization protocols or 

lengthened estrus cycles or may be due to pregnancy loss that occurs between the 

early (d-20) diagnosis and conventional diagnosis. Data discussed later in this review 

highlight potential methods of early pregnancy diagnosis that consider these pregnancy 

losses during this time period. In dairy cows, the occurrence of false positives may be 

disproportionately greater due to a higher incidence of EM during this interval (Pohler et 

al., 2016a; Reese et al., 2018). 

Three-dimensional (3D) US to visualize pregnancy and assess viability of the 

developing fetus has been well characterized in humans for the last 2 decades (Hata et 

al., 1997; Leijnse et al., 2018). However, this type of research in cattle has been 

hindered by technological issues and the time course of development for the bovine 

embryo. Three-dimensional US requires that the embryo or fetus remain immobile and 

properly oriented within the uterus to capture an image, which requires significant skills 

by the technician. During early development, the bovine embryo lacks definition making 

it difficult to capture a 3D image during the embryonic stage. However, by d 45 of 

gestation, an image of the bovine fetus using the surface feature on 3D US is more 

easily acquired when development of anatomical structures such as the head, body, 
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and legs can be visualized (Kähn, 1989). Because the percentage of fetal loss is lower 

than embryonic loss, 3D US past d 45 of gestation may not provide enough beneficial 

information to be useful for determining pregnancy status or pregnancy loss compared 

with other currently available methods. 

Chemical Methods 

Pregnancy diagnosis using chemical-based methods earlier in gestation may be 

more beneficial compared with rectal palpation and US due to the potential ability to 

detect pregnancy loss. These chemical-based methods fall into 2 categories: markers 

that are pregnancy specific (expressed or secreted by the conceptus) and those that are 

not pregnancy specific (produced under other physiological conditions). Some of the 

most common methods explored in these areas are progesterone, interferon-stimulated 

genes (ISG), small noncoding RNA such as microRNA (miRNA), and pregnancy-

associated glycoproteins (PAG). 

Markers that Are Not Pregnancy Specific: Progesterone 
One of the most common, non-pregnancy-specific tests uses progesterone, a 

steroid hormone that is produced by the CL to maintain pregnancy (Lukaszewska and 

Hansel, 1980). In a cycling cow, concentrations of progesterone peak during the luteal 

phase and reach nadir during the follicular phase due to CL regression. Alternatively, in 

a pregnant cow, the CL will not regress, and elevated progesterone concentrations will 

be maintained (Niswender et al., 2000). Progesterone assays for pregnancy diagnosis 

can be performed between d 20 and 21 of gestation (Sasser, 1987; Nebel, 1988). In 
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regard to progesterone and pregnancy loss, measurement of progesterone early in 

gestation or during the critical embryonic loss period could be useful in determining 

which females are at risk for experiencing embryonic loss or to diagnosis embryonic 

loss itself, based on the observation of a decrease in progesterone concentration over 

time (Darwash and Lamming, 1998; Starbuck et al., 2001; Diskin et al., 2002; Mann et 

al., 2005; McNeill et al., 2006). There are conflicting reports in the published literature 

between the relationship of progesterone and cows undergoing pregnancy loss. 

Starbuck et al. (2004) reported cows undergoing LEM had decreased circulating 

concentrations of progesterone compared with cows having a successful pregnancy; 

however, Pohler et al. (2013, 2016a,b), reported no difference. Some of these 

conflicting results could be the result of comparing different types of cattle in different 

environments. Nevertheless, in terms of pregnancy diagnosis, the consequence of 

using a non-pregnancy-specific chemical-based test such as progesterone is that there 

is a risk for yielding false-positive results in cows that have longer luteal phases (3 

versus 2 follicular waves), ovarian cysts, a prolonged CL, or EM similar to the 

challenges of nonreturn rates discussed earlier (Roberts, 1986; Pohler et al., 2015). A 

single progesterone concentration as a form of pregnancy diagnosis should be avoided 

because false-positive results are likely; however, the potential may exist for daily 

monitoring of progesterone fluctuations via in-line milk testing or other robotic 

approaches. In-line milk progesterone sampling machines (Herd Navigator, DeLaval 

International, Tumba, Sweden) could drastically improve progesterone’s overall value 
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as a means of detecting both pregnancy success and loss by the machine’s ability to 

collect and analyze samples automatically. To provide a more accurate diagnosis, this 

technology could easily be applied throughout the length of the entire embryonic period 

in dairy cattle, which is currently limited due to manual, labor-intensive sampling 

methods. 

Markers that Are Not Pregnancy Specific: ISG 
Corpus luteum rescue enabled by maternal recognition of pregnancy in 

ruminants is established by a Type 1 interferon, interferon tau (IFNT; Roberts et al., 

1992; Bazer et al., 1997). Interferon tau is secreted by the elongating conceptus from d 

14 to 16 of gestation (Bazer, 1992; Roberts et al., 1999). During this period, IFNT 

prevents expression of endometrial estrogen receptors, which in turn leads to the 

inhibition of oxytocin receptor formation, prohibiting large, pulsatile secretions of 

prostaglandin F2α that are capable of CL lysis (Wathes and Lamming, 1995). Along with 

its antiluteolytic role at the level of the endometrium, IFNT has more recently been 

identified to act on both the CL and circulating peripheral mononuclear blood cells 

(PMBC; Oliveira et al., 2008; Bott et al., 2010; Hansen et al., 2010; Pohler et al., 2015). 

Due to limitations of current IFNT detection assays, ISG [interferon-stimulated protein 

15 kDa (ISG15), myxovirus-resistance protein 1 (MX1), myxovirus-resistance protein 2 

(MX2), and 2′-5′-oligoadenylate synthetase (OAS-1)] have been explored, specifically in 

PMBC, to diagnosis pregnancy success and loss in cattle and sheep (Yankey et al., 

2001; Han et al., 2006; Gifford et al., 2007; Stevenson et al., 2007; Green et al., 2010; 
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Matsuyama et al., 2012; Pugliesi et al., 2014a; Pohler et al., 2015, 2017). In cattle, 

pregnant animals tend to have increased expression of ISG15, MX1, MX2, and OAS-1 

in PMBC (Han et al., 2006; Gifford et al., 2007; Green et al., 2010). However, because 

interferons are released in response to viral infections, this can also initiate expression 

of ISG regardless of pregnancy status (Nakaya et al., 2001; Lenschow et al., 2005). 

Consequently, when considering the use of ISG as a detection method, it should either 

be limited for detection of nonpregnant heifers or cows or a baseline sample taken to 

declare all cattle void of infection or increased ISG. Stevenson et al. (2007) used a 

combination of progesterone and ISG in dairy heifers to determine pregnancy loss 

between d 21 and 30, d 30 and 60, and d 21 and 60. Heifers were characterized to have 

undergone pregnancy loss if d-21 progesterone concentration was >2.9 ng/mL but no 

embryo was present at d 30. Myxovirus-resistance protein 2 messenger RNA from 

PMBC was evaluated on d 0 (day of estrus) and d 18 after insemination to classify 

heifer pregnancy status as initially determined by progesterone as being a true positive, 

true negative, false positive, or false negative (Stevenson et al., 2007). Although 

expression of MX2 tended to correlate with pregnancy loss from d 21 to 30 as well as d 

21 to 60, it still was not accurate in predicting reproductive outcome due to both low 

sensitivity and negative predictive values (Stevenson et al., 2007). Additionally, Wijma 

et al. (2016) used ISG in conjunction with PAG to determine EM among lactating dairy 

cows. There was an observed increase in ISG (ISG15 and MX2) from PMBC on d 18 

and 20 after insemination in pregnant and EM cows compared with both sham-
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inseminated and inseminated, nonpregnant cows. The authors concluded that a 

combination of ISG and PAG served as an acceptable experimental approach to identify 

the presence or absence of an embryo. Therefore, ISG may be a promising method to 

detect pregnancy loss between the second and third week of gestation in a research 

setting when combined with an additional pregnancy detection method such as 

progesterone or PAG. Over the last decade there has been numerous attempts to 

generate a commercially available ISG test; however, to date there are none on the 

market. 

Markers that Are Not Pregnancy Specific: miRNA Biomarkers 
MicroRNA are a class of small (~22 nucleotides), noncoding RNA that are 

posttranscriptional regulators of gene expression and have been used for identification 

of several human diseases and disorders (Bartel, 2004; Reid et al., 2011). They can be 

noninvasively measured and maintain their stability in biological substances such as 

blood, making them ideal biomarkers (Chen et al., 2008). Research indicates that 

miRNA may play important roles in reproductive function including but not limited to 

folliculogenesis (Ro et al., 2007), CL function (Otsuka et al., 2008), implantation 

(Chakrabarty et al., 2007), early embryonic development (Wienholds et al., 2003, 2005), 

and placentation (Luo et al., 2009; Miura et al., 2010; Donker et al., 2012; Zhao et al., 

2012). Currently, bovine miRNA biomarkers are being investigated in a research setting 

and are not available for commercial use to diagnose pregnancy in cattle. 
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To date, pregnancy-associated miRNA candidates have been located in milk, 

plasma, serum, and whole blood (Ioannidis and Donadeu, 2016, 2017; De Bem et al., 

2017; Pohler et al., 2017; Schanzenbach et al., 2017; Markkandan et al., 2018). 

However, there has been vast inconsistency in specific miRNA that have been identified 

as potential candidates due to varying origin of miRNA that were extracted, isolation 

material, and wide variation in research techniques and protocols. Our group has 

recently demonstrated that cows undergoing EM between d 17 and 31 of gestation have 

a significant number of differentially abundant miRNA compared with cows that 

successfully establish a pregnancy (Pohler et al., 2017). Specifically, miR-25, −16b, and 

−3596 were identified as potential EM-associated candidates based on additional 

validation methods. Interestingly, these miRNA were also shown to be involved in 

several critical pathways, one of which was prostaglandin synthase 2, the rate-limiting 

enzyme for prostaglandin production (Bazer, 2013). This pathway provides a potential 

connection between specific miRNA and pregnancy loss. 

Identification of a pregnancy-associated miRNA that is able to assess embryonic 

viability or an EM-specific miRNA has the potential to aid pregnancy diagnosis in cattle 

by offering additional information not available through current commercial pregnancy 

detection methods; however, many technological aspects, along with validation must be 

completed before on-farm application. Furthermore, a miRNA biomarker that is able to 

decipher embryonic viability in cattle would greatly reduce days a heifer or cow spends 

open, which in turn would allow for earlier rebreeding. 
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Markers that Are Pregnancy Specific: PAG 
A search for a pregnancy-specific marker that could be easily detectable in blood 

led to the identification of PAG. First identified in the 1980s with the discovery of PAG1, 

also known as pregnancy-specific protein B (Butler et al., 1982), over 2 dozen PAG 

genes have since been annotated to the bovine genome (Green et al., 2000; Telugu et 

al., 2009). Pregnancy-associated glycoproteins are pregnancy-specific proteins 

secreted by binucleated trophoblast cells in the placenta of many ruminants and are 

detectable in maternal circulation around d 24 of gestation (Szafranska et al., 1995; Xie 

et al., 1997; Garbayo et al., 2000; Green et al., 2000; Egen et al., 2009, Pohler et al., 

2013). Phylogenetic analysis has identified 2 main groups of PAG, “ancient” and 

“modern,” which differ in trophoblast expression patterns in the bovine conceptus 

(Green et al., 2000; Hughes et al., 2000). Although the exact function of PAG remains 

elusive, it has been hypothesized that they play a role in immune function or may 

possess luteoprotective action (Wallace et al., 2015). Many factors can affect circulating 

concentration of PAG: subspecies, parity of dam, sire, fetal sex, twinning, birth weight, 

and day of gestation (Zoli et al., 1992; Patel et al., 1997; Echternkamp et al., 2006; 

Lobago et al., 2009; Mercadante et al., 2013; Lawson et al., 2014; Ricci et al., 2015; 

Pohler et al., 2016b; Franco et al., 2018b). Commercial tests currently available through 

BioTracking (BioPRYN; BioTracking LLC, Moscow, ID), IDEXX (IDEXX Bovine 

Pregnancy Test; IDEXX Laboratories Inc., Westbrook, ME), and Genex (D29 Blood 

Pregnancy Test; Genex Cooperative Inc., Shawano, WI) use PAG in blood or milk 
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samples as early as d 28 after insemination to detect pregnancy in cattle. Accuracy of 

PAG testing is comparable to US for pregnancy diagnosis, and false positive risk 

requires a minimum waiting period following parturition (60–75 d) to clear residual 

circulating PAG (Silva et al., 2007; Romano and Larson, 2010). Although the testing of 

PAG concentrations is 98 to 99% accurate in diagnosing true pregnancies with low 

occurrences of false positives (<5%) at the recommended day of sampling, use of 

commercial tests to assess embryonic or fetal viability has been less explored. 

In addition to pregnancy diagnosis, recent research indicates circulating 

concentration of PAG can be used to determine likelihood of pregnancy success or 

failure in cattle. Increased PAG concentrations are directly correlated with an increased 

probability of pregnancy success, whereas decreased circulating PAG concentrations 

are related to increased pregnancy loss (Thompson et al., 2010; Breukelman et al., 

2012; Pohler et al., 2013; Engelke et al., 2015; Pohler et al., 2016a,b; Wijma et al., 

2016; Gatea et al., 2018; Reese et al., 2018). Specifically, circulating PAG 

concentrations between d 28 and 31 were significantly increased following fixed-time AI 

(FTAI) and fixed-time embryo transfer in beef and dairy cows that maintained pregnancy 

compared with cows that underwent LEM (Thompson et al., 2010; Breukelman et al., 

2012; Pohler et al., 2013; Pohler et al., 2016a,b). Although circulating concentrations of 

PAG differ between subspecies throughout gestation, studies using predictive value 

analysis identified cutoff concentrations in Bos indicus and Bos taurus cows with the 

greatest likelihood of undergoing EM, further supporting PAG biomarker potential 
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(Pohler et al., 2016a,b). More recent studies found early gestation circulating PAG 

concentrations at d 24 to yield similar results in dairy and beef cattle of both subspecies; 

however, assay refinement and larger sample sizes are needed to identify suitable 

predictive cutoff values (Guirado Dantas et al., 2017; Reese et al., 2018). Because 

considerable pregnancy loss occurs during the period of maternal recognition of 

pregnancy (d 16 to 25), there is hesitation to develop pregnancy diagnosis methods that 

are unable to detect early loss. Estimated loss between d 19 to 24 and d 31 based on 

both ISG expression and early circulating PAG concentrations range from 17 to 31% 

(Matsuyama et al., 2012; Monteiro et al., 2014; Pohler et al., 2016a; Wiltbank et al., 

2016; Reese et al., 2018). In a model using a d-24 PAG increase to predict likely EM, 

cows that were not pregnant at d 31 but had elevated PAG at d 24 had numerically 

lower PAG concentration compared with cows that successfully maintained pregnancy 

(Reese et al., 2018). Unlike other static detection methods, circulating PAG 

concentration presents evidence as a pregnancy loss detection tool that may be used 

earlier in gestation to avoid diagnosis of cows that will undergo early embryonic 

mortality or LEM as pregnant. Considering the prevalence of LEM in cattle, especially 

lactating dairy cows, commercial development of a pregnancy diagnosis test that is able 

to detect LEM would be an innovative tool for the dairy and beef industries. 
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Review and Discussion: Risk Factors and Management of Pregnancy 
Loss 

Estrus Activity 

Estrus activity at time of AI or preceding embryo transfer has a direct relationship 

with increased pregnancy rates and decreased EM (Pursley et al., 1998; Souza et al., 

2007; Pereira et al., 2016). Heat detection patches (Estrotect, Rockway Inc., Spring 

Valley, WI), automated estrous detection systems, and many other methods have been 

proven to be reliable tools for identifying females that exhibit estrus activity (Rorie et al., 

2002; Saint-Dizier and Chastant-Maillard, 2012; Pereira et al., 2016; Pohler et al., 

2016b; Colazo et al., 2018; Speckhart et al., 2018) and may hold more value for certain 

breeds or types of cattle compared with others. For instance, Bos indicus females have 

a shorter estrus period (10.9–12.9 h vs. 16.3 h) compared with Bos taurus females 

(Mizuta, 2003). Furthermore, most (~80%) Bos indicus cows exhibit estrus during the 

evening, creating an issue for manual, visual estrus observation (Pinheiro et al., 1998). 

Additionally, short estrus periods and intensity have been observed in high producing 

Bos taurus dairy cows (Lopez et al., 2004). 

Pereira et al. (2016) demonstrated that dairy cows exhibiting increased estrus 

activity and that underwent FTAI had greater pregnancy rates on d 32 and 60 of 

gestation compared with cows that did not exhibit estrus. Additionally, LEM significantly 

decreased in FTAI cows that exhibited estrus (14.4%) compared with cows that did not 

exhibit estrus (20.1%). Similarly, cows that were subject to fixed-time embryo transfer 

demonstrated parallel results to those that were subject to FTAI. Studies using activity-
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based monitoring systems in dairy cattle have reported similar results (Madureira et al., 

2015). Collectively, these results indicate estrus expression at time of FTAI and before 

fixed-time embryo transfer is positively associated with an increase in pregnancy rates 

and a decrease in LEM. 

In a study by Pohler et al. (2016b) using postpartum Bos indicus beef cows, an 

Estrotect heat detector patch scoring system was established to determine a 

relationship of estrus at time of FTAI with concentration of PAG secreted on d 28 of 

gestation. Patch scores ranged from 0 to 4, where a patch score of 0 signified a lost 

patch; a score of 1 signified <25% activation; a score of 2 signified <50% activation; a 

score of 3 signified <75% activation; and a score of 4 signified >75% activation. Cows 

having either patch scores of 3 or 4 were considered to have exhibited estrus activity. 

Results indicated that as patch scores increased, the concentration of PAG at d 28 also 

significantly increased (Figure 1 in Appendix I). Speckhart et al. (2018) observed similar 

results in Bos taurus females using the same parameters described earlier (Figure 1). 

Additionally, d-30 pregnancy rates and AI calving rates were greater in females that 

exhibited estrus compared with those that did not express estrus (Figure 2 in Appendix 

I). Therefore, using Estrotect heat detector patches in a herd can serve as an 

inexpensive identifier of cows with increased likelihood of maintaining their pregnancy. 

Beef and dairy producers could use estrus activity or potential estrus intensity at or 

before timed AI or 7 d before timed embryo transfer as measured via methods 

described above as a management tool to decide which cows should be inseminated or 
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have embryos transferred into, respectively, to decrease the chance of pregnancy loss. 

Specifically, a cow with decreased estrus activity before timed AI or timed embryo 

transfer that has an increased risk for pregnancy loss, would be a candidate for a high 

fertility sire or embryo with decreased genetic merit (decreased price) to decrease 

production cost or loss or skip insemination or embryo transfer completely. These 

decisions would be farm and type of cow dependent. 

Reproductive Tract Scoring System 

It has been reported in published literature regarding lactating dairy cows that 

increased uterine size measured using 2-dimentional US is related to decreased fertility 

(Baez et al., 2016). The physiological mechanism relating uterine size and fertility is not 

well understood but may be due to sperm transport failure in the female reproductive 

tract or reduced exposure to interferon-tau in larger reproductive tracts, which leads to 

erroneous maternal recognition of pregnancy and premature CL regression during early 

pregnancy (Baez et al., 2016). 

Young et al. (2017) developed a reproductive tract size and position score (SPS) 

system, which can easily identify, through rectal palpation, potentially less fertile 

females within the herd. There are 3 reproductive tract classifications: SPS1, SPS2, and 

SPS3. Cows designated SPS1 had small and compact uterine horns resting within the 

pelvic cavity; cows designated SPS2 had intermediate size uterine horns resting 

partially outside the pelvic cavity; and cows designated SPS3 had large uterine horns 

resting mainly outside of the pelvic cavity. Authors found that parity influences tract size 



 
 
 

23 
 

and position scores; as parity increased, the percentage of SPS1 cows decreased, 

whereas the number of SPS2 and SPS3 cows increased. However, multiparous SPS1 

cows had similar pregnancy rates to first and second parity SPS1 cows, indicating tract 

size is influential beyond parity alone. In lactating dairy cows, there was a significant 

increase in pregnancy rates among cows as reproductive tract scores decreased 

(Young et al., 2017; Oliveira et al., 2018). Additionally, Madureira et al. (2017) reported 

pregnancy loss between d 31 and 120 to be increased in lactating Holstein cows with 

SPS3 compared with SPS2 and SPS1 (14.9% vs. 9.6% vs. 2.9% for SPS3, SPS2, and 

SPS1, respectively), whereas pregnancy rates were greater among SPS1 females 

compared with SPS2 and SPS3 (42.4% vs. 32.6% vs. 23.9%). Adapting a reproductive 

tract size and position scoring system in both dairy and beef operations can be a useful 

tool to help producers in managing the fertility of their females by offering an opportunity 

to selectively decide which cows are to be bred based on their respective reproductive 

tract and position scores. 

Sire Selection 

Research regarding pregnancy loss in cattle has mainly focused on the maternal 

side; however, the paternal contributions cannot be overlooked considering the 

substantial variation in the amount of pregnancy loss reported between sires 

(Markusfeld-Nir, 1997; López-Gatius et al., 2002; Pegorer et al., 2007) and the large 

influence paternal genetics have on placental formation (Barton et al., 1985; Surani et 

al., 1987). In a study by Franco et al. (2018b), postpartum, multiparous Nelore cows 
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were subjected to FTAI by Angus sires that were categorized as either high LEM (mean 

7.25%) or low LEM (mean 3.93%), which is equivalent to a 1.9× greater rate of 

pregnancy loss. Circulating concentrations of PAG at d 30 of gestation were significantly 

decreased in cows inseminated with high embryonic loss sires. Preliminary data from 

our laboratory has indicated variation in the amount of PAG gene copy number in 

semen from sires of different breeds and fertility. More interestingly, we observed 

variation among phylogenetic groups, specifically ancient PAG genes were greater in 

high pregnancy loss samples, whereas modern PAG genes were increased in low 

pregnancy loss samples (Franco et al., 2018a). These data are preliminary and limited 

to a small group of sires; however, exploring this relationship may elucidate some of the 

variation observed in fertility and pregnancy loss that exists among sires. Using specific, 

yet to be identified, genomic characteristics to identify bulls with higher fertility (i.e., low 

embryonic loss) can improve sire selection and decrease pregnancy losses. 

Additionally, the incorporation of Bos indicus genetics has been used to increase 

the embryo’s ability to tolerate heat stress in tropical environments, specifically in dairy 

herds, whereas other studies used Bos taurus genetics in Bos indicus herds to increase 

heterosis and improve embryo development. Pegorer et al. (2007) observed higher 

pregnancy rates (P < 0.05) and lower incidence of pregnancy loss (P < 0.05) in Holstein 

cows that were artificially inseminated to a Bos indicus sire. In addition, our group has 

seen similar results: Nelore cows inseminated with Bos indicus sires had greater (P < 

0.001) pregnancy rate at d 30 of gestation but greater (P = 0.014) pregnancy loss 
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between d 30 and 100 of gestation, when compared with cows inseminated with Bos 

taurus sires (Franco et al., 2018b). Even though the exact genetic characteristics and 

mechanisms regarding sire contribution to pregnancy loss have yet to be elucidated, 

this research is ongoing and holds promise to increase reproductive efficiency in cattle. 

The future implication of this research would aid in the selection process of both beef 

and dairy sires by genetically identifying high pregnancy loss from low pregnancy loss 

sires. 

Conclusion 

There are several ways to detect and manage pregnancy loss in cattle (Table 1 

and 2 in Appendix I), and some provide greater accuracy and specificity compared with 

others. Blood and milk tests that use pregnancy or non-pregnancy-specific methods as 

their basis for testing could become commercially available for cattle producers and 

may have the potential to predict pregnancy loss or maintenance. This prediction is of 

interest to ultimately limit days a female spends open, which in turn will reduce costs 

associated with maintaining a nonpregnant female and will allow for earlier rebreeding. 
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Table 1. Summary of detection methods of pregnancy loss in cattle with 
respective advantages and disadvantages of each. 

 
 
  

Item for Manual 
Methods 

Accuracy Assess Embryonic 
Viability 

Earliest Day for 
Accurate Use 

Return to Estrus Low No 24 days 

    
Transrectal Palpation High No 30 – 35 days 

    
Transrectal 

Ultrasonography: Two-
Dimensional 

 

High Yes 26 – 29 days 

Transrectal 
Ultrasonography: 

Color Doppler 

Medium Yes 19 – 20 days 

    
Transrectal 

Ultrasonography: 
Three-Dimensional 

High No 45 days 

    
Item for Chemical 

Methods 
Accuracy Assess Embryonic 

Viability 
Earliest Day for 
Accurate Use 

Progesterone 
(Commercial Test 

Available) 

Low No 19 – 20 days 

    
Interferon-Stimulated 

Genes (No 
Commercial Test 

Available) 

Medium Yes 18 – 20 days 

    
MicroRNA Biomarkers 
(No Commercial Test 

Available) 

Unknown Potentially 8 – 30 days 

    
Pregnancy-Associated 

Glycoproteins 
(Commercial Test 

Available) 

High Yes 28 days 
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Table 2. Summary of risk factors and management variables that can affect 
pregnancy loss in cattle. 

 

  

Pregnancy loss (%) Reference 

                        Sire 
 

High fertility Low fertility  

3.93 7.25 Franco et al., 2018 

3.2 17.6 Lopez gatius et al., 2002 

5.9 10.6-17.9 Markusfeld-Nir, 1997 

                      Estrus   

Yes No  

7.9 7.8 Speckhart et al., 2018 

14.4 20.1 Pereira et al., 2016 *FTAI 

18.6 22.7 Pereira et al., 2016 *FTET 

                    Uterine size   

Small (SPS1) Large (SPS3)  

2.9 14.9 Madureira et al., 2017 

13.5 50  Oliveira et al., 2018 

4.0 4.8 Baez et al., 2016 *Primiparous 

7.9 9.1 Baez et al., 2016 *Multiparous 
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Figure 1. Pregnancy-associated glycoprotein (PAG) concentration by Estrotect 
patch score. Adapted from Pohler et al. (2016b) and Speckhart et al. (2018). Combined 
serum concentration of day 28 and day 30 PAGs (mean ± SEM) with different levels of 
Estrotect patch activation (1, <25% activated; 2, <50% activated; 3, <75% activated; 
and 4, >75% activated) at TAI in postpartum primiparous Nelore beef cows and Angus 
females, respectively. As estrus intensity increased, as determined by Estrotect patch 
scores, there was a numerical increase (P > 0.05) in circulating PAGs. 
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Figure 2. Pregnancy rates at day 30 by Estrotect patch scores. Adapted from 
Franco et al. (2018a) and Speckhart et al. (2018). Multiparous, Nelore cows (n = 1228) 
in a Brazil study observed increased pregnancy rates at day 30 of gestation as Estrotect 
heat detector patch scores increased in number (Patch 1, 35.3% vs. Patch 2, 52.8% vs. 
Patch 3, 58.6% vs. Patch 4, 66.5%; patch score 1 vs. 2 and 3, P = 0.0006, patch score 
2 and 3 vs. 4, P < 0.0001). Angus females (n = 1304) in a study from the USA observed 
similar results to the Brazil data, pregnancy rates demonstrated an increase as 
Estrotect heat detector patch scores increased in number (Patch 1, 50.2% vs. Patch 2, 
51.4% vs. Patch 3, 47.4% vs. Patch 4, 66.1%; patch score 1 vs. 4, P < 0.0001). 
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CHAPTER II: COMPARISON OF CIRCULATING AND UTERINE 
MICRORNAS IN PREGNANT AND NON-PREGNANT BEEF HEIFERS 
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Abstract 

MicroRNAs (miRNAs) isolated from milk and blood have recently been used as 

pregnancy biomarkers in cattle; however, miRNAs located in uterine flush fluid may 

harbor more accurate candidates. The objective of the current study was to identify 

pregnancy-related, extracellular vesicle (EV) derived miRNAs from serum and uterine 

flush fluid on day 18 post-insemination in cattle. We hypothesized EV-derived miRNAs 

from pregnant and non-pregnant heifers would differ in serum and uterine flush fluid. 

Beef heifers were randomly allocated into one of two groups (14 heifers received live 

semen; 6 heifers received dead semen, control heifers) for artificial insemination at day 

0. Sacrifice was performed on day 18 where presence or absence of a conceptus was 

reported, and samples were collected. Extracellular vesicles were isolated by 

ultracentrifugation for western blot analysis (for CD81) and transmission electron 

microscopy prior to small RNA extractions. After confirmation of successful EV isolation, 

small RNAs were extracted using TRIzol. Next generation sequencing of small RNAs 

was performed on 12 samples. Each heifer (pregnant, n = 3; non-pregnant, n = 3) had 

two samples that were sequenced; one serum and one uterine flush fluid sample. 

Various differential abundance parameters identified two novel miRNAs at different loci 

that were located in both serum and uterine flush fluid from pregnant and non-pregnant 

heifers. These novel miRNAs were more abundant in pregnant heifers compared with 

non-pregnant heifers. In summary, EV-derived miRNAs were located in serum and 
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uterine flush fluid from pregnant and non-pregnant beef heifers at day 18 post-

insemination.  

Introduction 

Reproductive failures in the United States beef industry accounts for more than 

$1 billion in losses annually (Geary, 2005). The majority of these losses occur within the 

first 28 days of gestation which is termed early embryonic loss, and a smaller portion of 

losses occur between days 28 and 42 of gestation termed as late embryonic loss, 

followed by even smaller losses after day 42, fetal loss (Santos, Thatcher, Chebel, 

Cerri, & Galvao, 2004; Silke et al., 2002; Sreenan, Diskin, & Morris, 2001). A 

pregnancy-specific marker called pregnancy-associated glycoprotein (PAG), secreted 

from binucleated trophoblast cells of the placenta, was identified almost four decades 

ago and has remained as the only pregnancy-specific, chemical-based method for 

pregnancy detection in cattle (Butler et al., 1982; Szafranska, Xie, Green, & Michael 

Roberts, 1995; Xie et al., 1997). Pregnancy-associated glycoproteins can be detected in 

blood as early as day 24 of gestation (Green et al., 2000; Sasser, Ruder, Ivani, Butler, & 

Hamilton, 1986; Zoli, Guilbault, Delahaut, Ortiz, & Beckers, 1992); however, current 

commercial PAG pregnancy tests are not accurate at diagnosing cattle pregnancies 

until day 28 of gestation. Consequently, there is interest to develop a different 

pregnancy detection method that can be used earlier in gestation than PAG. Small (~22 

nucleotides) molecules called microRNAs (miRNAs) have been used as biomarkers for 

the detection of several physiological conditions and diseases in humans due to their 
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ability to be non-invasively sampled (Bartel, 2004; Reid, Kirschner, & van Zandwijk, 

2011; Velu, Ramesh, & Srinivasan, 2012). More recently in the field of cattle 

reproductive physiology, miRNAs are being examined for their potential to serve as a 

pregnancy-specific biomarker in order to determine cattle pregnancy status before PAG.  

MicroRNAs are small, non-coding RNAs (ncRNAs), which most often act at the 

level of posttranscription by targeting messenger RNA (mRNA) for degradation or 

translational repression (Bartel, 2004; Valencia-Sanchez, Liu, Hannon, & Parker, 2006). 

There are many other ncRNAs that possess the potential for biomarker discovery in the 

future; however, miRNAs are currently the best characterized and have been strongly 

correlated with diseases including the expression pattern and development (Etheridge, 

Lee, Hood, Galas, & Wang, 2011; Russo et al., 2016). MicroRNAs have been proposed 

as optimal biomarkers because they possess key features including stability, non-

invasiveness, tissue specificity, and accuracy and rapidity regarding detection methods 

(Turchinovich, Weiz, Langheinz, & Burwinkel, 2011; Velu et al., 2012). They have been 

identified to exist in different forms including those located within extracellular vesicles 

(EVs) (Valadi et al., 2007). Extracellular-derived miRNAs are of particular interest as 

this form of miRNAs remains the most extensively verified, and have been documented 

to be released by presumably every cell type as a method of cell to cell communication 

to elicit various biological effects (Liang, Wang, & Wang, 2017; Turchinovich, Weiz, & 

Burwinkel, 2012). There are two main groups of EVs, microvesicles or exosomes, 

differing in their size and how they exit their secretory cells (Al-Nedawi, Meehan, & Rak, 
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2009; Stoorvogel, Kleijmeer, Geuze, & Raposo, 2002; Théry, Zitvogel, & Amigorena, 

2002; van Niel, D'Angelo, & Raposo, 2018). Once microvesicles and exosomes are 

released extracellularly, it is difficult to determine their original origin, so they are 

referred collectively as EVs as both classes are known to contain miRNAs as well as 

other nucleic acids, lipids, and proteins (Raposo & Stoorvogel, 2013; van Niel et al., 

2018).  

Previous bovine pregnancy-related miRNA research has resulted in several 

candidates that were isolated from milk, plasma, serum, or whole blood (Bem et al., 

2017; Gebremedhn et al., 2018; Ioannidis & Donadeu, 2016, 2017; Markkandan et al., 

2018; Pohler et al., 2017; Schanzenbach, Kirchner, Ulbrich, & Pfaffl, 2017). A significant 

limitation in this area of research is that there is no standardized approach in regard to 

extraction and isolation techniques, which lead to differing results regarding abundance 

of diverse miRNAs. As we attempt to progress the identification of pregnancy-related 

biomarkers using miRNAs, we are exploring EV-derived miRNAs located in bovine 

uterine flush fluid. It is plausible that the uterus will directly release pregnancy-related 

EV-derived miRNAs into the lumen of the uterus, which could migrate into maternal 

circulation. Therefore, we hypothesized that EV-derived miRNAs from pregnant and 

non-pregnant heifers in serum will be different than EV-derived miRNAs found in uterine 

flush fluid from the same heifers; even though, some uterine flush fluid EV-derived 

miRNAs may still be conserved in circulation. To test this, EV-derived miRNAs from 
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serum and uterine flush fluid samples of both pregnant and non-pregnant heifers on day 

18 post-insemination were examined. 

 

Materials and Methods 

All animal experimental procedures were performed after approval of the 

University of Missouri Institutional Animal and Care and Use Committee. The following 

methods for experimental design and sample collection are as described in Wallace et 

al. (2019); methods for sequencing and bioinformatics are as described in Pohler et al. 

(2017). 

 

Animals and Sample Collection 
 Angus crossbred heifers (n = 20), from the University of Missouri Beef Research 

and Teaching Farm, were synchronized to ovulate using a modified 5-day CO-synch 

plus controlled intravaginal drug release (CIDR; Zoetis) protocol (Figure 3 in Appendix 

II): 100 µg of gonadotropin releasing hormone (GnRH; Cystorelin) (Merial) in 2 mL was 

administered intramuscularly (IM) and an EAZI-breed CIDR containing 1.38 g 

progesterone was inserted on day -7; prostaglandin F2α (PGF2α; Estrumate) (Merck) 

was administered IM, equivalent to 1 mg of cloprostenol, and the CIDR was removed on 

day -2; second injection of 100 µg GnRH (Cystorelin) (Merck) in 2 mL was administered 

IM 60 hr following PGF2α; artificial insemination on day 0.  

 Insemination using semen from a high fertility Jersey bull was performed in all 

heifers (14 heifers received live semen; 6 heifers received dead semen, control heifers) 



 
 
 

53 
 

regardless of estrus expression. Control heifers were inseminated with dead semen that 

had been exposed to room temperature for 20 to 24 hours. Dead semen was used in 

the control heifers because sperm and seminal plasma are known to contain miRNAs. 

Motility of the dead sperm was confirmed using microscopy prior to insemination. 

 A second CIDR was inserted in all heifers from day 16 to day 18 post-

insemination. This was done to ensure comparable progesterone levels between 

pregnant and non-pregnant heifers because the corpus luteum of non-pregnant heifers 

would be regressing around this time, resulting in decreasing progesterone. Therefore, 

any changes observed in miRNAs across heifers would not be due to differences in 

progesterone levels. All heifers were sacrificed on day 18 post-insemination at a USDA 

inspected abattoir where reproductive tracts were excised and blood, endometrial 

explants, and uterine flush fluid was collected.  

 Presence or absence of a conceptus was reported at time of sacrifice on day 18. 

Pregnancy was confirmed by presence of conceptus and increased expression of at 

least 2 of 3 interferon-stimulated genes (IFI6 [Interferon-Inducible protein 6], ISG15 

[Interferon-stimulated protein, 15 kDa], and 2’-5’-Oligoadenylate Synthetase 1]). Non-

pregnant heifers were determined as having absence of a conceptus and no elevation 

in ISGs at day 18 post-insemination. 
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Blood Collection 
Blood serum samples were taken at day 18 post-insemination for small RNA 

sequencing. Blood was collected by venipuncture into a 10 mL vacutainer tube. Serum 

tubes were allowed to incubate for 1 hour at room temperature, and then incubated for 

24 hours at 4°C followed by centrifugation. After centrifugation, serum was stored at -

80°C until needed for progesterone assays and EV-isolation. 

 

Uterine Flush Fluid Collection 
Reproductive tracts were removed and transported to a laboratory biological 

safety cabinet within 30 minutes following sacrifice. Tracts were sprayed with 70% 

ethanol before the lumen of uterine horns were individually flushed from the oviduct 

using 60 mL sterile Dulbecco’s Phosphate-Buffered Saline (PBS). Samples were then 

put on ice until able to be frozen at -80°C where they were kept until needed for EV 

isolation. 

 

Endometrial Explant Collection 
 Following uterine flush collection, small endometrial explant samples (5 – 6 mm 

in diameter) were collected from each heifer for determination of interferon-stimulated 

genes (ISGs) including Interferon-Inducible protein 6 (IFI6), Interferon-Stimulated Gene 

15 (ISG15), and 2′-5′-Oligoadenylate Synthetase 1 (OAS1) (Wallace et al., 2019).  
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Progesterone Radioimmunoassay (RIA) 
 A Coat-a-Count RIA kit (Diagnostic Products Corporation, Los Angeles, CA) was 

used to quantify serum progesterone in all heifers as described by Kirby, Wilson, and 

Lucy (1997). Assay sensitivity was 0.08 ng/mL and intra-assay coefficients of variations 

were <10%. The GLM (SAS 9.4, Cary, NC) procedure was used for statistical analysis 

of serum progesterone concentrations. 

 

RNA Isolation and PCR for Interferon-Stimulated Gene Expression 
 For RNA isolation, endometrial explant samples were minced and total RNA was 

extracted using the RNeasy Mini Kit (Qiagen) according to manufacture instructions 

(Wallace et al., 2019). Real-time quantitative PCR was performed as described by 

Wallace et al. (2019). Expression of interferon-stimulated genes was determined by the 

presence or absence of product (IFI6 [Interferon-Inducible protein 6], ISG15 [Interferon-

stimulated protein, 15 kDa], and 2’-5’-Oligoadenylate Synthetase 1]). Ribosome protein 

L7 (RPL7) served as the positive control for all samples. 

 

Extracellular Vesicle Isolation 
Extracellular vesicle isolation was completed as described by Pohler et al. 

(2017). Serum (1250 µL) and uterine flush fluid (4 mL) samples can contain cellular 

debris; therefore, the samples from day 18 post-insemination were initially centrifuged at 

a low speed (300 g) for 10 minutes in order to rid them of debris. The supernatant, each 

time making sure to change ultra-centrifuge tubes, resulting from each 
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ultracentrifugation step was kept for further centrifugation. The series of 

ultracentrifugation steps were all performed at 4°C as follows: supernatant with the 

addition of 2.5 mL of PBS centrifuged at 2000 g for 20 minutes; 18,000 g for 45 minutes, 

and the supernatant from this spin was filtered (Millex GP 0.22-µm filter) into a new 

ultra-centrifuge tube; 110,000 g for 3 hours, and white pellets were rinsed with PBS; 

110,000 g for 90 minutes. The end result of ultracentrifugation was a small, enriched EV 

pellet, which was resuspended in 1 mL or 400 μL of TRIzol then frozen at -80°C for 

serum and uterine flush fluid samples, respectively (see Small RNA Extraction section 

for complete details). 

 

Western Blot Analysis  
 Western blot analysis will be executed as described by Pohler et al. (2017). Once 

purified EVs were obtained by ultracentrifugation, an aliquot was taken for EV 

suspension in 40 µL of M-PER with HALT protease inhibitor cocktail and incubated for 

15 minutes. Lysates were vortexed with Laemmli sample buffer and allowed to denature 

for 5 minutes at 95°C. Gel electrophoresis (12% polyacrylamide) was used to separate 

denatured lysates. Running buffer was placed over the gel, and the voltage was set to 

150V for 60 minutes. When the time expired, protein from the gel was transferred to 

0.45 µm Protran BA 85 nitrocellulose membrane in Towbin transfer buffer. Membranes 

were allowed to incubate for 1 hour in blocking buffer (5% non-fat dairy milk based 

buffer). Next, the primary antibody (CD81) diluted 1:20,000 in blocking buffer, was 
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introduced to the membranes and allowed to incubate at 4°C for 1 hour. Afterwards, 

membranes were washed with TBS before the addition of the secondary antibody 

(horseradish peroxidase-conjugated goat anti-rabbit) diluted 1:10,000 and allowed to 

incubate for 1 hour. Following incubation, the membranes were washed with TBST. 

Once washed, they incubated with SuperSignal West Pico Chemiluminescent Substrate 

for 3 minutes prior to imagining. 

 
Transmission Electron Microscopy 
 Transmission electron microscopy was performed as described by 

Navakanitworakul et al. (2016). An aliquot of purified EVs resulting from 

ultracentrifugation was used and fixated in 2% glutaraldehyde in 0.1 M sodium 

cacodylate buffer overnight. After, the fixative was removed and 0.1 M sodium 

cacodylate buffer was added twice for 5 minutes each. The EV fraction was post-fixed 

for 1 hour in a solution containing 1% osmium tetroxide and 1% potassium ferric 

cyanide buffered in 0.1 M cacodylate buffer. The resulting EV fraction was dehydrated 

and then embedded in Embed 812 resin for curation overnight in a 60⁰C oven. A Leica 

UC-7 ultramicrotome was used to cut 80 nm sections. The cut sections were mounted 

on copper thin bar 300 mesh grids where they were contrasted using 4% uranyl acetate 

and Sato’s lead stain. All samples were imaged using a JEOL-JEM-1400 transmission 

electron microscope at 80kV with 25,000x magnification.  
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Small RNA Extraction 
 Small RNA was extracted from each EV-enriched pellet that resulted from 

ultracentrifugation. One mL of TRIzol reagent was added to EV-enriched serum 

fractions from each heifer (pregnant heifers, n = 3; non-pregnant heifers, n = 3) 

according to manufacturer’s instructions. It was followed entirely for the duration of 

serum small RNA extractions. Two ultracentrifuged uterine flush fluid samples (right and 

left uterine horns) were pooled from each heifer (pregnant heifers, n = 3; non-pregnant 

heifers, n = 3) separately. The combination accounted for a total of 800 μL (400 μL from 

the right uterine horn and 400 μL from the left uterine horn), which was the solution of 

extracellular vesicles resuspended in TRIzol after ultracentrifugation. Additional TRIzol 

was added (200 μL) to the uterine flush fluid samples in accordance with manufacturer’s 

instructions. It was followed entirely for completion of the extractions. 

 

Small RNA Sequencing 
 At the University of Kansas Medical Center Genomics Core (Kansas City, KS), all 

12 samples from day 18 pregnant (serum, n = 3; uterine flush fluid, n = 3) and non-

pregnant heifers (serum, n = 3; uterine flush fluid, n = 3) were sequencing using the 

Illumina HiSeq2500 system. The TruSeq Small RNA library preparation protocol 

(Illumina, San Diego, CA) used EV RNA ranging from 1.8 to 100 ng, which was ligated 

with 3’ and 5’ RNA adapters. Next, EV RNA was subjected to a modified reverse-

transcription reaction and PCR amplification as described by Pohler et al. (2017). 
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 Complementary DNA library purification and size selection was performed using 

3% marker H gel cassettes on the Pippin Prep size fractionation system (Sage 

Science). Purified libraries were validated by an Agilent 2100 Bioanalyzer using a High 

Sensitivity DNA Kit or DNA1000 kit (Agilent), and quantified using the Illumina ECO 

Real-Time PCR System using KAPA SYBR Universal Library Quant kit (KAPA 

Biosystems, Wilmington, MA). Once quantified, libraries were adjusted to a 2 Nm 

concentration and then pooled for multiplex sequencing. After libraries were denatured 

and diluted according to the correct picomolar concentration, clonal clustering onto the 

sequencing flow cell was performed using the TruSeq Rapid Single Read Cluster Kit-HS 

(Illumina) and the automated Illumina cBOT Cluster Station. Illumina HiSeq 2500 

system in Rapid Read mode was used to sequence the clustered flow cell with 1 x 50 

cycle read and index read using the TruSeq Rapid SBS kit-HS (Illumina). High-

throughput sequencing was conducted at 50 base pair, single-end resolution. 

Sequencing data was transformed from .bcl file format to FASTQ files following 

collection, and then sorted for additional downstream analysis based on the particular 

index sequence present. All generated sequencing data are available for public access 

through Gene Expression Omnibus. 

 

Processing of Small RNA Data 
 All sequencing reads were mapped to the bovine genome using Bowtie2 

software (Langmead & Salzberg, 2012) in the local-sensitive mode after 3’ adaptor 
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removal. Mapped reads were then processed according to Pohler et al. (2017). The 12 

samples’ reads were merged and scanned for high-density regions, which is a 

continuous region whose read count at each base is greater than 20% of the highest 

base read count for the locus. Loci with an effective length ≥18 nucleotides were 

retained. The effective lengths are high-density regions that form the effective region of 

the locus. Effective read counts are formed from each samples’ number of reads 

mapped to the effective region. Loci were filtered on their normalized effective read 

counts (normalized to the number of counts per million reads [cpm]), and loci with ≥10 

cpm were retained.  

 The Ensemble gene annotation file for bovine (release 70) and miRBase (release 

21) were used to annotate genomics features of the effective regions. Initially, effective 

regions that were able to map to annotated bovine mature miRNAs were identified, 

whereas the remaining effective regions were compared to known miRNAs from bovine 

and other species in the miRBase (release 21). The following criteria was required for a 

region to be labeled as a microRNA by homology: “a gapless alignment of the effective 

region to the mature reference miRNA with at most two mismatches in the core, at most 

one gap per mismatch at the 5’ and 3’ ends, and less than 10% mismatches in the 

alignment of the reference hair-pin sequence to the extended locus region in the 

genome” (Pohler et al., 2017). For miRNA to be considered novel, their extended 

effective region should have a predicted miRNA-like hairpin structure (Jiang et al., 
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2007), and the effective region should have greater than 80% pairing while falling within 

the stem region (Navakanitworakul et al., 2016). 

Generalized linear models (GLM) were utilized to determine statistical differences 

in miRNA abundance between groups using edgeR software package (Robinson, 

McCarthy, & Smyth, 2010). To determine the total number of biologically relevant 

miRNAs contained within a given group, each replicate had to contain ≥10 cpm for one 

of the group(s) being compared. For example, when determining total miRNAs present 

in non-pregnant serum only, all 3 replicates (heifers) that compose this given group 

were filtered to contain reads only with ≥10 cpm while the other 3 groups (non-pregnant 

heifer uterine flush fluid, pregnant heifer serum, and pregnant heifer uterine flush fluid), 

each containing 3 replicates themselves, did not need to be filtered. However, to 

determine which miRNAs were unique to a given group(s), the replicates of the group(s) 

of interest were filtered to contain reads ≥10 cpm, while all remaining replicates were 

filtered to 0 cpm. In edgeR, RNA composition of each sample was able to be normalized 

using trimmed mean of M-values method. The Benjamini and Hochberg method was 

utilized to correct the associated P-values for multiple hypothesis testing (Benjamini & 

Hochberg, 1995). Significance was determined as having absolute expression 

differences ≥1.5 with a false-discovery rate ≤0.1. 
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Results 

Progesterone Analysis and Interferon-Stimulated Gene Expression 
 At day 18 post-insemination, all heifers had a combined average progesterone 

blood concentration of 4.8 ng/mL. Mean progesterone concentration at day 18 for 

pregnant and non-pregnant heifers was 5.7 ng/mL and 3.8 ng/mL, respectively (P > 

0.05). Pregnant heifers had increased transcript expression of all ISGs (P < 0.001 for 

IFI6, ISG15, and OAS1) when compared with non-pregnant heifers at day 18 post-

insemination. 

 

Western Blot Analysis and Transmission Electron Microscopy 
 For day 18 post-insemination serum and uterine flush samples, each heifer had 

positive EV immunoreactivity for the tetraspanin, Cluster of Differential 81 (CD81) 

(Figure 4a in Appendix II). Transmission electron microscopy revealed EVs with 

diameters representative of exosomes and microvesicles (Figure 4b in Appendix II). 

 

Small RNA Profiles and Sequencing 
 Small RNA profiles were evaluated using an Agilent small RNA chip ran on an 

Agilent 2100 Bioanalyzer. Peaks ranged from ~18 nucleotides and up to ~200 

nucleotides indicating a diverse collection of ncRNAs other than miRNAs (Figure 5), 

which was also verified by small RNA sequencing. The majority of ncRNAs 

corresponded to miRNAs (54%), followed by small nucleolar RNA (snoRNA) (20%), 

ribosomal RNA (8%) and small nuclear RNA (snRNA) (8%) (Figure 6 in Appendix II). A 

total of 334 known and 564 novel Bos taurus miRNAs on day 18 post-insemination were 
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confirmed by small RNA sequencing. Each sample resulted in an average of 7.5 and 

11.1 million reads, and of which, 6 to 8 million reads mapped to the genome. The 

majority of both known and novel miRNAs were similar across groups (Supplementary 

Figures) with only a few unique miRNAs specific to a singular group (Supplementary 

Figures). 

 

Differential Expression of MiRNAs 
 Values for fold change (≥ 1.5), P-value (≤ 0.05), and FDR (≤ 0.1) enabled the 

identification of several known and novel miRNAs to be significantly and differentially 

abundant according to each comparison group (Table 3 in Appendix II; Supplementary 

File). Interestingly, no miRNAs were differentially expressed in the pregnant heifer 

serum vs. non-pregnant heifer serum group, which was due to all miRNAs within this 

group having ≥ 1.68 FDR (data not shown). Nonetheless, the different in pregnant vs. 

non-pregnant heifers in both serum and uterine flush fluid group holds the most promise 

for an ideal biomarker, and MiPred software identified 2 novel miRNAs located at 

different loci (19:43923840-43923864 and 3:107486424-107486448) in this group. Both 

novel miRNAs had significantly greater abundance in pregnant heifers compared with 

non-pregnant heifers (Tables 4 and 5 in Appendix II). 

Discussion 

In an attempt to narrow down and identify candidates that are more likely to be 

related to pregnancy, we examined EV-derived miRNAs located in uterine flush fluid in 
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addition to serum. In the present study, western blot analysis and transmission electron 

microscopy confirmed successful isolation of EVs indicated by the presence of CD81 

(Figure 4a in Appendix II) and size consistent with EVs (Figure 4b in Appendix II) (Al-

Nedawi et al., 2009; Stoorvogel et al., 2002; Théry et al., 2002; van Niel et al., 2018). 

Small RNA profiling revealed EVs contained small RNAs <200 nucleotides (Figure 5 in 

Appendix II), which was similar to other literature using uterine flush fluid samples from 

ewes (Burns et al., 2014). A follow up study by G. W. Burns, Brooks, and Spencer 

(2016) revealed that EVs originating from the uterus of ewes were not only able to be 

located in uterine flush fluid, but that they were also responsible for mediating 

conceptus-maternal interactions during pregnancy. Additionally, pregnancy-specific EV-

derived miRNAs originating from the human placenta have been successfully detected 

in maternal circulation (Luo et al., 2009). Therefore, it is likely that pregnancy-related 

miRNAs in cattle will be located in uterine flush fluid and can migrate into circulation, 

which will ultimately allow for easier sampling that is required for the determination of 

pregnancy status.  

 Next generation sequencing confirmed the findings obtained by the Agilent 2100 

Bioanalyzer. The majority of small ncRNAs corresponded to miRNAs (54%) and was 

followed by small nucleolar RNAs (snoRNAs) (20%) (Figure 6 in Appendix II). These 

results are similar to other literature reporting small ncRNAs distribution within serum 

from pregnant and non-pregnant beef cows at day 17 post-insemination (Pohler et al., 

2017). G. Burns et al. (2014) did not report the exact distribution of small ncRNAs 
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located in uterine flush fluid from pregnant and non-pregnant ewes at day 14 post-

insemination; however, the Agilent 2100 Bioanalyzer results from that study depicting 

small RNAs <200 nucleotides suggest the possibility of similar small ncRNAs present in 

ewe uterine flush fluid. 

Differentially abundant miRNAs were observed on day 18 post-insemination 

between pregnant and non-pregnant heifers in all comparison groups except for the 

pregnant heifer serum vs. non-pregnant heifer serum group (Table 3 in Appendix II). 

The observation of no differentially abundant miRNAs for pregnant heifer serum vs. 

non-pregnant heifer serum is similar to a different study examining miRNAs from serum 

samples of beef cows at day 17 post-insemination, where the authors identified only 

one novel miRNA as being differentially expressed between non-pregnant and pregnant 

cows (Pohler et al., 2017). The single novel miRNA reported barely reached 

significance (FDR = 0.09) (Pohler et al., 2017), which was similar to our study where no 

miRNAs from the pregnant heifer serum vs. non-pregnant heifer serum group had an 

FDR of ≤ 0.1. Even though many different comparison groups were analyzed in this 

study, there is one group that holds the most promise for containing more ideal miRNA 

biomarkers than the miRNAs that were determined to be differentially expressed in the 

other groups. For instance, the ideal, pregnancy-associated miRNA candidate would be 

present in uterine flush fluid while still being conserved in circulation. One of our groups, 

different in pregnant heifers vs. non-pregnant heifers in both serum and uterine flush 

fluid, analyzed this specific subset of miRNAs which revealed two novel miRNAs at two 
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different loci (19:43923840-43923864 and 3:107486424-107486448) as being more 

abundant in pregnant heifers than non-pregnant heifers on day 18 post-insemination 

(Table 2 and 3 in Appendix II).  

Interestingly, the two novel miRNAs (at loci 19:43923840-43923864 and 

3:107486424-107486448) of interest had identical mature sequences 

(AAAUGGAUUUUUGGAGCAGGAAGUU) that most closely corresponded to the same 

known miRNA, which was bta-miR-1246 (mature sequence: 

AAAUGGAUUUUUGGAGCAGGAAG; loci: 1:116822078-116822100). Markkandan et 

al. (2018) reported bta-miR-1246 as being greater in abundance of pregnant Holstein 

cows at day 30 of gestation compared to their non-pregnant counterparts (P-value = 

0.0013; FDR = 0.0287; FC = 0.960). The authors reported overall gene ontology and 

enriched pathways for the combined 29 miRNAs that were identified as differentiating 

pregnancy status at day 30 (Markkandan et al. 2018). Consequently, the functional role 

specific to bta-miR-1246 still remains elusive. MicroRNA sequences are highly 

conserved across species and often have similar functions (Ha, Pang, Agarwal, & Chen, 

2008). Subsequently, studies associated with hsa-miR-1246 (mature sequence: 

AAUGGAUUUUUGGAGCAGG) and its predicted functions are relevant. In human 

pregnancy literature, decreased abundance of has-miR-1246 has been associated with 

severe preeclampsia (Muralimanoharan, Kwak, & Mendelson, 2018). Furthermore, 

when trophoblast cells of the placenta were cultured in hypoxic conditions, hsa-miR-

1246 was also decreased in abundance (Muralimanoharan, Kwak, & Mendelson, 2018). 
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These negative pregnancy-related outcomes observed when miR-1246 is decreased 

further suggests the likelihood of favorable pregnancy outcomes when miR-1246 is 

increased in abundance. In addition to miR-1246 potentially playing a role in pregnancy, 

several human cancer patient and cell line studies have identified hsa-miR-1246 as 

functioning similar to an oncogene by targeting nuclear factor I/B (NFIB), 

thrombospondin-2 (THBS2), and cell adhesion molecule 1 (CADM1) for downregulation 

(Chen et al., 2014; Sun et al., 2014; Chai et al., 2016; Kim et al., 2016; Zhang et al., 

2016; Cooks et al., 2018). It is intriguing to speculate that the two novel Bos taurus 

miRNAs closely related in structure to hsa-miR-1246 could aid in attachment of the 

elongating embryo to the uterine epithelium at day 18 post-insemination given the 

invasion and migration cancer cell properties associated with hsa-miR-1246 (Chen et 

al., 2014; Sun et al., 2014). Moreover, we cannot dismiss the possibility that the two 

novel Bos taurus miRNAs may be present and detectable earlier than day 18 post-

insemination at which time they could act in embryonic development and growth as hsa-

miR-1246 is related to increased cell proliferation (Chen et al., 2014). Future research 

should aim to elucidate whether or not the Bos taurus novel miRNAs identified in the 

present study are functioning in either capacity. 

 

Conclusion 

Results obtained from this study indicate EV-derived miRNAs are located in 

serum and uterine flush fluid from pregnant and non-pregnant beef heifers at day 18 
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post-insemination. Furthermore, some EV-derived miRNAs located in uterine flush fluid 

are also conserved and detectable in circulation, providing useful biomarkers. Additional 

research is warranted to further validate the two novel, EV-derived miRNAs identified in 

the current study that were able to differentiate pregnancy status in both serum and 

uterine flush fluid. Future research should aim to identify potential mRNA targets of the 

two Bos taurus novel miRNAs to gain an understanding of how these miRNAs may be 

functioning in relation to pregnancy. Furthermore, determining the potential ability of 

these two novel, EV-derived miRNAs to decipher embryonic viability as a way to detect 

compromised pregnancies that will fail as a result of embryonic mortality also would be 

valuable.  
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Table 3. Number of significantly and differently expressed known and novel Bos taurus miRNAs according to 
group at day 18 post-insemination. NP = Non-Pregnant, P = Pregnant, S = Serum, and UF = Uterine Flush. 

 

Group Number of Known MiRNA Number of Novel MiRNA 

P-UF vs. NP-UF 13 44 
P-S vs. NP-S 0 0 

NP-S vs. NP-UF 155 89 
P-S vs. P-UF 171 143 

Different (P vs. NP; in S & UF) 0 2 
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Table 4. Differentially abundant miRNAs located in both uterine flush fluid and serum on day 18. 

 

 

 

 

Day 18: Pregnant vs. Non-Pregnant 

Different (Pregnant vs. Non-Pregnant) in (Serum and Uterine Flush) 

Locus MiRNA P-Value FDR Uterine Flush FC Serum FC 

19:43923840-43923864 Novel 1.1587E-05 0.0014 55.36 1.58 

3:107486424-107486448 Novel 7.5663E-06 0.0011 76.74 1.53 
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Table 5. Continuation from Table 4 of the differentially abundant miRNAs depicting counts per million for each 

sample according to their respective group. 

Counts per Million (cpm) 

Non-Pregnant Uterine Flush Pregnant Uterine Flush Non-Pregnant Serum Pregnant Serum 

5008_U 5019_U 5028_U 5017_U 5023_U 5025_U 5008_S 5019 S 5028_S 5017_S 5023_S 5025_S 

36.4 69.6 67.2 6265.5 1009.8 2485.4 117.9 90.1 112.8 156.4 431.4 239.5 

14.1 65 39.6 5889.6 982 2357.7 134.4 73.6 81.8 131.5 408.6 192.2 
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Figure 3. Illustration of the experimental design. Angus crossbred heifers (n = 20) 
were submitted to a modified 5-day CO-synch plus controlled intravaginal drug release 
(CIDR) protocol. On day -7, administration of CIDR and Gonadotropin-releasing 
hormone (GnRH); withdrawal of the CIDR and administration of prostaglandin F2α 
(PGF) on day -2; fixed-time artificial insemination (FTAI) and administration of GnRH on 
day 0. Administration of a second CIDR was applied on day 16 and removed on day 18, 
which represents the day of sacrifice, uterine flush fluid (UF) collection, endometrial 
explant (EE) collection, and blood sample (BS) collection. Pregnancy was confirmed by 
presence of conceptus and increased expression of at least 2 of 3 interferon-stimulated 
genes. Non-pregnant heifers were determined as having absence of a conceptus and 
no elevation in ISGs at day 18 post-insemination. 
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a 

 

b 

 
Figure 4. Identification of extracellular vesicles (EVs). (a) Western blot indicating the 
presence of CD81, a verified marker of EVs. (b) Representative transmission electron 
microscopy image of isolated EVs and their corresponding diameters (nm).
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   Serum Sample of Pregnant Heifer on Day 18  Uterine Flush Sample of Pregnant Heifer on Day 18 

 
 
           Serum Sample of Non-Pregnant Heifer on Day 18 Uterine Flush Sample of Non-Pregnant Heifer on Day 18 

 
  

Figure 5. Small RNA profiles from all sample types at day 18 post-insemination determined by an  
Agilent 2100 Bioanalyzer. Peaks around 20 nucleotide correspond to miRNA length. FU = fluorescence  
units; nt = nucleotide.
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Figure 6. Distribution of extracellular vesicle derived small non-coding RNAs 

identified by deep sequencing. MiRNA = microRNA; snoRNA = small nucleolar RNA; 

rRNA = ribosomal RNA; snRNA = small nuclear RNA; miscRNA = miscellaneous RNA; 

Mt-rRNA = mitochondrial ribosomal RNA; Mt-tRNA = mitochondrial transfer RNA.  
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CHAPTER III: INFLUENCE OF ESTRUS ACTIVITY AND 
REPRODUCTIVE TRACT SIZE AND POSITION SCORES ON FERTILITY 

IN BOS INDICUS AND BOS TAURUS SUCKLED BEEF COWS 
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Abstract 

 
The primary objective of this study was to determine if estrus activity and 

reproductive tract size and position score (SPS) are associated with fertility in Bos 

indicus (Nelore) and Bos taurus (Angus) beef cows. In study 1, multiparous Nelore cows 

(n = 1280) were artificially inseminated at a fixed time (FTAI, d 0) using an estradiol (E2) 

and progesterone (P4) FTAI protocol. In study 2, multiparous Angus cows (n = 764) 

were artificially inseminated at a fixed time (FTAI, d 0) using a gonadotropin-releasing 

hormone (GnRH) and P4 FTAI protocol. Estrus activity was qualified using Estrotect 

heat detector patches and scored on d 0 using the following scoring system: 1 (<25% 

activation), 2 (<50% activation), 3 (<75% activation), or 4 (>75% activation) where patch 

scores of 1 and 2 signified no or limited estrus activity, whereas scores of 3 and 4 had 

increased estrus activity. Reproductive tract SPS were assigned on d 0 (FTAI) as SPS1: 

small and compact resting within the pelvic cavity; SPS2: intermediate, resting partially 

outside the pelvic cavity; and SPS3: larger and resting outside the pelvic cavity. 

Pregnancy diagnosis was performed by ultrasound on day 30 and 100 after FTAI. Cows 

were determined as undergoing pregnancy loss if a viable embryo with heartbeat was 

detected at d 30 but was no longer present at d 100. Day 30 FTAI pregnancy rates were 

interactively influenced by estrus activity and reproductive tract SPS in both Nelore (P = 

0.004) and Angus (P = 0.009) cows. Specifically, SPS1 cows with increased estrus 

activity had greater pregnancy rates when compared to SPS1 cows with little to no 

estrus activity regardless of breed. In Angus cows, pregnancy rate of SPS1 versus 
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SPS3 cows was greater in cows that exhibited estrus activity. In contrast, pregnancy 

loss between day 30 and 100 for both breeds was not interactively influenced by 

reproductive tract SPS and estrus activity (P = 0.194, Nelore; P = 0.832, Angus) or 

when individual main effects of estrus activity (P = 0.775, Nelore; P = 0.797, Angus) or 

reproductive tract SPS (P = 0.882, Nelore; P = 0.567, Angus) were analyzed. In 

summary, influence of reproductive tract SPS on day 30 FTAI pregnancy rates depends 

on estrus activity in beef cows. However, neither estrus activity nor reproductive tract 

SPS were associated with pregnancy loss in the present studies. 

Introduction 

A single service insemination in beef cattle is quite successful at fertilization (~95%) 

(Ayalon, 1978), yet fixed-time artificial insemination (FTAI) pregnancy rates resulting 

from estradiol (E2) or gonadotropin-releasing hormone (GnRH) based protocols 

average ~50% (Meneghetti et al., 2009; Whittier et al., 2013; Bó et al., 2016). Many 

factors including but not limited to the absence or presence of estrus at FTAI and 

embryonic mortality (early embryonic mortality, <28 d of gestation; late embryonic 

mortality, 28 to 42 d of gestation) contribute greatly to this decreased percentage 

(Santos et al., 2004; Perry et al., 2007; Sá Filho et al., 2011; Pohler et al., 2015). 

Management efforts, such as evaluating estrus expression and reproductive tracts, can 

be performed prior to breeding to potentially identify and select females with optimal 

fertility. Overall, these practices aim to increase the probability of pregnancy success. 
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Estrus expression at time of artificial insemination (AI) has been linked to increased 

pregnancy success across studies in both beef and dairy (Cerri et al., 2004; Galvão et 

al., 2004; Perry et al., 2005; Perry et al., 2007; Sá Filho et al., 2010; Sá Filho et al., 

2011; Pitaluga et al., 2013; Pereira et al., 2014; Pereira et al., 2016; Pessoa et al., 

2016; Pohler et al., 2016). This physiological association stems from a change in steroid 

hormones, particularly an increase in E2, which fosters conditions apt for follicular 

development and maturation (McNatty et al., 1979; Perry et al., 2007). Furthermore, E2 

positively alters the uterine environment to influence uterine metabolic activities (Miller 

and Moore, 1976; Miller et al., 1977) and sperm transport (Hawk, 1983; Perry and 

Perry, 2008) in the female reproductive tract at insemination. Indeed, absence of estrus 

at FTAI has resulted in increased pregnancy loss in some studies (Galvão et al., 2004; 

Pereira et al., 2014; Pereira et al., 2016) but not others (Jinks et al., 2013; Franco et al., 

2018). 

Reproductive tract scoring systems have also been used in both the beef and dairy 

industries for assessing female reproductive potential and fertility (Andersen et al., 

1991; Rosenkrans and Hardin, 2003; Stevenson et al., 2008; Holm et al., 2009; 

Gutierrez et al., 2014; Baez et al., 2016; Young et al., 2017). The most recent 

reproductive tract scoring system developed by Young et al. (2017) appears to be the 

most useful with a greater likelihood of implementation since it uses rectal palpation to 

determine reproductive tract size and position of mature, cycling females on a three 

scale basis (SPS1, SPS2, or SPS3). Reproductive tracts that were designated as SPS1 
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had small uterine horns resting within the pelvic cavity, SPS2 females had medium 

cervical and uterine horn diameter with larger uterine horns compared to SPS1 that rest 

partially outside of the pelvic cavity, and SPS3 females had larger uterine horns resting 

mostly outside of the pelvic cavity (Young et al., 2017). The authors reported in lactating 

dairy cows, as tract size increased there was a decrease in pregnancy per AI (P/AI). 

Baez et al. (2016) observed comparable findings where P/AI was greater for cows with 

a smaller uterine volume compared to a larger uterine volume, when using two-

dimensional ultrasound. Similarly, humans with smaller uterine length, width, and 

volume measurements had increased clinical pregnancy rates compared to patients 

with larger measurements when undergoing assisted reproductive technologies (Hong 

Gao et al., 2019). Collectively, these data suggest that smaller reproductive tracts are 

associated with increased fertility and pregnancy success. 

To our knowledge, estrus activity in relation to reproductive tract scoring has not yet 

been investigated in beef or dairy cows. Therefore, the objective of this study was to 

determine if estrus activity and reproductive tract SPS are associated with fertility in 

both Nelore and Angus beef cows. Two factors, pregnancy rate and pregnancy loss, 

were used as measures of fertility. We hypothesized, regardless of breed influence and 

corresponding synchronization protocol, pregnancy rates would be greater among all 

beef cows that were classified as exhibiting estrus activity as well as those with small 

and compact uterine horns resting within the pelvic cavity (SPS1) at FTAI. 
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Materials and Methods 

Study 1: FTAI of Nelore Cows 

This study was conducted on a commercial beef farm in Mato Grosso, Brazil 

following the recommendations of the Guide for the Care and Use of Agricultural 

Animals in Agricultural Research and Teaching (FASS, 1999). All multiparous, Nelore 

cows (n = 1280) were on Brachiaria brizantha pastures and had ad libitum access to 

water and mineral salt. Cows were at least 37 d postpartum (ranged from 37 to 72 d; 

averaged 54 d) and averaged a body condition score (BCS) of 2.91 (ranged from 2 to 

4.25) before subjected to an E2-based FTAI protocol as previously described by 

Meneghetti et al. (2009): an intravaginal progesterone (P4) insert (CIDR; Zoetis, São 

Paulo, Brazil) containing 1.9 g of P4, and 2.0 mg (i.m.) estradiol benzoate (2.0 mL of 

Gonadiol; Zoetis, São Paulo, Brazil) on d -11, CIDR withdrawal, 12.5 mg (i.m.) dinoprost 

tromethamine (PGF; 2.5 mL of Lutalyse; Zoetis, São Paulo, Brazil), 300 IU (i.m.) of 

equine chorionic gonadotropin (1.5 mL of Novormon; Zoetis, São Paulo, Brazil), and 0.6 

mg (i.m.) of estradiol cypionate (0.3 mL of E.C.P.; Zoetis, São Paulo, Brazil) on d -2, 

and FTAI to 1 of 8 Nelore sires on d 0.  

 

Study 2: FTAI of Angus Cows 

 All animal experimental procedures were approved by the University of 

Tennessee Institutional Animal and Care and Use Committee. All multiparous, Angus 

cows (n = 764) on mixed fescue pastures and had ad libitum access to water and 
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mineral salt. Cows were at least 21 d postpartum (ranged from 21 d to 94 d; averaged 

54 d) and averaged a BCS of 5.76 (ranged from 3 to 8.5) before subjected to a 7-day 

CO-synch plus CIDR FTAI protocol: CIDR containing 1.38 g P4 (CIDR; Zoetis, New 

York, NY), and 100 μg (i.m.) of gonadotropin-releasing hormone (GnRH; 2 mL of 

Cystorelin; Merial, Duluth, GA) on d -9, 25 mg (i.m.) Prostaglandin F2α (PGF2α; 5 mL of 

Lutalyse; Zoetis, New York, NY), and CIDR withdrawal on d -2, a second injection of 

GnRH (2 mL of Cystorelin; Merial, Duluth, GA) 66 hr after PGF2α, and FTAI to 1 of 18 

Angus sires on d 0.  

 

Transrectal Ultrasonography 

Uteri of all cows were examined by transrectal ultrasonography (Aloka 500V, 

Aloka, Wallingford, CT) using a 7.5-MHz transrectal linear probe at d 30 and 100 post-

insemination for pregnancy detection. Presence or absence of a viable embryo with 

heartbeat was recorded in order to determine a positive or negative pregnancy status, 

respectively. Cows were determined as undergoing pregnancy loss if a viable embryo 

with heartbeat was detected at d 30 but was no longer present at d 100.  

 

Estrotect Heat Detector Patch Scoring System 

 On d -2, Estrotect heat detector patches (Rockway Inc., Spring Valley, WI) were 

placed halfway between the hip and tail head on all cows. A patch scoring system, 

developed and validated by Pohler et al. (2016), was assessed and determined by AI 



 
 
 

89 
 

technicians at FTAI, d 0. Patch scores ranged from 0 to 4 on the basis of whether a 

patch was lost, most likely due to repeated mounting (score 0), or by the amount of 

patch surface physically activated by rubbing due to mounting (score 1, <25% 

activation; score 2, <50% activation; score 3, <75% activation; score 4, >75% 

activation). Cows that received patch scores of 1 and 2 were classified as having little to 

no estrus activity (labeled as no estrus), whereas cows with patch scores of 0, 3, or 4 

were classified as having increased estrus activity (labeled as estrus). 

 

Reproductive Tract Size and Position Scoring System 

  At FTAI (d 0) reproductive tracts were evaluated by skilled AI technicians to 

determine the reproductive tract size and position score (SPS) of each individual cow. 

Reproductive tract SPS were assigned based on a previously reported scoring system 

developed by Young et al. (2017): SPS1 cows had smaller and more compact 

reproductive tracts that rested within the pelvic cavity, SPS2 cows had intermediate 

sized tracts that rested partially outside of the pelvic cavity, and SPS3 cows had larger 

reproductive tracts that rested outside of the pelvic cavity. 

 

Statistical Analyses 

 The FREQ procedure (SAS, 9.4, Institute Inc., Cary, NC) was used to determine 

separate frequencies for estrus activity and reproductive tract SPS in both Nelore and 

Angus cows. Separate generalized linear mixed models (GLIMMIX procedure, SAS 9.4, 
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Institute Inc., Cary, NC) for binary variables employing one-way ANOVA were used to 

determine differences in dependent variables of pregnancy rate and pregnancy loss for 

Nelore and Angus cows. For both Nelore and Angus analyses, fixed effects included 

estrus activity (estrus or no estrus), reproductive tract SPS (SPS1, SPS2, or SPS3), and 

respective interaction. A general Satterthwaite approximation was used to determine the 

denominator degrees of freedom for the tests of all fixed effects. Random effects for all 

analyses were sire and days postpartum. Cow represented the experimental unit and 

means were separated using LSMEANS and adjusted in accordance with the Tukey-

Kramer test. Statistical significance was determined as P ≤ 0.05 and tendencies were 

determined as 0.05 < P ≤ 0.10. Results are presented as mean ± SEM. 

Results 

Study 1: Nelore Cows 

Overall FTAI day 30 pregnancy rate was 44.06% (564/1280) and overall 

pregnancy loss between day 30 and 100 was 6.92% (39/564). Out of 1280 cows, 

11.48% (n = 147) exhibited estrus activity (Table 6 in Appendix III). The frequency of 

reproductive tract scores of SPS1, SPS2 and SPS3 for Nelore cows was 71.95%, 

20.63%, and 7.42%, respectively (Table 7 in Appendix III). 

Day 30 FTAI pregnancy rate was interactively influenced by reproductive tract 

SPS and estrus activity (P = 0.004; Figure 7 Appendix III). Increased estrus activity in 

SPS1 cows was associated with a greater pregnancy rate (69.71%). Pregnancy rate 

was similar for SPS2 and SPS3 cows regardless of estrus activity. 
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Pregnancy loss between days 30 and 100 of gestation did not differ between 

estrus activity (P = 0.775; 6.78% vs 7.61% for no or limited estrus activity vs. increased 

estrus activity, respectively) or reproductive tract SPS (P = 0.882; 6.81% vs. 6.62% vs. 

8.7% for SPS1, SPS2, and SPS3, respectively). There was no significant interaction of 

estrus activity and reproductive tract SPS for pregnancy loss (P = 0.194). 

 

Study 2: Angus Cows  

Overall FTAI day 30 pregnancy rate was 56.8% (434/764) and overall pregnancy 

loss between day 30 and 100 was 5.71% (18/315). Out of 764 Angus cows, 37.57% (n 

= 287) exhibited increased estrus activity. (Table 6 in Appendix III). The frequency of 

reproductive tract scores of SPS1, SPS2, and SPS3 for Angus cows was 26.96%, 

57.85%, and 15.18%, respectively (Table 7 in Appendix III). 

Day 30 FTAI pregnancy rate was interactively influenced by reproductive tract 

SPS and estrus activity (P = 0.009; Figure 8 in Appendix III). Increased estrus activity in 

SPS1 cows was associated with a greater pregnancy rate (74.43%). Pregnancy rate of 

SPS1 versus SPS3 cows was greater in cows that exhibited estrus activity.  

Pregnancy loss between days 30 and 100 of gestation did not differ between 

estrus activity (P = 0.797; 5.51% vs. 6.21% for no or limited estrus activity vs. increased 

estrus activity, respectively) or reproductive tract SPS (P = 0.567; 7.14% vs. 5.9% vs. 

2.33% for SPS1, SPS2, and SPS3, respectively). There was no significant interaction of 

estrus activity and reproductive tract SPS for pregnancy loss (P = 0.832). 
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Discussion 

 To our knowledge, this is the first study where both estrus activity and 

reproductive tract SPS have been measured concurrently. Both estrus activity and 

reproductive tract SPS interactively influence day 30 FTAI pregnancy rates (Figure 7 

and 10 in Appendix III). The positive association between estrus expression and 

pregnancy outcomes has been heavily investigated in both beef and dairy. A steroid 

hormone, E2, reaches peak concentration at estrus and has been identified to aid in 

pregnancy success through multiple roles including those related to sperm transport 

(Hawk, 1983), partial messenger RNA machinery inhibition for PGF2α synthesis 

(Davoodi et al., 2016), increased uterine receptivity (Spencer and Bazer, 1995; Spencer 

et al., 2008; Davoodi et al., 2016), increased preovulatory follicle diameter and 

subsequent corpus luteum diameter, and therefore, progesterone production (Bridges et 

al., 2012).  

Previous literature using Bos indicus (Sá Filho et al., 2010; Sá Filho et al., 2011) 

and Bos taurus (Perry et al., 2005; Perry et al., 2007; Pessoa et al., 2016) cows, 

reported increased estrus expression corresponded to greater pregnancy rates. These 

data are similar to the present studies where we identified greater pregnancy rates in 

SPS1 cows with increased estrus activity compared to SPS1 cows with little to no estrus 

activity. The percentage of cows exhibiting increased estrus activity was 11.48% and 

37.57% for Nelore and Angus cows, respectively (Table 2 in Appendix III). Previous 

Nelore cow estrus expression literature using cows that were subjected to an E2 (using 
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ECP at CIDR withdrawal) and P4 based FTAI protocol indicates that resulting estrus 

activity is ~65% (ranged from 52.8% to 78.7%) (Sá Filho et al., 2010; Sá Filho et al., 

2011; Davoodi et al., 2016; Rodrigues et al., 2018; Cooke et al., 2019). This 

discrepancy is unusual as the demographic of cattle, geography, and farms as well as 

FTAI protocols were very similar between studies. In the present study, it is possible 

that cows reported as exhibiting little to no estrus activity may have come into estrus 

after day 0 (day of patch score evaluation) as patch scores were not evaluated from that 

point on. Estrus activity response for Angus cows in the present study is similar to 

previous Angus cow estrus expression literature using cows that were subjected to a 

GnRH and P4 based FTAI protocol where resulting estrus activity is ~44% (ranged from 

23.1% to 57%) (Perry et al., 2005; Nash et al., 2012; Whittier et al., 2013; Thomas et al., 

2014). Collectively, this could account for why we observed SPS1 cows with increased 

estrus activity having greater pregnancy rates than SPS3 cows with no or limited estrus 

activity in Angus cows but not Nelore cows (Figure 7 and 8 in Appendix III). 

A couple lactating dairy cow studies investigated tract sizes on pregnancy rates 

without measuring estrus activity (Baez et al., 2016; Young et al., 2017). Young et al. 

(2017) identified a 15.6% difference in pregnancy rates between SPS1 cows (43.3%) 

and SPS3 cows (27.7%). Similarly, using two dimensional ultrasonography, Baez et al. 

(2016) observed a 12.9% increase in pregnancy rates in lactating dairy cows that had a 

smaller uterine volume (≤128 cm³) compared to a larger uterine volume (>128 cm³). The 

authors theorized that larger tracts could interfere with fertilization because sperm have 
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more surface area to travel in order to reach the oviduct. In some cases, previous 

literature identified deep cornual semen deposition was able to increase pregnancy 

rates (López-Gatius and Camón-Urgel, 1988; Meirelles et al., 2012), whereas other 

literature observed no differences according to deposition location (Williams et al., 1988; 

Sá Filho et al., 2012). In the present studies, day 30 FTAI pregnancy rates were 

greatest among females with smaller tract size and position (SPS1) when they exhibited 

increased estrus activity regardless of breed or FTAI protocol (Figure 1 and 2 in 

Appendix III).  

In addition to pregnancy rate, pregnancy loss was also evaluated as a second 

measure of fertility. In both of the present experiments using beef cows, no relationship 

between pregnancy loss and the main effects of estrus activity or reproductive tract SPS 

was identified. Estrus activity did not influence pregnancy loss in both studies, 

consistent with other Bos indicus (Franco et al., 2018) and Bos taurus (Jinks et al., 

2013) literature. These results regarding estrus activity and pregnancy loss in beef 

cattle differ to studies performed in lactating dairy cows where lack of estrus at AI 

corresponded with increased pregnancy loss (Galvão et al., 2004; Pereira et al., 2014; 

Pereira et al., 2016). This discrepancy could be due to lactating dairy cows having 

greater E2 metabolism as a result of increased feed consumption and liver blood flow in 

comparison to beef cattle (Sangsritavong et al., 2002; Vasconcelos et al., 2003; 

Wiltbank et al., 2006; Pereira et al., 2016). In turn, this could amount to decreased 

preovulatory E2 concentrations, which have been associated with premature luteloysis 
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(Mann and Lamming, 2000). However, more recent data by Franco et al. (2018) 

indicates that the sire used for insemination may have a greater influence on pregnancy 

loss after day 30 post-insemination, which suggests less importance of E2 in this role. 

Specifically, the authors were able to identify specific Angus sires (n = 6) that either 

contributed greatly (66.67% of total losses; n = 3) or slightly (33.33% of total losses; n = 

3) to overall late embryonic loss (Franco et al., 2018). This large variation that exists 

between sires could be responsible for differences across studies regarding 

percentages reported for pregnancy loss. 

In regard to reproductive tract SPS and pregnancy loss, these data are in 

agreement with a study using lactating dairy cows where authors found no correlation 

between uterine size or parity and pregnancy loss between day 32 to 67 (Baez et al., 

2016). Interestingly, Angus cows had double the frequency of SPS3 cows compared to 

Nelore cows (15.18% vs. 7.42%) (Table 6 in Appendix III). It is unclear if the differences 

in FTAI protocols influenced this outcome since evaluation of reproductive tract SPS 

took place at FTAI.  

Conclusion 

In summary, results from both studies indicate that day 30 FTAI pregnancy rate 

is interactively influenced by reproductive tract SPS and estrus activity in both Nelore 

and Angus cows. Specifically, SPS1 cows with increased estrus activity had greater 

pregnancy rates compared to SPS1 cows with little to no estrus activity. Estrus 

expression and reproductive tract SPS and did not influence incidence of pregnancy 
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loss in either study. Therefore, from a management perspective, it may be beneficial to 

incorporate both a patch-based estrus detection system and assign reproductive tract 

SPS at breeding to make individual breeding decisions to increase pregnancy rates in 

beef females. Once estrus activity and reproductive tract SPS is determined at FTAI, 

producers could prioritize more valuable semen or embryos to be used in females with 

increased likelihood of pregnancy success (SPS1 females with increased estrus 

activity) whereas semen from a high fertility bull could potentially better serve those 

females that had both larger tracts and limited or no estrus activity at FTAI. 

Acknowledgments 

The authors would like to acknowledge the University of Tennessee AgResearch 

Research and Education Centers (RECs) and Agropecuária Fazenda Brasil for 

providing the animals and facilities as well as their help with animal handling and 

collection of data. We acknowledge ESTROTECT™ (Rockway Inc., Spring Valley, WI) 

for the donation of Estrotect Heat Detector patches used in the present studies. 

  



 
 
 

97 
 

References 

Andersen, K., D. LeFever, J. Brinks, and K. Odde. 1991. The use of reproductive tract 
scoring in beef heifers. Agri-Practice 12(4):123-128. 

 
Ayalon, N. 1978. A review of embryonic mortality in cattle. Journal of Reproduction and 

Fertility 54(2):483-493.  
 
Baez, G. M., R. V. Barletta, J. N. Guenther, J. M. Gaska, and M. C. Wiltbank. 2016. 

Effect of uterine size on fertility of lactating dairy cows. Theriogenology 
85(8):1357-1366.  

 
Bó, G. A., J. J. de la Mata, P. S. Baruselli, and A. Menchaca. 2016. Alternative 

programs for synchronizing and resynchronizing ovulation in beef cattle. 
Theriogenology 86(1):388-396.  

 
Bridges, G., M. Mussard, J. Pate, T. Ott, T. Hansen, and M. Day. 2012. Impact of 

preovulatory estradiol concentrations on conceptus development and uterine 
gene expression. Animal Reproduction Science 133(1-2):16-26.  

 
Cerri, R., J. Santos, S. Juchem, K. Galvão, and R. Chebel. 2004. Timed artificial 

insemination with estradiol cypionate or insemination at estrus in high-producing 
dairy cows. Journal of Dairy Science 87(11):3704-3715.  

Cooke, R., K. Pohler, J. Vasconcelos, and R. Cerri. 2019. Estrous expression during a 
fixed-time artificial insemination protocol enhances development and interferon-
tau messenger RNA expression in conceptuses from Bos indicus beef cows. 
Animal 10:1-7. 

 
Davoodi, S., R. F. Cooke, A. C. d. C. Fernandes, B. I. Cappellozza, J. L. M. 

Vasconcelos, and R. L. A. Cerri. 2016. Expression of estrus modifies the gene 
expression profile in reproductive tissues on day 19 of gestation in beef cows. 
Theriogenology 85(4):645-655.  

 
Franco, G. A., R. F. G. Peres, C. F. G. Martins, S. T. Reese, J. L. M. Vasconcelos, and 

K. G. Pohler. 2018. Sire contribution to pregnancy loss and pregnancy-
associated glycoprotein production in Nelore cows. Journal of Animal Science 
96(2):632-640.  

 
Galvão, K., J. Santos, S. Juchem, R. Cerri, A. Coscioni, and M. Villaseñor. 2004. Effect 

of addition of a progesterone intravaginal insert to a timed insemination protocol 
using estradiol cypionate on ovulation rate, pregnancy rate, and late embryonic 
loss in lactating dairy cows. Journal of Animal Science 82(12):3508-3517.  



 
 
 

98 
 

Gutierrez, K., R. Kasimanickam, A. Tibary, J. Gay, J. Kastelic, J. Hall, and W. Whittier. 
2014. Effect of reproductive tract scoring on reproductive efficiency in beef 
heifers bred by timed insemination and natural service versus only natural 
service. Theriogenology 81(7):918-924.  

 
Hawk, H. 1983. Sperm survival and transport in the female reproductive tract. Journal of 

Dairy Science 66(12):2645-2660.  
 
Holm, D. E., P. N. Thompson, and P. C. Irons. 2009. The value of reproductive tract 

scoring as a predictor of fertility and production outcomes in beef heifers. Journal 
of Animal Science 87(6):1934-1940.  

 
Hong Gao, D.-e. L., Y. Li, J. Tang, S. Hu, X. Wu, Z. Tian, and H. Tan. 2019. Uterine size 

and volume are associated with a higher clinical pregnancy rate in patients 
undergoing assisted reproduction technology: A longitudinal study (A STROBE-
compliant article). Medicine 98(8): e14366. 

 
Jinks, E., M. Smith, J. Atkins, K. Pohler, G. Perry, M. MacNeil, A. Roberts, R. 

Waterman, L. Alexander, and T. Geary. 2013. Preovulatory estradiol and the 
establishment and maintenance of pregnancy in suckled beef cows. Journal of 
Animal Science 91(3):1176-1185.  

 
López-Gatius, F., and J. Camón-Urgel. 1988. Increase of pregnancy rate in dairy cattle 

after preovulatory follicle palpation and deep cornual insemination. 
Theriogenology 29(5):1099-1103.  

 
Mann, G., and G. Lamming. 2000. The role of sub-optimal preovulatory oestradiol 

secretion in the aetiology of premature luteolysis during the short oestrous cycle 
in the cow. Animal Reproduction Science 64(3-4):171-180.  

 
McNatty, K. P., D. M. Smith, A. Makris, R. Osathanondh, and K. J. Ryan. 1979. The 

microenvironment of the human antral follicle: interrelationships among the 
steroid levels in antral fluid, the population of granulosa cells, and the status of 
the oocyte in vivo and in vitro. The Journal of Clinical Endocrinology & 
Metabolism 49(6):851-860. 

  
Meirelles, C., L. E. Kozicki, R. R. Weiss, M. S. Segui, A. Souza, I. W. d. Santos, and J. 

C. d. S. Breda. 2012. Comparison between deep intracornual artificial 
insemination (dIAI) and conventional artificial insemination (AI) using low 
concentration of spermatozoa in beef cattle. Brazilian Archives of Biology and 
Technology 55(3):371-374.  



 
 
 

99 
 

Meneghetti, M., O. Sá Filho, R. Peres, G. Lamb, and J. L. M. Vasconcelos. 2009. Fixed-
time artificial insemination with estradiol and progesterone for Bos indicus cows I: 
basis for development of protocols. Theriogenology 72(2):179-189.  

 
Miller, B., and N. Moore. 1976. Effects of progesterone and oestradiol on RNA and 

protein metabolism in the genital tract and on survival of embryos in the 
ovariectomized ewe. Australian Journal of Biological Sciences 29(6):565-574.  

 
Miller, B., N. Moore, L. Murphy, and G. Stone. 1977. Early pregnancy in the ewe: effects 

of oestradiol and progesterone on uterine metabolism and on embryo survival. 
Australian Journal of Biological Sciences 30(4):279-288.  

 
Nash, J., D. Mallory, M. Ellersieck, S. Poock, M. Smith, and D. Patterson. 2012. 

Comparison of long-versus short-term CIDR-based protocols to synchronize 
estrus prior to fixed-time AI in postpartum beef cows. Animal reproduction 
science 132(1-2):11-16. 

 
Pereira, M., A. Rodrigues, R. De Carvalho, M. Wiltbank, and J. L. M. Vasconcelos. 

2014. Increasing length of an estradiol and progesterone timed artificial 
insemination protocol decreases pregnancy losses in lactating dairy cows. 
Journal of Dairy Science 97(3):1454-1464.  

 
Pereira, M., M. Wiltbank, and J. Vasconcelos. 2016. Expression of estrus improves 

fertility and decreases pregnancy losses in lactating dairy cows that receive 
artificial insemination or embryo transfer. Journal of Dairy Science 99(3):2237-
2247.  

 
Perry, G., and B. Perry. 2008. Effect of preovulatory concentrations of estradiol and 

initiation of standing estrus on uterine pH in beef cows. Domestic Animal 
Endocrinology 34(3):333-338.  

 
Perry, G., M. Smith, A. Roberts, M. MacNeil, and T. Geary. 2007. Relationship between 

size of the ovulatory follicle and pregnancy success in beef heifers. Journal of 
Animal Science 85(3):684-689.  

 
Perry, G. A., M. F. Smith, M. C. Lucy, J. A. Green, T. E. Parks, M. D. MacNeil, A. J. 

Roberts, and T. W. Geary. 2005. Relationship between follicle size at 
insemination and pregnancy success. Proceedings of the National Academy of 
Sciences of the United States of America 102(14):5268-5273.  

 



 
 
 

100 
 

Pessoa, G., A. Martini, G. Carloto, M. Rodrigues, I. C. Júnior, P. Baruselli, C. Brauner, 
M. Rubin, M. Corrêa, and F. Leivas. 2016. Different doses of equine chorionic 
gonadotropin on ovarian follicular growth and pregnancy rate of suckled Bos 
taurus beef cows subjected to timed artificial insemination protocol. 
Theriogenology 85(5):792-799.  

 
Pitaluga, P., M. Sá Filho, J. Sales, P. Baruselli, and L. Vincenti. 2013. Manipulation of 

the proestrous by exogenous gonadotropin and estradiol during a timed artificial 
insemination protocol in suckled Bos indicus beef cows. Livestock Science 
154(1-3):229-234.  

 
Pohler, K., R. Peres, J. Green, H. Graff, T. Martins, J. Vasconcelos, and M. Smith. 

2016. Use of bovine pregnancy-associated glycoproteins to predict late 
embryonic mortality in postpartum Nelore beef cows. Theriogenology 85(9):1652-
1659. 

  
Pohler, K. G., J. A. Green, T. W. Geary, R. F. Peres, M. H. Pereira, J. L. Vasconcelos, 

and M. F. Smith. 2015. Predicting Embryo Presence and Viability. Advances in 
Anatomy, Embryology and Cell Biology 216:253-270. 

 
Rodrigues, A., R. Cooke, R. Cipriano, L. Silva, R. Cerri, L. Cruppe, M. Meneghetti, K. 

Pohler, and J. Vasconcelos. 2018. Impacts of estrus expression and intensity 
during a timed-AI protocol on variables associated with fertility and pregnancy 
success in Bos indicus-influenced beef cows. Journal of animal science 
96(1):236-249. 

 
Rosenkrans, K. S., and D. K. Hardin. 2003. Repeatability and accuracy of reproductive 

tract scoring to determine pubertal status in beef heifers. Theriogenology 59(5-
6):1087-1092.  

 
Sá Filho, M., R. Girotto, E. Abe, L. Penteado, E. Campos Filho, J. Moreno, R. Sala, M. 

Nichi, and P. Baruselli. 2012. Optimizing the use of sex-sorted sperm in timed 
artificial insemination programs for suckled beef cows. Journal of Animal Science 
90(6):1816-1823.  

 
Sá Filho, M., J. Santos, R. Ferreira, J. Sales, and P. Baruselli. 2011. Importance of 

estrus on pregnancy per insemination in suckled Bos indicus cows submitted to 
estradiol/progesterone-based timed insemination protocols. Theriogenology 
76(3):455-463.  

 



 
 
 

101 
 

Sá Filho, M. F. d., A. Crespilho, J. Santos, G. Perry, and P. S. Baruselli. 2010. Ovarian 
follicle diameter at timed insemination and estrous response influence likelihood 
of ovulation and pregnancy after estrous synchronization with progesterone or 
progestin-based protocols in suckled Bos indicus cows. Animal Reproduction 
Science 120(1-4):23-30.  

 
Sangsritavong, S., D. Combs, R. Sartori, L. Armentano, and M. Wiltbank. 2002. High 

feed intake increases liver blood flow and metabolism of progesterone and 
estradiol-17β in dairy cattle. Journal of Dairy Science 85(11):2831-2842.  

 
Santos, J., W. Thatcher, R. Chebel, R. Cerri, and K. Galvao. 2004. The effect of 

embryonic death rates in cattle on the efficacy of estrus synchronization 
programs. Animal Reproduction Science 82:513-535.  

 
Spencer, T. E., and F. W. Bazer. 1995. Temporal and spatial alterations in uterine 

estrogen receptor and progesterone receptor gene expression during the estrous 
cycle and early pregnancy in the ewe. Biology of Reproduction 53(6):1527-1543. 

  
Spencer, T. E., O. Sandra, and E. Wolf. 2008. Genes involved in conceptus-endometrial 

interactions in ruminants: insights from reductionism and thoughts on holistic 
approaches. Reproduction (Cambridge, England) 135(2):165-179.  

 
Stevenson, J., J. Rodrigues, F. Braga, S. Bitente, J. Dalton, J. Santos, and R. Chebel. 

2008. Effect of Breeding Protocols and Reproductive Tract Score on 
Reproductive Performance of Dairy Heifers and Economic Outcome of Breeding 
Programs1. Journal of Dairy Science 91(9):3424-3438.  

 
Thomas, J., S. Lock, S. Poock, M. Ellersieck, M. Smith, and D. Patterson. 2014. 

Delayed insemination of nonestrous cows improves pregnancy rates when using 
sex-sorted semen in timed artificial insemination of suckled beef cows. Journal of 
animal science 92(4):1747-1752. 

 
Vasconcelos, J. L. M., S. Sangsritavong, S. Tsai, and M. Wiltbank. 2003. Acute 

reduction in serum progesterone concentrations after feed intake in dairy cows. 
Theriogenology 60(5):795-807.  

 
Whittier, W. D., J. F. Currin, H. Schramm, S. Holland, and R. K. Kasimanickam. 2013. 

Fertility in Angus cross beef cows following 5-day CO-Synch+ CIDR or 7-day 
CO-Synch+ CIDR estrus synchronization and timed artificial insemination. 
Theriogenology 80(9):963-969.  

 



 
 
 

102 
 

Williams, B., F. Gwazdauskas, W. Whittier, R. Pearson, and R. Nebel. 1988. Impact of 
site of inseminate deposition and environmental factors that influence 
reproduction of dairy cattle. Journal of Dairy Science 71(8):2278-2283.  

 
Wiltbank, M., H. Lopez, R. Sartori, S. Sangsritavong, and A. Gümen. 2006. Changes in 

reproductive physiology of lactating dairy cows due to elevated steroid 
metabolism. Theriogenology 65(1):17-29.  

 
Young, C., F. Schrick, K. Pohler, A. Saxton, F. Di Croce, D. Roper, J. Wilkerson, and J. 

Edwards. 2017. A reproductive tract scoring system to manage fertility in 
lactating dairy cows. Journal of Dairy Science 100(7):5922-5927. 

 

 



 
 
 

103 
 

Appendix III 



 
 
 

104 
 

Table 6. Frequency of estrus activity according to breed. No Estrus = no to limited 
estrus activity, Estrus = increased estrus activity. 

Nelore (Study 1) Angus (Study 2) 

No Estrus  Estrus No Estrus  Estrus 
1113 (88.52%) 147 (11.48%) 477 (62.43%) 287 (37.57%) 
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Table 7. Frequency of reproductive tract SPS according to breed. SPS = size and 
position score. 

Nelore (Study 1) Angus (Study 2) 

SPS1 SPS2 SPS3 SPS1 SPS2 SPS3 
921 (71.95%) 264 (20.63%) 95 (7.42%) 206 (26.96%) 442 (57.85%) 116 (15.18%) 
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Figure 7. Influence of estrus activity and reproductive tract SPS on Nelore cow 
FTAI day 30 pregnancy rates (Study 1). Estrus activity was measured using a patch 
scoring system developed by Pohler et al. (2016). Reproductive tract size and position 
scores (SPS) were determined according to criteria developed by Young et al. (2017). 
SPS1 cows that exhibited increased estrus activity had greater pregnancy rates 
(69.71%) than all cows that did not exhibit or had limited estrus activity and that were 
classified as SPS1 (P < 0.001; 39.43%), SPS2 (P = 0.035; 49.07%), and SPS 3 (P = 
0.07; 46.84%). Different letters (a, b) represents a tendency for difference (P ≤ 0.10) 
across means. No Estrus = no or little estrus activity, Estrus = increased estrus activity. 
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Figure 8. Influence of estrus activity and reproductive tract SPS on Angus cow 
FTAI day 30 pregnancy rates (Study 2). Estrus activity was measured using a patch 
scoring system developed by Pohler et al. (2016). Reproductive tract size and position 
scores (SPS) were determined according to criteria developed by Young et al. (2017). 
Cows designated as SPS1 and exhibiting increased estrus activity had greater 
pregnancy rates (74.43%) than SPS1 (P = 0.002; 44.59%) as well as a tendency for 
greater pregnancy rates compared to SPS2 (P = 0.069; 55.93%) cows that did not 
exhibit or had limited estrus activity. Cows designated as SPS1 with increased estrus 
activity tended to have greater pregnancy rates compared to SPS3 cows that had 
increased estrus activity (P = 0.056; 47.73% vs. 74.73%). Cows designated as SPS2 
with increased estrus activity had increased pregnancy rates compared to SPS1 cows 
that had no or limited estrus activity (P = 0.018; 44.59% vs. 64.99%). Different letters (a, 
b, c) represents a tendency for difference (P ≤ 0.10) across means. No Estrus = no or 
little estrus activity, Estrus = increased estrus activity. 
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CHAPTER IV: CONCLUSION 
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  Embryonic mortality is a major contributing factor of pregnancy loss in cattle. 

The ability to detect that failure is critical to limit the number of days a non-pregnant cow 

continues to accrue labor and feed costs while expanding the calving interval and 

consequently decreasing pounds of calf weaned. Pregnancy-related microRNAs are 

closing the gap between the time a cow loses pregnancy and when that failure is first 

able to be detected. Furthermore, evaluating reproductive tract size and position scores 

and estrus expression at time of artificial insemination [AI] adds an extra measure that 

can be taken prior to breeding. Indication of presence or absence of estrus at AI along 

with using reproductive tract size and position scores can allow producers to make 

informed decisions regarding if expensive semen or semen from a high fertility sire is 

warranted to optimize the likelihood of pregnancy success. 
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