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Abstract

An increasing number of liquids of both natural and technological importance are known to exhibit
spatial and dynamic heterogeneity at the mesoscale due to specific non-covalent intermolecular in-
teractions such as hydrogen-bonding, coulombic interactions, or solvophobic exclusion. However,
there is little understanding as to how the organization and dynamics at the mesoscale influence the
physical and chemical properties of the bulk liquids.

In this dissertation, two classes of materials, ionic liquids and imidazoles, are selected as
case studies and investigated by a combination of experimental techniques which provide insight
into the interplay of mesoscale organization, dynamics, and physicochemical properties. The
mesoscale organization in these materials originates primarily from two different types of non-
covalent interactions. For ionic liquids (ILs), this interaction is the solvophobic exclusion of
extended aliphatic chains substituted on the cation from regions occupied by the polar ions. Here,
new experimental signatures of mesoscale solvophobic aggregate dynamics are identified in the
dielectric and dynamic-mechanical spectra. Using these signatures, it is found for instance, in
phosphonium-based ionic liquids, that the formation of long-lived aggregates depends not only
on the volume fraction of aliphatic groups, but also on the formation of a well-defined polar
phase through strong coulombic interactions of the cation and anion charge centers. Finally, the
ability to tune physicochemical properties, notably the static dielectric permittivity, by composition-
dependent control of mesoscale aggregate morphology and dynamics in binary IL mixtures, is
demonstrated. In imidazoles, the organization is driven by intermolecular hydrogen-bonds resulting
in supramolecular chains of imidazole molecules. The existence of these chains is commonly
believed to promote proton conductivity by a fast intermolecular proton transfer mechanism. A
detailed analysis of neat 2-ethyl-4-methylimidazole and mixtures with minute amounts of levulinic
acid and butyramide reveal an inverse relation between the average hydrogen-bonded chain length
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and conductivity with no direct correlation between the static dielectric permittivity and proton
conductivity. In addition, an unusual temperature dependence of static dielectric permittivity is
attributed to the formation of antiparallel alignment of neighboring hydrogen-bonded chains, a
degree of previously unrecognized mesoscale organization.
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Chapter 1

Introduction

1.1 Motivation

Strong noncovalent interactions in soft condensed matter give rise to correlations over lengthscales
considerably longer than the dimensions of a single molecule.[28, 29, 30, 31, 32, 33] The
noncovalent interactions which contribute to this long-range organization may arise from one
or more classes of molecular forces including coulombic, hydrogen-bonding, halogen-bonding,
dipole-dipole, van der Waals, �-bonding, and solvophobic effects.[34, 35] These correlations can
lead to the emergence of random spatial heterogeneity or more organized hierarchical structures
which pervade numerous classes of soft materials including proteins and nucleic acids, microphase-
separated block copolymers and polymer blends, supramolecular gels and colloids, and aqueous
surfactant solutions including microemulsions and worm-like surfactant micelles.[36, 37] The
dimensions of these self-assembled structures typically lie between fifty and hundreds or thousands
of nanometers, far larger than local molecular dimensions. Pure, single-component liquids, by
comparison, have long been considered to be homogeneous, coherent, and essentially irregular.[38,
39] Within this framework, only very short-range correlations and the correspondingly fast
molecular motions at those lengthscales are expected to influence the physical and chemical
properties.[32] More recently however, we have begun to gain a greater appreciation that many
liquids previously considered to be amorphous are in fact capable of forming intermediate
correlations at the mesoscale, that is, at distances larger than the molecular dimensions, but smaller
than the macroscopic lengthscales typical of the soft materials mentioned previously.[28, 29, 30,
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31, 32, 33] Perhaps the most familiar example is the ability for intermolecular hydrogen-bonding
to give rise to supramolecular hydrogen-bonded networks. The organization and orientation of
molecules within the mesostructure as well as the overall mesoscale and macroscopic dynamics,
are thought to play significant roles in determining the physicochemical properties of these
complex liquids.[40, 24, 41, 42] However, a fundamental understanding of the impact of these
intermediate range correlations on the physicochemical properties is still lacking. Elucidating
the influence of these correlations on the physicochemical properties of soft materials, therefore,
requires investigations over very broad time- and lengthscales. In this dissertation, two classes of
materials are selected as case studies to further elucidate the interplay of mesoscale organization
and dynamics, namely, (i) Ionic Liquids, and (ii) Imidazoles.

Ionic liquids (ILs) are a special category of complex fluids comprised entirely of ions and
conventionally characterized by melting points below 100 ◦C.[43, 44, 45, 46] Due to their unique
features such as low vapor pressures, wide liquidus ranges, high thermal stability, tunability, high
ionic conductivity and wide electrochemical stability windows, they are under investigation for
use as potential electrolytes in safe, high efficiency batteries, fuel cells, and super-capacitors.[47,
48, 49, 50, 51] A key advantage of ILs is the large variety of cations and anions available,
providing a possibility to design billions of chemically distinct materials with desirable properties
for different uses.[52] This vast number of chemical structures necessitates the development of
structure-property relationships to aid in the design and synthesis of each new ionic liquid. This
challenging task is further complicated by the mounting experimental evidence that many ionic
liquids exhibit pronounced organization at the mesoscale.[32] This organization arises from the
solvophobic segregation of non-polar aliphatic groups attached to the ions which leads to the
formation of mesoscale aggregates characterized by the existence of distinct polar and non-polar
domains.[13, 53, 54, 15, 55, 56] A potential advantage of the mesoscale organization is that
it can impart special characteristics on the IL which improve performance and suitability for
certain applications such as polymerization, organic synthesis and catalysis, as well as nanoparticle
growth.[32, 57, 58, 59, 60, 61, 62, 63] However, a fundamental understanding of the impact of
structural organization at the mesoscale on charge transport and dynamics in ILs necessary to
formulate rational design strategies is still lacking. How long-lived are these mesoscopic aggregates

and how do they influence the physicochemical properties of ILs? To address these questions,
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we have employed experimental techniques which can probe detailed signatures of the mesoscale
aggregates and their dynamics over much broader timescales.

Imidazoles are a unique class of hydrogen-bonded liquids capable of forming at least two
intermolecular hydrogen-bonds (H-bonds) per molecule.[6, 8, 7] These bonds give rise to three-
dimensional hydrogen-bonded networks which are expected to significantly alter their mechanical
and transport properties. In bulk, liquid imidazoles and low concentration acid solutions as well
as certain other liquids such as water, phosphoric acid, triazole and pyrazole, proton transport
is hypothesized to occur, at least in part, via a Grotthuss-type mechanism in which protons are
shuttled along the network at rates faster than molecular diffusion.[64, 65, 66, 67] Understanding
the mechanisms of proton-transport in amorphous materials is crucial for numerous applications
ranging from proton-exchange membranes to biological processes. The intrinsically proton-
conducting liquid imidazoles, which form linear, H-bonded chains, provide a new and unique
opportunity to probe the influence of H-bonded networks on proton conduction. A fundamental
understanding of how the existence of these H-bonded chains influence proton transport in
neat as well as acid-doped liquid imidazoles remains elusive. How does temperature and acid

concentration influence the imidazole hydrogen-bonded network and in turn how does the network

influence proton transport? To address these questions, we have utilized experimental techniques
capable of probing dynamic signatures of the H-bonded chains as well as other complimentary
techniques.[68]

This dissertation seeks to address the following fundamental questions:

1. How do the chemical structures of ionic liquids alter organization and dynamics at the
mesoscale?

2. In turn, how do changes to the mesoscale organization and dynamics alter the physical and
chemical properties of ionic liquids?

3. What design strategies can be formulatedwhich allow the physicochemical properties of ionic
liquids to be tuned via control of mesoscale aggregate morphology and dynamics?

4. How do temperature, chemical structure, and acid concentration influence the size and
dynamics of mesoscale hydrogen-bonded chains in liquid imidazoles?

3



5. What is the influence of the size and dynamics of mesoscale hydrogen-bonded chains on
proton transport in liquid imidazoles?

The overarching goal of this research is to develop a fundamental basis for the rational design
of novel, safe, efficient, and environmentally benign electrolytes for current and future energy
technologies. The central emphasis is on obtaining an understanding of the correlation between the
chemical structure, mesoscopic organization, and dynamics and how these relationships determine
the physicochemical and electrochemical properties of non-aqueous electrolytes. We investigate
how the remarkable properties of matter emerge from complex correlations of atomic andmolecular
constituents and how we can control these properties to engineer more efficient electrolytes.

1.2 Outline

This dissertation is organized in the following manner. First, an overview of the relevant
experimental methods is provided. In the following two chapters, the results of the case studies
are presented starting with the ionic liquids and then the imidazoles. Finally, a brief summary of
the results is given redressing the fundamental scientific questions outlined above, followed by a
discussion of the future outlook for these researches.

Chapter 2 introduces the relevant experimental methods. These methods include broadband di-
electric spectroscopy, dynamic mechanical spectroscopy, differential scanning calorimetry, Fourier
transform infrared spectroscopy, and x-ray scattering. The modes of operation and the application
of these methods to our studies of mesoscale organization and dynamics are discussed.

Chapter 3 presents the results of our case study on ionic liquids. In section 3.2, we highlight
the discovery of new experimental signatures of mesoscale aggregate dynamics in the broadband
dielectric and dynamic mechanical spectra of imidazolium ionic liquids. Following this, we employ
binary ionic liquid mixtures as a strategy for tuning the mesoscale aggregate morphology and
dynamics. It is found that the control of morphology and dynamics leads to a 100% increase
in the static dielectric permittivities, "s, otherwise known as “dielectric constant”. Therefore, a
strategy emerges whereby "s can be enhanced by simply mixing two ILs with low intrinsic static
permittivities. In section 3.4, our investigation is extended to quaternary phosphonium-based ionic
liquids. In these systems it is found that long-lived mesoscale aggregation is not linked directly
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to the volume fraction of aliphatic groups but is sensitive to the overall chemical structure and
perhaps especially to strong interactions within the polar ionic domain. Afterwards, in section 3.5
the influence of anion chemical structure on charge transport and dynamics in a series of quaternary
phosphonium ILs is investigated.

Chapter 4 turns to hydrogen-bonded liquids and our case study on imidazoles. Here we
show that the addition of very small amounts of levulinic acid cause the disruption of mesoscale
hydrogen-bonded imidazole chains. In addition, the temperature and composition-dependent trends
in the static dielectric permittivities and mesoscale relaxation dynamics indicate that imidazoles
have a unique mesoscale organization characterized by an antiparallel alignment of neighboring
mesoscale hydrogen-bonded chains. It is suggested that the potential for �-bonding between
imidazole heterocycles may contribute to such organization. The lack of correlation between dc
ionic conductivity, hydrogen-bonded chain length, and static dielectric permittivity suggests that
the hydrogen-bonded chains may not play a significant role in the conduction of protons in liquid
imidazoles.

Chapter 5 presents a brief summary of the results of the two case studies. The fundamental
scientific questions posed in the introduction are addressed. The future outlook of this research
direction is discussed.
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Chapter 2

Experimental Methods

In this chapter, the following experimental techniques are discussed: (i) broadband dielectric
spectroscopy, (ii) dynamic mechanical spectroscopy, (iii) differential scanning calorimetry, (iv)
Fourier transform infrared spectroscopy and (v) small-angle x-ray scattering. The broadband
dielectric and dynamic mechanical spectroscopies as well as differential scanning calorimetry
provide complementary insight into the dynamics at mesoscopic and more local lengthscales.
Fourier transform infrared spectroscopy is utilized as a sensitive probe of the local environment
in hydrogen-bonded networks. Small-angle x-ray scattering is utilized to investigate the mesoscale
aggregate morphologies in solvophobically-aggregating ionic liquids.

2.1 Broadband Dielectric Spectroscopy

The history of dielectric spectroscopy begins with the pioneering experiments of Michael Faraday
(1791-1867) and the earlier, but long unpublished, work of Henry Cavendish (1731-1810).[69, 70]
With regards to dielectric spectroscopy, a significant accomplishment of these two men was the
realization that the amount of charge, q, stored within a Leyden jar (an early capacitor) at a constant
applied voltage, V, is dependent upon the type of insulating material placed between the conducting
plates. The ratio of charge stored to applied voltage is known as capacitance, C = q∕V . Faraday
referred to the intrinsic ability for a material to store electrical energy as its specific inductive
capacity defined as the ratio of the material’s capacitance, C, to the capacitance of a reference, C0,
in the same capacitor geometry. Today, this is termed the relative dielectric permittivity, " = C∕C0.
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The values of relative permittivity are dependent on the reference material used for C0. Cavendish
utilized a series of specially made glass plates, Faraday utilized an empty capacitor, and today we
use the capacitance of a vacuum.

In the course of his experiments, Faraday became convinced that the inductive effects he
observed were not due to the motion of some electric substance, a popular opinion at the time,
but rather were caused by the action of contiguous particles within the insulating material itself.
This perceived ability for insulating materials to transmit electrical energy is the origin of the
word dielectric; a combination of the Greek “dia-” meaning “through” and “elektra-” referring to
electricity.1 His inability to experimentally isolate an electric substance, Faraday wrote, “dwelt
on my mind, and made me wish and search for a clearer view than any that I was acquainted
with, of the way in which electrical powers and the particles of matter are related; especially in
inductive actions, upon which almost all others appeared to rest.”[69] His desire to understand how
“electrical powers and particles of matter are related” has continued to be a primary motivation
for generations of dielectric spectroscopists. However, before this understanding could develop, a
more fundamental theory of electric phenomena was required.

Luckily, the wait was short. Just as Faraday was finishing his career, James Clerk-Maxwell took
up the reins and, building upon Faraday’s enormous quantity of experimental results, developed a
succinct theory which accounts not only for observations of electric, but also magnetic and light
phenomena in his unified electromagnetic theory. This theory may be briefly stated in the form of
four equations:

∇ ⋅ B = 0 (2.1)

∇ × E = − )
)t
B (2.2)

∇ ⋅ D = �e (2.3)

∇ ×H = j⃗ + )
)t
D (2.4)

where H and E are the magnetic and electric fields, B the magnetic induction, D the dielectric
displacement, j⃗ the electric current, and �e the charge density. The dielectric displacement, D, is

1Coined by William Whewell in an 1837 letter to Faraday.[71] Whewell also originated the terms scientist and
physicist in an 1840 letter, however Faraday felt physicist would never catch on due to the three consecutive ess sounds
being “too much.”
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the key concept which encapsulates the influence of an applied electric field onmatter. It arises from
the displacement of free and bound charges on the electrode surfaces and within the dielectric and is
directly proportional to the dielectric permittivity,D = "∗"0E. The polarization, P, is the portion of
dielectric displacement which arises solely from the motion of charges within the dielectric itself.
It is defined as the difference of dielectric displacement in a filled and empty capacitor:

P = D −D0 = "∗"0E − "0E = ("∗ − 1)"0E (2.5)

Studying the microscopic origin of polarization and utilizing it to obtain useful information
concerning the dielectric material under study is the purview of dielectric spectroscopy. In
general, this is accomplished by making careful measurements of the complex relative dielectric
permittivity, "∗ = "′− i"′′, while systematically varying the chemical structure of the dielectric and
correlating/attributing changes in the dielectric spectrum to changes in polarization arising from
the modified chemical structure.

Amajor accomplishment ofMaxwell’s theory is the identification of light as an electromagnetic
wave. As a result, one prediction which emerged is that permittivity should equal the square of the
index of refraction, "′ = n2.[2] As physicists began testing this prediction, they noticed strong
discrepancies when measuring the permittivities of liquids at low frequencies using the frequency-
dependent ac-fields developed byHeinrichHertz. The finding that the dielectric response is strongly
frequency dependent precipitated the first real efforts into elucidating the different molecular origins
of dielectric polarization and led to the development of theories which continue to illuminate the
discussion and interpretation of dielectric spectra to this day.

Prior to introducing these theories, it will be beneficial to introduce how a dielectric experiment
may actually be accomplished. That is, how do we measure the dielectric permittivity? There are
several measurement methods, each applicable to a certain E-field frequency range. For the sake of
brevity we will focus on the method employed in our lab and utilized to obtain the dielectric spectra
presented in this dissertation.

The primary dielectric spectrometer in our lab is a Novocontrol High Resolution �-analyzer
which combines several measurement capabilities in one integrated dielectric analyzer to allow
for precise measurement of samples with broadly varying impedances over the widest possible
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Figure 2.1: Novocontrol High Resolution �-analyzer. The sample capacitor is at the bottom of the
metal apparatus on the right. The dielectric analyzer is on the left.

frequency range, see Figure 2.1. Using this instrument, and a Quatro temperature control system,
the complex dielectric permittivity may be measured over a frequency range of 10−6 − 107Hz and
temperature range −160 ◦C − 400 ◦C. A diagram of the simplest measurement circuit is illustrated
in Figure 2.2. The sample is placed between two metal electrodes to form a simple capacitor.
A frequency-dependent voltage, U ∗(!) is then applied to this capacitor and the resultant current
is measured. The ratio of the applied voltage and measured current is the complex impedance,
Z∗(!) = U ∗(!)∕I∗(!), which is related to the inverse of complex capacitance byZ∗(!) = 1

i!C∗(!)
.

We may then obtain the complex dielectric permittivity by the previously given definition, "∗(!) =
C∗(!)
C0

, where C0 is the vacuum capacitance of the given capacitor geometry.
This simple apparatus is modified in modern instruments by the addition of dielectric converters

consisting of a variable resistor and electrometer amplifier with variable gain for measurement of a
sample voltage rather than a current and the use of reference capacitors in parallel with the sample
capacitor. The combined effect being a significant increase in accuracy and reduction of noise
giving the ability to measure the loss angle, tan� = "′′∕"′, with an accuracy better than 10−4.

Upon application of an electric field, the charges contained within a dielectric may be displaced,
producing a polarization, P. This polarization is dependent on the frequency of the applied
electric field, with different mechanisms contributing at different frequencies. Within our current
understanding of the basic building blocks of matter, i.e. elementary particles, atoms, and
molecules, the fundamental frequency-dependent mechanisms of polarization may be defined, as
illustrated in Figure 2.3.[1, 72] Starting at the highest frequencies (shortest times), the electric
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Figure 2.2: Illustration of a simplified dielectric spectroscopy measurement apparatus. The
sample is placed between two metallic electrodes, a frequency-dependent potential is applied,
and the resultant current is measured. The complex dielectric permittivity is then obtained as
"∗(!) = C∗(!)

C0
= 1

i!Z∗(!)
= I∗

i!U∗C0
.

field displaces electrons relative to the atomic nuclei resulting in induced dipole moments. This is
termed electronic polarization. Following this, at lower frequencies, atoms within a molecule or
crystal lattice are displaced relative to one another creating an atomic polarization. In addition,
to these induced dipole moments many molecules contain regions of higher or lower electron
densities and therefore form permanent molecular dipoles with a dipole moment � defined as
charge q multiplied by their separation distance d. These dipoles may be reoriented within the
electric field creating orientational or dipolar polarization. When the dielectric contains ions two
additional polarizations occur. The first is ion-hopping polarization, the translational hopping of
charged ionswhich can lead to long-range ion diffusion. The second is an accumulation of charges at
either the electrodes or internal interfaces within the material producing an interfacial polarization.
The contributions of orientational, ion hopping, and interfacial polarizations in liquids with strong
intermolecular interactions resulting in mesoscale organization are the primary focus of this work.
Beginning with induced and orientational polarization, a more detailed introduction into the
underlying mechanisms will now be provided.

The polarization due to the material response is given by P = ("∗ − 1)"0E. The real and
imaginary parts of complex dielectric permittivity, "∗(!) = "′(!) − i"′′(!), for the well-studied
dipolar liquid glycerol at 210K are shown versus frequency in Figure 2.4. Focusing on the real
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Interfacial

Figure 2.3: Mechanisms of dielectric polarization versus the time a dc electric field is applied.
Shorter times correspond to higher frequencies of an ac field.

part, "′(!), we can identify some characteristic features: (i) a high-frequency limiting value, (ii)
a low-frequency plateau value, and (iii) a transition region where the permittivity is frequency
dependent. The high frequency limiting value, "∞, contains the total contributions from atomic and
electronic polarizations. In the frequency-dependent, transition region the permanent molecular
dipoles are orienting in the direction of the applied field. This characteristic frequency provides
insight into the dynamics of the molecular dipoles as discussed later. The lower-frequency plateau
value, known as the static dielectric permittivity, "s, or dielectric constant, is determined by the
equilibrium contribution of orientational polarization and "∞.

The total polarization can be rewritten by separating the polarization components as P�+P∞ =

("− 1)"0E, where P� and P∞ are the orientational and induced polarizations, respectively. For the
moment, we are neglecting the frequency-dependence of permittivity and simply take " to indicate a
frequency-independent value of the real part of the complex dielectric permittivity. The frequency
dependence will be considered later. The induced polarization is given by P∞ =

∑

k nk�k(Ei)k,
where n is the number density of molecules, � the polarizability, and the Ei is the local electric
field. Polarization has units of Coulomb per meter squared [Cm−2] and can be treated as the
average dipole moment of N dipoles per unit volume. The orientational polarization can therefore
be written as, P� =

∑

k nk�d, where n is the number density of dipoles and �d the average
dipole moment due to orientational polarization. Orientational polarization arises from a torque
experienced by the permanent dipoles in the applied electric field. This torque is counterbalanced
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Figure 2.4: The real and imaginary parts of the complex dielectric permittivity, "∗(!) = "′(!) −
i"′′(!), of glycerol at 210K as measured by the Novocontrol �-analyzer.

by thermal fluctuations which tend to randomize the orientation of dipoles. Consequently, the
average dipole moment due to orientational polarization is a statistical equilibrium.[72] Under
certain approximations the equilibrium dipole moment due to orientation polarization may be
estimated. These assumptions are (i) the permanent molecular dipole moment is independent of
temperature and electric field, (ii) the interactions of dipoles may be neglected, and (iii) the dipoles
may freely rotate with respect to the field direction. In this case, the interaction energy of a dipole,
�, at an angle � with the electric field is, U =� ⋅ Ed = −|�||Ed|cos �. According to Boltzmann’s
statistics the average dipole moment due to orientational polarization is given by:

�d =
∫ �
0 A exp( |�||Ed| cos �

kT
)(� cos �) 2� sin � d�

∫ �
0 A exp( |�||Ed| cos �

kT
) 2� sin � d�

(2.6)

Substituting x = |�||Ed|
kT

allows us to perform the integration to find:

�d
�
= coth x − 1

x
(2.7)

This result is shown in graphical form in Figure 2.5. At low field strengths, the average dipole
moment due to orientational polarization varies linearly as �d = |�|2

3kT
Ed. The orientational

polarization is now written as, P� = ∑

k nk
|�|2

3kT
Ed. The orientational and induced polarizations
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Figure 2.5: Langevin function for the orientational dipole moment.[1, 2, 3]

are combined to give a fundamental equation for the response of polar dielectrics to an external
field, Equation 2.8.[2]

(" − 1)"0E =
∑

k
nk

[

�k(Ei)k +
|�|2

3kT
Ed

]

(2.8)

In the original approach of Peter Debye, the internal and directing fields, Ei and Ed, are set equal
to the Lorentz field, which is itself derived by conceptualizing a spherical vacuum cavity inside a
dielectric with constant permittivity. The applied field polarizes the inner surface of the dielectric
giving a modified internal field, Ei = E +("+2)E∕3. Substituting this electric field into Equation
2.8 gives the classic Debye formula, Equation 2.9, where " is the low-frequency limit of the real
part of complex dielectric permittivity, n is the number density of dipoles, � the polarizability, and
� the permanent molecular dipole moment.[2, 3, 73]

" − 1
" + 2

= n
3"0

(

� +
�2

3kT

)

(2.9)

For non-polar dielectrics as well as polar dielectrics in the high-frequency limit, the orientational
polarization component can be removed, giving the Clausius-Mossotti formula for the high
frequency limiting permittivity, "∞, Equation 2.10.[2, 3, 73]

"∞ − 1
"∞ + 2

= n�
3"0

(2.10)
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The Debye formula estimation of " yields accurate values of the low-frequency static dielectric
permittivity, "s, or equivalently the molecular dipole moment, �, for polar molecules in the gas
phase and in dilute solution with a non-polar solvent; however, it fails for liquid, polar dielectrics.
This is due to a failure of the Lorentz field to accurately approximate the effective local field.
Onsager developed a modified approach which accounts for an additional polarization due to
the reaction of the surrounding dielectric to a point dipole inside the Lorentz cavity.[2, 1] The
Onsager cavity more accurately represents the local electric field and yield the Onsager equation,
Equation 2.11, which accurately predicts values of "s, or alternatively �, for many pure dipolar
liquids.[2, 1, 74]

"s − "∞ =
3"s

2"s + "∞

(

"∞ + 2
3

)2 n �2

3kT
(2.11)

However, it fails for what are known as “associating” dipolar liquids. These liquids form strong
intermolecular interactions which tend to orient dipoles in particular directions with respect to one
another.[2, 3, 75] The effect of this local orientation of dipoles is approximated by introducing an
additional term, zcos 
 , to the Onsager equation, where z is the average number of a dipoles nearest
neighbors and cos 
 is the average of the cosine of the angle between their dipole moments.[75]
This modification was introduced by Kirkwood and Fröhlich to give Equation 2.12.

"s − "∞ =
3"s

2"s + "∞

(

"∞ + 2
3

)2 n �2

3kT
(1 + zcos 
) (2.12)

The final term in this equation, (1 + zcos 
), differentiates it from the Onsager equation.[75] This
term is known as the Kirkwood-Fröhlich correlation factor, gk. Values of gk greater than one
indicate a preferential parallel alignment of the nearest dipoles and an increase in "s above the
prediction of the Onsager equation, while values less than one indicate antiparallel alignment and
a decrease in "s relative to the Onsager equation.[75]

These estimations of the dielectric permittivity take into account only the long-time, equilibrium
distribution of dipole moments. Application of a dc electric field for a period of time will give this
equilibrium polarization. If the electric field is then removed, the polarization will begin to decrease
with a time decay originating in the motion of molecular dipoles. Dielectric spectroscopy therefore
joins a host of other experimental techniques capable of providing information on dynamics in soft
materials including dynamic mechanical spectroscopy, nuclear magnetic resonance spectroscopy,
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and calorimetry. At low field strengths, the polarization is linearly related to the step change in the
electric field strength by Equation 2.13.[3, 76]

P (t) = P∞ + "0 ∫

t

−∞
"(t − t′)

dE(t′)
dt′

dt′ (2.13)

In this regime, the molecular fluctuations due to the perturbation by the applied electric field
are equivalent to the spontaneous equilibrium fluctuations. This equivalence between response
function and thermal fluctuations makes dielectric relaxation spectroscopy a particular case of the
fluctuation dissipation theorem.[76]

When the applied electric field is oscillating at a particular frequency, E(t)(!) = E0 exp(−i!t),
then the frequency-dependent complex dielectric permittivity is related to the time-dependent
dielectric function by Equation 2.14.[3]

"∗(!) = "′(!) − i"′′(!) = "∞ + ∫

∞

0
exp(−i!t)

[

−
d"(t)
dt

]

dt (2.14)

The simplest approximation for the time decay in dielectric permittivity assumes it follows an
exponential form with a correlation function given by, �(t) = exp(−t∕�), where t is time and �
is the characteristic dipole relaxation time. The dielectric spectra are more easily measured in the
frequency domain and so we perform a Laplace transform into the frequency domain to find the
Debye equation for dipolar relaxations, Equation 2.15:

"∗(!) = Δ" ∫

∞

0
exp(−i!t)

[

−
d�(t)
dt

]

dt + "∞ =
Δ"

1 + i!�
+ "∞ (2.15)

where Δ" is the dielectric strength, ! = 2�f the oscillation frequency of the applied electric
field, � the molecular dipole relaxation time, and "∞ the high frequency limiting permittivity.[72,
1, 3] Debye tested his model against experimental data for primary alcohols and found excellent
agreement.[72, 77] Over time it was realized that the exponential decay of the dielectric relaxation
of alcohols, and certain other hydrogen-bonded systems, is the exception rather than the norm,
with dielectric relaxations typically displaying quite broad distributions of relaxation times.[3, 31]
In the time domain, such relaxations may be fit with stretched exponential functions such as the
Kohlrausch-Williams-Watts equation, g(t) = exp[(t∕�)�], where � is a stretching parameter. Since
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dielectric spectra are typicallymeasured and displayed in the frequency domain, the fitting functions
utilized are “stretched” versions of the Debye-equation known as the Cole-Cole, Cole-Davidson,
and Havriliak-Negami functions depending on the combination of stretching parameters which are
utilized.[78, 79, 79, 80, 81] With its two stretching parameters, � and 
 , the Havriliak-Negami
function, Equation 2.16, is the most general.[3]

"∗ = Δ"
[1 + (i!�HN )�]


+ "∞ (2.16)

It should be noted that the model relaxation rates provided by the Havriliak-Negami fitting function,
!HN = 1∕�HN , do not correspond to the frequency of the peak maximum. The frequency of the
peak maximum, or molecular relaxation rate, is related to the shape parameters � and 
 by Equation
2.17.[3]

!max =
1
�HN

[

sin
��

2 + 2


]1∕� [

sin
�
�
2 + 2


]−1∕�

(2.17)

As an example of a fit using these model functions, the dielectric spectra of the monohydroxy
alcohol 1-propanol is presented in Figure 2.6 at 130K. The dominant lower frequency peak is well
described by the Debye equation which was initially taken as proof of its accuracy. However, two
additional, but much weaker relaxations are also present at higher frequencies. These are referred
to as the � and � relaxations. The Debye relaxation is observed in many monohydroxy alcohols
as well as several other hydrogen-bonded liquids.[31] Over time, the origin of this relaxation has
been determined to be the reorientation of supramolecular dipoles which arise from the association
of neighboring alcohols via intermolecular hydrogen-bonding.[31] The three dielectric relaxations
are well-described by a combination of a Debye, Cole-Davidson, and Cole-Cole fitting functions
to describe the Debye-like, �, and � relaxations, respectively, see Equation 2.18 with fit parameters
provided in Table 2.1.[82, 83]

"∗ =
Δ"Debye

[1 + (i!�Debye)]
+

Δ"�
[1 + (i!��)]


+
Δ"�

[1 + (i!��)�]
+ "∞ (2.18)

In addition to these dipolar relaxations, the dielectric spectra of ion conducting liquids have
contributions arising from the motion of ions. These contributions are typically represented in the
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Figure 2.6: The real and imaginary parts of the complex dielectric permittivity, "∗(!) = "′(!) −
i"′′(!), of propanol at 130K as measured by the Novocontrol �-analyzer. The frequency-dependent
spectrum iswell described by a combination of three fitting functions, Equation 2.18. Fit parameters
are provided in Table 2.1.

Table 2.1: Fit parameters from Equation 2.18 for the dielectric spectra of 1-propanol at 130K.
Relaxation Δ" � 
 �
Debye 40.4 9.0 × 10−4 1 1
� 1.2 1.3 × 10−5 1 0.42
� 0.5 3.2 × 10−7 0.80 1
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real part of the complex conductivity, �∗(!) = �′(!) + i�′′(!), which is related to the complex
dielectric permittivity as �∗ = i!"0"∗. As an example, the spectra of the prototypical ionic
liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C3MImNTf2) is provided
in Figure 2.7. The transport of ions between the electrodes through a percolated ion conducting
pathway leads to a frequency independent plateau in the real part of complex conductivity. This
plateau value is the dc ionic conductivity, �0, characteristic of the material at a given temperature.
At frequencies above the plateau the real part of complex conductivity increases, while below the
plateau it decreases. The high frequency response is due to ac conduction and the low frequency
response is characteristic of the buildup of charges at the electrodes. The electrode polarization
is not an intrinsic characteristic of the material, but depends strongly upon the material of the
electrodes and will not be discussed further.[84] Other than the electrode polarization region,
the charge transport contribution to the real part of complex conductivity is well described by
the theoretical approach originated by Dyre known as the random barrier model (RBM). In this
model, an ion is taken to be hopping in a randomly varying energy landscape. The onset of
dc ionic conductivity, �0, corresponds to the time, �e it takes for an ion to overcome the largest
energy barrier and form a percolated conducting path. Solving within the continuous time random
walk approximation gives an analytical expression for the complex dielectric permittivity, Equation
2.19.[4] This model describes the frequency dependence of conductivity for C3MImNTf2 quite well
with only the two parameters �0 and �e as shown by the fit lines in Figure 2.7(a).

"∗(!) =
�0
i!"0

i!�e
ln(1 + i!�e)

(2.19)

The complex conductivity is directly related to the complex dielectric permittivity as �∗ =
i!"0"∗. The real part of conductivity therefore contributes strongly to the imaginary part of the
complex dielectric permittivity, "′′ = �′∕!"0, as a low frequency increase with a slope of minus one
in a double logarithmic plot versus frequency, see solid symbols in Figure 2.7(b). This contribution
obscures any additional dielectric relaxations which occur in the vicinity of charge transport.
To reveal these underlying relaxations a derivative representation may be employed, "′′der =
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Figure 2.7: (a) Real part of the complex conductivity, �′, of the ionic liquid 1-propyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide. Lines correspond to fits by the random
barrier model (RBM), Equation 2.19.[4] The two fit parameters of the RBM, �0 and !e = 1∕�e areindicated at 210K and 190K, respectively. (b) The imaginary part of complex dielectric permittivity,
"′′ (closed symbols), and its derivative representation, "′′der = (−�∕2)[)"′∕) ln(f )] (open symbols).

(−�∕2)[)"′∕) ln(f )]. This derivative representation of "′′ is an approximation of the Kramers-
Kronig relation between the real an imaginary parts of complex dielectric permittivity.[85, 86] In
the case of C3MIm NTf2, only a single underlying relaxation is observed.

2.2 Dynamic Mechanical Spectroscopy

In general, dynamic mechanical spectroscopy consists of applying a strain and measuring the stress
response of a material. Where dielectric spectroscopy measures a materials frequency-dependent
response to an applied oscillatory electric field, dynamic mechanical spectroscopy probes the
response to an oscillatory mechanical shear. This response is governed by the type of motion which
its molecules undergo within the applied experimental frequency range. The sensitivity of the stress
response to different types and length scales of molecular motion allows us to investigate structure
by mechanical measurement.[87, 88]

All liquids are viscoelastic, meaning they exhibit a combination of viscous and elastic response
depending upon the oscillation frequency of the applied strain. At very high frequencies, below
the timescale of molecular motion, they respond as an elastic solid with a shear stress � given by
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𝜎 = 𝜂 ሶ𝛾 𝜎 = 𝐺∞𝛾

Figure 2.8: Maxwell model of a viscoelastic liquid. The response to an applied strain is captured
by a Newtonian dashpot and Hookean spring connected in series.

Equation 2.20 where G is the shear modulus of the solid, and 
 the strain.

� = G
 (2.20)

In this regime, the material is below its dynamic glass transition and is an amorphous glass. When
the frequency is reduced below the rate of molecular motion, the molecules are able to slide past
one another. Here, the material response consists entirely of a viscous component which, for a
Newtonian fluid, is given by Newton’s law of viscosity:

� = �x,y = �
)vx
)y

= �
̇ (2.21)

where � and �x,y are the shear stress, � the zero-shear viscosity, and )vx
)y

and 
̇ are the strain rate. To
understand the viscoelastic response, we will first consider the simple Maxwell element which
consists of a spring and dashpot connected in series, see Figure 2.8.[17] The Hookean spring
responds in a purely elastic manner governed by Equation 2.20 while the dashpot flows as a viscous
Newtonian fluid governed by Equation 2.21. When an instantaneous strain is applied to the system,
the response at very short times is completely accounted for by the elastic spring. Then, gradually
the dashpot will begin to flow and extend. At the longest times all of the response will be in the
dashpot and the spring will return to its equilibrium position. Therefore, the long-time response
is of a viscous liquid and the short time an elastic solid, satisfying the observed responses of a
viscoelastic liquid. At any instant in time, the total strain, 
0, is given by the summation of the
strain in each element:


0 = 
E + 
V (2.22)

where the subscripts E and V denote the elastic and viscous response, respectively.
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One of the simplest ways to obtain information regarding the viscoelastic response is to apply
an oscillatory strain and measure the stress response. Then, for a Maxwell element undergoing a
sinusoidal strain, 
 = 
0 sin(!t), the time derivative of the strain is given by,


̇ =
)

)t
=
)
E
)t

+
)
V
)t

⇒ !
0 cos(!t) =
1
G0
)�
)t
+ 1
�0
�

(2.23)

The solution to this differential equation is �(t) = A sin(!t) + B cos(!t). Inserting this solution
into Equation 2.23, and solving for the coefficients gives Equation 2.24.[89, 90, 88]

�(t) =
G0 
0 !2 �2

!2 �2 + 1
sin(!t) +

G0
0!�
!2�2 + 1

cos(!t)

�(t) =G′
0 sin(!t) + G′′
0 cos(!t)
(2.24)

The frequency-dependent material response is captured by the two components G′ and G′′. The
real part, G′, termed the storage modulus, is the portion of the response which is in phase with
applied strain and is therefore related to the elastic response. The imaginary part, G′′, is known
as the loss modulus and represents the portion of the material response which is 90° out of phase
with applied shear and is therefore in phase with strain rate and must be related to the viscous
response.[91, 90, 88, 92, 17] A mechanical spectroscopy measurement consists of measuring the
frequency-dependence of G′ and G′′. In complex notation, the complex dynamic shear modulus is
defined as, G∗(!) = G′(!) + iG′′(!).

The instrument utilized in this study is a TA instruments Discovery Hybrid Rheometer-2. The
measurements were made in a parallel plate sample geometry with disposable aluminum plates.
Temperature control was provided by an Environment Test Chamber also from TA Instruments
with accuracy of ±0.1K. This instrument is a single-head rheometer where the motor, torque
transducer, and position sensor (for measuring strain) are all mounted on the same plate on one
side of the sample.[88] A simplified illustration of the instrument is provided in Figure 2.9. In
our oscillatory shear measurements the maximum angular displacement (strain %) is preset and
the torque required to achieve this strain is measured. When inertial forces can be neglected and
the deformations are small enough to be within the linear regime, the stress/strain ratios, �



, are
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Figure 2.9: Illustration of the Ares HR-2 rheometer with parallel plate sample geometry where
R defines the plate radius and h the sample thickness. As indicated, the HR-2 is a single-head
rheometer with a fixed bottom plate and free top plate to which a motor and position sensor are
affixed.

related to angular displacement/torque ratios, S
�
, by form factors which depend only on the sample

geometry.[91, 92] This relationship is given in Equation 2.25 for parallel plate geometry, see Figure
2.9.

�


= S
�
2ℎ
�R4

(2.25)

During measurement at a fixed frequency, the torque and therefore the shear tends to lag behind
the oscillatory strain, see Figure 2.10. The shear stress is given by, � = �0 sin(!t + �) =

�0 cos(�) sin(!t) + �0 sin(�) cos(!t), where � is the phase angle between the applied strain and
measured stress response. Combined with Equation 2.24 this gives:

G′ =
�0

0
cos(�)

G′′ =
�0

0
sin(�)

(2.26)

therefore, the real and imaginary parts of the complex dynamic shear modulus can be obtained by
simply measuring the maximum amplitude of the applied shear strain and stress and their phase
angle.[92] To ensure that measurements are within the linear response regime the amplitude of the
strain may be reduced until strain-independent results are obtained.

The experimentally accessible frequency range for this type of oscillatory shear rheometer is
much more limited than in the case of broadband dielectric spectroscopy. The Ares HR-2 has a
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Figure 2.10: Time dependence of an applied sinusoidal shear strain and the measured stress-
response at a fixed frequency. The maximum amplitudes of stress and strain and their measured
phase shift, �, are used obtain the real and imaginary parts of the complex dynamic shear modulus
by Equation 2.26.

frequency range of 10−7 − 102 rad s−1. In practice, the available frequency range is limited by
the material response. For viscous liquids, oscillatory shear measurements are only accurate near
the viscoelastic transition where the torque is quite large. Therefore experiments must be carried
out near the calorimetric glass transition temperature where the molecular relaxation times are at
approximately � = 102s or equivalently ! = 10−2s−1.

The results of ameasurement on the ionic liquid 1-hexyl-3-methylimidazolium tetrafluoroborate
(C6MIm BF4) are presented in Figure 2.11. At each temperature, only a portion of the viscoelastic
response is observed within the experimental frequency window. At the higher temperatures this
is dominated by the viscous response with characteristic low-frequency slope of 1 and 2 in G′′ and
G′, respectively. At the lowest temperatures and highest frequencies the elastic response begins
to dominate with G′ reaching a frequency-independent plateau value of G∞ =109 Pa, typical of an
amorphous glass.[87, 88] The frequency at which the storage and loss moduli cross over one another
corresponds to the characteristic structural relaxation rate of the liquid. This rate is directly accessed
only at the lowest two temperatures in Figure 2.11. The analysis of themechanical relaxation spectra
can be extended by performing a time-temperature superposition of the experimental data. In this
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Figure 2.11: The real (closed symbols) and imaginary (open symbols) parts of complex dynamic
shear modulus, G∗ = G′ + iG′′, of 1-hexyl-3-methylimidazolium tetrafluoroborate (C6MIm BF4).

analysis, the data are shifted horizontally by shift factors, aT , to give a master curve that is assumed
to be representative of a reference temperature, Tref .[17] It should be noted that this assumption
holds only if time-temperature superposition is obeyed. The structural relaxation rates, !�, are
then given by !� = aT !Tref where !Tref is the relaxation rate at a specified reference temperature to
which the other data is shifted. The master curve of the complex dynamic shear modulus of C6MIm
BF4 is given in Figure 2.12.

The response encapsulated in Equation 2.24 defines the frequency dependence of G′ and G′′

as G′ = G0 
0 !2 �2

!2 �2+1
and G′′ = G0
0!�

!2�2+1
. This response is derived for an idealized Maxwell element.

The vast majority of viscoelastic materials do not follow this type of response, but rather exhibit
relaxations stretched over wider frequency ranges. This is analogous to the “stretching” of typical
dipolar relaxations in dielectric spectroscopy relative to the idealized Debye relaxation model.[3]
We can modify the Maxwell relaxation model by introducing a stretching parameter which is
analogous to the stretching parameter of the Cole-Davidson dielectric fitting function.[79, 93] This
gives us a Cole-Davidson-modified Maxwell relaxation model for the real part of the complex
dynamic shear modulus, Equation 2.27, where Re[] indicates separation of the real part, G∞ is the
high frequency shear modulus, � is the relaxation time, and 
 is the stretching parameter.[94]

G′ = Re
[

G∞

(

1 − 1
(1 + i!�)


)]

(2.27)
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Figure 2.12: Master curve of the complex dynamic shear modulus for C6MIm BF4 obtained by
time-temperature superposition at a reference temperature of −82 ◦C. This curve is typical for a
low molecular weight glass-forming liquid with the only mechanical relaxation being the structural
relaxation of the liquid with relaxation rate !�.

2.3 Differential Scanning Calorimetry

Calorimetry is the science of measuring heat flow into and out of a sample as it undergoes various
types of transitions including phyical transitions, e.g. melting, crystallization, mixing, etc..., as
well as chemical transitions, i.e. chemical reaction. Differential scanning calorimetry (DSC) is a
technique which emerged from this science in the middle part of the 20tℎ century. DSC allows for
rapid and, if properly calibrated, highly accuratemeasurement of the heat flow associatedwith phase
transitions as well as heat capacity.[95] Due to the ease of measurement, the wealth of information
supplied, and the small sample amounts required (milligrams), DSC has become ubiquitous in the
study of amorphous, crystalline and semi-crystalline soft materials.[96]

In this intro to DSC, the operating principles will be established followed by an overview of
its application to the study of glass-forming liquids. There are two types of DSC instruments with
fundamentally different modes of operation. The first type was developed in the 1960s and is known
as power compensation DSC.[97] This instrument consists of two separate calorimeters each with
their own heaters and pans. One calorimeter contains the sample while the other is an empty
reference. During a measurement the two heaters are operated such that the temperature in the
sample and reference pans are maintained equal to one another. Due to the sample’s heat capacity
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Figure 2.13: Illustration of a differential scanning calorimetry experimental apparatus. An
aluminum reference and sample pan are placed on a constantan base. This base is subjected to
heating/cooling ramps by a surrounding furnace. The temperature of the sample and reference
pans as well as the base are recorded as a function of time. This allows a calculation of the sample
heat capacity and heat flow rate.

and phase transitions the power supplied by the two heaters will be different. This difference is
equal to the heat flow into the sample.

The instruments utilized in this study are Q1000 and Q2000 differential scanning calorimeters
from TA instruments. These are both heat-flux rather power compensation calorimeters. An
illustration of the experimental apparatus is presented in Figure 2.13. Here we see two aluminum
pans set atop hollow platforms which are raised above and connected to a metal base. One pan
is an empty reference and the other contains a small sample of the material to be measured. The
base upon which the pans rest is made from constantan and forms one leg of a thermocouple.
Inside the hollow platforms run chromel wires which form the other leg thereby allowing a precise
measurement of both the reference pan and sample pan temperatures Tr and Ts, respectively. This
entire assembly is enclosed, to minimize convection effects, and placed within a furnace which
may be heated elecrically or cooled using either a liquid nitrogen purge gas stream (Q1000) or
refrigerated air (Q2000). The temperature of the constantan base, T0, is measured by a third
thermocouple. This temperature is set via an electronic controller linked to the furnace which
allows heating and cooling rates over a very wide range (0.1-100K min−1) while maintaining an
accuracy of ±0.1K. During a measurement, the base temperature is ramped and the temperature
difference between the sample and reference pans is measured. To obtain the heat flow into the
sample requires a mathematical treatment of the heat flow paths within the whole system. The
Q1000 and Q2000 calorimeters utilize an equivalent circuit approach, referred to as Tzero, which
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Figure 2.14: Equivalent circuit diagram of the heat-flux DSC assembly of Figure 2.13. The
circuits above the dotted-dashed line account for the pan and sample effects while those below
represent platform effects. As a result of this analysis and with careful calibration to account for
the resistances and capacitances of the platforms and pans, the heat flow into the sample, qsam, may
be calculated. This diagram is reproduced from [5].

accounts for the thermal resistances and capacitances of the platforms as well as the sample and
reference pans.

A diagram of the equivalent circuit corresponding to the experimental apparatus of Figure 2.13
is shown in Figure 2.14.[5] The circuit below the dotted line corresponds to the platform on which
the two pans rest, where Ts, Tr, and T0 are the measured temperatures, Rs is the resistance of sample
platform, Rr the resistance of the reference platform, Cs the capacitance of the sample platform,
Cr the capacitance of the reference platform. Accordingly, the heat flow rates into the sample and
reference pans, qs and qr, are given by Equation 2.28.

qs =
T0 − Ts
Rs

− Cs
dTs
dt

qr =
T0 − Tr
Rr

− Cr
dTr
dt

(2.28)

These heat flow rates may be subtracted to give an approximate heat flow rate into the sample.
However, this neglects any effects from the platform/pan interfaces, the pans themselves, and the
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thermocouple sensors. To account for these effects, we can first write expressions for the actual
sample heat flow rate, qsam, and the heat flow rate into the reference pan, qr:

qsam = qs − mpscpan
dTps
dt

(2.29)

qr = mprcpan
dTpr
dt

⇒ cpan =
qr

mpr
dTr
dt

(2.30)

where mps and mpr are the masses of the sample and reference pans and cpan is the specific thermal
capacity of the pan material. Now, inserting Equation 2.30 into Equation 2.29 gives Equation 2.31.

qsam = qs − qr

[mps(dTps∕dt)
mpr(dTpr∕dt)

]

(2.31)

Equation 2.31 provides the actual heat flow rate into the sample as it undergoes a temperature
ramp dTo/dt. It is this heat flow rate which is the basic output of a typical DSC measure-
ment. The heat flow rate versus temperature for the ionic liquid tributyl-dodecylphosphonium
bis(trifluoromethylsulfonyl)imide is shown in Figure 2.15. Using this equation to obtain qsam
requires an estimate of the actual sample and reference pan temperatures Tps and Tpr. This is
accomplished using the expected resistances of the pans, sensors and their interface (approximated
as an air gap) in the overall pan resistance, Rp. The temperatures are then given by Equation 2.32.

qs =
Ts − Tps
Rp

qr =
Tr − Tpr
Rp

(2.32)

Therefore, the sample heat flow rate, qsam, can be accessed by measuring Ts and Tr during
a temperature ramp, inputting the masses of the sample and reference pans and notifying the
instrument software of which pan geometry and construction material is being used.[5]

During a temperature heating or cooling cycle the material under study may undergo a phase
transition such as crystallization or melting. When such transitions occur, the sample will either
absorb (endothermic) or expel heat (exothermic). This excess heat flow will result in either
a positive or negative peak. The enthalpy of these phase transitions is equal to the areas of
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Figure 2.15: Result of a typical DSC experiment for the ionic liquid tributyl-dodecylphosphonium
bis(trifluoromethylsulfonyl)imide P4,4,4,12 NTf2. (a) Heat flow versus temperature for a cooling and
heating cycle at 10 ◦Cmin−1, with exotherm up. (b) Sample heat capacity versus temperature on the
same heating and cooling cycle. This sample has a glass transition at 195K observed as a step in
both heat flow and heat capacity. In addition, on the heating curve cold crystallization occurs (peak
in heat flow and dip in heat capacity) with a maximum/minimum at 265K followed by melting at
290K
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Figure 2.16: Calorimetric glass transition temperature, Tg, of P4,4,4,12 NTf2 on heating. The Tg isevident as a step-change in heat flow. The temperature assigned to Tg corresponds to the maximum
in the temperature-derivative of heat flow (dashed line). The solid line corresponds to heat flow
and the symbols to the derivative of heat flow with respect to temperature, dq/dT.
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the transition peaks in a plot of heat flow versus temperature.[95, 96] In our study of glass-
forming liquids, we are predominantly concerned with the calorimetric glass transition. The
calorimetric glass transition temperature, Tg, is observed in a DSC experiment due to the change
in sample heat capacity. It is evident as a step-change in both heat capacity and heat flow. The
results of a single heat-cool cycle are presented for the ionic liquid tributyl-dodecyl-phosphonium
bis(trifluoromethylsulfonyl)imide (P4,4,4,12 NTf2) as heat flow and heat capacity versus temperature
in Figure 2.15. On cooling, only a step change is observed at approximately 195K indicating the
entire sample was super cooled to its glass transition without crystallization. On the heating trace,
we observe a second step, again near 195K, followed by two peaks. These peaks correspond to
a cold crystallization event and subsequent melting. The two steps correspond to the calorimetric
glass transition. This temperature range is examined in greater detail in Figure 2.16. Here we see
that the step change spans several kelvin. The value recorded as the Tg may be defined as the
temperature at the maximum in the derivative of the heat flow. The values of Tg are dependent
upon whether they are recorded in the heating or cooling cycle and upon the heating and cooling
rates.[17]

2.4 Fourier Transform Infrared Spectroscopy

As the name implies, Fourier transform infrared spectroscopy (FTIR) is concerned with the
interaction of matter with electromagnetic radiation in the infrared frequency range.[98, 99, 100]
The infrared extends from just beyond the visible light range, 12,500 cm−1, down to the microwave
region, 0.1 cm−1. Note that wavenumber, inverse wavelength, is directly proportional to frequency
as 1∕� = �∕c where � is wavelength, � is frequency, and c is the speed of light. Measuring this entire
frequency range requires a combination of several different types of infrared sources and sensors.
The FTIR instrument types are therefore split into three categories which, in order of decreasing
frequency, are near-IR, mid-IR, and far-IR.[99] The FTIR spectra in this work were collected using
mid-IR spectrometers which cover the range 4000 - 400 cm−1. These frequencies coincide with the
vibrational and rotational modes of covalent bonds in organic molecules.[98, 99, 100] An isolated
covalent bond of a particular type vibrates, or rotates, at a particular frequency and absorbs infrared
radiation at that frequency. Themeasured absorbance is related to the concentration of the oscillator
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Figure 2.17: (a) Chemical structure of imidazole.[6] (b) Supramolecular aggregates of imidazole
arising from intermolecular hydrogen-bonding. Dashed lines represent intermolecular hydrogen-
bonds.[7, 8]

and its absorptivity by Beer’s Law, Equation 2.33, where A is the absorbance, T the transmittance,
a the absorptivity, b the thickness, and c the concentration of oscillator i.[99]

A(�) = log10
1

T (�)
= ai(�)bci (2.33)

The characteristic frequencies and relative absorbances of practically all types of covalent bonds
have been investigated for a huge variety of organic molecules.[101] FTIR can therefore be used
to identify the presence of different functional groups and molecules contained in a given sample.
Such chemical structure identification was the original application of IR-spectroscopy although it
has now been mostly superseded for this purpose by a combination of other techniques such as
nuclear magnetic resonance spectroscopy (NMR), x-ray diffraction, and mass spectrometry.[99]

The frequency at which a covalent bond absorbs infrared radiation is sensitive not only to the
type of bond, but also to its local environment and interactions with neighboring atoms of both
the intra- and intermolecular variety. For instance, the IR spectra of the same material in its
gas, liquid, and crystalline phases will be considerably different from one another. In condensed
phases, all IR peaks are broadened and form distributions around a mean. The peak width, defined
as the full-width at half-maximum (FWHM), as well as the frequency at its maximum are both
sensitive reporters of the local environment especially if strong intermolecular interactions, such as
hydrogen-bonding, occur.[98, 99, 100] FTIR is therefore useful as a probe of the local environment
of different oscillators. As an example, we can consider the infrared spectra of imidazoles in dilute
carbon tetrachloride solution in a study by Wolff in the 1970s.[9] Imidazole is a five-membered,
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Figure 2.18: Infrared spectra of imidazole (0.0004 mol L−1) and (1) trideuteroacetonitrile (0.399
mol L−1), (2) octadeuterodioxane (0.396 mol L−1), (3) hexadeuterodimethylsulfoxide (0.0158
mol L−1), (4) pentadeuteropyridine (0.120 mol L−1), and (5) N-methylimidazole (0.0204 mol L−1).
The free N-H stretch is located at 3500 cm−1. This vibrational stretching band shifts to lower
frequency, indicated roughly by the position of the labels, with increasing strength of the
intermolecular hydrogen-bond formed between imidazole and the basic additives. This figure is
reproduced from [9].

nitrogen-containing heterocycle with chemical structure given in Figure 2.17(a).[6]. The acidic
and basic nitrogens on the heterocycle enable it to form intermolecular hydrogen-bonds which
lead to suparmolecular aggregates of the type shown in Figure 2.17(b).[7, 8] The formation of
these hydrogen-bonds will significantly alter the vibrational frequency of the N-H bond. Therefore,
infrared spectroscopy is expected to be a sensitive tool to study supramolecular association in liquid
imidazoles. In the extremely dilute limit in carbon tetrachloride solution, imidazole will exist as a
free, unassociated molecule. The N-H vibration of “free” imidazole is located at ≈ 3500cm−1, see
Figure 2.18.[9] As the concentration of imidazole is increased they begin to form supramolecular
hydrogen-bonded chains. In a supramolecular aggregate, only the N-H group of the imidazole
on one end of the chain will continue to vibrate at 3500 cm−1. The intensity of the “free” N-H
vibration band will therefore be reduced as a function of imidazole concentration. Using Beer’s
law, the concentration dependence of the reduction in intensity can be used to estimate the degree of
association in dilute imidazole solutions.[102] This approach indicates that imidazoles in saturated
carbon tetrachloride solution exist with oligomers up to 13 molecules long.[102]

Upon forming an intermolecular hydrogen-bond, the N-H stretch band shifts to lower fre-
quencies. The extent of this shift is influenced by the strength of the hydrogen-bond. This can
be demonstrated by adding molecules of gradually increasing basicity to very dilute imidazole
solutions. Such a study was accomplished by Wolff when he added trideuteroacetonitrile (pKa
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Figure 2.19: Infrared spectra of neat 2-ethyl-4-methylimidazole. The fundamental N-H stretching
vibration is obscured by the existence of numerous sub-bands which arise due to Fermi resonance
as shown in Figure 2.18.

≈ −10.0), octadeuterodioxane (pKa ≈ −3.2), hexadeuterodimethylsulfoxide (pKa ≈ 0), pen-
tadeuteropyridine(pKa ≈ +5.4), and N-methylimidazole(pKa ≈ +7.3) to dilute imidazole/CCl4
solutions.[9] The resulting IR spectra are provided in Figure 2.18. The shift for an imidazole dimer,
corresponding to the strongest hydrogen-bond, is over 600 cm−1.[9] In addition to the “free” and
associated N-H stretch, numerous bands are located between 3200 cm−1 and 2400 cm−1. Some
of these are due to C-H stretching bands which arise in this region.[101] The majority, however,
are sub-bands which arise due to Fermi interaction of the stretching vibrations with over and
combination tones of intermolecular vibrations.[9, 103] In neat liquid imidazoles, these sub-bands
are quite strong and obscure the contribution of the fundamental N-H stretching vibration as seen
for liquid 2-ethyl-4-methylimidazole (2E4MIm) in Figure 2.19. These results show that the N-
H stretch of imidazole cannot be used to probe hydrogen-bonding in neat 2E4MIm and highlight
some of the difficulties in the application of FTIR to the study of mesoscale organization in liquids.
Especially important is the ability to identify bands which are isolated and sensitive to the formation
of non-covalent bonds.

Infrared spectra can be obtained in a number of different ways depending on how the infrared
beam interacts with the sample and is subsequently passed to the detector. The primary methods
are transmission, reflection, and attenuated-total reflectance. In transmission, the beam is passed
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through a sample and collected into the detector. In reflectance, the beam passes through the sample,
is reflected off of a surface on which the sample has been mounted back through the sample, and is
then collected by the detector. Attenuated-total-reflectance (ATR) utilizes a special material known
as an internal reflection element (IRE) to measure a sample without actually passing the beam
through the sample. The IR-beam is directed into the IREwhere it is internally reflected. One side of
the IRE is in contact with the sample where an evanescent wave interacts with only with the topmost
section of the sample. Afterwards, the beam leaves the other IRE and is collected into the detector.
Each of these techniques is suited to different sample types and different experimental goals. ATR
is one of the easiest to carry out, requiring the least sample preparation, and is therefore by far the
most common technique seen in the literature today. The goal of our FTIR experiments are to probe
the temperature and composition dependence of intermolecular interactions. The temperature of
the sample is controlled by a Linkam Scientific THMS600 temperature stage. The design of this
apparatus is geared toward transmission measurements and therefore all of our measurements were
made by transmission.

2.5 X-ray Scattering

On a basic level, x-ray scattering operates on a similar principle as the familiar diffraction of visible
light when it is passed through a grating.[104] Just as the diffraction pattern in that case is due to
the spacing between holes, so, when x-rays are passed through matter the diffraction pattern is due
to spacing between regions of varying electron density be it atoms, molecules, particles, etc.... The
original application of x-ray scattering was the study of lattice structure in crystals.[105] The x-
ray diffraction is governed by Bragg’s Law, � = 2d sin �, where � is the x-ray wavelength, 2� the
diffraction angle, and d the lattice spacing. X-ray wavelengths range between 0.01 and 10 nm.[106]
In practice, the most common x-ray source for x-ray diffractometers is CuK� with a wavelength
� = 1.54Å. Longer wavelengths are avoided due to their increased tendency to be absorbed by
matter.[106] For crystal lattices, the local spacing between adjacent atoms or molecules ranges
over a few angstroms. Therefore scattering angles at these lattice distances are quite large. This is
the domain of wide-angle x-ray scattering. The angles are reduced as the spacing becomes larger.
Accordingly, small-angle x-ray scattering is utilized in the study of long-range order. Small angle
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Figure 2.20: In this schematic of an x-ray scatttering beamline, a collimated x-ray beam is scattered
upon passing through a sample. The intensity and wave vector of the scattered beam are recorded by
an x-ray detector. The detector is mounted on a movable stage allowing a wide range of scattering
vectors to be investigated. Reproduced from [10].

x-ray scattering has emerged as a useful tool in the study of a variety of amorphous materials
including proteins, block copolymers, colloids, and microemulsions.[107]

The x-ray scattering instrument utilized in these investigations is a SAXSLAB Ganesha
instrument equipped with a CuK� x-ray point source. A simplified illustration of the beamline
in this instrument is provided in Figure 2.20.[10] In operation, a collimated x-ray beam is passed
through a sample, where a portion of the beam is then scattered. Some distance away is an x-
ray detector which records the position and intensity of the scattered beam. A wave vector, q⃗, is
defined by the difference between the vectors corresponding to the scattered and incident beam,
respectively. In the SAXSLAB Ganesha instrument, the detector is positioned on a movable stage
so that the distance between the sample and the detector may be altered. In this way, by using
a single instrument wide-, medium-, and small-angle scattering may be carried out in very short
order. By doing so, order within the sample ranging from 0.2 to 100 nm can be investigated. The
x-ray scattering profiles throughout the manuscript represent a combination of wide-, medium-,
and small-angle x-ray scattering.

Incident x-rays are predominantly scattered by the electron clouds surrounding the atomic
nuclei. If we consider the scattering from a region with electron density, �(x⃗), then the intensity,
I, of scattered x-ray’s can be defined in reciprocal, q⃗-space, by the Fourier transform, Equation
2.34.[106]

I(q⃗) = ∫ �(x⃗)e−iq⃗⋅x⃗dx⃗ (2.34)
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The q-dependence of the scattering intensity can also be expressed in terms of a structure factor
relating to the spacing between scattering particles, see Equation 2.35, where S(q) is the structure
factor, xi is the mole fraction of atoms of type i, and fi is their form factor.[13] This representation is
especially helpful in comparisons with molecular dynamics simulations since the structure factors
can be computed via the computationally derived radial distribution functions and compared with
experimental scattering profiles.[13]

I(q) = S(q)

[

∑

i
xifi(q)

]2

+
∑

i
xif

2
i (q) (2.35)

The magnitude of the wave vector is given by q = 4� sin �∕�, where 2� is the scattering angle.
From Bragg’s law, we then obtain the relation, d = 2�∕q, as the distance between scatterers.
Typically if there exist regular distances between regions of high electron density, then a peak will
be evident in the x-ray scattering profile at a q-value corresponding to the distance separating the
scattering regions. In our studies, x-ray scattering is employed to provide insight into the mesoscale
organization of ionic liquds. In this case, x-ray profiles exhibit what is termed a pre-peakwith values
of d typically ranging from 12 to 25Å. On the basis of numerous molecular dynamics simulations
which reproduce this pre-peak, the origin is assigned to the existence of distinct polar and non-
polar domains within the bulk liquid.[53, 54, 108] The distance, d, in this case is associated with
the separation between polar domains separated by a non-polar domain.[32, 13]
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Chapter 3

Ionic Liquids

In this chapter, the influence of chemical structure on mesoscale organization and dynamics is
investigated for neat and binary mixtures of imidazolium-based ILs as well as neat phosphonium
ILs. The chapter begins with a brief introduction to ionic liquids and a review of prior experimental
evidence of mesoscopic organization. Following this, the results of detailed experiments on the
mesoscale organization and dynamics of (i) neat imidazolium-based ILs, (ii) binary mixtures of
imidazolium-based ILs, and (iii) neat phosphonium-based ILs are presented. The chapter concludes
with a brief summary. It is found that the development of mesoscale organization, originating
in the solvophobic aggregation of non-polar aliphatic chains, leads to the emergence of a slow
dynamic response in the dielectric and dynamic mechanical spectra arising from fluctuations of the
aggregates. As a result of these new dynamics, we are able to tune physicochemical properties,
notably the static dielectric permittivity, through composition-dependent control of mesoscale
aggregate morphology and dynamics in binary ionic liquid mixtures.

3.1 Introduction and Motivation

An ionic liquid at its most basic is simply a salt which is in the liquid state at the temperature and
pressure of interest. However, commonly accepted terminology makes a clear distinction between
an ionic liquid and othermolten salts.[109] Ionic liquids are specifically defined as those salts having
a melting point below 100 ◦C. There are several classes of ionic liquids including aprotic, protic,
solvate, and purely inorganic. The materials studied in this chapter are all examples of organic
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LiF + BeF2

Ionic Liquid Anions

[BeF4]2-
[BeF7]3-

ZnCl2 +

N

PyrCl

FeCl3 + PyrCl

AlCl3 + PyrCl

[FeCl4]-

[ZnCl4]-

[AlCl4]- [Al2Cl7]-

Pyr =

Figure 3.1: The first ionic liquids were eutectic mixtures usually consisting of a metal and organic
salt. Themost commonwere the chloroaluminates with a pyridinium salt (top entry). The reduction
in melting point is due to the formation of the large anion complexes (shown on the right) and the
large pyridinium cation which inhibit crystallization.

aprotic ionic liquids. Therefore, this introduction is limited to the development and investigation
of the aprotic ILs, the variation in their chemical structures, applications, physical, and chemical
properties. The focus is primarily on introducing aspects relevant to my work concerning the
influence of mesoscale organization on dynamics and charge transport. The first aprotic materials
to fit the IL description were mixtures of organic and metal salts which formed a low melting
point eutectics as discovered in 1951.[110, 111, 112, 109, 43] The most common of these are
the chloroaluminates based on mixtures of pyridinium chloride (PyrCl) and aluminum chloride
(AlCl3). The field of ionic liquids which we know today was born from the extensive research
carried out in the 1970s and 1980s on these eutectics, with notable work in the groups of Bob
Osteryoung and Gleb Mamantov.[113, 114] The chemical structures of some early examples of
ionic liquids are shown in Figure 3.1. The depression in melting point is attributed to the formation
of large anion complexes upon mixing. These large anions, together with the large organic cation,
frustrate the efficient packing of molecules into a crystal structure while still satisfying the demands
of charge alternation.[115, 111, 43] It should be noted that although the chloroaluminates were
the most thoroughly studied they are not the only salt mixtures for which eutectic formation was
observed. Other notable examples include additional metal chlorides as well as mixtures of alkali
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metal salts such as the last entry in Figure 3.1. The primary applications at this point were as
media for the electrodeposition of metals and as solvents for the spectroscopic study of metal
complexes.[116, 117] Other major motivations for the development of these ILs was their potential
application as heat transfer fluids in nuclear reactors and as battery electrolytes for the extreme
conditions encountered in air and spacecraft.[118, 43] Accordingly, much of the initial development
of low-melting salts was done at the US Air Force Academy and Oak Ridge National Lab.[111, 43]

A major drawback of these early ionic liquids is their instability under ambient conditions. The
anions react rapidly with water to form hydrates which cannot be separated by simple physical
drying in a high vacuum. This required all chloroaluminate applications to be carried out in
sealed environments completely devoid of water. In addition, the eutectics were only liquid at
room temperature over a very narrow composition range. The first water stable ionic liquids,
reported in 1992, consisted of imidazolium and pyridinium cations combined with sulfate, nitrate,
tetrafluoroborate, triflate, and mesylate anions.[119, 120] These two reports could be considered
the birth place of the “modern” aprotic ionic liquids we know today. It was later found that some
of the anions such as tetrafluoroborate and hexafluorophosphate do indeed react with water to form
hydrofluoric acid. Due to the dangers of HF, care is still needed when handling these ILs. Also,
even trace amounts of water can have a strong influence on the physicochemical properties and
therefore it is good practice to keep the ILs dry through proper storage and drying protocols. After
the emergence of ILs which could be handled on the bench top, their potential for a variety of new
applications was soon realized. As these new applications have emerged the library of ionic liquids
has also expanded. Figure 3.2 provides the chemical structures of typical modern ionic liquids.
This list is by no means exhaustive. It has been estimated that the number of possible unique ionic
liquids may be as high as 106.[52] This number balloons when we also consider mixtures as unique
ionic liquids themselves. Including binary mixtures there are 1012 possible variations and with
ternary mixtures this number reaches 1018.[52]

The previous applications, electrochemistry, spectroscopic analysis, heat transfer fluids,
and electrolytes, continue to be areas of active research. However, the rapid expansion of
the ionic liquids field has been driven by the ever expanding variety of applications beyond
those originally conceived for molten salts. These include application as solvents in different
types of chemical synthesis,[60, 62, 57, 112, 61, 32] for the growth of nanoparticles and
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Figure 3.2: Chemical structures of commonly encountered cations and anions in modern ionic
liquids. R- represents alkyl chains of varying length substituted on the cation.

other nanostructures,[121, 122, 123, 32, 124], for polymerization,[60] for extraction/separation
processes,[32],and as catalysts.[57, 59, 123, 58, 61] ILs are also emerging as important solvents
for the dissolution and processing of biomass including cellulose,[48, 125, 123, 112, 32]
chitin,[126] and proteins.[48, 32] Their applications as electrolytes continues to expand and now
encompasses electrodeposition,[121, 48, 112, 32] batteries,[121, 49, 123, 51] electromechanical
actuators,[51, 48] supercapacitors,[50, 127, 51] solar cells,[123, 51] and thermochemical
cells.[123, 51] They find application in the medical industry as media for drug delivery as
well as antimicrobials.[123, 32] They have potential impact in renewable energy/environmental
sustainability as fluids for thermal energy storage[51, 128] and CO2 capture.[129, 130, 123, 51]
There is also potential for more exotic application such as their proposed use as a liquid mirror
support in a large moon-based telescope.[131] All of these varied applications arise due to the
peculiar combination of properties afforded by the existence of ILs as low-melting point salts.

Ionic liquids are typically characterized as having wide thermal stability windows, wide electro-
chemical stability windows, moderate ionic conductivities, moderate viscosities, and extremely low
volatilities. They have quite a large variability in these properties depending upon the combination
of cation and anion. The ability to alter the combination of ions and the large number of possible
chemical structures (106-1018) opens the possibility of designing ionic liquids with particular
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properties for a given application.[112] Accordingly, ionic liquids are often referred to as “tunable”
solvents. Taking advantage of this tunability requires a detailed understanding of how the chemical
structure of anions and cations contribute to the observed properties. That is, we need very detailed
structure/property relationships which allow us to design new ionic liquids without synthesizing and
characterizing all of the unique combinations. Rather than giving an overview of all IL properties,
we will focus on those most relevant to the experimental results presented in this section including
the ionic conductivity, viscosity, and static dielectric permittivity.

The transport properties dc ionic conductivity, �0, and fluidity, the inverse of zero-shear
viscosity 1∕�, are both thermally-activated processes. Temperature-dependent values are given in
Figure 3.3 for a prototypical ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate, C8MIm
BF4. The dynamics which underlie the viscosity and conductivity, i.e. the structural and
ion conductivity relaxations, are accessed experimentally by dynamic mechanical and dielectric
spectroscopy, respectively, see the Experimental Methods section. From Maxwell’s relation, the
structural relaxation rate is determined by, !� = G∞∕�, where the glassy shear modulus G∞ is a
few GPa. For numerous aprotic ionic liquids, it has been found that the structural relaxation and
ion conduction rates coincide, see the inset of Figure 3.3(a). However, there is some evidence for a
slight decoupling of the ion diffusion and structural relaxation rates as the Tg is approached.[132]
The temperature dependence of the relaxation rates coincide also with the temperature dependence
of �0 and 1∕�.[133] This indicates that the conductivity and fluidity of ionic liquids are intimately
linked to the dynamic glass transition and accordingly to the structural relaxation rate. As
the temperature decreases from 240K and approaches the calorimetric glass transition, Tg, the
relaxation rates vary over seven orders of magnitude. The dc ionic conductivities and fluidities,
which are shown over a wider temperature range, vary over 10-11 orders of magnitude. An
Arrhenius rate law, ! = !∞ exp(EA∕kT ), corresponds to straight lines in a plot of log(!) versus
1000∕T with slopes corresponding to the activation energy EA. Rather than straight lines, we
observe a gradual increase in the activation energy as the temperature is reduced. The increase
in activation energy and the slowing down of molecular motion is common to all glass forming
materials and is known as the dynamic glass transition. The temperature dependence of the
structural relaxation rate as the temperature approaches the calorimetric glass transition is known as
the fragility, m = d log(�)∕d(Tg∕T )|T=Tg .[134] The fragility can vary quite dramatically, especially
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Figure 3.3: (a) DC ionic conductivity, �0, and fluidity, �−1, of 1-octyl-3-methylimidazolium
tetrafluoroborate (C8MIm BF4) versus inverse temperature. Inset: Conductivity, !e,BDS , andstructural, !�,DMS , relaxation rates obtained by dielectric and dynamic-mechanical spectroscopy,
respectively. (b) DC conductivity, fluidity, and relaxation rates versus temperature normalized by
the calorimetric glass transition temperature, Tg. The fluidities and relaxation rates are vertically
shifted to illustrate their identical temperature dependence.

with changing cation structure.[135] The close coupling of the dc ionic conductivity with the
structural relaxation in ionic liquids makes it necessary to consider how changes to the dynamic
glass transition which occur as a result of changes to the chemical structures of the cations and
anions can influence the room temperature dc ionic conductivity. The influence of chemical
structure changes on charge transport and dynamics is therefore interesting both from the standpoint
of developing structure/property relationships for the future application of ILs as well as for the
testing and development of theories of the glass transition.

Currently, no theory of glass formation is capable of explaining all experimental
observations.[136, 137, 87, 138, 29, 139, 140, 134, 141, 142, 143, 144, 145] The variety IL
chemical structures which are easily super-cooled make them useful materials for further study
of glass formation physics. For some simple cases and reduced classes of ILs general trends
may be highlighted. The primary interaction in ionic liquids is the Coulombic repulsion and
attraction experienced between like and un-like charges. By increasing the anion volume while
maintaining the same charge, the overall charge density is reduced which decreases the Coulombic
interaction strengths. This in turn reduces the cohesion energy of the fluid and the Tg.[115] A
similar reduction in the cohesion energy can occur if the van der Waals interactions are weakened
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by making the ions less polarizable. Therefore, if the goal is to increase the room-temperature
ionic conductivity and fluidity it is best to use a large, highly fluorinated anion. These types of
ions are therefore the most common, especially bis(trifluoromethylsulfonyl)imide (NTf2). They
have the added benefit of making the ILs less hygroscopic. This is however only a general trend
and a great deal of variability in Tg is found as both the cation and anion are varied.[115, 146, 43]
For a given cation, it seems that the size and polarizability effect on the Tg dominate the observed
changes in �0 and �−1. On the other hand, altering the cation strongly influences both fragility and
Tg. A contributing factor to this disparity may be the formation of solvophobic aggregates in the
ionic liquids with long alkyl chains substituted on the cation. This type of mesoscopic organization
is typically not accounted for in theories of glass formation. However, they may play an important
role.[29] The formation of these aggregates is discussed in more detail later.

The dc ionic conductivity is also influenced by the fraction of ions which actually contribute
to long-range charge transport. This value is referred to as the ionicity of the IL. It is most often
estimated using the qualitative Walden plot analysis. In this analysis, a plot is made of molar
conductivity, Λ[S cm2mol−1], versus fluidity, �−1[Pa−1 s].[43] “Good” ion conductors fall higher
on this plot while “poor” ion conductors fall lower. In aprotic ionic liquids, where both �0 and �−1
are coupled to the structural relaxation, the better the ion conductor the higher is its ionicity.[11, 43]
An example of aWalden plot for some aprotic ionic liquids is provided in Figure 3.4. In this limited
selection of ILs, we can see that the larger quaternary phosphonium ionic liquids which contain a
significant non-polar volume fraction tend to have lower ionicities than the smaller pyridinium ILs.
A more quantitative estimate of ionicity may be obtained through a combination of the Einstein-
Smoluchowski relation and basic electrodynamic theory. From fundamental electrodynamics, we
can relate the total ionic conductivity, �0, to the mobility, �, number density, n, and charge, q, of
all ions contributing to the ionic conductivity by the equation, �0 = ∑

i qi�ini, where the sum is
carried out for all unique ionic species, i. Themobility of ions is related to their diffusivity, D, by the
Einstein-Smoluchowski relation, � = qD∕kT .[147, 148] The diffusivity of charge carriers may be
found experimentally, for instance by PFG-NMR, or it may be estimated from the ion conductivity
rates as, D = �2!e, where � ≈ 1 − 2Å is the mean ion-hopping distance. The number density
of ions is then given by, n = �0kT ∕q2D.[149, 150, 151, 152, 153] The ionicities estimated in
this manner, n∕nT , where nT is the total number density of ions, have been found to range from
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Figure 3.4: Walden plot analysis for a selected group of ionic liquids based on the quaternary
phosphonium, P6,6,6,14, and pyridinium, Pyr, cations. This is a special type of Walden plot
introduced by MacFarlane which includes a correction for differing ion sizes. The line represents
data for a 0.01M aqueous HCl solution and is taken as a baseline for a good ion conductor.
Reproduced from [11].

30 to 85%.[154, 150] A further, but related, method for estimating ionicity is the Haven ratio. In
this approach, the diffusivity obtained by PFG-NMR is used to estimate the molar conductivity
via the Nernst-Einstein equation with the assumption that all charge carriers participate in charge
transport,ΛNMR = NAq2(D)∕kT , whereNA is Avogadro’s constant.[155] A ratio is thenmadewith
the measured molar conductivity, ΛBDS∕ΛNMR. This ratio is equivalent to the ionicity n∕nT . The
Haven ratio was originally developed for ion conduction in glassy and crystalline solids. A Haven
ratio equal to one indicates that molecular and charge diffusion proceed in the same uncorrelated
manner.[156] This is generally only observed in some very dilute electrolytes where the distance
separating charges exceeds their Bjerrum length meaning the interaction between charges is weaker
than the thermal energy.[157, 158, 159] In pure ionic liquids, the ions are very closely packed and
ion motions become more correlated. For instance, when a cation jumps it leaves behind a hole
which, considering the preferential interaction of cations with anions rather than other cations, is
more likely to be filled by a nearby anion.[156] This correlated motion of cations and anions in the
same direction contributes to molecular diffusion, but not charge conduction.[150, 156] Therefore,
Haven ratios in more concentrated electrolytes are expected to be less than unity.[160]

Another property critical for the majority of IL applications is their ability to solvate different
types of solute molecules and surfaces. This solvation ability is related to the solvent polarity,
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defined as the sum of all specific and nonspecific intermolecular interactions between the solvent
and solute molecules.[44, 57] There has been a considerable effort to correlate the cation and anion
chemical structures to this important property. Solvent polarity can be measured in a number of
different ways including: “dielectric constant”, Hildebrand solubility parameters, probe-molecule
spectroscopy, and Kamlet-Taft parameters.[161, 162, 163, 57, 164] Each of these measures carries
its own advantages and limitations. In many instances, the polarity and its trend with chemical
structure are significantly different depending on which approach is used.[57, 165, 166] For this
reason, universal agreement as to the polarity of ILs has not be reached.[57, 163, 167] However,
it is generally found that ILs have only modest polarities with values near those of monohydroxy
alcohols.[57]

The static dielectric permittivity (dielectric constant) is one of the most often cited measures of
solvent polarity.[57] This value is obtained as the low-frequency limit of the real part of complex
dielectric permittivity. It therefore contains contributions from electronic, atomic, dipolar, and
ionic polarization, see the Experimental Methods section. Values of the dielectric constant are
often reported from dielectric measurements made in the microwave region at room temperature
and vary between 10-15.[162, 163, 168, 169, 170] One drawback of measuring in this experimental
range is the neglected possibility of contributions from slower relaxations. Recent optical Kerr-
effect spectroscopy, neutron spin echo, dielectric, and dynamic light scattering measurements on
ILs with long alkyl chains show that such slow relaxation do occur, although their origins remain
unclear.[154, 171, 172, 12] The observation of slow, sub-� dynamics in those ILs with extended
non-polar alkyl chains suggest that organization induced by the solvophobic segregation of such
chains, may contribute to such dynamics.

The commonly used cations shown in Figure 3.2 all have alkyl chains substituted on the charge
center. These chains make the cation bulky and aid in the formation of a low-melting ionic liquid.
As the length of the alkyl chain is increased, for instance at the R2 chain on the imidazolium ring, the
cation becomes increasingly amphiphilic with a distinct polar(charged) and non-polar(non-charged)
region. These cations begin to resemble traditional surfactant molecules which are capable of self-
assembly in solution via hydrophobic aggregation to form micellar-type aggregates. Over the past
decade, there has been mounting evidence that ionic liquids with short (C≈4) to moderate (C≈12-
16) length alkyl chains tend also tend to form similar aggregates. This organization is observed in
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Figure 3.5: Small and wide-angle x-ray scattering of 1-alkyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide (CnMIm NTf2) with alkyl chain lengths varying from ethyl(n=2)
to decyl(n=10). The three peaks are assigned based on detailed MD simulations of numerous ILs:
peak I is the polar/non-polar alternation peak, peak II the charge-alternation peak, and peak III the
adjacency peak. Reproduced from [12].

both the bulk liquid as well as in molecular solvents.[32, 173, 174, 175, 176] This is in contrast
to traditional ionic surfactants which form crystalline or amorphous solids at room temp.[44, 177]
At longer chain lengths they can transition into liquid crystals.[178] These mesoscale aggregates
are formed by the exclusion of the non-polar chains from the polar region occupied by the charged
head groups. Due to the absence of water, this mechanism is referred to as solvophobic rather
than hydrophobic aggregation. The emergence of this mesoscale organization may, as previously
mentioned, influence "s if it exhibits a strong dielectric relaxation. It may also have a strong
influence on the dynamic glass transition, both the fragility and the Tg, and accordingly on the
viscosity and dc ionic conductivity.[29] In addition, it may influence the ionicity and further reduce
the ionic conductivity.[179]

The primary experimental observation attributed to the formation of mesoscale solvophobic
aggregates is the emergence of a low momentum transfer (q) pre-peak in the small-angle x-
ray and neutron scattering intensity profiles of ionic liquids with extended alkyl chains.[32, 55,
180, 21, 20, 181] An example of such a pre-peak is shown in Figure 3.5 for a series of ionic
liquids with the 1-alkyl-3-methylimidazolium cation and bis(trifluoromethylsulfonyl)imide anion,
chemical structure indicated by a ⭐ in Figure 3.2.[12] The development of a peak at a q-value of
≈0.3Å−1 occurs when the alkyl chain length of the R2 chain is greater than or equal to five carbons.
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At a chain length of eight carbons the real space distance corresponding to this correlation is
d ≈18.9Å= 2�∕q. Considering only the geometry of a fully extended, all-trans alkyl chain, Figure
3.6, we can see that this distance is considerably larger than the dimensions of the cation. This
indicates a supramolecular origin for the correlationwhich underlies this pre-peak. The origin of the
correlation has been found by numerous molecular dynamics (MD) simulations.[32, 54, 182] Using
pair radial distribution functions these MD-simulations give estimates of structure-functions which
closely match the experimental scattering profiles.[183, 184] Deconvoluting the contributions to
each of the three peaks of Figure 3.5 reveals their molecular origins.[13, 185] These origins are
illustrated in Figure 3.6. The pre-peak corresponds to the separation of polar (ionic) regions
which are separated by a non-polar region consisting of opposing alkyl chains. The intermediate
peak, peak II in Figure 3.5, corresponds to the distance separating ions of like-charge within the
polar domain. These peaks are commonly referred to as the polarity and charge alternation peak,
respectively. The third peak arises from closer range correlations of both inter- and intramolecular
origin and is typically not closely analyzed.[13] MD simulations also provide three dimensional
snapshots of the organization (morphology) of the polar and non-polar domains, see Figure 3.7.
These snapshots and the analysis of the connectivity of polar and non-polar groups show that
in the CnMIm-based ILs the mesoscale organization may be characterized as bicontinuous with
percolating polar and non-polar domains.

The existence of large and separated polar and non-polar regions within an IL can have an
important influence on its solvation properties.[186] It can give the ability for the IL to solvate both
polar and non-polar molecules. Investigation of probe-molecule dynamics reveal the existence of
different dynamics within the two regions.[187, 13] For this reason, there is a great deal of interest
in developing our understanding of mesoscale organization. These solvophobic aggregates may be
critical to the application of ILs in chemical synthesis, separations, and energy storage.[32]

Scattering experiments and the complementary MD simulations have been carried out for all of
the common imidazolium, pyridinium, pyrrolidinium, phosphonium, and ammonium ionic liquids
shown in Figure 3.2.[32] Despite this wealth of information on the static mesoscale structure, there
is an extremely limited amount of information on the dynamics and lifetimes of the mesoscopic
structures. Currently, direct evidence of the mesoscale dynamics is limited to neutron spin echo
spectroscopy.[16, 15] Neutron spin echo measurements reveal that the decay in correlation at the
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Figure 3.6: Left: Illustration of the distances corresponding to peak I and peak II in Figure 3.5.
Peak I is the distance between polar regions separated by a non-polar domain of opposing alkyl
chains. Peak II originates in the ordering of ions within the polar phase and in general represents the
distance separating ions of like charge.[13] Right: The real-space distance corresponding to Qmax,
dI = 2�∕Qmax is significantly larger than the dimensions of a single molecule. It is , for instance,
much larger than the length of an all trans alkyl chain, lmax. This indicates the supramolecular
origin. The data for dI correspond to the CnMIm NTf2 IL series in Figure 3.5.[12]

C2MIm NTf2 C12MIm NTf2
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Figure 3.7: Three-dimensional snapshot from a molecular dynamics (MD) simulation of
1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C2MIm NTf2) and 1-dodecyl-
methylimidazolium bis(trifluoromethylsulfonyl)imide (C12MIm NTf2). Reproduced from [14].
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pre-peak is significantly slower than at the charge alternation peak. This is a direct evidence that
the aggregates fluctuate at rates much slower than the structural relaxation. Drawbacks to these
measurements include their difficulty, requiring deuterated samples and days of measurement time
per sample, as well as the limited beamtime available at neutron sources. They are also only capable
of capturing very fast dynamics from pico- to nanoseconds. Probing the correlation between the
mesoscale aggregate organization, dynamics, and ion chemical structure is vital to understand the
influence of solvophobic aggregation on the dynamic glass transition, dc ionic conductivity, zero-
shear viscosity, and static dielectric permittivity. Therefore, there is a pressing need for additional
experimental measurements of the mesoscale aggregate dynamics.

In this chapter, we establish the existence of new experimental probes of mesoscale aggregate
dynamics in the dielectric and dynamic mechanical spectra of imidazolium, ammonium, and
phosphonium ionic liquids. These dynamics are shown to contribute directly to increases in both
the zero-shear viscosity and static dielectric permittivity. Using binary IL mixtures we confirm the
mechanism of the dielectric relaxation to be interfacial polarization due to the fluctuation of charge
density at the polar/non-polar interfaces. We further demonstrate the application of IL mixtures
as a method to tune the viscosity, dc ionic conductivity, and static permittivity of ionic liquids by
direct manipulation of mesoscale aggregate shape and volume fraction.

3.2 Dynamic-Mechanical and Dielectric Evidence of Long-

Lived Mesoscale Organization in Ionic Liquids

In this section, a series of 1-alkyl-3-methylimidazolium ionic liquids with tetrafluoroborate and
bis(trifluoromethylsulfonyl)imide anions are investigated by broadband dielectric and dynamic-
mechanical spectroscopy. The length of the alkyl chain substituted on the cation is increased
systematically from propyl to octyl. According to x-ray, neutron and MD simulation studies
available in the literature, mesoscale organization due to solvophobic aggregation of the non-polar
alkyl chains occurs at chain lengths of approximately four to five carbons. We found that at this
critical chain length a sub-� relaxation emerges in the dielectric and dynamic-mechanical spectra
of these imidazolium-based ionic liquids. The relaxations are tentatively assigned to fluctuations
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of the mesoscale aggregates. The dielectric relaxation in particular is attributed to an interfacial
polarization mechanism at the polar/non-polar interface with relaxation rates comparable to the
slow relaxation probed by neutron spin echo at q-values of the aggregate pre-peak. The static
dielectric permittivity, "s, and the zero-shear viscosity, �, are both increased due to the additional
processes.

This section is a reprinting of a previously published article and its supporting material. My
primary contributions to this article include: (i) data analysis, (ii) interpretation of results, and (iii)
writing. Changes from the published version consist of the incorporation of supporting information
within the main text.

Reprinted with permission from (Cosby, T., Vicars, Z., Wang, Y., and Sangoro, J. (2017).
Dynamic-Mechanical and Dielectric Evidence of Long-lived Mesoscale Organization in Ionic
Liquids. Journal of Physical Chemistry Letters, 8(15):3544-3548.). Copyright (2017) American
Chemical Society.

Abstract

Experimental evidence of the dynamics of mesoscopic structure in room temperature ionic
liquids—a feature expected to correlate with many physicochemical properties of these ma-
terials—remains limited. Here, we report the observation of slow, sub-� relaxations corre-
sponding to dynamics of nanoscale hydrophobic aggregates in a systematic series of 1-alkyl-3-
methylimidazolium-based ionic liquids from detailed analysis of dynamic-mechanical and broad-
band dielectric spectra. The emergence of the sub-� relaxations correlates with increases in the
zero-shear viscosity and static dielectric permittivity, constituting direct evidence of the influence
of mesoscale aggregation on the physicochemical properties of ionic liquids.

Introduction

Ionic liquids (ILs) are a versatile class of fluids consisting entirely of cations and anions con-
ventionally categorized as having melting temperatures below 100 ◦C. The molecular structures
of the constituent ions and, consequently, the resultant intermolecular interactions, are central
to tuning their physicochemical properties such as viscosity, ionic conductivity, density, thermal
and electrochemical stability, and polarity. There has been a concerted effort to understand
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the impact of molecular organization on physicochemical properties of ILs during the past 2
decades.[44, 188] A recent advance in this respect is the observation of mesoscale organization
in bulk ILs arising from the hydrophobic aggregation of extended alkyl tails located on the ionic
head groups of a variety of imidazolium, pyridinium, pyrrolidinium, phosphonium, and ammonium
cations.[32, 54, 55, 13, 189, 182, 185, 190, 191, 192, 18] Due to their ability to solvate both
polar and nonpolar molecules, the formation of such nanoscale aggregates could provide ILs with
possible advantages for a variety of solvent applications such as polymerization, organic synthesis
and catalysis, as well as nanoparticle growth.[32, 192, 62, 15, 187] Until now, experimental
evidence of mesoscale organization has been mainly provided by observation of structural features
from low momentum transfer (q) peaks in X-ray and neutron scattering functions. Coupled
with molecular dynamics simulations, the structure functions reveal the existence of complex
architectures ranging from micellar-like spherical aggregates to extended bicontinuous structures
as a function of the alkyl chain length.[54, 55, 13, 189, 182, 185, 190, 191, 192, 18] The influence
of these structures on the physicochemical properties of ILs depends strongly on the lifetimes of
the nanoscale aggregates.[15, 187, 13] However, neutron spin echo (NSE) spectroscopy is one of
the few techniques currently known to be capable of probing such dynamics, albeit at rather short
time scales.[15, 133, 16] These measurements are tedious to carry out as they require deuterated
IL samples and access to suitable neutron facilities. To date, NSE data for only two ILs, namely, 1-
octyl-3-methylimidazolium and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide,
have been reported in the literature.[15, 133, 16] Other studies involving optical Kerr effect and
dielectric spectroscopy at time scales faster than nanoseconds have reported slow, sub-� relaxation
modes, attributed to the existence of mesoscale aggregation, in the recent past.[172, 193] The
question regarding whether the nanostructures observed in imidazolium-based ILs have lifetimes
beyond a few nanoseconds has remained unanswered. Despite the rapid and significant advances
in our understanding of mesoscale organization in bulk ILs, experimental techniques capable of
directly probing the dynamics of such aggregates have thus far been limited to fast time scales.
How long-lived are these mesoscopic aggregates and how do they influence the physicochemical
properties of ILs? To address these questions, it is necessary to find other experimental techniques
that can probe detailed signatures of the mesoscale aggregates and their dynamics over much
broader time scales.[15]
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In this Letter, we report the observation of slow, sub-� dynamics in the shear-mechanical
and dielectric spectra of a series of alkyl imidazolium ILs with tetrafluoroborate and
bis(trifluoromethylsulfonyl)imide anions. These features are not present in the imidazolium
ILs with alkyl spacer lengths equal to or shorter than butyl but rather emerge only for ILs that have
been shown to be capable of hydrophobic aggregation, as evidenced by previous X-ray and neutron
scattering experiments complemented by molecular dynamics simulations.[32, 54, 55, 189, 185]
The slow, sub-� relaxation is attributed to the motion of extended mesoscale aggregates. This is the
first time, to our knowledge, that evidence of long-lived mesoscopic aggregates in ILs is reported
from dynamic-mechanical spectroscopy. In addition, the rates of the slow dielectric relaxation
agree well with those obtained by NSE, indicating that this is a complementary approach to probe
the interplay of aggregate formation, morphology, and dynamics in these complex fluids.

Experimental

The dielectric data for 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-
butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-propyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide, and 1-butyl-3-methylimidazlium tetrafluoroborate as well as
rheology data for 1-butyl-3-methylimidazolium tetrafluoroborate are reproduced from previous
publications by the authors.[150, 152, 151] 1-octyl-3-methylimidazolium tetrafluoroborate,
1-hexyl-3-methylimidazolium tetrafluoroborate, and 1-hexyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide were purchased from Iolitec and dried under vacuum (10−6 bar)
at 60 ◦C for 24 hours prior to use. Broadband dielectric spectroscopy measurements were made
in the frequency range of 10−1 −107Hz using a Novocontrol Alpha Analyzer with a QUATRO
liquid nitrogen temperature control system with temperature stability ±0.1K. Samples were
measured in a parallel plate capacitor geometry with 20mm diameter stainless steel electrodes.
A sample thickness of 0.2mm was maintained using Teflon spacers. The dynamic-mechanical
spectra of 1-octyl-3-methylimidazolium and 1-hexyl-3-methylimidazolium tetrafluoroborate were
obtained via oscillatory shear measurements over the frequency range 0.1-100Hz with 0.05-2
strain% on an Hybrid Rheometer 2 (TA Instruments) using parallel plate geometry with diameters
of 20mm, 8mm, and 3mm. The temperature was controlled by an Environmental Test Chamber
with nitrogen as the gas source.
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Results and Discussion

The complex shear modulus,G∗ = G′(!)+iG′′(!), of glass-forming 1-alkyl-3-methylimidazolium
tetrafluoroborate ILs (AlkylMIm BF4) with alkyl spacer lengths of butyl, hexyl, and octyl are
shown in Figure 3.8a. The shift factors are provided in the Figure 3.9. The real and imaginary
parts of the complex modulus, G′ and G′′, are scaled by the high-frequency shear modulus,
G∞, and plotted versus frequency normalized by the structural relaxation rate at the glass
transition, !�. Simple molecular glass-forming liquids are expected to display a single mechanical
relaxation corresponding to the glass transition with low-frequency slopes of 2 and 1 for G′

and G′′, respectively.[88] As shown in Figure 3.8, this response is observed for 1-butyl-3-
methylimidazolium tetrafluoroborate (ButylMIm BF4). However, upon increasing the alkyl spacer
length to octyl, a substantial departure from a simple Maxwell relaxation occurs at time scales
slower than the structural relaxation rate. This terminal relaxation in G′ is reminiscent of
chain relaxations in the rheological response of short-chain polymers.[194, 195] The complex
shear modulus, G∗, of 1-octyl-3-methylimidazolium tetrafluoroborate (OctylMIm BF4) is fit by
a combination of two Cole-Davidson-modified Maxwell relaxation models:

G′ = Re
[

G∞

(

1 − 1
(1 + i!��)


)

+ G∞,aggregate

(

1 − 1
(1 + i!�slow)


)]

(3.1)

where G∞ and G∞,aggregate are the high-frequency limiting shear moduli of the two relaxations, ��
and �slow are the relaxation times of the structural �-relaxation and sub-� relaxation, respectively,
and 
 is a parameter associated with the spectral shape.[94] The relaxation rate !� = 1∕�� and
!slow = 1∕�slow, extrapolated over a broad temperature range using the shift factors, are presented
in Figure 3.12b and discussed later in the current work.

In low-molecular-weight ILs, the primary structural relaxation is coupled to the translational
motion of ions, as evidenced by numerous studies utilizing dielectric spectroscopy, dynamic light
scattering, differential scanning calorimetry, and rheology.[188, 150] Accordingly, the slow, sub-
� relaxation mode must arise from structures significantly larger than those responsible for the
primary structural relaxation. X-ray and neutron scattering experiments coupled with molecular
dynamics simulations have indicated that 1-alkyl-3-methylimidazolium tetrafluoroborate ILs begin
to form distinct hydrophobic aggregates when the alkyl spacer is six carbons long, and nonpolar
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Figure 3.8: (a) Real (G′, open symbols) and imaginary (G′′, closed symbols) parts of the complex
shear modulus,G∗, of 1-alkyl-3- methylimidazolium tetrafluoroborate ILs with alkyl spacer lengths
of butyl, hexyl, and octyl. The spectra are normalized with respect to the high-frequency shear
modulus, G∞, and the structural relaxation rate, !�. (b) Real part of the complex viscosity
normalized by the viscosity contribution of structural �-relaxation.

Figure 3.9: Shift factors, aT , used to construct the dynamic shear modulus master curves in Figure
3.8.
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domains percolate the entire material at spacer lengths of approximately eight and longer.[32, 54,
55, 185] The emergence of the new terminal relaxation is therefore attributed to dynamics of these
mesoscale aggregates. Similar rheological responses have also been observed in glass-forming
monohydroxy alcohols (MAs), systems in which aggregation occurs by intermolecular hydrogen
bonding interactions.[94, 196, 197] Recently, compressibility measurements on two representative
MAs revealed a similar low-frequency response in the complex adiabatic bulk modulus, thereby
linking the terminal relaxation to density fluctuations.[197] A signature of the terminal relaxation is
also observed in the broad-band dielectric spectra of MAs, referred to as the slow Debye relaxation
due to its approximately single-exponential relaxation time distribution. It is therefore of interest
to investigate whether such slow dielectric relaxations associated with dynamics of supramolecular
aggregates occur in 1-alkylimidazolium-based ILs as well.

Despite extensive investigations of ILs utilizing dielectric spectroscopy, only two research
groups have reported slow, sub-� relaxation dynamics.[172, 193, 171] The origin of the observed
slow dynamics remains unclear. To elucidate a possible link between these slow relaxations
and mesoscale aggregation, we have revisited the dielectric spectra of a series of 1-alkyl-3-
methylimidazolium ILswith varying alkyl spacer lengths and bis(trifluoromethylsulfonyl)imide and
tetrafluoroborate anions because imidazolium ILs have been the most widely investigated category
using several complementary experimental and computational techniques. The complex dielectric
permittivity, "∗(f ) = "′(f ) − i"′′(f ), and conductivity, �∗(f ) = �′(f ) + i�′′(f ), spectra for the
IL 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (OctylMImNTf2) are presented
in Figure 3.10. Application of the derivative analysis, "′′der = (−�∕2)[)"′∕) ln(f )], reveals the
existence of two distinct dielectric loss peaks. Fitting the real part of the complex dielectric
function, "′(f ), using eq 3.2, a combination of two Havriliak-Negami functions with a power
law function included to account for low-frequency electrode polarization provides an excellent
description of the complex permittivity, conductivity, and "′′der spectra:[3]

"∗(!) = "∞ +
�0
i!"0

+
(

Δ"e
(1 + (i!�e)�)


)

+
(

Δ"slow
(1 + (i!�slow)�)


)

+ A(!)n (3.2)

where ! = 2�f , "∞ is the high-frequency limiting permittivity, �0 the dc ionic conductivity, "0
the vacuum permittivity, Δ"� and Δ"slow are the dielectric strengths, �e and �slow are the relaxation
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Figure 3.10: Real, "′ and �′, and imaginary, "′′ and �′′, parts of the complex permittivity and
conductivity, "∗ and �∗, of OctylMIm NTf2. The derivative spectra, "′′der = (−�∕2)[)"′∕) ln(f )]
(solid symbols), reveal a slow relaxation that is obscured by conductivity in the dielectric loss.

times, and � and 
 are stretching parameters. The pre-exponential factor, A, and exponent, n, of
the power-law function account for the low-frequency dispersion due to electrode polarization. The
mean rate of the faster relaxation corresponds closely to the frequency of the peak in the imaginary
part of the complex dielectric modulus, M ′′(f ), as well as rates for fits by the random barrier
model and is therefore attributed to ion hopping conduction.[151, 198] It has previously been
reported, and is also illustrated in Figure 3.12, that themean ion hopping rates in these imidazolium-
based ILs agrees well with those of the structural relaxation.[150] The slower relaxation is not
readily observable in any representation other than the derivative of the real part of the dielectric
function, presumably due to the dominant contribution of the ionic conductivity to the dielectric
and conductivity spectra. The "′′der spectrum of OctylMIm NTf2 is compared with that of 1-alkyl-
3-methylimidazolium bis(trifluoromethylsulfonyl)imide (AlkylMIm NTf2) ILs with alkyl lengths
of propyl, butyl, and hexyl in Figure 3.11a; a similar comparison is made for the tetrafluoroborate-
based series in Figure 3.11b. The derivative spectra of each IL are presented at temperatures where
the ion hopping rates are approximately equal. In this representation, a distinct dielectric relaxation,
approximately 10-20 times slower than !e, is observed at spacer lengths of hexyl and octyl. The
dielectric spectra of the ILs with shorter spacer lengths are described by a single Havriliak-Negami
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Figure 3.11: Derivative spectra, "′′der = (−�∕2)[)"′∕) ln(f )], of 1-alkyl-3- methylimidazolium
ILs with (a) bis(trifluoromethylsulfonyl)imide and (b) tetrafluoroborate anions and indicated alkyl
spacer lengths at a fixed mean ion hopping rate. Insets: Data are shifted vertically for clarity.

function due to the disappearance of the slow relaxation, although for butyl there appears to be a
weak additional spectral contribution at lower frequencies.

The mean relaxation rates of the ion hopping and slow, sub-� dielectric relaxations are
presented in Figure 3.12a,b for the bis(trifluoromethylsulfonyl)imide and tetrafluoroborate IL series,
respectively. Interestingly, the rates obtained from NSE by Kofu et al. for the low-q peak in
OctylMIm NTf2 and by Russina et al. in HexylMIm NTf2 are in good agreement with those of
the slow dielectric relaxation, as illustrated by a fit using the Vogel-Fulcher-Tammann equation,
! = !∞ exp[B∕(T − T0)], where !∞ is the high-temperature limit of the relaxation rate, B is
the curvature, and T0 is the Vogel temperature; see the solid lines in Figure 3.12a.[15, 133, 16]
Structural and slow, sub-� relaxation rates obtained from the dynamic mechanical spectra for 1-
octyl-3-methylimidazolium tetrafluoroborate are compared with the dielectric relaxation rates in
Figure 3.12b. The slow, sub-� relaxation rates in the rheological response are slower and more
sensitive to the alkyl spacer length than the corresponding dielectric relaxation, as seen in Figures
3.12b, 3.8a, and 3.11b. This discrepancy might be due to sensitivity of the terminal relaxation to
the percolation of hydrophobic domains at the octyl spacer length.

The time scales associated with the slow process observed in the broad-band dielectric spectra
correlate with those from NSE and dynamic-mechanical data, confirming the existence of long-
lived mesoscopic structures. The slow dielectric relaxation is attributed to interfacial polarization
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Figure 3.12: (a) Temperature dependence of the dielectric relaxation rates, !e,BDS = 1∕�e and
!slow,BDS = 1∕�slow, for AlkylMIm NTf2 ILs with alkyl spacer lengths of hexyl and octyl,
shown as circle and square symbols, respectively. The rates previously reported by NSE, at the
indicated q-values, are provided as crossed and half-filled symbols.[15, 16] Lines correspond
to fits with the Vogel-Fulcher-Tammann equation, with parameters provided in Tables 3.1 and
3.1. (b) Temperature dependence of the dielectric relaxation rates, !e,BDS and !slow,BDS , anddynamic-mechanical relaxation rates, !�,DMS and !slow,DMS , for 1-octyl-3-methylimidazolium
tetrafluoroborate. The crossed and half-filled squares correspond to rates obtained by eq 3.1 and
extrapolated using the shift factors. Dotted squares are structural relaxation rates obtained from the
crossover frequency of G′ and G′′.

Table 3.1: Vogel-Fulcher-Tammann fit parameters for the slow, sub-� dielectric relaxation rates,
!slow,BDS .

Ionic Liquid !∞ D T0
OctylMIm NTf2 4.6 × 1012 5.5 161
HexylMIm NTf2 1.3 × 1010 2.4 172
OctylMIm BF4 1 × 1010 3.2 172
HexylMIm BF4 6.70 × 1012 7.0 156

Table 3.2: Vogel-Fulcher-Tammann fit parameters for the slow, sub-� dielectric relaxation rates,
!e,BDS .

Ionic Liquid !∞ D T0
OctylMIm NTf2 1.1 × 1012 5.5 161
HexylMIm NTf2 1.9 × 1014 14.6 129
OctylMIm BF4 6.10 × 109 4.7 164
HexylMIm BF4 2.20 × 1010 4.7 165
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Figure 3.13: Static dielectric permittivities, "s, of 1-alkyl-3-methylimidazolium ILs obtained as
the low-frequency limit of the fit by eq 3.1; see Figure 3.10.

at the interfaces of the polar and apolar domains. This polarization mechanism may arise from the
motion of counterions that surround the aggregate or alternatively by the deformation of aggregates
themselves. Further studies are required to assign the definitive molecular mechanism of interfacial
polarization in these systems, but it is worth noting that similar interfacial polarizations have
been observed in a variety of heterogeneous systems such as aqueous micelles and biopolymers
in electrolyte solutions.[198, 199, 200, 201, 202] The rates obtained by NSE correspond to the
time scale of the decay in the correlation responsible for the low-q peak. It is therefore directly
related to the motion and lifetimes of the aggregates. The fact that the dielectric relaxation occurs
at similar rates indicates that it is the deformation of aggregates that is responsible for the slow,
sub-� dielectric relaxation.

The emergence of slow, sub-� dynamics in this series of 1-alkyl-3-methylimidazolium ILs has
two direct and noticeable effects on the physicochemical properties. The first is an increase in
the zero-shear viscosity due to the additional contribution from the slower dynamic-mechanical
relaxation, as seen at low frequencies in Figure 3.8b. The second is an increase in the low-
frequency, static dielectric permittivity due to contributions from the slow dielectric relaxation,
presented in Figure 3.13. These effects on the transport properties in bulk ILs are a direct
consequence of mesoscale aggregation and have significant implications for solvent applications
such as polymerization, organic synthesis and catalysis, as well as nanoparticle growth.
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Conclusion

In summary, the dynamic-mechanical spectra of 1-alkyl-3-methylimidazolium tetrafluoroborate ILs
with alkyl lengths of hexyl and octyl exhibit slow relaxation modes reminiscent of the rheological
response of short-chain polymers and MAs. This finding confirms the existence of large and long-
lived mesoscale aggregates in bulk ILs. A slow, sub-� relaxation in the broad-band dielectric
spectra is attributed to polarization at the interfaces of polar and nonpolar domains of the aggregates.
These results support the interpretation of the low-momentum transfer (q) peak in the X-ray
and neutron scattering functions as evidence of mesoscale organization in numerous ILs. The
observed influence of these aggregate dynamics on transport properties illustrates the importance
of mesoscale aggregation in developing structureâĹŠproperty relationships in ILs. The ability
to probe dynamics of mesoscale aggregation with these experimental techniques provides a new
and complementary approach to elucidate the role of aggregate formation and morphology on the
physicochemical properties of bulk ILs.

3.3 Mesoscale Aggregate Morphology and Dynamics in Binary

Ionic Liquid Mixtures

In this section, the influence of composition on the mesoscale aggregate morphology and dynamics
in binary mixtures of imidazolium-based ionic liquids is investigated. It is found that by
diluting aggregating 1-octyl-3-methylimidazolium tetrafluoroborate with non-aggregating 1-ethyl-
3-methylimidazolium tetrafluoroborate the mesoscale aggregates transition from a bicontinuous
morphology to isolated spherical aggregates. This change in morphology is reflected in the
mesoscale aggregate dynamics, resulting a 100% increase in the static dielectric permittivity.

The work presented here is compiled from a manuscript draft submitted to Nature Communi-
cations, authors Tyler Cosby Utkarsh Kapoor, Jindal K. Shah, and Joshua Sangoro. The molecular
dynamics simulations reported herein were performed by Utkarsh Kapoor and Prof. Jindal K.
Shah. My contributions include: (i) design of experiments, (ii) data collection and analysis, (iii)
interpretation of results, and (iv) writing.
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Abstract

The dynamics and morphology of extended, mesoscale polar and non-polar regions are expected
to dramatically alter the solvation and transport properties of numerous ionic liquids. Here we
present results which reveal a 100% increase in the static dielectric permittivity of binary ionic
liquid mixtures relative to their neat constituents. The origin of this increase is traced to a change
in the mesoscale aggregate aggregate morphology from bicontinuous, in the neat aggregating IL, to
spherical, in the mixtures. These changes to morphology are reflected in the dynamics of mesoscale
aggregates probed by dynamic mechanical and broadband dielectric spectroscopy. The transition to
spherical aggregates enhances the strength of a slow dielectric relaxation attributed to polarization
at the polar/non-polar interfaces, resulting in the substantial increase in "s.

Introduction

Due to their outstanding physical and chemical properties, ionic liquids (ILs) have emerged as
promising solvents in applications such as chemical synthesis, nanoparticle growth, biomass
processing, batteries, solar cells, and supercapacitors.[57, 203, 122, 51, 49, 123, 48, 204] The
ability of ILs to self-assemble through solvophobic aggregation of non-polar alkyl chains located
on the polar ions promises to further enhance the property and application windows available to
these unique materials.[32] Evidence of the mesoscale aggregation emerged in the past decade as
the formation of distinct polar and non-polar regions in numerous ILs was recognized in detailed
x-ray scattering, neutron scattering, and molecular dynamics simulation studies.[32, 205, 54, 55]
Accordingly, the existence of the mesoscale aggregates have been used to qualitatively explain
numerous experimental findings which imply the existence of spatially and temporally distinct
regions within the bulk liquid. Among these findings is the ability of ILs to solvate both polar and
non-polar molecules as well as evidence of dynamic heterogeneity of dissolved polar and non-polar
probe molecules.[13, 32] Additionally, recent quasielastic neutron scattering studies have revealed
the existence of fast and slow ion diffusion attributed to local diffusion within a single domain
and between domains, respectively.[206, 207, 208, 209, 32] Solvophobic aggregation has also been
invoked to explain reductions in the viscosity and dc ionic conductivities with increasing volume
fraction of aliphatic groups, although the exact mechanism by which this might occur remains
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unclear.[179, 210, 211] Critical to all of these phenomena and the associated physicochemical
properties is the question of how long the mesoscale aggregates persist. This question is critical,
for instance, in chemical synthesis where longer-lived aggregates will allow for multiple solute
reactions to occur prior to a complete reorganization of the surrounding solvent environment.
Currently, direct experimental insight into aggregate dynamics is limited to neutron spin echo
spectroscopy which shows that aggregates do persist to timescales considerably longer than the
local motions of ions.[15, 133, 16] The main drawback for NSE experiments are the limited number
of beamlines and highly competitive beamtime. To date, only three ILs have been investigated by
NSE.[15, 133, 16] It is necessary to find new techniques capable of probing mesoscale aggregate
dynamics given the huge number of potential ionic liquids (106 ), many of which are expected to
exhibit mesoscale aggregation.[112]

The majority of studies on mesoscopic aggregation in ILs have centered on the evolution of
aggregation in neat ILs with systematically increasing alkyl chain length. For instance, substituted
1-alkyl-3-methylimidazolium cations have been shown to progress from globular to bicontinuous
polar and non-polar domains as the alkyl chain length increases from butyl to octyl.[189, 54, 55,
185] Recent structural studies indicate that additional and more complex morphologies can be
accessed by mixing ILs with differing chain lengths and other chemical structure features.[15] The
focus on ILmixtures rather thanmixtures with other organic solvents provides a new level of control
over IL aggregate morphology while maintaining or improving the properties of the neat ILs,
notably their thermal stability. This new experimental space promises to further widen the property
and application windows of ILs, but requires a detailed understanding of the influence of mesoscale
organization on dynamics and the resultant physicochemical properties of self-assembled ILs,
an understanding which is currently non-existent. Therefore there is a pressing need for new
approaches to obtain physical insight into the interplay of both mesoscale aggregate dynamics and
morphology on the physicochemical properties of ILs.

In this study, we utilize complementary experimental and computational techniques are em-
ployed to investigate changes to mesoscale aggregate morphology and dynamics as a function of
composition in binary mixtures of the ionic liquids 1-octyl-3-methylimidazolium tetrafluoroborate
(C8MIm BF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2MIm BF4). We find that
by mixing these two prototypical imidazolium ILs, which differ only in alkyl chain length, we
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can transform the bicontinous morphology of neat C8MIm BF4 to more isolated, spherical, non-
polar aggregates as probed by x-ray scattering and molecular dynamics simulations. As a result
of the composition-dependent evolution in morphology, the mesoscale aggregate dynamics, as
determined by dynamicmechanical and broadband dielectric spectroscopy, are significantly altered.
Most surprisingly, the changes to aggregate morphology and dynamics result in a 100% increase
in the static dielectric permittivity, also known as the “dielectric constant”, relative to that of either
pure component.

Experimental Methods

1-octyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium tetrafluoroborate
were purchased from Iolitec and dried under vacuum (10−6 bar) at 60 ◦C for 24 hours prior to
use. Broadband dielectric spectroscopy measurements were made in the frequency range of 10−1 −
107Hz using a Novocontrol Alpha Analyzer with a QUATRO liquid nitrogen temperature control
system with temperature stability ±0.1K. Samples were measured in a parallel plate capacitor
geometry with 20mm diameter gold-plated brass electrodes. A sample thickness of 1.6mm was
maintained using a Teflon spacer. The dynamic-mechanical spectra of the mixtures were obtained
via oscillatory shear measurements over the frequency range 0.1 - 100Hz with 0.05− 2 strain% on
a Hybrid Rheometer 2 (TA Instruments) using parallel plate geometry with a diameter of 8mm.
The temperature was controlled by an Environmental Test Chamber with nitrogen as the gas source
with temperature stability ±0.1K. Small-angle and wide-angle x-ray scattering measurements were
conducted at room temperature using a SAXSLab Ganesha x-ray scattering system. The samples
were encased in a button cell with Kapton windows. An empty cell was also measured to enable
subtraction of the Kapton background. Differential scanning calorimetry measurements were
performed on a TA Instruments Q2000 calorimeter at a cooling rate of 10K∕min. The calorimetric
glass transition temperature, Tg, was determined at the midpoint of the step in the heat flow
corresponding to the maximum in the temperature derivative of the heat flow.

Molecular dynamics simulations and the analysis thereof were performed by Utkarsh Kapoor
and Prof. Jindal Shah at Oklahoma State University. The computational resources were provided
by the High Per-formance Computing Cluster at Oklahoma State University. Structural properties
of the ionic liquid systems are described in terms of X-ray structure factors, Voronoi domain
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analysis, and aggregate size distribution. Structure factors and domain analysis were computed
from MD simulation trajectories using tools implemented in TRAVIS [212, 213] while aggregate
size distribution was analyzed using AGGREGATES.[214] Further, the configuration snapshot
visualization was rendered using VMD.[215]

Results and Discussion

The structures factors, S(q), of the neat ILs C8MIm BF4 and C2MIm BF4 as well as their mixtures
at 30, 50, and 70mol% C2MIm BF4 obtained at room temperature by small- and wide-angle x-ray
scattering are presented in Figure 3.14(a). C8MIm BF4 exhibits a pre-peak at q = 0.28Å typical
of self-assembled ILs and assigned to the scattering from polar domains separated by a non-polar
domain. The higher q peak arises from adjacency correlations of both inter- and intramolecular
origins and is common to all ionic liquids.[13] The short-chain, but otherwise identical, C2MIm
BF4 has no pre-peak and is therefore taken to be non-aggregating. With increasing concentration
of C2MIm BF4 the pre-peak is reduced in intensity and shifts to slightly lower q-values. Insight
into the structural changes which alter the position and intensity of the pre-peak is provided by
complementary molecular dynamics (MD) simulations. The MD structure factors, S(q), were
calculated using Equation 3.3;

Sij(q) =
�oxixjfi(q)fj(q)

R

∫
0
4�r2

[

gij(r) − 1
] sin (qr)

qr

(

sin ( �rR )
�r
R

)

dr

[

∑

i
xifi(q)

]2

where Sij(q) is the partial structure factor obtained from the Fourier transform of the radial
distribution function, gij(r), between the atoms of type i and j, �o is the average atomic number
density, xi is the atomic fraction of i, q is the scattering vector, and fi(q) is the X-ray atomic
form factor for the atom type i taken from the International Tables for Crystallography.[216]
R represents the cutoff distance defined for calculating gij(r). A Lorch type window function,
(

sin( �rR )
�r
R

)

, is also used to attenuate the effect of using finite cutoff in calculating the radial
distribution function between the atoms types i and j.[217] The structure factors were computed
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Figure 3.14: (a) Structure factors, S(q), obtained by X-ray scattering. (b) Structure factors
computed by MD trajectories. Inset: Comparison of the real-space correlation distance, d =
2�∕qmax, of the pre-peak obtained by simulation (sim.) and experiment (exp.). (c) Average domain
count of the polar and non-polar domains present in the simulation box as a function of C2MIm
BF4 concentration. (d-f) Instantaneous snapshots of the equilibrated system of (d) C8MIm BF4,(e)50mol% C2MIm BF4, and (f) C2MIm BF4 with colors corresponding to the following moieties:
cation polar (blue), anions (yellow), C8MIm non-polar (silver), C2MIm non-polar(pink).

using TRAVIS[212, 213] after including the Lorch type function in the source code. Half of the
simulation box length, R, was used as the cutoff distance for these calculations.

The structure factors calculated by MD simluations are shown in Figure 3.14(b). They
reproduce the positions and relative intensities of the experimental structure factors reasonably-well
over the entire q-range. The real space distances corresponding to the pre-peak, d = 2�∕qmax, found
by experiment and simulation are presented in the inset of Figure 3.14(b). MD simulations slightly
overpredict the experimental values, however, the non-monotonic dependence of the domain
distance on composition is well-reproduced. It must be stressed that these distances increase in
a non-linear fashion. For example, there is a slight decrease in the non-polar domain distance as
the concentration is changed from 50mol% to 70mol% C2MIm BF4. A similar non-linear trend in
the size of nano-segregated domains has been reported for the mixtures of [C6mim]Cl - [C8mim]Cl
and [C6mim]Cl-[C10mim]Cl,[56] and [C2mim][NTf2]-[C6mim][NTf2].[185]

65



To understand and visualize the influence of varying concentrations on the morphology of the
binary ionic liquid mixtures, static snapshots of the well-equilibrated configurations obtained at the
end of MD simulation are provided in Figure 3.14(d), (e), and (f), for neat C8MIm BF4, 50mol%
C2MIm BF4, and neat C2MIm BF4, respectively. The results are color-coded in terms of the polar
and non-polar groups present in binary ionic liquid mixture systems of C8MIm BF4 and C2MIm
BF4. The polar group of both imidazolium cations contains the imidazolium ring as well as the
methyl and methylene groups directly bonded to the ring, while the anion is completely polar. The
polar group of the cation and anion together constitutes the overall polar domain. The non-polar
regions in the two cations are the respective uncharged carbon groups minus the methylene group
directly bonded to the imidazolium ring. The color-scheme is as follows: cation-polar head in
blue, anion in yellow, C8MIm-nonpolar in silver, and C2MIm-nonpolar in pink. As expected, the
cation-polar heads and the anions are always found close to one another, consistent with previous
studies.[189, 218, 219, 220] The polar groups form a continuous, percolated polar domain in both
of the pure ILs and in all mixtures. The morphology of the non-polar domain, on the other hand, is
strongly composition dependent. A bicontinuous, sponge-like morphology is observed for the pure
C8MIm BF4 with both the polar and non-polar domains percolating throughout the system. This
result is consistent with the structures obtained for other CnMIm-based ionic liquids. [189, 218, 219,
220, 183, 221] With the increase in C2MIm BF4 concentration, it is clear that the interconnectivity
between the non-polar tails of C8MIm is highly disrupted, with many tails isolated and surrounded
by the non-polar methyl carbon of C2MIm. Nevertheless, even at the highest concentration of
C2MIm BF4 considered here, the aggregation of C8MIm is clearly visible. Such aggregation is
responsible for the separation of polar and non-polar domains which is visible as a pre-peak in the
structure factors.

The connectivity of the nano-segregated polar–non-polar structure can be examined in a more
quantitativemanner based on aVoronoi tessellation technique. The concept and the implementation
of this technique has been described by Brehm and coworkers.[213] In this analysis, adjacent
Voronoi cells sharing a face and belonging to a given subunit constitute a domain. For our purposes,
each of the binary ionic liquid mixture systems is characterized in terms of four unique domains:
(a) the total polar domain composed of the polar head groups of both the cations and the anion; (b)
C8MIm non-polar; (c) C2MIm non-polar and (d) total non-polar containing the non-polar groups
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from both cations. The uncharged alkyl chain of the cations, are considered unique in order to
identify the origin of the structural changes at various concentrations. Figure 3.14(c) provides
number of domains based on this classification as a function of the C2MIm BF4 concentration.
As expected, a domain count of 1 is observed for the polar domain indicating its three-dimensional
connectivity for all the ionic liquids mixtures studied here. This observation is in line with previous
simulation studies involving a wide range of pure ionic liquids.[189, 218, 219, 220, 213, 212, 32]
For pure C2MIm BF4, the domain counts for the non-polar group are significantly higher than 1
(∼ 380) indicating that the cation non-polar carbons are dispersed in the system. On the other
hand, the domain count for the non-polar tails in the pure C8MIm BF4 ionic liquid is between 1
and 2, indicating that the majority of alkyl chains are connected in a single percolated non-polar
domain with some possible occurrence of isolated C8MIm BF4 non-polar chains. The addition of
30 mol% C2MIm BF4 results into a significant disruption of the non-polar connectivity as the large
single continuous domain is broken into as many as 10 separate domains and the number reaches
a high as 57 at the highest C2MIm BF4 concentration. This results corroborates the inferences
derived from the qualitative snapshots that there is a transition from a continuous phase to a
dispersed phase. We hypothesize that the dispersed subphase of C2MIm modulates the overall
non-polar domain connectivity and morphology in a way that alters the dynamics of the mesoscale
aggregates and gives rise to a variation in the static dielectric permittivity as a function of C2MIm
BF4 concentration, as discussed later.

A prior investigation into the dynamics of the neat IL series CnMIm BF4 with systematically
increasing alkyl chain length revealed the emergence of unique dynamics at lower than expected
rates in the dynamic mechanical and broadband dielectric spectra.[211] These dynamics were
attributed to the fluctuations of the mesoscale aggregates at timescales longer than the structural
relaxation. The link between the slow dynamics and mesoscale aggregates could only be inferred
on the basis of their emergence coinciding with the onset of solvophobic aggregation, as evidenced
by the x-ray scattering pre-peak, and by a rough comparison between the rates with those obtained
by neutron spin echo spectroscopy.

The real and imaginary parts of complex dynamic shear modulus,G∗ = G′+ iG′′, are presented
in Figure 3.15(a) for neat C8MImBF4 and the 30, 50, and 70mol%C2MImBF4mixtures. All liquids
exhibit viscoelastic behavior depending upon the experimental timescale. The transition from a
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viscous to an elastic response corresponds with an arrest of molecular motion corresponding to the
glass transition. The rate of this structural relaxation, !�,DMS , corresponds to the crossover point
ofG′ andG′′. The mechanical relaxation of the majority of liquids deviates from the ideal response
of a relaxing Maxwell element due to a broad underlying distribution of relaxations around a mean
relaxation rate. Certain liquids which are capable of forming meso- or larger scale heterogeneities
also exhibit additional mechanical relaxations at timescales considerably longer than the structural
relaxation. A notable example are the glass-forming monohydroxy alcohols.[32] These single-
component liquids exhibit a slower relaxation reminiscent of the terminal mode of short chain
polymers and attributed to fluctuations associated with the existence of supramolecular hydrogen-
bonded chains.[196, 222] This slow relaxation is observed as a low frequency shoulder in the real
and imaginary parts of the complex dynamic shear modulus, as a step-change in the real part of
complex viscosity and as a peak in the imaginary part of complex viscosity.[94, 223, 197, 224] A
very similar relaxation is observed at low frequencies in G′ and �′ in Figure 3.15(a) and (b). This
relaxation was previously observed in the dynamic mechanical spectra of neat C8MIm BF4 and
tentatively attributed to fluctuations associated with the existence of mesoscale aggregates.[211]
The dilution of C8MIm BF4 with C2MIm BF4 results in a weakening of the slow mechanical
relaxation as seen in Figure 3.15(a), and more easily observed in Figure 3.15(b) where the low-
frequency contribution to the real part of complex viscosity gradually diminishes with dilution of
C8MIm BF4. The shear modulus is well-described by a linear combination of two Cole-Davidson-
modified Maxwell relaxation models, see Equation 3.3, where !slow=1/�slow and !�=1/�� are the
model relaxation rates andGslow andG∞ are the high-frequency limiting values of the shearmodulus
for the slow and structural relaxation, respectively.[211, 94]

G′ = Re
[

G∞

(

1 − 1
(1 + i!��)


)

+ Gslow

(

1 − 1
(1 + i!�slow)


)]

(3.3)

The fit parameters of the Cole-Davidson-modified Maxwell relaxation models, Equation 3.3, are
provided in Tables 3.3 and 3.4.

The relaxation rates obtained as fit parameters of this model, !slow,DMS and!�,DMS , correspond
to the rate of the slow and structural relaxations, respectively. While the strength of the slow
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Table 3.3: Fit parameters of Equation 3.3 for the structural, �-relaxation.
IL G∞ [GPa] 


C8MIm BF4 1.0 0.15
10mol% C2MIm BF4 1.0 0.15
30mol% C2MIm BF4 1.4 0.15
40mol% C2MIm BF4 1.2 0.15
50mol% C2MIm BF4 1.5 0.15
70mol% C2MIm BF4 0.85 0.15

Table 3.4: Fit parameters of Equation 3.3 for slow, sub-�-relaxation
IL Gslow[MPa] 


C8MIm BF4 16 0.15
10mol% C2MIm BF4 17 0.15
30mol% C2MIm BF4 13 0.15
40mol% C2MIm BF4 15 0.15
50mol% C2MIm BF4 12 0.15
70mol% C2MIm BF4 5.6 0.15

mechanical relaxation diminishes with increasing C2MIm BF4, the separation between the two
relaxation rates remains relatively constant, Figure 3.15(g). This indicates that the volume involved
in the mechanical relaxation may not change substantially in the binary mixtures. This is consistent
with the relatively slight change in non-polar domain dimensions, as illustrated by the composition
dependence of the non-polar correlation distance in the inset of Figure 3.14(b). On the other hand,
the weakening of the mechanical relaxation associated with fluctuations of the non-polar domains
follows intuitively from the reduction in the overall volume fraction of the non-polar phase and the
accompanying reduction in connectivity which occurs upon addition of C2MIm BF4.

The broadband dielectric spectra (BDS) of neat ionic liquids are dominated by ion motion. As
they are purely ionic materials, the dielectric relaxation associated with ion motion is intimately
linked to the structural relaxation. For numerous aprotic ionic liquids, the rate of ion hopping,
obtained by BDS, and the structural relaxation rates, as obtained by other techniques such as
dynamic mechanical spectroscopy and differential scanning calorimetry, coincide.[150, 153] The
real part of complex dielectric permittivity, "∗ = "′ − i"′′, as well as the derivative representation
of the imaginary part of complex dielectric permittivity, "′′der = (−�∕2)[)"′∕) ln(f )], are presented
in Figure 3.15(c) and (d), respectively, for neat C8MIm BF4, 50mol% C2MIm BF4, and 70mol%
C2MIm BF4. The derivative representation is employed to suppress the contribution of dc ionic
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Figure 3.15: (a) The real (open symbols) and imaginary parts (closed symbols) of the complex
dynamic shear modulus, G∗(!) = G′(!) + iG′′(!), as a function of frequency normalized by
the structural relaxation rate, !�. Lines represent fits by two Cole-Davidson modified Maxwell-
models. (b) The real part of the complex viscosity, �∗(!) = �′(!) − i�′′(!). (c) The real part
of complex dielectric function, "∗(!) = "′(!) − i"′′(!), and (d) the derivative representation of
the dielectric loss, Δ"′′der = (−�∕2)[)"′∕) ln(f )]. T=204-228K at 8K increments. Solid lines
correspond to the total fit of twoHavriliak-Negami fit functions for C8MImBF4 at 204K. The dashedand dotted-dashed lines represent the separate Havriliak-Negami functions of the underlying slow
and structural relaxations, respectively. (e) Fluidity, �−1, versus temperature normalized by Tg. (f)DC ionic conductivities, �0, versus temperature normalized by Tg. (g) Relaxation rate ratios versustemperature normalized by Tg. Closed and open symbols correspond to dielectric and mechanical
rates, respectively. (h) Static dielectric permittivity, "s, dielectric strength of the �-relaxation, Δ"�,dielectric strength of the slow relaxation, Δ"slow, and high-frequency permittivity, "∞, versus theC2MIm BF4 concentration in mol%. T=1.1Tg.
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Figure 3.16: Relaxation rates of the structural, �-relaxation, !�, and the slow, sub-� relaxation,
!slow, as obtained by dielectric and mechanical spectroscopy versus temperature normalized by the
calorimetric glass transition temperature, Tg.

conductivity to the dielectric loss.[86, 85] In a typical, non-aggregating ionic liquid, the derivative
representation consists of a single broad peak with the peak maximum coinciding with the onset
frequency of dc ionic conductivity and the structural relaxation rate.[225, 226, 211] Recently, it was
found that the dielectric spectra of neat C8MIm BF4 display two closely overlapping peak.[211]
The structural relaxation (ion hopping) peak, with relaxation rate !�, corresponds to the high
frequency shoulder in Figure 3.15(d). The lower frequency peak is then a slower than the structural
relaxation. In the previous work, this process was tentatively attributed to the fluctuation of
mesoscale aggregates since its emergence coincided with the onset of mesoscale aggregation.
The addition of C2MIm BF4 reduces the calorimetric glass transition temperature, Tg, but the
faster dielectric relaxation rates, !�,BDS , and the structural relaxation from dynamic mechanical
spectroscopy coincide for all measured compositions and scale by the Tg, see Figure 3.16. The
composition dependence of Tg, presented in Figure 3.17, follows the Fox equation for the glass
transition in amorphous polymer blends.[17] The strength of the slower relaxation increases in the
mixtures and shifts to lower frequencies relative to the structural, � relaxation.

The dielectric spectra arewell described by a linear combination of twoHavriliak-Negami fitting
functions, see Equation 3.4, where � is the model relaxation time, Δ" the dielectric strength, "∞ the
high-frequency limiting permittivity, �0 the dc ionic conductivity, "0 the vacuum permittivity, and �
and 
 are stretching parameters.[80, 3] The temperature dependence of the low-frequency limiting
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static dielectric permittivity, "s = Δ"slow+Δ"�+"∞, is presented in Figure 3.18(a). The underlying
temperature dependent dielectric strengths and high frequency dielectric permittivities are shown
in Figure 3.18(b-d). The shape parameters are provided in Figure 3.19. A comparison of relaxation
rates obtained by Equation 3.4 and those obtained by the random barrier model is shown in Figure
3.20 for 50mol% C2MIm BF4. In the random barrier model, the ions are taken to be hopping
in a randomly varying energy landscape. The onset of dc ionic conductivity, �0, corresponds
to the time, �RBM , it takes for ions to overcome the largest energy barrier to form a percolated
conducting path. Solved within the continuous time random walk approximation an analytical
expression for the complex dielectric function is obtained which contains only two parameters, the
dc ionic conductivity and the ion hopping rate, �0 and !RBM , respectively.[4] This model describes
the frequency dependence of the real part of complex conductivity for ion conducting liquids and
glasses quite well. The strucutral, �-relaxation rates, !� coincide with the ion hopping rates, !RBM .

"∗(!) =
[

Δ"slow
[1 + (i!�slow)�]

]

+
[

Δ"�
[1 + (i!��)�]


]

+
�0
i!"0

+ "∞ (3.4)

The dielectric spectra of the 80mol% C2MIm BF4 mixture are provided in Figure 3.21 in terms of
the derivative representation Δ"der. The absence of the slow dielectric relaxation is attributed to a
disruption of the mesoscale aggregates above a critical concentration of C2MIm BF4.
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Figure 3.18: Static dielectric permittivities (a), dielectric strength of the slow, sub-� relaxation
(b), dielectric strength of the �-relaxation (c), and the high-frequency limit of the real part of
dielectric permittivity (d) for all concentrations versus temperature normalized by the calorimetric
glass transition temperature. The solid symbols are values from fits by Equation 3.4 in the main
text. Open symbols are screen-read values of "s.

The ratio of !�,BDS to !slow,BDS increases from approximately 10 in neat C8MIm BF4 to
approximately 40 in the 70mol% C2MIm BF4 mixture, revealing an increasing separation between
the two processes, see Figure 3.15(g). The Havriliak-Negami fitting functions also provide the
dielectric strengths of the two relaxations, Δ"� and Δ"slow, as well as the high-frequency value of
permittivity, "∞. The low-frequency limiting value, "s = Δ"slow+Δ"� + "∞, is commonly referred
to as the “dielectric constant”. This value excludes the influence of electrode polarization which
leads to a strong, lower-frequency dispersion but is not an intrinsic material property. The influence
of composition on the static dielectric permittivity and dielectric strengths is shown in more detail
in Figure 3.15(h) where the values are taken at a temperature T=1.1Tg. Here, we see that the static
dielectric permittivity increases sharply at a composition between 20 and 30mol% C2MIm BF4 due
to a corresponding increase in Δ"slow. The composition-dependent trends in the slow dielectric
relaxation stand in sharp contrast to what was observed for the slow mechanical relaxation. This
points to a difference in the mechanisms underlying the two relaxations and their sensitivity to the
morphology changes which occur as a function of composition.
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at any lower C2MIm BF4 concentration and there is no evidence of a slower sub-� relaxation.

It is proposed that the slow dielectric relaxation originates from interfacial polarization
occurring at the polar/non-polar interfaces. From numerous studies on heterogeneous liquids
and solids it is well established that interfacial polarization is strongly dependent on the shapes
of the included domains.[36, 227, 228, 229] A change in the shapes of the aggregates might
be the origin of the observed increases in "slow, therefore it is appropriate to ask, how does
composition influence the shape of the mesoscale aggregates in our IL mixtures? To answer this
question, we return to the MD simulations. To provide better insight and a quantitative metric
to the variety of shapes adopted by the polar and non-polar domains, the isoperimetric quotient,
Qperi =

[

rspℎere(V )∕rspℎere(A)
]6 = 36�

[

V 2∕A3
], was computed, where V and A denote the volume

and area of a given domain respectively while rsphere(V ) and rsphere(A) represent the equivalent radii
of the sphere with volume V and the sphere with area A, respectively. With this definition, the
shape parameter will assume a value of 1 for a perfectly spherical shape while any deviations from
sphericity lead to the values lower than 1.[213]

The change in isoperimetric quotient as a function of the C2MIm BF4 concentration is shown
in Figure 3.22(a). From the figure, it is clear that Qperi for the polar domain shows a negligible
dependence on the concentration of C2MIm BF4 and is always less than 0.1, which implies that the
shape of the polar network differs greatly from sphericity. Further, the non-polar domain present in
pure C8MIm BF4 ionic liquid has a Qperi value less than 0.25 suggesting a network whose shape is
also far from spherical. However, with 30 mol% introduction of C2MIm BF4 in C8MIm BF4 ionic
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Figure 3.22: (a) Average isoperimetric quotient, Qperi, of respective cation/anion polar and
nonpolar domains as a function of C2MIm BF4 concentration. Please note that average numerical
value and standard deviations were computed by dividing the trajectory into three blocks. (b)
DC ionic conductivity, �0, at T=1.5Tg (closed squares) and static dielectric permittivity, "s, atT=1.1Tg (open squares), as well as estimates of �0 and "s from the Looyenga EMA (closed and open
circles) versus C2MIm BF4 concentration. (c) Shape parameter, n, and volume fraction of the non-
polar phase, �nonpolar, versus mol% C2MIm BF4. (d) Concentration dependence of static dielectric
permittivity at T= 1.1Tg. The increase in "s is due to the concentration-dependent aggregate shapesillustrated by the inset cartoons.

liquid, the Qperi value nearly doubles assuming a value of ∼ 0.58 suggesting that a transition in
the morphology of the domains which now more closely resemble a sphere in comparison to that
in the pure C8MIm BF4. The results are even more dramatic when the total non-polar domain of
the mixture is considered with values approaching as high as 0.7 at 30 mol% C2MIm BF4. Above
30mol%, the Qperi is practically composition independent, indicating that the transition inmesoscale
aggrgate shape occurs at or below this concentration.

The influence of the transition to more spherical mesoscale aggregates on interfacial polar-
ization can be ascertained using an effective medium approximation (EMA). EMAs are useful
approximate approaches to relate the shape and volume fractions, of filler phases located within
host matrices to the overall dielectric properties of the composite, provided the properties of the
two phases can be estimated.[230, 3, 229, 231]. Insight into the aggregate shapes and volume
fractions may be obtained by probing the ability of EMA to accurately predict the static dielectric
permittivities, "s, and dc ionic conductivities, �0, of the IL mixtures. For this purpose, we employ
a form of the symmetric Looyenga equation[230], which is suitable for the conducting phases and
intermediate volume fractions found in our IL mixtures.[230] The symmetric Looyenga effective
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medium approximation is give in Equations 3.5 and 3.6:

"s =
1
�0

[

�s"1 −
(

�2
�s

)−2n

�
(

�2"1 − �1"2
)

]

(3.5)

�1−2n0 = �1−2n1 + �
(

�1−2n2 − �1−2n1

) (3.6)

where subscript 1 signifies the polar phase, subscript 2 the non-polar phase, �0 the measured
dc ionic conductivity of the mixture taken at T=1.5Tg, �1 = 3.4 × 10−3 S cm−1 is the dc ionic
conductivity of pure C2MIm BF4 at T=1.5Tg, "1 = Δ"� + "∞ taken at T=1.1Tg in Figure 3.18,
�2=4 × 10−6 S cm−1 "2 = 1.8 the static dielectric permittivity of hexane as a reasonable model of
the non-polar phase.[232] The remaining variables, �, and n, corresponding to the volume fraction,
and shape of the insulating phase, were used as free fit parameters until the two equations gave
converging values of "s and �0 approximately equal to the measured quantities.

The values of "s and �0 predicted by the Looyenga equation agree very well with the
experimental values as shown in Figure 3.22(b). The two fit parameters of this model, n and �,
are the shape factor and volume fraction of the non-polar domain. The experimental "s and �0 are
predicted only by an increase in n and a concomitant decrease in�. Due to the assumptions onwhich
an evaluation of the EMA relies, these trends should only be interpreted in a qualitativemanner. The
overall reduction in volume fraction of the non-polar domain is consistent with the x-ray scattering
and MD simulations results. The shape factor, n, is related to the shape of the insulating phase,
where n < 1∕3 corresponds to rod-like inclusions and n = 1∕3 to spherical.[229, 230] The gradual
increase in n, and accordingly "s, is consistent with the transition to more spherical mesoscale
aggregates as indicated by Qperi. The majority of the increase in "s occurs over the 20-30mol%
C2MIm BF4, with a plateau above ≈ 40mol% C2MIm BF4. This trend mirrors the isoperimetric
quotient which is only marginally affected above 30mol% implying that the non-polar domain
continues to retain sphere-like morphology above this minimum concentration. Due to the close
agreement between these trends found byMD simulation, DMS, and BDS, we attribute the dramatic
increase in "s and Δ"slow to a transition in the mesoscale aggregate morphology driven by the
dilution of non-polar domains upon addition of C2MIm BF4. This transition is illustrated alongside
the measured static dielectric permittivities in Figure 3.22(d).
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In summary, we have demonstrated an ability to tune the properties of ionic liquids simply by
mixing two parent ionic liquids. The composition dependent control over mesoscale aggregate
morphology and dynamics afforded by the mixtures allows us to increase the measured static
dielectric permittivity values, "s by approximately 100% relative to either parent compound. The
ability to tune "s is made more significant by the fact that the vast majority of aprotic ionic
liquids have low to moderate values of around 7-15 typical of low polarity solvents.[162, 168,
163, 170] Higher "s values are expected to influence IL/solute and IL/solid-surface interactions
with potentially critical implications for the application of ILs in biomass processing, chemical
synthesis, nanoparticle growth and as electrolytes in solar cells, batteries, and super-capacitors.[48,
57, 127, 233] The substantial increase in "s of the IL mixtures and its direct link to aggregate
morphology provides a new route to tuning this important physical parameter. More generally, this
study highlights the advantage of combining techniques capable of probing composition-dependent
changes in mesoscale aggregate morphology as well as mesoscale aggregate dynamics. It is
envisioned that future mixture studies on a wide variety of chemical structures will yield ILs with
additional and more complex self-assembled morphologies, the dynamics of which may produce
ionic liquids with unforeseen and advantageous physical and chemical properties.

3.4 Mesoscale Organization and Dynamics in Quaternary

Phosphonium Ionic Liquids

The sub-� dielectric and mechanical relaxations have now been linked more conclusively to the
existence of long-lived mesoscale aggregates in imidazolium-based ionic liquids. What happens
to these mesoscale dynamics when we move to a different type of cation? X-ray and neutron
scattering show that all the common cation classes in Figure 3.2 exhibit the pre-peaks which are
indicative of mesoscale aggregates and the snapshots of organization obtained by MD simulations,
which reproduce these profiles, are discussed using very similar language.[32] We might therefore
expect that each class of ionic liquids should also exhibit similar sub-� relaxations corresponding
to the fluctuation of the polar/non-polar domains. In fact, in recent studies of the non-aromatic
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Figure 3.23: Chemical structure of the investigated quaternary phosphonium and ammonium ionic
liquids.

and non-heterocyclic triethyl-octyl-phosphonium, triethyl-octyl-ammonium, and methyl-trioctyl-
ammonium ionic liquids, sub-� dielectric relaxations have been reported.[171, 154] However,
these were not consistently attributed to the motion of the solvophobic aggregates and systematic
studies of the influence of alkyl chain length on the mesoscale organization and dynamics of these
systems has not been performed. In this study, we investigate the influence of alkyl chain length in
the quaternary phosphonium and ammonium ionic liquids on mesoscale organization (probed by
small-angle x-ray scattering) and dynamics (probed by broadband dielectric spectroscopy, dynamic
mechanical spectroscopy, and differential scanning calorimetry). The general chemical structures
of the quaternary phosphonium and ammonium ionic liquids are shown in Figure 3.23. First, we
consider a series of two triethyl-alkyl-ammonium ILs. We vary the length of the longer alkyl chain
from pentyl to octyl and investigate them by x-ray scattering and dielectric spectroscopy. These
results are highlighted in Figure 3.24. We find that the shorter chain triethyl-pentyl-ammonium
(TEPA NTf2) that the x-ray scattering does not show a pre-peak and the dielectric spectra is
dominated by a single relaxation with no evidence of a slow, sub−� process. When the length
of the long alkyl chain is increased to octyl in triethyl-octyl-ammonium (TEOA NTf2) an x-
ray pre-peak and sub-� dielectric relaxation each emerge. This correlation between the onset of
solvophobic aggregation, as evidenced by the pre-peak, and the development of a sub-� dielectric
relaxation is entirely consistent with the results obtained for imidazolium-based ILs. Therefore, in
these ammonium and phosphonium-based ILs we expect that the pre-peak will indicate long-lived
mesoscale organization which contributes a slow, sub-� dielectric relaxation by the same interfacial
polarization mechanism which has been found for the imidazolium ILs.
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Figure 3.24: Left: X-ray scattering profile of triethyl-octyl-ammonium (TEOA) and triethyl-
pentyl-ammonium (TEPA) with the same bis(trifluoromethylsulfonyl)imide (NTf2) anion. Middle:
The derivative representation of imaginary permittivity, "′′der versus normalized frequency for TEPA
NTf2. Right: "′′der versus normalized frequency for TEOANTf2. The existence of an x-ray pre-peakcoincides with the emergence of a sub-� dielectric relaxation just as found in the imidazolium-based
ILs.

The quaternary phosphonium and ammonium ILs have a wider variety of possible alkyl chain
substitutions than the imidazoliums. Depending on the relative lengths of the different chains, the
molecules can have a wide range in both the degree of cation asymmetry and the overall non-polar
volume. For instance, in the series trimethyl-hexyl-phosphonium, triethyl-dodecyl-phosphonium,
and tripropyl-octadecyl-phosphonium the degree of cation asymmetry might be very similar, if
taken to be proportional to R1/R2=0.16̄, while the overall non-polar volume fraction is increasing
significantly. Alternatively, we could make a series such as triethyl-dodecyl-phosphonium, trioctyl-
dodecyl-phosphonium, and tetradodecyl-phosphonium. In this series, both the cation asymmetry
and non-polar volume fraction are significantly influenced. The relative influence of these types
of changes in the chemical structure on mesoscale organization and dynamics in quaternary
phosphonium and ammonium ionic liquids are not well understood. In the first series (with constant
cation asymmetry) we can expect that gradually increasing the length of the shorter trialkyl chains
is gradually reducing the strength of intermolecular interactions between opposite charges within
the polar phase. One question arises: what is the effect of the weakening interactions in the polar
phase on the formation of long-lived mesoscale aggregates? Is there a crossover point where the
aggregates are disrupted? One of the most well-studied of these types of ILs is the cation trihexyl-
tetradecyl-phosphonium with the bis(trifluoromethylsulfonyl)imide anion. A pre-peak is observed
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in the x-ray scattering profile and this is usually taken as an indication that very similar mesoscale
organization is taking place in this liquid as in other ILs which exhibit pre-peaks despite the large
hexyl chains which must be incorporated in the polar phase.[180, 22, 190, 234, 235]

In this section, we investigate the relative contribution of cation asymmetry, non-polar volume
fractions, andweakening interactions in the polar phase to the formation and dynamics of mesoscale
organization in a systematic series of quaternary phosphonium ionic liquids. The ionic liquids
are triethyl-octyl, triethyl-dodecyl, tributyl-octyl, and tributyl-dodecyl-phosphonium each with the
same bis(trifluoromethylsulfonyl)imide anion. The ionic liquid structures are shown in Figure
3.25. With this systematic variation in cation structure we can investigate the relative influence
of cation asymmetry (proportional toR1∕R2), the overall volume fraction of non-polar groups, and
the effect of weakening interactions in the polar phase, (reduced when the length of the trialkyl
chains increases from triethyl to tributyl).

The following section is a reprinting of a previously published article and its supporting
material. My primary contributions to this article include: (i) design of experiments, (ii) data
collection and analysis, (iii) interpretation of results, and (iv) writing. Changes from the published
version consist of the incorporation of supporting information within the main text.

Reprinted with permission from [Cosby T., Vicars Z., Heres M., Tsunashima, K. Sangoro J.,
The Journal of Chemical Physics, 148, 193815, 2018.] Copyright (2018) by AIP Publishing.

Abstract

Mesoscopic aggregation in aprotic ionic liquids due to the microphase separation of polar and
nonpolar components is expected to correlate strongly with the physicochemical properties of
ionic liquids and therefore their potential applications. The most commonly cited experimental
evidence of such aggregation is the observation of a low-q pre-peak in the x-ray and neutron
scattering profiles, attributed to the polarity alternation of polar and apolar phases. In this work,
a homologous series of phosphonium ionic liquids with the bis(trifluoromethylsulfonyl)imide
anion and systematically varying alkyl chain lengths on the phosphonium cation are investigated
by small and wide-angle x-ray scattering, dynamic-mechanical spectroscopy, and broadband
dielectric spectroscopy. A comparison of the real space correlation distance corresponding to
the pre-peak and the presence or absence of the slow sub-� dielectric relaxation previously
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associated with the motion of mesoscale aggregates reveals a disruption of mesoscale aggregates
with increasing symmetry of the quaternary phosphonium cation. These findings contribute to
the broader understanding of the interplay of molecular structures, mesoscale aggregation, and
physicochemical properties in aprotic ionic liquids.

Introduction

Ionic liquids (ILs) are valued for their unique characteristics such as low vapor pressure, low
flammability, wide liquidus ranges, and electrochemical stability. The large number of potential IL
molecular structures with different functional groups makes them promising designer solvents with
applications in energy storage, nanoparticle growth, biomass processing, and organic synthesis.[18,
32, 62] Rational design of ILs capable of use in these applications requires the development
of detailed structure-property relationships. Considerable progress has been made along these
lines through detailed experimental and computational work on a wide variety of cations such as
imidazolium, pyrrolidinium, piperidinium, phosphonium, and ammonium combined with a range
of anions.[44, 188, 43, 211, 236] An emerging obstacle in this endeavor is the finding that certain
ILs aggregate and form long-lived mesostructures that extend over a few nanometers, while others
do not show clear evidence of aggregation.[32, 205] This mesoscale organization presumably arises
due to the solvophobic separation of polar and non-polar moieties on the cation charge center. Non-
polar alkyl groups are excluded from the regions occupied by cations and anions and form extended
aggregates surrounded by ionic shells.[32, 13] The existence of these distinct regions provides
ILs with the ability to solvate both polar and non-polar molecules, an advantage critical for their
applications as solvents in synthesis and material processing.[32, 187]

The primary experimental evidence of the formation of mesoscale structures is the emergence
of a low momentum transfer, q, pre-peak in the x-ray and neutron scattering profiles. Computer
simulations which reproduce the experimental scattering profiles have also provided snapshots
showing the existence of three-dimensional mesoscale organization present in the liquid phase
of ILs.[32, 22, 180, 19, 237, 54, 185, 191] Despite the initial uncertainty that the pre-peak may
indicate only a local ordering due to cation anisotropy, it is now almost universally attributed to
a long-range order induced by hydrophobic aggregation.[18, 32, 181, 183, 238] This assignment
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is strengthened by recent results from neutron spin echo (NSE), broadband dielectric spec-
troscopy (BDS), and dynamic-mechanical spectroscopy (DMS) which reveal aggregate dynamics
at timescales considerably longer than the primary structural relaxation.[205, 133, 16, 15, 211]
In addition, these slow sub-� relaxations contribute to the increases in the zero-shear viscosity
and static dielectric permittivity, highlighting the influence of aggregation on physicochemical
properties.[211] However, experimental data on the dynamics ofmesoscale aggregates are currently
limited to the well studied imidazolium-based ionic liquids. There are numerous open scientific
questions regarding the nature and lifetimes of mesoscale aggregates in other classes of aprotic ILs.

In this work, x-ray scattering, dynamic-mechanical spectroscopy, and broadband
dielectric spectroscopy are utilized to investigate the influence of chemical structures on
the formation and dynamics of mesoscale aggregates in a series of tetraalkylphosphonium
bis(trifluoromethylsulfonyl)imide ILs. Unexpectedly, it is observed that increasing the volume
fraction of non-polar functional groups in the phosphonium ILs does not necessarily promote
mesoscale aggregation. A detailed analysis of the results reveals a disruption of the aggregates
with increasing lengths of the shorter alkyl chains as evident from the absence of the sub-�
relaxation as well as a substantial reduction in the real-space distance corresponding to the low-q
peak. The combination of insights from the experimental techniques capable of probing both the
structure and the dynamics of mesoscale aggregates enables us to make this distinction.

Experimental

Four phosphonium-based ionic liquids, triethyl-alkyl-phosphonium and tributyl-
alkyl-phosphonium with alkyl chain lengths of octyl and dodecyl, with a common
bis(trifluoromethylsulfonyl)imide anion, are the focus of the work reported here. Molecular
structures and acronyms of the ionic liquids are provided in Fig. 3.25. The phosphonium ionic
liquids were obtained from the Nippon Chemical Industrial Co. The ILs were dried under vacuum
(10−6 bar) at 50 ◦C for 24 h prior to experiments. Small-angle and wide-angle x-ray scattering
measurements were conducted at room temperature using a SAXSLab Ganesha x-ray scattering
system. The samples were encased in a button cell with Kapton windows. An empty cell was also
measured to enable subtraction of the Kapton background. Broadband dielectric spectroscopy
(BDS) measurements were conducted in the frequency range of 10−1 − 107 Hz and temperature
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range 180-400K using a Novocontrol High Resolution Dielectric Alpha Analyzer with a QUATRO
liquid nitrogen temperature control system with temperature stability better than ±0.1K. The
samples were measured in a parallel plate capacitor geometry with 20 mm diameter gold-plated
brass electrodes. A sample thickness of 0.5 mm was maintained using three Teflon spacers.
The dynamic-mechanical spectra were obtained via oscillatory shear measurements over the
frequency range 0.1-100Hz with 0.05-2 strain % on Hybrid Rheometer 2 (TA Instruments) using
parallel plate geometry with diameters of 8 mm and 3 mm. The temperature was controlled by an
Environmental Test Chamber with nitrogen as the gas source with temperature stability ±0.1K.
Differential scanning calorimetry (DSC) measurements were performed on a TA Instruments
Q2000 calorimeter at a cooling rate of 10K/min. The calorimetric glass transition temperature,
Tg,DSC , was determined at the midpoint of the step in heat flow corresponding to the maximum in
the temperature derivative of the heat flow.
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Figure 3.25: Structures of the studied phosphonium ionic liquids.

Results and Discussion

The x-ray scattering profiles are presented in Fig. 3.26 as intensity (I) of scattered x-rays
versus momentum transfer. Three distinct peaks are observed for each IL. Based on numerous
experimental and computational studies of a wide variety of ionic liquids, the highest and middle-
q peaks are assigned to adjacency and charge-alternation correlations, respectively.[13, 108] The
origin of the adjacency peak is the is the inter and intramolecular correlations of neighboring
atoms.[13] The charge-alternation peak arises, as the name implies, from the ordering (alternation)
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Figure 3.26: X-ray diffraction spectra of the phosphonium-based ionic liquids: (a)
triethyloctylphosphonium (TEOP NTf2) and triethyldodecylphosphonium (TEDP NTf2)bis(trifluoromethylsulfonyl)imide; (b) tributyloctylphosphonium (TBOP NTf2) and
tributyldodecylphosphonium (TBDP NTf2) bis(trifluoromethylsulfonyl)imide. Approximate
distances in real-space, d = 2�∕qpeak, for each major peak are indicated at the arrows. Lines
correspond to fits with two Gaussian functions.

of cations and anions mediated by Coulombic interactions and is typical of molten salts. It
corresponds to the distance separating two like-charge ions, that is the anion-anion or cation-cation
separation distance.[13] In the triethyl-alkyl-phosphoniums, like ionic groups are separated by an
average of d = 7.3Å, regardless of the length of the longer alkyl chain, where d = 2�∕qpeak .
Increasing the short-chain length to four carbons in the tributyl-alkylphosphoniums increases the
spacing between the like ionic groups to 8.3Å.

The lowest q peak, known as the pre-peak or first sharp diffraction peak, is found in aprotic
ionic liquids which have sufficiently long non-polar alkyl chains substituted on the cation charge
center.[18, 32, 185, 191, 181, 183, 14, 189] The origin of this peak is universally assigned to
the existence of alternating polar and non-polar regions resulting in mesoscale heterogeneity;
however, there is some debate as to whether it is indicative of a pseudomicellar three-dimensional
nanostructure or only local ordering due to cation anisotropy.[181, 183] The formation of hy-
drophobic aggregates relies on the segregation of neighboring alkyl chains into a non-polar
region. In this view, the real-space correlation distance given by the polarity-alternation peak
corresponds to the average distance separating ionic regions on the opposite sides of the non-
polar inclusions. This distance will therefore depend on the alkyl chain length and the degree
of interdigitation of opposing alkyl chains. A significant shift in the length scale corresponding
to the pre-peak occurs when the shorter alkyl chains are lengthened from ethyl to butyl. Despite
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having the same length of the longest alkyl chain, the distance is decreased from 14.1Å to 10.5Å
for triethyloctylphosphonium (TEOP) and tributyloctylphosphonium (TBOP) and from 22.1Å
to 14.6Å for triethyldodecylphosphonium (TEDP) and tributyldodecylphosphonium (TBDP), as
indicated in Fig. 3.26. The dependence of aggregate size, d, on the length of the longer alkyl chain,
nc, for the studied phosphonium ionic liquids is compared with other aprotic ionic liquids found in
the literature in Fig. 3.32 and discussed later. In accordance with common practice, the existence
of the x-ray pre-peak in each of the studied phosphonium ILs might be taken as an indication that
they each contain similar mesoscale aggregates. If this is the case, a slow relaxation associated
with aggregate dynamics should be present in their dielectric spectra.[211]

Broadband dielectric spectroscopy (BDS) of ionic liquids has previously been used to probe ion
dynamics and charge transport over broad temperature and frequency ranges.[150] By comparison
with other experimental techniques, the ion dynamics of these purely ionic materials are found
to occur at the same timescale as structural �-relaxations. In a recent article, we demonstrated
that an additional slow sub-� relaxation emerges with the onset of mesoscale aggregation in two
series of 1-alkyl-3-methylimidazolium ionic liquids with bis(trifluoromethylsulfonyl)imide and
tetrafluoroborate anions.[211] The timescales of this relaxation were found to correspond with the
decay time of the pre-peak as obtained by neutron spin echo (NSE) spectroscopy.[133, 16, 15, 211]
The additional dielectric relaxation was therefore attributed to fluctuations of the mesoscale
aggregates. It is now our intention to apply a similar analysis presented in that paper to the current
series of phosphonium ionic liquids and to relate the trends observed for the slow sub-� relaxation
to the length scale of the polarity-alternation peak as well as the molecular structure.

The real and imaginary parts of complex permittivity, "∗(!) = "′(!) − i"′′(!), are presented
in Fig. 3.27 as functions of the radial frequency, ! = 2�f , and over a range of temperatures
for TEOP NTf2. The lines correspond to fits obtained by a combination of the Havriliak-Negami
function and Debye equation with a power law to account for low frequency dispersion due to
electrode polarization, as given in Eq. (3.7), where "∞ is the high frequency limiting permittivity,
�0 is the dc ionic conductivity, "0 the vacuum permittivity, Δ"e and Δ"aggregate are the dielectric
strengths, �e and �aggregate are the relaxation times, � and 
 are the stretching parameters, A is the
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Figure 3.27: Real, "′ and �′, and imaginary, "′′ and �′′, parts of complex permittivity, "∗(!) =
"′(!)− i"′′(!), and conductivity, �∗(!) = �′(!)+ i�′′(!), for TEOP NTf2. A slow sub-� relaxation
emerges with increasing temperature, as observed in "′′der = (�∕2)∕[)"′∕) ln(!)]. Lines correspondto fits obtained by Eq. (3.7). The static dielectric permittivity, "s, is obtained as the low frequency
limit of the fit without the contribution of the power law. The long-range ionic (dc) conductivity,
�0, corresponds to the value of the frequency independent plateau in �′ as indicated.

pre-exponential factor, and n is the exponent:[3]

"∗(!) = "∞ +
�0
i!"0

+
(

Δ"e
(1 + (i!�e)�)


)

+
( Δ"aggregate
(1 + (i!�aggregate)�)


)

+ A(!)n (3.7)

The rate of the faster relaxation, !e = 1∕�e, corresponds closely to the rate of the structural
relaxation as measured by dynamic mechanical spectroscopy (see Fig. 3.31), as well as the
frequency of the peak in the electric loss modulus,M ′′. It is therefore attributed to the ion hopping
dynamics previously shown to correspond to the structural relaxation in aprotic ionic liquids.[150]
The slow sub-� relaxation is most readily observed as a peak in "′′der at frequencies below that of
the ion dynamics, where "′′der = (−�∕2)[)"′∕) ln(!)]. The derivative representation is utilized to
suppress the dominant contribution of dc ionic conductivity to the dielectric spectra and to enable
the observation of dynamics slower than the conductivity relaxation. The existence of the slow
relaxation in TEOP NTf2 and its ammonium homologue was previously reported by Griffin et
al.[171] A clearer representation showing the existence of the two relaxations is made by plotting
"′′der against the frequency normalized by the frequency of the ion dynamics, !e, as presented in
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Figure 3.28: Derivative representation of the real part of complex dielectric function, "′′der =
(−�∕2)[)"′∕) ln(!)], of the two series of phosphonium bis(trifluoromethylsulfonyl)imide ionic
liquids: (a) triethyloctylphosphonium, TEOP NTf2; (b) triethyldodecylphosphonium, TEDP NTf2;(c) tributyloctylphosphonium, TBOP NTf2; and (d) tributyldodecylphosphonium, TBDP NTf2.

Fig. 3.28, for all the studied phosphonium ionic liquids. Here, the dashed lines represent the
Havriliak-Negami function used to describe the �-relaxation and the dotted-dashed line is the
Debye equation used to describe the slow sub-� relaxation. The most obvious difference in the
dielectric spectra is the absence of the slower dielectric process in the tributyl-alkyl-phosphonium
ionic liquids. In addition, the width of their �-relaxation is noticeably narrower (see Table 3.5) for
shape parameters of the Havriliak-Negami fit function. The disappearance of the sub-� relaxation
dynamics indicates that long-lived mesoscale aggregates do not form in the two tributyl-alkyl-
phosphoniums, in apparent contradiction to the picture from the measured x-ray scattering profiles.

The real and imaginary parts of the complex shear modulus, G∗ = G′(!) + iG′′(!), of TEOP
NTf2 and TBOP NTf2 are presented in Fig. 3.29. The lines correspond to a fit with a single Cole-
Davidson function as given in Eq. (3.8), whereG∞ is the high frequency limiting shear modulus, ��
is the relaxation time of the structural �-relaxation, and 
 is a parameter associated with the spectral
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Table 3.5: Shape parameters from fits using the Havriliak-Negami function [Eq. (3.7)]
Cation T [K] � ± 0.1 

TEOP 200 0.5 0.8 ± 0.2
TEDP 225 0.4 1.0 ± 0.2
TBOP 200 0.8 0.4 ± 0.1
TBDP 225 0.7 0.5 ± 0.2
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Figure 3.29: (a) Real (open symbols) and imaginary (closed symbols) parts of the complex shear
modulus of TEOP NTf2 and TBOP NTf2 as measured over the temperature range 190-205K. Lines
correspond to fits by Eq. (3.8). (b) Shift factors, aT , obtained from time-temperature superposition
of the shear modulus over the temperature range 205K - 190K.

shape.[94] The shift factors used to create the shear modulus master curve are provided in Figure
3.29(b).

G′ = Re
[

G∞

(

1 − 1
(1 + i!��)


)]

(3.8)

In our previous article, a slow sub-� relaxation was also observed by dynamic-mechanical spec-
troscopy (DMS) for 1-octyl-3-methylimidazolium tetrafluoroborate and attributed to the motion of
mesoscale aggregates. However, such a relaxation is not found in either of the phosphonium ionic
liquids investigated here. DMS measurements of the longer chain TEDP NTf2 and TBDP NTf2
were not successful due to their high propensity to crystallize as shown by the differential scanning
calorimetry results in Figure 3.30. The broader frequency range of BDS enables the investigation of
the dynamics of interest at temperatures above the crystallization point. The relative magnitude and
sharpness of the x-ray pre-peak is much lower in the phosphonium ILs compared to the imidazolium
systems. This indicates that even in the triethyl-alkyl-phosphoniums the degree of correlation is
much lower than the corresponding imidazolium systems.[181] The sub-� dynamic-mechanical
relaxation may be less sensitive to lower extents of aggregation than the dielectric relaxation, as
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Figure 3.30: Differential scanning calorimetry (10K min−1) cooling and heating curves for the
phosphonium IL series.

is suggested by its response to alkyl chain length in the imidazolium ILs. It is also possible that
the mesoscopic domains are disrupted at the low temperatures probed by DMS, as indicated by the
disappearance of the slow sub-� dielectric relaxation with decreasing temperature. A decrease in
organization at low temperatures has previously been observed in molecular dynamics simulations
and x-ray measurements of trihexyl-tetradecyl-phosphonium bis(trifluoromethylsulfonyl)imide and
attributed to a reduced ordering of the polar phase.[22, 190, 234] The structural �-relaxation rates,
!�, obtained by DMS are presented with the relaxation rates obtained by BDS in Fig. 3.31. As
stated previously, the ion hopping relaxation rate corresponds closely to the structural relaxation
rate, while the slow sub-� relaxation is approximately 20 times slower at the higher temperatures.

The real-space correlation distance corresponding to the low-q, polarity alternation-
peak in x-ray scattering of the phosphonium series is presented as a function of the
longest alkyl chain length in Fig. 3.32. These values are compared with literature data
for the ILs 1-alkyl3-methylimidazolium,[18] 1-alkyl-1-methylpyrrolidinium,[19] 1-alkyl-1-
methylpiperidinium,[20] trialkyl-methylammonium,[21] and trihexyl-tetradecyl-phosphonium[22]
bis(trifluoromethylsulfonyl)imide. The mesoscale aggregates are characterized by the formation
of a non-polar domain consisting of interdigitated alkyl chain tails surrounded by a polar domain
of anions and cations. The pre-peak is taken as the distance, d = 2�∕qpeak, separating the polar
domains on the opposite sides of the non-polar inclusion. The dependence of d on the number of
carbons in the alkyl chain, nc, will depend on the degree of interdigitation, the ratio of trans/gauche
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Figure 3.31: (a) Structural relaxation rates, !�, obtained by DMS (crossed symbols), ion hopping
rates, !e, obtained by BDS (closed symbols), and the relaxation rate of the slow sub-� relaxation,
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calorimetric glass transition temperature obtained by DSC, Tg,DSC .
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Figure 3.32: Real-space distance of the polarity alternation peak, d = 2�∕qpeak, as a function
of the number of carbons in the alkyl chain for imidazolium[18] (Im), pyrrolidinium[19] (Pyr),
piperidinium[20] (Pip), trialkyl-methylammonium[21] (TAlkylMA), triethyl-alkyl-phosphonium
(TEAlkylP), tributylalkyl-phosphonium (TBAlkylP), and trihexyl-tetradecyl-phosphonium[22]
(THAlkylP) ionic liquids with the bis(trifluoromethylsulfonyl)-imide anion. The dotted-dashed
line is lmax given by the Tanford equation, the dashed line is 2lmax , the dotted line is 0.87lmax, andthe solid lines are linear fits (parameters are listed in Table 3.6).
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Table 3.6: Parameters for the linear fits, corresponding to the solid lines in Fig. 3.32.
IL Series Slope [Å/CH2]

Im 2.0
Pyr 2.3
Pip 1.2

TAlkylMA 1.3
TEAlkylP 2.0
TBAlkylP 1.0

isomers, and the location of ions within the polar domain.[18, 239] A further insight into this
correlation distance is obtained by comparing d with the length of an extended, all-trans alkyl
chain. This distance is given by the Tanford equation, lmax = 1.5 (Å) + 1.265(Å∕CH2)nc , and
is represented in Fig. 3.32 by the dotted-dashed line.[37] The maximum possible size, dmax, of
a mesoscale aggregate will approximately correspond to an aggregate in which opposing alkyl
chains are completely extended and non-interdigitated, dmax = 2lmax = 3.0 (Å) + 2.53(Å∕CH2)nc.
This case is represented by the dashed line in Fig. 3.32. The majority of ILs have values of
d intermediate of these two extremes, indicating varying degrees of interdigitation as well as
possible changes in the organization of the polar phases and trans/gauche ratios. However, the
d-spacing of the tributyl-alkyl-phosphonium and trihexyl-tetradecyl-phosphonium is significantly
lower. In fact, they fall below the length scale of a single fully extended alkyl chain, revealing that
aggregation is no longer necessary to explain the origin of this distance. In addition, the slope
is significantly lower for the tri-butyl-alkyl-phosphonium series, see Table 3.6. The d-spacing
in these systems is well approximated by 0.87lmax, which is shown as a dotted line in Fig. 3.32,
indicating that the only possible mesoscale aggregate capable of producing this length scale
would consist of fully interdigitated alkyl chains with some degree of trans/gauche isomerism.[37]
Recent atomistic simulations on a series of similar quaternary phosphonium chloride-based ILs
reveal even shorter length scales associated with the x-ray scattering pre-peak.[235] Therefore,
the dramatic change in the d-spacing upon lengthening the shorter alkyl chains on quaternary
phosphonium ILs from ethyl to butyl is attributed to a disruption of the mesoscale hydrophobic
aggregates, in agreement with the atomistic simulations which show a breaking of the polar
network in the tributyl-alkyl-phosphonium chlorides.[235]
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Figure 3.33: Static dielectric permittivity, "s, is reduced in the non-aggregating tributyl-alkyl-
phosphoniums relative to the aggregating triethyl-alkylphosphonium series.

The loss of the mesoscale aggregates is corroborated by the absence of the slow sub-� relax-
ation, which is present in the more highly aggregating imidazolium and triethyl-alkylphosphonium
ILs.[211] The existence of a pre-peak is therefore insufficient evidence that similar types of long-
lived hydrophobic aggregates are present across ranges of ionic liquids. Rather, the actual distances
corresponding to the pre-peak must also correspond to anticipated length scales based on the
chemical structure of the IL. In addition, techniques capable of probing the dynamics of mesoscale
aggregates, such as dielectric spectroscopy, provide valuable insight into the existence of aggregates
as well as their influence on physicochemical properties. The sensitivity of the mesoscale
organization to the lengths of the alkyl chains on quaternary phosphonium ILs distinguishes them
from other classes of aprotic ionic liquids. These results show that a high degree of tunability of the
mesoscale structures is achievable with minor changes to the chemical structure. The mechanism
of the disruption is attributed to a weakening of Coulombic interactions within the polar phase due
to the increased distance between neighboring ionic groups. This larger separation is evidenced by
the increase in charge adjacency distances corresponding to the middle-q x-ray peak (see Fig. 3.26).
Studies over a wider range and combination of alkyl chain lengths are currently underway to more
fully elucidate the role of chemical structures in the transition from aggregating to non-aggregating
phosphonium ILs.

Elucidating the link between the chemical structure and physicochemical properties is a
necessary step for the full realization of ionic liquids as truly designer solvents. Accordingly, the
influence of mesoscale organization on such properties must be identified. With increasing alkyl
chain length and the onset of mesoscale aggregation, several authors have reported a reduction
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Figure 3.34: Long-range ionic (dc) conductivity as a function of (a) inverse temperature and
(b) temperature normalized by the calorimetric glass transition temperature, Tg,DSC . The ionic
conductivity is reduced in the tributyl-alkylphosphoniums.

in ion mobility, leading to a decrease in the ionic conductivity and a simultaneous increase in
the zero-shear viscosity.[179, 240, 241, 154] In addition, we have previously reported an increase
in the static dielectric permittivity and viscosity due to the additional slow sub-� dielectric and
dynamic-mechanical relaxation in aggregating imidazolium ILs. As seen in Figs. 3.33 and 3.34,
the transition from triethyl-alkyl-phosphonium to tributyl-alkyl-phosphonium results in a decrease
of the static dielectric permittivity as well as the ionic conductivity. The reduction in ionic
conductivity might be interpreted as an aggregation induced effect. However, considering the x-
ray and BDS evidence presented earlier, this interpretation is not favored. Elucidating whether
this decrease is due to the reduced ion mobility or effective number density of charge carriers
requires a comparison of diffusivities obtained by pulsed field gradient nuclear magnetic resonance
spectroscopy and charge diffusivities as previously accomplished for imidazolium and ammonium
ILs.[150, 154] The reduction in static permittivity in the tributyl-alkyl-phosphoniums is consistent
with the absence of aggregate induced dynamics. These results highlight the importance of utilizing
multiple experimental approaches to investigate the formation of long-lived, mesoscale aggregates,
so that changes in physicochemical properties of ionic liquids are not misinterpreted as aggregation
induced effects.

Conclusion

In conclusion, the mesoscopic organization, dynamics, and charge transport properties of a series
of tetraalkylphosphonium ionic liquids were investigated by small and wide angle x-ray scattering,
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broadband dielectric spectroscopy, dynamic-mechanical spectroscopy, and differential scanning
calorimetry. A comparison of estimated aggregate size from the Tanford equation with the
aggregate size obtained from the x-ray scattering pre-peak indicates a disruption of mesoscale
aggregates in tributyl-alkyl-phosphonium ILs. The absence of aggregation is corroborated by
the loss of the slow sub-� dielectric relaxation previously linked to the dynamics of mesoscale
aggregates. The combination of techniques capable of probing the mesoscale structure with those
capable of to distinguish ionic liquids that exhibit an x-ray scattering prepeak due to the formation of
long-lived mesoscale aggregates. This distinction is an important step in elucidating the influence
of mesoscale aggregation in the physicochemical properties of ionic liquids.

3.5 Anion Dependence of Charge Transport and Dipolar Re-

laxations in Phosphonium-based Ionic Liquids

In this section, we investigate the influence of anion structure on charge transport and dynamics in a
series of ionic liquids with the same cation, tributyl-octyl-phosphonium. In the previous section, we
investigated the tributyl-octyl-phosphonium bis(trifluoromethylsulfonyl)imide ionic liquid which,
while it exhibits a pre-peak in the x-ray scattering profile, lacks the sub-� dielectric relaxation.
Together with an examination of the real-space distance corresponding to the pre-peak correlation,
this lack of the sub-� relaxation is taken as an indication that a long-lived mesoscale organization,
characterized by a well-defined polar and non-polar domain, is not present in this liquid. Therefore,
in this section we turn our attention away from the organization and dynamics at the mesoscale and
rather investigate the role of anion chemical structure in a non-aggregating IL with a relatively large
non-polar volume fraction.

This section is a reprinting of a previously published article and its supporting material. My
primary contributions to this article include: (i) data collection and analysis, (ii) interpretation of
results, and (iii) writing. Changes from the published version include the addition of small and
wide-angle x-ray scattering profiles.

Reproduced from [Cosby T., Vicars Z., Mapesa, E., Tsunashima, K. Sangoro J., The Journal of
Chemical Physics, 147, 234504, 2017.], with the permission of AIP Publishing.
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Abstract

The role of anions in charge transport and localized dipolar relaxations in tributyloctylphosphonium
ionic liquids is investigated by broadband dielectric spectroscopy and rheology. The dielectric
spectra are quantitatively described by a combination of the random barrier model which accounts
for ion transport and empirical Havriliak-Negami functions to characterize dipolar relaxations. Two
secondary relaxations are observed at temperatures below the calorimetric glass transition temper-
ature, where the primary structural relaxation is essentially frozen at the relevant experimental
time scales. The faster process has an anion independent activation energy of 30 kJmol−1 and is
attributed to libration motion of the phosphonium cation. The slower relaxation is similar to a
process previously assigned to a Johari-Goldstein relaxation in imidazolium-based ionic liquids;
however, the activation energy is significantly higher in the phosphonium systems. For the charge
transport dominated regime, it is observed that variation of the anion results in differences in the dc
ionic conductivity and characteristic charge transport rates by ∼2.5 decades. Upon scaling by the
calorimetric glass transition temperature, both transport quantities are observed to coincide. From
these results, a picture of glass transition assisted hopping emerges as the underlying microscopic
mechanism of ion conduction, in agreement with recent results obtained for other classes of aprotic
ionic liquids.

Introduction

Ionic liquids (ILs) are purely ionic materials with melting points below 100 ◦C. They are promising
for many applications due to their unique solvent properties, large electrochemical windows, low
vapor-pressure, high thermal-stability, and high ionic conductivity.[59, 45, 43] Their near-limitless
permutations and the substantial effects that minor structural changes have on the electrical and
dynamical properties of these mixtures have earned them the designation, “designer solvents.”
In general, ILs have been a topic of intense investigation for well over two decades, but there is
currently no quantitative means of determining the emergent electrical, dynamical, and solvent
properties of an ionic liquid from chemical structure alone, hence limiting our ability to design
these materials for specific potential applications.
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After many years of scientific research on ILs synthesized from nitrogen-based cations, the
review work of Bradaric et al. published in 2003 demonstrated that their phosphonium-based
counterparts have properties that warrant closer attention too, e.g., the fact that their kinetics of
salt formation is, in general, much faster than for amines because their larger radii and higher
polarizability make them more nucleophilic.[242, 243] It is worth recalling here that phosphorous
is more electronically polarizable than nitrogen.[237] Additionally, it is evident that phosphonium-
based ILs have appreciably reduced viscosities and higher ionic conductivities with respect to
their ammonium homologues.[244, 245, 246, 247, 248, 249, 250] This has been attributed to the
relatively larger volume of the phosphonium cation which in effect decreases the cation charge
density and the electrostatic friction between counterions.[246, 251] Thermogravimetric analyses
have also shown that although the decomposition point upon heating for neat phosphonium ionic
liquids varies depending on the specific anion used, their dynamic thermal stability window is well
above 300 ◦C.[250] In spite of ample evidence that substitution of nitrogen by phosphorus leads to a
myriad of changes in the physicochemical properties of the corresponding ILs thereby offering new
opportunities for industrial applications, phosphonium-based salts remain a relatively unexplored
class of ILs, especially concerning their charge transport and dynamics.[32]

Extensive investigations of charge transport in ionic liquids have shown that the dc conductivity,
�0, and the characteristic charge transport rate,!c, are closely coupled to the structural, �-relaxation
rate, !�. The latter relaxation process is the molecular basis for the viscosity of liquids as given
by Maxwell’s relation, � = G∞∕!�, where � is the zero-shear viscosity and G∞ is the high-
frequency shear modulus and is associated with the dynamic glass transition.[252, 87] The dynamic
glass transition in all liquids is thought to be one of the most fundamental characteristics and
is determined by intermolecular interactions.[253, 254] In the well-studied imidazolium-based
ILs, variation of the anion produces substantial changes in the relaxation rates as well as the dc
conductivity; however, upon scaling by the calorimetric glass transition temperature, Tg, the values
coincide.[150] The overlap of charge transport properties upon scaling by Tg indicates that it is the
dynamic glass transition which determines the changes in charge transport with anion substitution.
There is some evidence indicating that quaternary cations with long, non-polar substituents have
a lower fraction of available charge carriers contributing to the ionic conductivity, that is, a lower
ionicity, relative to the heterocyclic imidazolium cations.[11, 154]While phosphonium ionic liquids
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have been characterized with different cation and anion variants, a systematic study of anion
effects has not yet been performed.[255] At time scales faster than the dynamic glass transition,
phosphonium systems exhibit a well-defined local dipolar relaxation. Due to the reduction in
primary structural mobility at these frequencies and temperatures, the origin of this faster dipolar
relaxation may be attributed to a localized fluctuation or libration of the constituent molecules
in the glassy state.[3] Similar studies on imidazolium-based ionic liquids have been performed,
suggesting that the anion has a detectable effect on the sub-Tg processes, but whether this result
holds for phosphonium-based systems is currently unknown.[256, 257]

In this article, a series of tributyloctylphosphonium ionic liquids are investigated using broad-
band dielectric spectroscopy, rheology, and differential scanning calorimetry to determine the
effects of anion change on the charge transport and dynamics in these systems. It is shown that
while substitution of the anions results in drastic differences in the charge transport, these changes
can be fully accounted for by considering contributions from the dynamic glass transition. Detailed
analysis of the high-frequency dielectric spectra reveals the presence of two secondary dielectric
relaxations. The faster relaxation exhibits identical thermal activation, suggesting that motion of
the cation, rather than the anion, is the origin of this high-frequency dipolar response. The slower
relaxation is more highly dependent on the anion as has been observed in imidazolium-based ionic
liquids, where it was attributed to a Johari-Goldstein relaxation.

Experimental

The materials investigated in this study are a series of tributyloctylphosphonium (TBOP) ionic
liquids paired with the anions: dicyanamide (DCA), bis(trifluoromethylsulfonyl)imide (NTf2),
trifluoromethanesulfonate (OTF), thiocyanate (SCN), trifluoroacetate (TFA), and tetrafluoroborate
(TFB). The chemical structures of the cation and anions are displayed in Fig. 3.35. The materials
were obtained from Nippon Chemical Industrial Co. and dried in a home-built ultrahigh vacuum
setup at 330K for>24 h prior to use. Broadband dielectric spectroscopy (BDS)measurements were
carried out using a Novocontrol Alpha analyzer (frequency range 10−1−107Hz) with a QUATRO
temperature control system (120−400K and temperature stability ±0.1K) using nitrogen as the
cooling and heating gas.[154] Samples were measured using 20 mm stainless steel electrodes in a
parallel-plate configuration with 100 µm Teflon spacers to maintain sample thickness. Rheological
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Figure 3.35: The chemical structures of the ionic liquids studied in this work.

creep compliance measurements were performed on a Hybrid Rheometer 2 (TA Instruments) using
25 mm and 3 mm plates. The temperature was controlled by an environmental test chamber with
nitrogen as the gas source (temperature stability ±0.1K). At each measurement temperature, a
constant small stress was applied until a steady strain was observed. The response at the long time
limit was used to obtain the zero-shear viscosity of the ILs.[154] Differential scanning calorimetry
(DSC) measurements were performed on a TA Instruments Q2000 calorimeter at a cooling rate of
10K min−1. The calorimetric glass transition temperature, Tg, was determined at the midpoint of
the step in the heat flow corresponding to the maximum in the temperature derivative of the heat
flow.

Results and Discussion

The complex dielectric function, "∗(!) = "′ − i"′′, was measured using broadband dielectric
spectroscopy, providing insight into the charge transport and storage in the system with respect
to both frequency and temperature. A plot of the real and complex parts of the conductivity and
dielectric function is shown in Fig. 3.36 for tributyloctylphosphonium dicyanamide (TBOP DCA).
The dielectric spectra are well described by a single empirical Havriliak-Negami (HN) function,
which can be viewed as a Debye-process with symmetrical and asymmetrical stretching terms,
coupled with an analytical approximation of the Random Barrier Model (RBM), which describes
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Figure 3.36: The real and imaginary parts of the complex dielectric function, "∗(!) = "′− i"′′, and
conductivity, �∗(!) = �′ + i�′′, of the ionic liquid tributyloctylphosphonium dicyanamide (TBOP
DCA) are shown. The dashed red line represents a Havriliak-Negami fit, while the dashed blue line
represents a random barrier model fit. The solid lines represent a linear combination of these two
functions. The temperatures range from 230K to 200K, going from red circles to black squares.

charge transport within the framework of carrier hopping in a random energy landscape.[81,
4] The RBM has been shown to accurately model the dielectric spectra associated with the
ionic conductivity in disordered materials, while the HN function is used extensively to model
contributions from dipolar relaxations in general.[256, 151] The combination of the two functions
is shown in the following equation, with the first term being the analytical approximation of the
random barrier model and the second corresponding to the Havriliak-Negami contribution, where
�0 is the dc ionic conductivity, "∞ is the high-frequency limiting permittivity, Δ" is the dielectric
strength, �e and �HN are the relaxation times, and � and 
 are stretching parameters:

"∗(!) = "∞ +
Δ"

(1 + (i!�HN )�)

+

�0
i!"0

i!�e
ln(1 + i!�e)

(3.9)

The quantitative agreement of Equation 3.9with the dielectric data indicates that there is a single
dipolar process that is strongly coupled with ion motion. This is an interesting observation given
that a similar system with shorter alkyl chains, triethyloctylphosphonium, has been shown to have a
pronounced sub-� process in earlier studies.[171] Such a slow, sub-� dielectric relaxation has been
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Table 3.7: Real-space correlation distances corresponding to the pre-peak positions in Figure 3.37
Anion d = 2�∕qmax [Å]
OTf 11.3
TFB 11.6
NTf2 10.5

linked to the motion of supramolecular hydrophobic aggregates in imidazolium ionic liquids and
its absence may indicate a disruption of such aggregates in these tributyloctylphosphonium ionic
liquids.[211] The primary evidence for the existence of mesoscale aggregates is a pre-peak in the
x-ray and neutron scattering profiles of a variety of ionic liquids with extended alkyl chains.[32]
The x-ray scattering profiles of three of the TBOP-ILs are shown in Figure 3.37. There is a pre-peak
evident at a q-value of 0.6Å−1 which is only weakly dependent on the anion structure, see Table
3.7. The lack of a strong sub-� dielectric relaxation may indicate that the polar domains are simply
not well-formed enough to contribute to an interfacial polarization mechanism. The influence of
molecular structure on such mesoscale organization and its impact on transport properties of ILs
remain an open question which will require a combination of experiments and computation over
broad length and time scales to unravel.[179, 258, 259, 15] One of the key parameters from fits using
Eq. 3.9 is the dc ionic conductivity, �0, which corresponds to the frequency-independent value of
the real part of the conductivity spectra, shown in Fig. 3.36. The departure from the plateau value at
low frequencies is typically associated with electrode polarization, while the transition into a power
law at higher frequencies corresponds to the change from long-range diffusion to sub-diffusive
regimes.[4, 260]

The variation of the anion results in differences in the dc ionic conductivity by about 2.5 orders
of magnitude (see Fig. 3.38) at lower temperatures across all systems probed. The ordering of the
ionic conductivity appears to be non-trivially related to the structure of the anion and attempts to
reconcile the observed trend with simple quantities such as molecular volume or weight have, so far,
been unsuccessful. This is a different picture if one considers imidazolium systems with spherical-
type anions, which yield a systematic trend with respect to anion size.[256] This difference is likely
due to variations in the anion shape and charge distribution, but without a comparable anion set for
the imidazolium ILs, cation effects or specific intermolecular interactions, like �—� interactions or
hydrogen bonding, cannot be excluded. Normalization by the glass transition temperature suggests
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Figure 3.38: The dc ionic conductivity, �0, versus inverse temperature for all TBOP samples. Solid
lines are fits to the Vogel-Fulcher-Tammann equation. The anion dependence of the conductivity is
dominated by the shift in structural relaxation rates as indicated by the inset plot showing dc ionic
conductivity normalized by the Tg obtained from DSC. From DCA to TFB, Tg values are 186K,
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Figure 3.39: The temperature dependence of characteristic relaxation rates for charge transport as
well as the �1 and the �2 secondary relaxations. Closed symbols show the relaxation rates associated
with the conductivity, !e. Crossed and open symbols show the rates of the �1 and �2 processes,respectively. The rate and presence of the �2 process is strongly dependent on the anion, whereas
the faster �1 relaxation is relatively unaffected. The left inset shows the values normalized with
respect to the glass transition temperatures (DSC heating run). The right inset shows the BNN
relations for each of the TBOP samples.

that general ion dynamics of these systems are controlled by the dynamic glass transition.[261, 262]
A similar trend is observed for the characteristic rates associated with the dynamics. In Fig. 3.39,
the charge hopping and secondary relaxation rates for these materials are shown.

The trend of the characteristic rates of charge transport closely mirrors the order of the
magnitudes of the DC conductivity. In fact, plotting the dc conductivity versus the characteristic
rate, !e, known as the Barton-Nakajima-Namikawa (BNN) relation, a relationship used frequently
when discussing the behavior of ionic materials, the conductivity and its associated rate are
shown to be directly proportional to one another in a double logarithmic plot (see Fig. 3.39,
right inset).[263, 264] Traditionally, the BNN relation illustrates the proportionality of the dc
conductivity and characteristic charge transport rate multiplied by the static dielectric permittivity
(dielectric constant) or the dielectric strength of the �-relaxation.[265] In the present case, the static
permittivities, "s, are very similar across all the phosphonium ILs, ranging from 8 to 10, as shown
in Fig. 3.40.
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Figure 3.40: Static dielectric permittivities, "s, of the phosphonium IL with the indicated anions.
The static permittivities are defined by the low frequency limit of the fit by Eq. 3.9 of the real part
of the complex dielectric function, as shown in Fig. 3.35.

Mechanical structural �-relaxation rates, !�, were also obtained directly from oscillatory shear
measurements. Additionally, using Maxwell’s relation and the high-frequency shear modulus, the
structural �-relaxation rates may be estimated by !� = G∞∕�. These rates are compared in Fig.
3.41 for TBOP NTf2 with those obtained using the random barrier model (!e) and the HN model
(!max) as well as the peak frequency of the imaginary part of complex electric modulus (!M ′′),
which is often related to the conductivity relaxation rate. The molecular relaxation rate, !max,
is linked to the rate of the Havriliak-Negami function given in Eq. 3.9 by the equation !max =
1
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The consistency of the BNN relation between the phosphonium ionic liquids and most other

ionic liquids shows that the mode of charge transport in these systems is general.[150] The fact
that the characteristic rates for the structural �-relaxations coincide with those corresponding to
ion transport unambiguously shows that the mode of charge transport is coupled to the dynamic
glass transition in the studied ILs and can be thought of as glass transition assisted hopping.

Figure 3.42 displays rheology data of the measured fluidities of all the samples reported in this
work. It is clear that varying the anion leads to significant change in viscosity—a property which is
well known to be related to the dynamic glass transition. However, scaling the data with respect to
the calorimetrically determined glass transition (see inset, Fig. 3.42) reveals that within the limits of
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Figure 3.41: Characteristic rates of charge transport and structural relaxation for TBOP NTf2 asmeasured by broadband dielectric spectroscopy, rheology, and differential scanning calorimetry
(cooling run). Solid lines are fits to the Vogel-Fulcher-Tammann equation. Inset: Superimposed
complex dynamic shear modulus at a temperature of 193K as measured for TBOP NTf2. The
spectrum was constructed for measurements at several temperatures using the time-temperature
superposition principle.

experimental accuracy, the samples have the same fragility. The invariance of the fragilities with
anion structure is shown more explicitly in Tables 3.8 and 3.9 using the parameters obtained by
Vogel-Fulcher-Tammann (VFT) fits, �0 = �∞[DT0∕(T − T )0)], of the dc ionic conductivities and
fluidities, respectively. Fragility is a term describing the steepness of the temperature dependence
of various transport properties linked to the structural �-relaxation in glass-forming liquids. Three
common values related to changes in the fragility are Tg∕T0, D, m = (DT0∕2.303)Tg∕(Tg − T0)2

as given in Tables 3.8 and 3.9. These values show that this series of phosphonium ionic liquids
fall into the intermediate range of fragilities as compared to ionic liquids and other types of glass-
formers.[134, 266] The lower fragility of phosphonium ionic liquids relative to imidazolium ionic
liquids is one reason for their lower room temperature ionic conductivities.[43, 266] This finding
is in agreement with a variety of experimental results which indicate that the identity of the cation
charge center plays a much more important role in determining the physicochemical properties of
ionic liquids.[246, 248]

105



3.5 4.0 4.5 5.0 5.5

-8

-6

-4

-2

0
 DCA
 NTf2
 OTf
 SCN
 TFA
 TFB

lo
g 10

(
-1
 [P

a-1
 s

-1
])

1000/T [K-1]

0.7 0.8 0.9 1.0

-8
-6
-4
-2
0

lo
g 10

(
-1
 [P

a-1
 s

-1
])

Tg, DSC/T

Figure 3.42: Fluidity [the inverse of viscosity, 1∕�] for tributyloctylphosphonium-based ionic
liquids with different anions, as indicated by the legend. Solid lines are fits to the Vogel-Fulcher-
Tammann equation. Inset: Scaling with respect to the calorimetric glass transition temperature
measured by DSC (heating run).

Table 3.8: Parameters for the VFT fits of dc conductivity, corresponding to the solid lines in Fig.
3.38, as well as fragilities, m.

Anion T0 D �∞ (S cm−1) Tg/T0 m
DCA 148 7.3 0.44 1.26 60
NTf2 152 7.0 0.39 1.28 51
OTf 154 8.4 0.60 1.30 52
SCN 142 9.7 1.00 1.36 45
TFA 154 7.7 0.73 1.27 58
TFB 148 10.3 1.47 1.37 46
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Figure 3.43: Imaginary part of the complex dielectric function, "∗(!) = "′ − i"′′, for TBOP
TFB and TBOP NTf2 showing the low temperature, high-frequency Havriliak-Negami functions.
Dotted-dashed lines correspond to the slower �2 relaxation. Dashed lines correspond to the faster
�1 relaxation.
Table 3.9: Parameters for the VFT fits of fluidity, corresponding to the solid lines in Fig. 3.42, as
well as fragilities, m.

Anion T0 D �−1∞ (104 Pa−1 s−1) Tg/T0 m
DCA 147 7.5 0.6 1.27 58
NTf2 157 5.7 0.1 1.23 60
OTf 157 8.1 1.0 1.28 56
SCN 137 11.2 5.4 1.40 43
TFA 151 8.7 5.3 1.30 55
TFB 146 10.7 1.7 1.38 45

Analysis of the dielectric spectra at low temperatures reveals the presence of two secondary
dipolar relaxations below the glass transition temperature; see Fig. 3.43. A combination of two
additional Havriliak-Negami functions is utilized to describe these relaxations.

Since primary structural mobility is generally frozen within experimental time scales below
the glass transition temperature, any processes observed at these temperatures must be related to
localized or secondary molecular mobility. It is observed that for a given temperature, 150K in this
instance, the magnitudes and frequencies of the faster �1-process are generally comparable; see Fig.
3.44. The horizontal and vertical normalization in the inset plot also clearly shows a similarity in
the shapes of the processes. The practical invariance of the �1-process despite the changes of the
anion suggests that themotion is primarily that of the cation. In studies of imidazolium ILs, a similar
dipolar relaxationwas attributed to librationmotion of the cation.[264] In triethyloctylphosphonium
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Figure 3.44: Plot of the imaginary component of the permittivity. T = 150K. The inset shows the
normalized values for the imaginary permittivity. Solid lines are single HN fits.

bis(trifluoromethylsulfonyl)imide (TEOP NTf2), the �1-process was attributed to local fluctuations
of the alkyl groups based on the observed activation energy of 55 kJmol−1.[171] This is however
considerably higher than the 28.3 kJmol−1 activation energy of TBOP NTf2. It should be noted that
in TEOP NTf2, no �2-process was reported. The slower �2-process, observed only for NTf2, SCN,
TFA, and TFB anions, is very similar to an intermediate secondary relaxation observed in 1-butyl3-
methylimidazolium bis(trifluoromethylsulfonyl)imide.[257] In that instance, it was attributed to an
intrinsic Johari-Goldstein (JG) type relaxation on the basis of its activation energy. JG relaxations
are high-frequency processes which are intrinsic to glass-forming materials and do not arise from
specific molecular fluctuations. The characteristic rates of secondary relaxations typically show
Arrhenius temperature dependences. By fitting using the Arrhenius equation, the activation energy
can be determined. The characteristic rates are shown in Fig. 3.39. The activation energies
determined from the Arrhenius fit are given in Table 3.10.

It is apparent that the activation energies of the faster relaxation are comparable between anions,
further supporting the notion that the motion of the cation is predominately responsible for the �1-
process. The far right column contains the activation energy predicted by an empirical relationship
observed for the beta process in many glass-formers.[257] The relationship, E� = 24RTg, has been
proposed as the evidence of a Johari-Goldstein (JG) type �-relaxation, where R is the ideal gas
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Table 3.10: Activation energies associated with secondary relaxations.
Anion �1 EA (kJmol−1±1.0) �2 EA (kJmol−1±1.0) Johari-Goldstein EA (kJmol−1±1.0)
DCA 31.4 37.1
NTf2 28.3 48.7 38.3
OTf 31.0 40.0
SCN 31.3 38.2
TFA 30.3 46.5 39.0
TFB 29.3 42.5 40.3

constant and Tg is the calorimetric glass transition temperature. It is apparent that the predicted
activation energy from a JG process significantly deviates from those experimentally determined in
this work, suggesting that neither of the secondary dipolar relaxations can be ascribed to JG-type.

Conclusion

A series of phosphonium-based ionic liquids—with a systematic variation of the anion—has been
analyzed using broadband dielectric spectroscopy. It is observed that anion substitution leads to
shifts in the characteristic rates and dc conductivities of the sample, but normalization by Tg results
in coinciding curves. Furthermore, an adherence to the BNN relation indicates that the nature of
the charge transport in phosphonium-based ILs is not altered by the anions, but is rather general for
this class of ionic liquids. The coincidence of the characteristic relaxation rates for charge transport
and structural relaxation confirms the view that charge hopping in these systems is dominated by
the dynamic glass transition. It is observed that two secondary �-relaxations occur in these ILs.
The faster relaxation is attributed to libration of the cation, while the origin of the slower relaxation
remains unclear. These results further enhance our understanding of the universality of charge
transport in ionic liquids and support the physical picture of glass transition-assisted hopping as the
underlying mechanism of ion transport in aprotic ionic liquids.

3.6 Conclusions

We have demonstrated that the existence of mesoscale organization in aprotic ionic liquids leads to
the emergence of slow, sub-� dynamics in the dielectric and mechanical spectra. The mesoscale
organization arises from the solvophobic aggregation of long, non-polar alkyl chains from polar
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ionic head groups and counter ions. The additional relaxation dynamics lead to increases in
the zero-shear viscosity and static dielectric permittivities. This direct influence of mesoscale
organization on physicochemical properties has important implications for the use of ionic liquids
as solvents and electrolytes in numerous applications. We further demonstrate the interfacial
polarization mechanism of the aggregate dynamics through the use of binary ionic liquid mixtures.
By altering the ratio of polar and non-polar volumes the aggregate shapes may bemanipulated. This
provides a new path to tuning the physicochemical properties of ionic liquids and their mixtures.
Futhermore, we show that it is not simply a large volume fraction of non-polar component and
asymmetry in the cation which lead to the formation of well-defined and long-lived aggregates.
It is also vital that the strength of interactions in the polar phase be strong enough to drive
the solvophobic aggregation. In quaternary phosphonium ILs there is a clear transition from
aggregating to non-aggregating ILs depending on the aklyl chain substitution. The absence of
sub-� relaxations in the tributyl-alkylphosphoniums further demonstrate that the sub-� dielectric
relaxation is not associated strictly with the existence of large non-polar regions. Rather, it is
necessary that there is both a well-defined polar and a well-defined non-polar domain. This further
cements the origin of the sub-� dielectric relaxation in the interfacial polarization at the interfaces
of these two distinct domains.

IL aggregate dynamics will be critical for synthesis applications. The lifetimes of aggregates
may significantly alter the reaction kinetics of reactants located within either the polar or non-polar
phase. When performing polymerizations for instance, the reaction pathway will be significantly
altered by the existence of long-lived aggregates. This effect may be even more pronounced in
IL mixtures. In this case, it is possible that the polymerization will be analogous to aqueous
emulsion polymerizations. The use of IL mixtures to tune the mesoscale organization and
dynamics is especially attractive. By altering the interaction of the ionic headgroup of the
aggregating ion and the ions which make up the polar phase the mesoscale dynamics may become
even more significantly reduced relative to the structural relaxation. In the extreme case these
aggregates may be analogous to aqueous surfactant worm-like micelles which are capable of
forming supramolecular gels. It is envisioned that IL mixtures will afford an unprecedented
opportunity to probe solvophobic aggregate dynamics over extremely broad composition and
temperature ranges which are unavailable to traditional surfactant systems.
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Going forward, a wider variety of binary ionic liquid mixtures should be investigated. Espe-
cially interesting will be mixtures in which the interactions at the aggregate interfaces are altered.
This might be possible for instance with mixtures consisting of aromatic and non-aromatic cations.
A slight reduction in solubility at the interface is expected to drastically affect the aggregate
relaxation dynamics. This type of study is in contrast to our binary ionic liquid mixtures where
the chemical structure of the two cations was identical other than the alkyl chain length. With the
right choice of cations and anions it may be possible to formmuch larger extended aggregates which
in the extreme case may form systems analogous to worm-like surfactant micelles.

Future studies with a wider range of phosphonium cation chemical structures, especially
with tripropyl-alkylphosphonium will allow a better understanding of the evolution of long-lived
solvophobic aggregates in these unique systems. It will be necessary to study these ILs with a
combination of x-ray scattering, MD simulation, dielectric, and dynamic mechanical spectroscopy
to form a coherent picture for how the mesoscale organization and dynamics are depend on the
cations chemical structure.

The proposed mechanism of the slow, sub-� dielectric relaxation is sensitive to the shape of the
aggregate interface. The aggregate shapes and therefore interface curvature are determined in large
part by the relative volumes of the polar and non-polar phases. We demonstrated this through the
use of binary ionic liquid mixtures to swell the polar phase while reducing the volume fraction of
the non-polar phase. The volume fraction will also be sensitive to the molar volumes of the cations
and anions in neat ionic liquids. It will therefore be useful to examine in more detail the influence of
various anions on the relaxation rates and dielectric strengths for a common cation and vice versa.
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Chapter 4

Hydrogen-bonded Liquids: a Case Study of

Imidazoles

In this chapter, the influence of chemical structure, temperature, and diluent concentration on
dynamics and charge transport in hydrogen-bonded liquid imidazoles is investigated. Following
an introduction to imidazole chemistry, the results of a preliminary study on the impact of levulinic
acid additions on charge transport and dynamics in 2-ethyl-4-methylimidazole are presented.
Afterwards, a more detailed study with a wider range of additives, compositions, and imidazole
chemical structures is discussed. Our findings result primarily from a detailed analysis of slow
relaxations linked to the motion of mesoscale hydrogen-bonded chains. It is found that the addition
of minute amounts of levulinic acid results in a complete disruption of the hydrogen-bonded chains.
These results are discussed within the framework of prior studies on dynamics in hydrogen-bonded
monohydroxy alcohols and in the context of previous investigations on ionic conductivity in neat
and acid-doped liquid imidazole.

4.1 Introduction and Motivation

Imidazole is a five-membered, aromatic, nitrogen-containing, heterocycle with the chemical
structure given in Figure 4.1(a). Imidazoles were first synthesized in the 1850s by Heinrich
Debus, the correct chemical structure was introduced by Japp in 1882, and at about the same
time the name imidazole was suggested by Kantzsch.[267, 268, 269, 7] It is an amphoteric
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Figure 4.1: Chemical structure of (a) unsubstituted imidazole, (b) with possible substitutions in the
Debus-Radziszewski synthesis route, and (c) with substition on the acidic nitrogen which prevents
the formation of associated, H-bonded chains. The atoms in (a) are labeled in accordance with all
chemical names in this section, i.e. 2-ethyl-4-methylimidazole has an ethyl and methyl group at
the 2 and 4 carbons on the heterocycle. (d) A hydrogen-bonded tetramer. Dashed lines represent
intermolecular hydrogen bonds.

molecule, possessing both an acidic and basic site. The N-H proton is a weak Brønsted acid
with a pKa of 14.9, while the other nitrogen, with its lone pair electrons, is a moderate base
with a conjugate acid pKa of 7.0.[7, 270] This allows imidazoles to act as both hydrogen bond
donors and acceptors. In addition, the unsaturated carbon-carbon bonds in the heterocycle provide
the opportunity for �-bond interactions. The primary interest in imidazoles has long been their
biological importance and use in medicinal applications.[271] Imidazole is biologically relevant
due to its occurrence in purine, histamine, histidine, and nucleic acids.[272] The ability for
imidazole to form intermolecular associations by both hydrogen-bonding and �-� interactions plays
a crucial role in a variety of enzymatic processes as well as in the formation of ligands in systems
such as hemoglobin, vitamin B12, and metalloproteins.[273, 274, 275, 276, 277, 278]

The location of the acid and base sites, on opposite sides of the planar ring, allows adjacent
imidazole molecules to form intermolecular hydrogen-bonds (H-bonds). The repetition of this
bonding with multiple molecules leads to the development of extended associated chains, see
Figure 4.1(d). In non-polar solution, (in benzene and naphthalene for example) these chains
are estimated, by cryoscopic and ebulliometric techniques, to be between 5 and 20 molecules
long.[7] A detailed IR study of imidazoles in dilute carbon tetrachloride solution indicates that
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Figure 4.2: Prototropic tautomerism occurs by the intermolecular transfer of a proton along a
hydrogen-bond with concomitant �-bond switching.[7]

all oligomers at least up to the dodecamer (12 carbons) are present in significant quantities in
the saturated solution.[102] The aromaticity of the heterocycle coupled with this intermolecular
association imbues imidazoles with another unusual property, prototropic tautomerism. In this type
of tautomerism, the position of the acidic hydrogen, with respect to the nitrogens, is switchable.
When a proton is transferred to the basic nitrogen and the acidic proton is transferred to the adjacent
imidazole in a chain, the �-bonds within the heterocycle can be switched without reorientation of
the molecule. The prototropic tautomerism of 4-methylimidazole, illustrated in Figure 4.2, leads to
an equilibrium of 4- and 5-methylimidazole.[7] These tautomers can only be isolated by substituting
on the acidic nitrogen, Figure 4.1(c), thus disrupting the intermolecular hydrogen-bonding.[7]
Prototropic tautomerism and the closely related ability for imidazoles to rapidly shuttle protons
along the hydrogen-bonded chains through fast intermolecular proton transfer have garnered them
new attention for technological rather than biological applications.[67] Themost significant of these
applications include the now familiar field of proton exchange membrane fuel cells as well as the
burgeoning field of supramolecular organic ferroelectrics.[65, 279, 280]

Prototropic tautomerism, combined with the formation of H-bonded chains, make crystalline
imidazoles promising materials in the developing field of supramolecular ferroelectricity. The
imidazole molecule has a large dipole moment, ≈ 3.67 - 3.8 D, oriented parallel to the in-
termolecular hydrogen bonds.[7, 281, 282] The hydrogen-bonds in a single chain are oriented
in the same direction thus imparting a large supramolecular dipole moment to each chain. In
an appropriate crystal, where the H-bonded chains are all oriented in the same direction, a
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Figure 4.3: Ferroelectric switching of supramolecular dipoles by application of an external electric
field. Ferroelectricity is possible due to the ability for imidazoles to transfer a proton along hydrogen
bonds in a supramolecular chain with a concomitant switching of the �-bonds in each heterocycle.

permanent polarization may be induced by applying an external electric field of sufficient strength
to “switch” all of the acidic protons, in all adjacent chains, to the same direction.[281] So far,
such ferroelectricity has been reported in a class of substituted benzimidazoles as well as other
appropriate molecular crystals, such as croconic acid.[283, 284, 285] The supramolecular organic
ferroelectrics have promising applications in wearable electronics, memory storage, sensors,
capacitors, and actuators.[33] A significant advantage of these prototropic tautomerism-based
ferroelectrics over traditional inorganic as well as polymer-based, organic ferroelectrics is the low
field strength at which their polarization is switched.[284, 286]

The potential for fast proton transfer along the hydrogen-bonded chains and their relatively high
intrinsic proton conductivities, see Figure 4.4, has driven an increasing interest in imidazoles as
components in proton exchangemembrane (PEM) fuel cells. Current state-of-the-art PEM fuel cells
are predominately based on sulfonated polymer membranes, e.g. Nafion.[287] These membranes
deliver extremely high proton conductivities while restricting the flow of other species between
the electrodes. The proton conduction originates from deprotonation of sulfonic acid side groups
and proton diffusion in aqueous nanochannels.[287] The high proton conductivities required for
efficient operation are only realized at very high hydration levels. The fuel cells must therefore be
operated in a high humidity atmosphere which restricts the upper operating temperature to below the
boiling point of water, 100 ◦C.[65] These rather low temperatures necessitate the use of expensive
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Figure 4.4: DC ionic conductivities, �0, of several imidazoles versus (a) inverse temperature and
(b) temperature normalized by the calorimetric glass transition temperature, Tg.

platinum catalysts.[65] Replacing water with a higher boiling, yet still highly proton conducting
material would be very advantageous. Imidazole is one of a number of alternatives which have
been explored, including phosphoric acid, triazole, benzimidazole, and pyrazole.[288, 289] Each
of thesematerials have the potential for fast proton transport via intermolecular proton transfer along
a hydrogen-bond network such as the supramolecular chains of imidazole. Imidazoles have been
incorporated into PEMs as side groups in polymeric backbones, dopants in a polymer membrane,
and fillers in the mesoporous channels of metal organic frameworks.[274, 290, 291, 292, 293, 294,
295, 296, 297, 298, 299, 300, 301, 302, 65, 64, 303, 304, 305, 306, 287] Each of these approaches
hopes to take advantage of the fast proton transport along supramolecular hydrogen-bonded chains.
Therefore, a fundamental understanding of the dominant mechanisms of proton transport in each
of these situations is crucial for the application of imidazoles in proton exchange membranes.

The intrinsic conductivity of imidazoles indicates a degree of self-dissociation resulting in
protonated imidazolium cations and deprotonated anions. These ions can contribute to charge
transport via either a vehicle diffusion or structure diffusionmechanism. In vehicle diffusion, charge
transport is linked to the translational diffusion of the whole ionic molecule. This mechanism
is analogous to the ion transport typical of the aprotic ionic liquids of the previous chapter
where ion conduction is predominantly linked to the structural relaxation and viscosity. Structure
diffusion, on the other hand, refers to the ability for certain materials to transfer protons more
rapidly along intermolecular hydrogen-bonded networks. This type of proton transport mechanism
was first proposed by Grotthuss and is often referred to as the Grotthuss mechanism.[307] It
occurs in imidazole by the transference of a proton from one end of a supramolecular chain to
the other by rapid shuttling of protons across the intermolecular hydrogen bonds, a picture very
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similar to the ferroelectric switching. However, for proton transfer to actually contribute to a dc
ionic conductivity, where protons are transported continuously from the cathode to the anode, an
additional step is required in which all of the imidazoles in a supramolecular chain reorient so that
another proton can be accepted at the same chain end and transferred in the same direction. It
is generally accepted that reorientation follows each proton transfer event and is a local process
rather than a simultaneous, global reorientation along the entire chain. This molecular view of
the structure mechanism in imidazoles has been established by numerous quantum chemical and
molecular dynamics simulations.[302, 308, 65, 309, 310, 292, 311, 300] The strongest experimental
evidence of a significant contribution from structure diffusion in imidazoles is a Haven ratio
less than one. The Haven ratio is defined as the ratio of molecular to ionic diffusivity, HR =

Dmolecular∕D� , whereDmolecular is the molecular diffusivity obtained by PFG-NMR andD� is the ion
diffusivity estimated by the Nernst-Einstein equation using the measured conductivity. A Haven
ratio less than one indicates a contribution from the ostensibly faster structure diffusion mechanism.
In dilute mixtures of imidazole with either sulfanilic or bis(trifluoromethylsulfonyl)imide acid (80
- 100 mol% imidazole), Haven ratios of 0.3-0.7 have been reported, indicating a contribution via
fast structure diffusion.[64, 303, 66] Doping imidazoles with small amounts of acid may enhance
the contribution of structure diffusion by providing excess protons while reducing the solution
viscosity.[302]

In addition to providing a structure diffusion mechanism, the supramolecular hydrogen-bonded
chains also strongly influence the static dielectric permittivity (dielectric constant), "s. As discussed
previously, the molecular dipole moments are aligned with one another in each hydrogen-bonded
chain resulting in a supramolecular dipole. This parallel alignment of dipole moments leads to
a positive departure from the Onsager relation and a Kirkwood-Fröhlich correlation coefficient
greater than one.[282] The static permittivity is therefore expected to be enhanced by the existence
of the hydrogen-bonded chains. A higher static permittivity is in turn expected to enhance proton
conduction by stabilizing the protonated ions and thereby promoting self-dissociation.[312, 65,
313] However, concrete experimental evidence establishing the interplay between supramolecular
hydrogen-bonded networks, static dielectric permittivity, and proton transport in these materials is
still lacking.
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To contribute to a better understanding of the influence of supramolecular hydrogen-bonded
chains on proton transport in liquid imidazoles, we have investigated neat, substituted imidazoles
and their mixtures with selected diluents over broad frequency and temperature ranges by broadband
dielectric spectroscopy, dynamic mechanical spectroscopy, differential scanning calorimetry, and
Fourier transform infrared spectroscopy. We utilize a newly discovered dynamic probe of the
supramolecular chains, present as a slow, sub-� Debye-like relaxation in the dielectric spectra,
to infer changes in the organization of the chains as a function of temperature, chemical structure,
and concentration. The alteration in chain organization, as evidenced by shifts in the timescale
and strength of the Debye-like relaxation, is then related to observed changes in the dc ionic
conductivity to reveal an underlying influence of supramolecular chains on the proton conductivity.
The slow, sub-�, Debye-like dielectric relaxation was previously attributed to the motion of
extended supramolecular chains, in agreement with similar dynamics observed in monohydroxy
alcohols.[68, 31] Chemical structure-modification, pressure-dependent, and dilution-effect studies
on the Debye-like relaxation of monohydroxy alcohols have provided substantial insight into the
organization of their hydrogen-bonded network. A brief overview of the monohydroxy alcohol
studies is now warranted as our discussion of the imidazole results is strongly colored by these
prior works.

Monohydroxy alcohols (MAs) have the ability to associate via intermolecular hydrogen-
bonding to form supramolecular chains analogous to those of imidazole, as illustrated in Figure
4.5(a). The original evidence for this association is the departure of the measured static dielectric
permittivies, "s, from the values expected on the basis of the Onsager relation given the molecular
dipole moments and number densities.[23] A positive deviation, to values greater than the Onsager
prediction, indicates a parallel orientation of neighboring dipoles while a negative devation
indicates antiparallel orientation.[75] These deviations are quantified by modifying the Onsager
relationwith an additional parameter known as theKirkwood-Fröhlich correlation factor, gk. A gk >
1 indicates a parallel orientation and gk < 1 indicates a preference for antiparallel orientation.[75, 3]
In the 1960s, detailed dielectric studies by Dannhauser and Johari on a series of isomeric octyl
alcohols, with chemical structures depicted in Figure 4.5(b), revealed that the departure from the
Onsager relation follows a systematic trend with respect to the chemical structures. Each label
in Figure 4.5(b) corresponds to the chemical structure, i.e. 7;2 ⇒ 7-methyl-2-heptanol. The
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Figure 4.5: (a) Hydrogen-bonding chains of neighboring mono-alcohols as proposed by Oster
and Kirkwood.[23] (b) Chemical structures for the series of isomeric octyl alcohols studied by
Dannhauser and Johari in the 1960s.[24, 25] Labels correspond to the data in Figure 4.6 and Figure
4.7.

temperature-dependent static dielectric permittivities and gk’s for this series of MAs are given in
Figure 4.6 and Figure 4.7, respectively.[24, 25] The monohydroxy alcohols with more terminally-
located hydroxyl groups, labeled 7;2, 7;3, 1;3, and 6;3, have larger static dielectric permittivities
which increase monotonically. The increase is accompanied by a corresponding increase in gk
to values greater than one as temperature is reduced. The more centrally located and sterically
hindered hydroxyl positions, labeled 3;3, 2;3, 4;3, and 5;3, have a non-monotonic temperature
dependence in "s and their gk’s decrease from one as the temperature is reduced. A qualitative
picture of supramolecular organization was introduced to explain these results. The parallel
orientation corresponds to the formation of predominantly linear chains. Antiparallel orientation
indicates the formation of ring-type structures in which dipoles on opposite sides are oriented in
opposite directions. This interpretation is now widely accepted.[31]

In addition to its dielectric strength, the timescale of the Debye-like relaxation also supports
its assignment to the relaxation of supramolecular hydrogen-bonded chains. In almost all types
of dipolar liquids, the primary, �-dielectric relaxation corresponds rather closely to the structural
relaxation of the liquid. The structural relaxation is directly linked to the local molecular motions
which determine a liquid’s viscosity and dynamic glass transition. Therefore, the structural
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Figure 4.6: Static dielectric permittivities of the series of isomeric octyl alcohols of Figure 4.5
versus inverse temperature. Solid and dashed lines correspond to the left and right ordinates,
respectively. The permittivities and their temperature dependence vary widely as a function of
the chemical structure. This figure is reproduced from [24].

Figure 4.7: Temperature dependence of the Kirkwood-Fröhlich correlation factors of the isomeric
octyl alcohols in Figure 4.5. The gk’s approach one at high temperatures. As the temperature is
reduced, some of the gk’s increase, others decrease, and in the case of 5-methyl-3-heptanol, both
trends are observed. This figure is reproduced from [24].
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relaxation is also accessed experimentally in other techniques such as dynamic mechanical
spectroscopy(DMS) and differential scanning calorimetry(DSC). The timescales obtained by each
of these three techniques for the structural relaxation are roughly comparable. The Debye-like
dielectric relaxation of MAs, on the other hand, is considerably slower than their structural
relaxation probed by DMS and DSC. The structural relaxation is however still present in their
dielectric spectra. The real and imaginary parts of complex dielectric permittivity of 4-methyl-3-
heptanol is shown in Figure 4.8. This MA falls in the antiparallel orientation group and therefore
has a weak Debye-like relaxation. There are very clearly two relaxation processes at 198K and
below. The slower process, which appears as a low-frequency shoulder, is the Debye-like relaxation
while the faster is the �-relaxation with timescales comparable to the structural relaxation probed
by DMS and DSC. It is therefore generally referred to as the structural, �-relaxation. The slowness
of the Debye-like relaxation relative to the structural suggests the relaxing group is quite large.
Estimates of the hydrodynamic radii by the Stokes-Einstein equation yield values much larger
than the molecular dimensions, supporting the interpretation that the motion of supramolecular
hydrogen-bonded chains are responsible for this relaxation.[31, 314, 315, 77] The Debye-like
shape of the relaxation originates in the fast addition and removal of molecules at the chain ends
which is responsible for the reorientational motion. In living supramolecular polymers, when
chain breaking rates are faster than the chain relaxation rate a narrowing of the relaxation time
distribution occurs while the average chain relaxation rate represents an average of the molecular
weight distribution.[316, 317] In the case of monohydroxy alcohols, the slow, Debye-like relaxation
is the analog of the polymeric chain relaxations. Thismechanistic view of theDebye-like relaxation,
originated by Gainaru, is known as the transient chain model.[318]

The sensitivity of the strength and timescale of the Debye-like relaxation to the supramolecular
structure is made especially clear by considering the temperature-dependence of these parameters.
The non-covalent H-bonds between alcohols are relatively weak. As the temperature increases,
we expect that at some critical temperature, below the boiling point, the thermal energy will be
significantly greater than the H-bond interaction energies and the supramolecular H-bonded chains
will be disrupted. In all cases, at elevated temperatures the static dielectric permittivities of MAs
approach the value given by the Onsager relation. That is gk approaches 1 at high temperatures
indicating a loss of the supramolecular orientation, see Figure 4.7. Over the same temperature
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Figure 4.8: Real and imaginary parts of the complex dielectric permittivity, "∗ = "′ − i"′′, of 4-
methyl-3-heptanol at the indicated temperatures. The slower Debye-like relaxation merges into the
structural, � -relaxation at higher temperatures, 239-300K. Relaxation times are given in Figure
4.7. This figure is reproduced from [26].

range, there is a concomitant increase in the rate of the Debye-like relaxation.[31, 27, 26, 319, 197,
223]When gk = 1 the Debye-like relaxation merges into the structural, �-relaxation and is no longer
observable as a distinct relaxation. This is evident in the dielectric spectra of 4-methyl-3-heptanol
in Figure 4.8. At temperatures at and above 218K, the slow, Debye-like relaxation merges into
the �. This is also evident in the merging of their timescales as room temperature is approached
in Figure 4.9. The observed temperature dependence of gk and Debye-like relaxation timescales
are therefore in agreement with a relaxation mechanism originating in the formation and motion of
extended supramolecular hydrogen-bonded chains which can be disrupted at elevated temperatures.

Recently, a slow, sub-� Debye-like relaxation was also found in the dielectric spectra of
the glass-forming liquid 2-ethyl-4-methylimidazole (2E4MIm).[68] The similarity in shape and
relaxation time, relative to the structural relaxation, indicate that this Debye-like relaxation also
reflects the motion of the supramolecular H-bonded chains of imidazole molecules. Therefore,
the Debye-like relaxation of 2E4MIm can also be used, in a manner analogous to the MAs, as a
sensitive reporter of temperature, chemical structure, and composition dependent changes to the
H-bonded chains. 2E4MIm has one exceptional difference, it is capable of self-dissociation and
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Figure 4.9: Relaxation times of the Debye-like (D) and structural, �-relaxations (�) of 4-methyl-
3-hexanol (4M3H) as probed by dielectric spectroscopy (diel), differential scanning calorimetry
(DSC). At high temperatures the timescale of the Debye-like relaxation (closed squares) merges
into the structural, �-relaxation (open squares). The 4M3H labels, (A) and (Σ), refer to the chemical
suppliers Alpha-Aesar and Sigma-Aldrich, respectively. This figure is reproduced from [27].

is therefore an intrinsic proton conductor. This combination of Debye-like relaxation and proton
conduction provides a unique opportunity to probe the influence of hydrogen-bond networks on
proton conduction in liquids.

4.2 Proton Transport in Imidazoles: Unraveling the Role of

Supramolecular Structure

In this section, we investigate the influence of acid-doping on the dynamics, ionic conductivity,
and supramolecular H-bonded chains of 2-ethyl-4-methylimidazole. 2E4MIm and mixtures with
levulinic acid are investigated by broadband dielectric spectroscopy, dynamic light scattering,
differential scanning calorimetry. The results indicate a significant disruption of the H-bonded
chains at very low levulinic acid concentrations. This disruption is expected to strongly reduce any
contribution of the structure diffusion mechanism to proton conduction. Our findings are at odds
with literature results which suggest a contribution from structure diffusion persists at significantly
higher concentrations of sulfanilic and bis(trifluoromethylsulfonyl)imide acid than the 2.5mol% of
our levulinic acid which is required for a disruption of the H-bonded chains.[64, 303, 66]
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Abstract

The impact of supramolecular hydrogen bonded networks on dynamics and charge transport
in 2-ethyl-4-methylimidazole (2E4MIm), a model proton conducting system, is investigated
by broadband dielectric spectroscopy, depolarized dynamic light scattering, viscometry, and
calorimetry. It is observed that the slow, Debye-like relaxation reflecting the supramolecular
structure in neat 2E4MIm is eliminated upon the addition of minute amounts of levulinic acid. This
is attributed to the dissociation of imidazole molecules and the breaking down of hydrogen-bonded
chains, which leads to a 10-fold enhancement of ionic conductivity.

Introduction

Hydrogen bonds play prominent roles in numerous physicochemical as well as biological processes.
Evidence of hydrogen-bonded networks has been observed in important materials such as water,
monohydroxy alcohols, proteins, and nucleic acids, among many others.[31, 320, 321] Due to
their technological and fundamental importance, a concerted scientific effort has been directed
at understanding the interplay between molecular structure, hydrogen bonding, and dynamics
as well as charge transport in these materials. One specific area of fundamental interest has
been the origin of the slow, Debye-like processes in monohydroxy alcohols. Using a variety
of experimental techniques, several groups have concluded that the Debye-like relaxations in
monohydroxy alcohols are due to the dynamics of the supramolecular hydrogen bonded chains
inherent in these materials.[31, 196, 322, 319, 318] Recently, it became evident that slow Debye-
like relaxations characterize dynamics of hydrogen-bonded networks in supramolecular polymers
as well as low molecular weight hydrogen-bonded imidazoles.[68, 323] This expanded class
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of materials, especially the imidazoles, provides model systems to investigate the impact of
supramolecular hydrogen-bonded networks on the resultant structural dynamics and transport
properties. The imidazole ring is an important building block in diverse systems ranging from
proton conducting non-aqueous electrolytes to biological systems including histamine, histidine,
and vitamin B12.[275, 271, 65, 305, 324, 33, 285, 325, 304] One application for which imidazole
has received considerable attention is as a new electrolyte in proton exchange membrane fuel
cells.[65, 66, 303] However, detailed understanding of the interplay between the supramolecular
structure and dynamics as well as proton transport in these systems remains limited. Proton
transport in liquid imidazole has been proposed to occur in one or a combination of two ways: (i)
a vehicle mechanism in which the protonated imidazole molecule undergoes long-range diffusion,
and, (ii) a Grotthuss mechanism in which a proton is transferred between nitrogen atoms of two
neighboring imidazole molecules across a hydrogen-bond, followed by a rate-limiting reorientation
step, the time scale of which is presumably controlled by the dynamic glass transition.[321, 65, 302,
292, 326, 309, 327, 328, 308] The amphoteric nature of imidazole allows the molecules to form
intermolecular hydrogen bonds, which result in extended, almost linear chains of molecules.[68]
The role of the supramolecular structures in proton transport remains unclear, although the high
intrinsic conductivity of imidazole, as well as imidazole-rich acid mixtures, has been attributed
to fast proton transport by a Grotthuss mechanism.[66, 303] Experimentally, the main signature
of these extended supramolecular systems is the slow, Debye-like relaxation process, a feature
that was recently revealed by both broadband dielectric spectroscopy and dynamic light scattering
techniques.

In this Letter, broadband dielectric spectroscopy, viscometry, calorimetry, and depolarized
dynamic light scattering techniques are employed to investigate the impact of the supramolecular
hydrogen bond networks on charge transport and the structural dynamics in glass-forming systems
of neat 2-ethyl-4-methylimidazole (2E4MIm) and mixtures of 2E4MIm with minute amounts of
levulinic acid (LA). It is observed that the slow, Debye-like relaxation characterizing the dynamics
of supramolecular structures in the neat 2E4MIm disappears upon the addition of small amounts of
LA. A detailed analysis demonstrates that the enhanced ionic conductivities of the mixtures at the
low acid concentrations are not due to fast proton motion but are rather due to an increase in the
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number density of free charge carriers arising from dissociation of the imidazole and leading to a
breaking down of the extended hydrogen bonded chains in the 2E4MIm/LA mixtures.

Experimental Methods

The 2-ethyl-4-methylimidazole (2E4MIm, 99% purity, Acros Organics) and levulinic acid (LA,
98% purity, Sigma-Aldrich) were purchased and used as received. Mixtures were prepared by
mixing 2E4MIm and LA at 60 ◦C in a high purity nitrogen atmosphere. Broadband dielectric
spectroscopy measurements were made in the frequency range of 10−1 − 2 × 107Hz and tem-
perature range of 180 - 400K using a Novocontrol Alpha Analyzer with a QUATRO liquid
nitrogen temperature control system with temperature stability ±0.1K. Stainless steel parallel
plate electrodes with a diameter of 20mm were utilized. Teflon spacers were used to provide
a gap of 1mm between the electrodes. Depolarized dynamic light scattering measurements
were performed in 90 degree geometry in an Oxford Optistat cryostat with temperature stability
±0.1K. The laser wavelength was 647 nm and the power was 15mW. Differential scanning
calorimetry measurements were performed on a TA Instruments Q2000 calorimeter at a cooling
rate of 2K∕min. The calorimetric glass transition temperature, Tg, was determined at the midpoint
of the step in heat flow corresponding to the maximum in the temperature derivative of the heat
flow. Creep measurements were performed on a Hybrid Rheometer 2 (TA Instruments) with 3mm
and 25mm parallel plates. In each experiment, a constant small stress was applied to the sample
to evaluate its zero-shear viscosity. The temperature was controlled by an Environmental Test
Chamber with nitrogen as the gas source.

Results and Discussion

Depolarized dynamic light scattering (DDLS) yields the normalized intensity correlation function
(ICF), which provides information regarding the characteristic time scales of reorientational
molecular motion. The ICF is well described by a superposition of Kolhrausch-William-Watts
(KWW) stretched exponential functions for the normalized electric field correlation function (g1):

g2(t) − 1 = 

[

g1(t)2
]

= 

∑

j

[

aj exp
[

t
�j

]�KWW ,j
]2

(4.1)
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Figure 4.10: (a) Normalized intensity correlation function versus time for neat 2E4MIm and the
2.5 mol % LA mixture at 255K. Solid lines correspond to fits obtained from superposition of
two KWW functions for 2E4MIm, but only one KWW function for the 2.5 mol % mixture. Inset:
Double logarithmic plots of the time derivative of the normalized correlation function plotted versus
time. The 2.5 mol % LA data exhibits one slope; indicating that there is no detectable slow Debye-
like relaxation in this mixture. The R2 values for the alpha process of 2.5 mol % LA and pure
2E4MIm are both 0.99. The R2 value for the Debye relaxation of 2E4MIm is 0.98. (b) Fluidities of
2E4MIm and 2.5, 5.0, and 10 mol% LAmixtures obtained by creep measurements versus 1000∕T .
Inset: Fluidities of 2E4MIm and 2.5, 5.0, and 10 mol % LA mixtures versus Tg∕T . The increasein fluidity at low temperatures when scaled by Tg indicates a weakening of the intermolecular
hydrogen-bonding interactions.

where g1(t) and g2(t) are the normalized electric field correlation function and ICF, respectively, 
 is
the spatial coherence factor, aj (j = 1, 2, denoting the number of relaxation processes) is the relative
relaxation strength, �j is the relaxation time, and �KWW ,j is the stretching parameter. Figure 4.10(a)
presents the ICF of 2.5 mol % LA/2E4MIm mixture alongside that of neat 2E4MIm measured
by Wang et al. at a selected temperature.[68] The neat 2E4MIm spectra show two relaxation
processes, which correspond to the structural �-relaxation (fast process) and rotational diffusion
of supramolecular hydrogen bonded chains of 2E4MIm molecules (slow process). However, upon
addition of the 2.5 mol % LA, the mixture exhibits only one process corresponding to structural
� relaxation, which is completely described by one KWW function (i.e., j = 1 in Equation 4.1)
for the experimentally accessible time range. According to the derivative analysis proposed by
Wang et al., a relaxation process in DDLS spectra exhibits a single slope in the double logarithmic
representation of −d ln(ICF)∕dt versus time. Using this derivative analysis, we have verified that
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Figure 4.11: Double logarithmic plots of the time derivative of the normalized correlation
function plotted versus time for 2.5mol% LA/2E4MIm mixture. The mixture shows only one slope
corresponding to the alpha-relaxation. No slow, Debye-like process was found in the DLS spectra
of the mixture.

only one relaxation process is present in the DDLS spectra upon addition of 2.5mol% of LA (Figure
4.10(a) inset). A single relaxation process is observed at all measured temperatures, Figure 4.11.

The disappearance of the slow, Debye-like relaxation dynamics of 2E4MImupon addition of LA
implies a disruption of the hydrogen-bonded 2E4MIm chains. This interpretation is strengthened
when considering viscosity data obtained by creep measurements of 2E4MIm and the LA-2E4MIm
mixtures. The weakening of the hydrogen bond interactions between imidazole molecules should
lead to a decrease in the viscosity.[329, 330, 331] This effect is less significant at high temperatures
due to diminishing contributions of hydrogen bonding compared to thermal fluctuations. Figure
4.10(b) presents the fluidities (inverse viscosity) of 2E4MIm and 2.5, 5.0, and 10 mol % 2E4MIm-
LA mixtures versus 1000∕T . The increasing fluidity with acid additions is due to the lower
calorimetric glass transition temperature (Tg) of the LA and changes in the molecular environment
due to breakdown of the hydrogen-bonded networks in the mixtures. The inset of Figure 4.10(b)
reveals that the fluidity of the mixtures is higher than the 2E4MIm at low temperatures when scaled
by Tg. We attribute this difference to a change in the hydrogen-bonding environment upon the initial
addition of LA. For low molecular weight non-hydrogen-bonded glass-forming systems, the zero-
shear viscosity � and the structural relaxation time �� are interrelated through theMaxwell’s relation
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Figure 4.12: Estimates of the high frequency shear modulus obtained by applying the Maxwell’s
relation to the viscosity and structural �-relaxation times (from DDLS) plotted versus inverse
temperature. The shear modulus of the 2.5mol% LA mixture is 8 times lower than that of neat
2E4MIm. This is due to the stronger intermolecular interactions and the existence of the long-lived
(compared to timescales of structural relaxation) supramolecular hydrogen-bonded chains.

(� = G∞��, where G∞ denotes the high frequency shear modulus). However, the supramolecular
relaxation mode should make additional contribution to the zero-shear viscosity for hydrogen-
bonded systems. In this case, the viscosity can be expressed as � = ��G� + Gcℎain�cℎain, where
the additional terms correspond to contributions arising from the chains. Utilizing the structural
relaxation rates obtained by DDLS, we calculate �∕�� at 253K and obtain 1.02 and 0.12 GPa for
2E4MIm and the 2.5 mol % 2E4MIm- LA mixture, respectively see Figure 4.12. The apparent
reduction in high frequency shear modulus upon acid addition is attributed to the elimination of
the contribution from 2E4MIm chains. The dielectric spectra of many ion-conducting systems
are reasonably well described by the Random Barrier Model (RBM) proposed by Dyre.[3, 4, 265]
Within the framework of this model, the charge carriers hop in a random spatially varying energy
landscape. The mean hopping rate, denoted by the time �e, associated with the highest barrier
determines the dc conductivity, �0, and is one of the characteristic parameters of the model. Solved
within the context of continuous-time random walk, an analytical approximation for the complex
dielectric function is given by "∗(!) = �0�e∕"0[ln(1 + i!�e), where "0 denotes the permittivity of
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Figure 4.13: Real part of complex dielectric function, "′(f ), the real part of the complex
conductivity, �′(f ), and the derivative of "′(f ) = "′′der = (−(�∕2)))"′∕) ln(f ), versus frequency
for 2E4MIm(a-c) and the 2.5 mol % LA mixture (d-f). Solid lines correspond to fits obtained
using Equation 4.2. Dashed and dotted-dashed lines show the individual contributions of the
Havriliak-Negami and random barrier models, respectively. The rates of charge transport, !e, anddipolar relaxation, !max, occur at approximately the same frequency in the mixture, whereas in neat
2E4MIm they are separated by at least 1 order of magnitude.

free space. Therefore, the dc conductivity and the characteristic times are sufficient to characterize
the dielectric spectra due to charge transport within the framework of the RBM model.

The complex dielectric spectra of the 2E4MIm are dominated by contributions from electrode
polarization, charge transport, as well as dipolar relaxations (Figure 4.13(a-c)). To analyze dipolar
relaxations, the empirical Havriliak-Negami (HN) equation is employed. In addition, the RBM is
used to quantify the contribution of charge transport to the spectra. The resultant linear combination
of equations for describing the two contributions is given as

"∗(!) =
[

"∞ +
Δ"

(1 + (i!�HN )�)


]

+
�0
i!"0

[

i!�e
ln(1 + i!�e)

]

(4.2)

where Δ" is the dielectric relaxation strength, "∞ denotes the high frequency value of the real part
of the dielectric function, �HN refers to the Havriliak-Negami relaxation time, and � and 
 are
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shape parameters indicating the symmetric and asymmetric broadening of the complex dielectric
function, respectively.[150, 332] Themolecular relaxation rates are related to the characteristic time
obtained from Equation 4.2 by !max = (1∕�HN )[sin(��∕(2 + 2
))]1∕�[sin(�
�∕(2 + 2
))]−1∕�.[3]

The dielectric spectra of neat 2E4MIm and the 2.5 mol % mixture as described by Equation
4.2 are shown as solid black lines in Figure 4.13. This equation describes the spectra well other
than a slight divergence at very high frequencies and low temperatures. This divergence is due
to the influence of secondary relaxation processes occurring outside the observable frequency
window. The low frequency region described by Equation 4.2 for 2E4MIm is dominated by a slow,
Debye-like relaxation attributed to the motion of supramolecular H-bonded chains of imidazole
molecules.[68] This process is observed as a peak in the derivative of the imaginary part of the
dielectric function.[85] The second contribution to the spectra, attributed to charge transport, is
observed as a high-frequency tail of the peak in "′′der = (−(�∕2)))"′∕) ln(f ). The individual
contributions of the HN and RBM to the spectrum at 250K are given in Figure 4.13 as a red dashed
line and a blue dotted-dashed line, respectively.

The dielectric spectra of the 2.5 mol % LA mixture (Figure 4.13(d-f)) display significant
differences from that of 2E4MIm. The main relaxation peak in "′′der, now occurs at approximately
1 order of magnitude higher frequencies and the time scale of charge transport and the dipolar
relaxations are now practically the same, as shown by the contributions of HN and RBM in Figure
4.13f. Additionally, the dc conductivity, �0, corresponding to the frequency-independent region of
the real part of the complex conductivity is increased by about 1 order of magnitude in the entire
temperature range probed in these experiments. It is also worth noting that the value of the real
part of the dielectric function at high frequencies is significantly higher than that of the 2E4MIm.

The characteristic rates of dipolar relaxation,!max, and charge transport,!e = 1∕�e, in 2E4MIm
as well as the 2.5 mol%mixture are given in Figure 4.14, alongside the rates determined by DDLS,
!DLS . In neat 2E4MIm, there is an order of magnitude difference between the slow, Debye-
like relaxation and that of structural �-relaxation (from DDLS) as well as charge transport (from
BDS). However, in the 2.5 mol % mixture, the rates of charge transport, dipolar relaxation, and
structural relaxation are practically equal. The slow process is no longer detectable at 2.5 mol %
acid concentration, while no change in the time scale of the faster dielectric process is observed.
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Figure 4.14: Characteristic rates of charge transport and dynamics obtained from the dielectric and
depolarized dynamic light scattering spectra of neat 2E4MIm (closed symbols) and the 2.5 mol %
LAmixture (open symbols) versus 1000∕T . The neat 2E4MIm has two distinct relaxation rates, one
corresponding to the structural relaxation and the slower related to the motion of supramolecular
chains of imidazole molecules. The 2.5 mol % LA mixture has only one apparent relaxation rate
corresponding to the structural relaxation. Inset: Proposed scheme illustrating the breakdown of
the hydrogen-bonded chains of 2E4MIm upon introduction of LA molecules.

This implies no change in the dynamic glass transition, in agreement with the fact that the measured
calorimetric Tg of 228K for the 2.5 mol % mixture and neat 2E4MIm coincide, see Figure 4.15.

The dramatic increase in the ionic conductivity upon addition of LA is now considered with
the main objective of understanding the role of supramolecular hydrogen-bonded networks in
determining ionic conduction in this class of materials. The dc conductivity, �0, can be described
by the equation, �0 = ∑

i niqi�i, where n is the effective number density of the free charge carriers,
q is the charge, � is the charge mobility, and i denotes the type of charge carrier. As observed
in Figure 4.14, the characteristic charge transport rate obtained by fitting the RBM model to the
dielectric spectra coincides with the structural �-relaxation rate obtained by DDLS for both the
neat 2E4MIm and the 2.5 mol % mixture. This result is important because it indicates that the
rate-limiting process for charge (mainly protons) transport is structural �-relaxation, in agreement
with the current understanding of proton conduction, which requires molecular reorientation for
successful proton hopping.[65, 308] Therefore, the representation of dc conductivity versus Tg/T
can be used to distinguish the dependence of conductivity on variation in charge carrier mobility
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Figure 4.15: Heat flow versus temperature for 2E4MIm and the 2.5mol% LA/2E4MIm mixture.
The calorimetric glass transition temperature is unchanged by the addition of a very small amount
of levulinic acid.

(Figure 4.16). The increase in ionic conductivity of the 2.5 mol % mixture over the neat 2E4MIm,
even when scaled by Tg, indicates an increase in the number density of charge carriers. The scaling
of conductivity by Tg at 2.5, 5.0, and 10 mol % LA demonstrates that the increase in effective
number density of charge carriers does not continue beyond the initial increase at the 2.5 mol% LA
concentration. This trend implies that the increase does not originate strictly from deprotonation
of the LA, but rather from an increase in the ionicity of the 2E4MIm molecules themselves.

A quantitative estimate of the number density of charge carriers may be obtained by uti-
lizing a combination of the Einstein and Einstein-Smoluchowski relations expressed as, nH+ =

�0kbT ∕q2�2!e, where � is the mean ion jump length in the time scale of !e. Supposing that the
dominant charge carrier is the proton of the charged imidazolium molecules and assuming a mean
hopping length � = 1.0 ± 0.3Å, based on the average bond length in a N+−H⋅ ⋅ ⋅N hydrogen
bond, it becomes possible to determine the effective number density of charge carriers as presented
in the inset of Figure 4.16.[333] The mean jump length is a rough estimate based on the hydrogen
bond length of strong hydrogen bonds such as found in neat 2E4MIm. It should be noted that
the mean jump lengths may slightly change upon addition of the acid and this value is only an
approximation. The validity of this approach to approximate � from structural considerations was
previously corroborated by detailed infrared studies of a similar proton conducting mixture.[332]
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Figure 4.16: DC conductivity, �0, of neat 2E4MIm, 2.5, 5.0, and 10 mol % LA mixtures versus
Tg/T. The increase in �0 when scaled by Tg indicates an increase in the effective number density
of charge carriers upon addition of LA. Inset bottom: DC conductivity, �0, versus 1000∕T for
2E4MIm, 2.5, 5.0, 10.0 mol % LA mixture, and LA. Inset top: Estimate of the effective number
density of charge carriers versus 1000/T for neat 2E4MIm, 2.5, 5.0, and 10 mol % LA mixtures.
The dashed line is the total number density of molecules in 2E4MIm.

A comparison of the number density of free charge carriers in 2E4MIm and the 2.5 mol % LA
mixture indicates that the addition of a 2.5 mol % of LA leads to 10-fold increase in the free ion
concentration in the mixture compared to the neat 2E4MIm. Further addition of acid molecules
leads to a decrease in the number density of charge carriers. This may be due to the formation of
ionic aggregates of imidazolium and carboxylate ions leading to a reduction in the number of free
ions contributing to charge transport.

Based on the results from the complementary techniques reported in the current article, we
propose the scheme in the inset of Figure 4.14 to represent the interaction between LA molecules
and the supramolecular chains in 2E4MIm. We conjecture that the introduction of a LA molecule
leads to breaking down of a hydrogen-bonded chain, and the resultingmolecular moieties contribute
to further disruption of the neighboring chains, thereby eliminating the slow, Debye-like dynamics
in 2-ethyl-4-methylimidazole and giving rise to higher ionic conductivity as discussed in the current
article.

In summary, broadband dielectric spectroscopy, depolarized dynamic light scattering, viscom-
etry, and calorimetry are employed to investigate the impact of hydrogen bond networks on charge
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transport and structural dynamics in 2E4MIm and mixtures of 2E4MIm with minute amounts of
LA over a broad temperature and frequency range. The addition of LA is found to cause the
disappearance of the slow, Debye-like relaxation, which was dominant in neat 2E4MIm, alongside
a remarkable 10-fold increase in the ionic conductivity. A detailed analysis demonstrates that the
high ionic conductivities are not due to fast proton motion, but are rather due to the change in the
number density of free charge carriers arising from dissociation of the 2E4MIm, which leads to the
breakdown of the extended hydrogen bonded chains in the 2E4MIm/LA mixtures.

4.3 Associating Imidazoles: Elucidating the Correlation be-

tween the Static Dielectric Permittivity and ProtonConduc-

tivity

In this section, 2-ethyl-4-methylimidazole and 4-methylimidazole as well as mixtures of 2E4MIm
with levulinic acid and butyramide are investigated by broadband dielectric spectroscopy, Fourier
transform infrared spectroscopy, and differential scanning calorimetry. An examination of the
Debye-like relaxation, both its strength and timescale, of the neat imidazoles reveals the existence
of an antiparallel alignment of dipoles not readily explained by the ring-type structures of
monohydroxy alcohols. The results are tentatively attributed to an antiparallel alignment of
neighboring supramolecular H-bonded chains, whose formation is possibly aided by the �-
interactions of imidazole. The investigation of levulinic acid mixtures over broader concentration
ranges show the concentration dependent disruption of the supramolecular chains in more detail,
a conclusion further strengthened by the FTIR studies. The disruption is shown to depend on the
proton-donating ability of the diluent as butyramide has no apparent effect on the size of the H-
bonded chains.

This section is a reprinting of a previously published article and its supporting material. My
primary contributions to this article include: (i) design of experiments, (ii) data collection and
analysis, (iii) interpretation of results, and (iv) writing. Changes from the published version consist
of the incorporation of supporting information within the main text.
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Abstract

Broadband dielectric spectroscopy is employed to investigate the impact of supramolecular
structure on charge transport and dynamics in hydrogen-bonded 2-ethyl-4-methylimidazole
and 4-methylimidazole. Detailed analyses reveal (i) an inverse relationship between the average
supramolecular chain length and proton conductivity and (ii) no direct correlation between the static
dielectric permittivity and proton conductivity in imidazoles. These findings raise fundamental
questions regarding the widespread notion that extended supramolecular hydrogen-bonded
networks facilitate proton conduction in hydrogen bonding materials.

Introduction

Fundamental understanding of the dominant mechanisms of proton transport in amorphous hy-
drogen bonded materials is crucial for numerous applications ranging from proton exchange
membranes to biological processes.[65, 321] Proton conductivity in these systems is usually
attributed either to vehicle and/or structure diffusion mechanisms. Structure diffusion is thought
to involve fast proton transfer along supramolecular hydrogen-bonded networks via the Grotthuss
mechanism, while vehicle diffusion is associated with transport of the protonated molecules whose
rate limiting process is the primary structural relaxation. Computational studies have suggested that
structure diffusion contributes significantly to proton conduction in certain amphoteric systems
such as imidazoles, pyrazoles, benzimidazoles, triazoles, and phosphoric acid, especially due
to the existence of extended supramolecular networks.[311, 334, 288, 312] Therefore, these
materials are at the forefront in the search for anhydrous proton exchange membranes with
high proton conductivity, especially for applications in fuel cell technologies.[65, 298] However,
experimental evidence that extended supramolecular hydrogen-bonded structures actually facilitate
proton conductivity through structure diffusion is limited and has, until now, relied on a comparison
of charge and molecular diffusivities obtained by the Nernst-Einstein relation and 1H NMR,
respectively.[64, 308, 66] Furthermore, some authors have hypothesized that the high static
dielectric permittivity (or dielectric constants) in these materials plays an important role in aiding

136



charge dissociation and thereby increasing the effective number density of charge carriers, as is
the case of other ion conducting materials.[65, 288, 308, 313] The premise for this widespread
notion is presumably Coulomb’s law relating the static dielectric permittivity to the electrostatic
force experienced by point charges. Concrete experimental evidence establishing the link between
supramolecular hydrogen-bonded networks, static dielectric permittivity, and proton transport
in these materials is still lacking. Glass-forming imidazoles such as 2-ethyl-4-methylimidazole
and, as we report here for the first time, 4-methylimidazole, exhibit a distinct slow Debye-like
relaxation attributed to supramolecular chains and have the ability to dissociate under specific
conditions, providing an ideal opportunity to probe the link between supramolecular hydrogen-
bonded networks, dielectric constants, and proton transport. Results from these model systems will
help in understanding proton conduction in similar supramolecular hydrogen-bonded materials.

A significant body of literature indicates that collective dynamics of supramolecular hydrogen-
bonded networks gives rise to a slow, Debye-like relaxation in many hydrogen-bonding liquids such
as monohydroxy alcohols, secondary amides, water, and 2-ethyl-4-methylimidazole.[24, 25, 320,
335, 31, 336] The strengths of intermolecular interactions as well as the sizes and orientations of the
supramolecular dipoles determine the effective dipole moment and the rate of the slow Debye-like
relaxation, !Debye. Extensive studies of monohydroxy alcohols (MAs) have, for instance, revealed
the existence of an equilibrium of ring-type and chain-type supramolecular hydrogen-bonded (H-
bonded) structures, with the preferred orientations being sensitive to the molecular structure,
pressure, and temperature.[319, 94, 337, 338] Recent rheology and compressibility measurements
on MAs revealed a terminal relaxation much slower than the primary structural relaxation, a
response analogous to unentangled supramolecular polymers.[339, 223, 196, 340, 197] These
studies suggest that the slow, Debye-like relaxation in the hydrogen bonded liquids originates from
transient supramolecular chains which reorient by successive addition and removal of monomers at
the chain ends. In this case, the Rouse model may be applied to describe the chain dynamics and to
provide quantitative estimates of the average sizes of the supramolecular structures. Although these
studies enable quantitative estimates of the average lengths of supramolecular chains, MAs cannot
easily dissociate due to their chemistry and are therefore not suitable candidates for understanding
the correlation between supramolecular hydrogen bonded networks and proton conductivity.
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In this study, we employ broadband dielectric spectroscopy to investigate the interplay
between the static dielectric permittivity and proton conductivity in glass-forming 2-ethyl-
4-methylimidazole and 4-methylimidazole. Detailed analysis of the dielectric data suggests
preferential antiparallel alignment of chains comprising approximately seven imidazole molecules
at all the temperatures probed. Further experiments using butyramide and levulinic acid as diluents
—which either disrupt or preserve the supramolecular structures of 2-ethyl-4-methylimidazole
—reveal that longer average chain lengths correlate with lower proton conductivity and higher
static dielectric permittivity. These results challenge the longstanding notion that higher static
dielectric permittivity in this class of supramolecular hydrogen bonded materials results in
enhanced proton conduction. This apparent disparity is attributed to the fact that proton transport
in these materials is controlled by the primary structural dynamics while the static dielectric
permittivity arises from the additivity of dipole moments comprising the supramolecular chains
characterized by dynamics at much longer timescales.

Experimental

2-ethyl-4-methylimidazole (2E4MIm, 95% purity), 4-methylimidazole (4MIm, 98% purity), le-
vulinic acid (LA, 98% purity), and butyramide (BA, 98% purity) were purchased from Sigma-
Aldrich and used as received. Mixtures were prepared by mixing at 60 ◦C in a high purity nitrogen
atmosphere. Broadband dielectric spectroscopy measurements were made in the frequency range
of 10−3 −107Hz and temperature range of 180−400K using a Novocontrol Alpha Analyzer with a
QUATRO liquid nitrogen temperature control system with temperature stability ±0.1K. Stainless
steel parallel plate electrodes with a diameter of 20mm were utilized. Teflon spacers were used to
provide a gap of 0.2mm between the electrodes. Differential scanning calorimetry measurements
were made on a TA Instruments Q2000 calorimeter with a heating and cooling rate of 10K min−1.
2-ethyl-4-methylimidazole is a liquid over the entire temperature range presented. This is confirmed
by differential scanning calorimetry measurements which show a well-defined glass transition at
237K and no evidence of crystallization or melting transitions, see Figure 4.17. Fourier transform
infrared spectroscopy (FTIR) measurements were performed on pure 2-ethyl-4-methylimidazole
(99% and 95% purity) and mixtures of 2E4MImwith levulinic acid, butyramide, and toluene. Apart
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Figure 4.17: Differential scanning calorimetry (DSC) results of 2-ethyl-4-methylimidazole. The
heat flow versus temperature indicates this material is cooled without crystallization. The
calorimetric glass transition temperature, Tg, is observed as the midpoint of the step in the heat flow
rate at 237K corresponding to amaximum in the derivative of heat flowwith respect to temperature.

from the 2.5mol% levulinic acid + 2E4MIm, the 2.5mol% butyramide + 2E4MIm, and temperature-
dependent 2E4MIm spectra, all the data in Figures 4.22 - 4.24 were measured at room temperature
(298K) in a Varian FTS 6000e spectrometer over the wavelength range 4000-400 cm−1 at a scan
resolution of 2 cm−1. Samples were pressed between NaCl windows, placed in a nitrogen-purged
atmosphere, and measured in transmission mode for 512 scans. The 2.5mol% levulinic acid +
2E4MIm(95% purity) and 2E4MIm temperature-dependent samples were pressed between BaF2
windows and measured over the wavelength range 4000-650 cm−1 in a Linkam temperature stage
mounted on a Hyperionmicroscope stage attached to a Bruker Vertex 70 spectrometer. The samples
were measured in transmission mode at a resolution of 4 cm−1 for 282 scans over the temperature
range 60− (−30 ◦C). The 2.5mol% butyramide + 2E4MIm (95% purity) sample was pressed
between BaF2 windows and measured over the wavelength range 4000−700 cm−1 at 36.85 ◦C in
a Linkam temperature stage mounted on UMA 500 microscope stage attached to the Varian FTS
6000e spectrometer. The sample was measured in transmission mode at a resolution of 1 cm−1 for
512 scans over the temperature range 340-200K.
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Table 4.1: Parameters of the Havriliak-Negami fitting functions, Equation.4.3, as obtained for neat
2-ethyl4-methylimidazole at selected temperatures.

T [K] "∞ Δ"Debye �Debye 
Debye !Debye [s−1] Δ"� �� 
� !�[s−1]
280 2.5 1.8 0.83 1.0 3.6 × 104 1.4 0.80 0.46 1.3 × 106
270 2.5 5.9 0.88 1.0 3.0 × 103 1.5 0.74 0.52 1.4 × 105
260 2.6 16.3 0.94 1.0 2.3 × 102 1.7 0.75 0.50 8.1 × 103
250 2.6 33.5 0.90 1.0 7.8 1.1 1.00 0.36 6.7 × 102
240 2.6 42.2 0.95 0.93 0.2 1.7 0.72 0.55 5.4

Results and Discussion

Broadband dielectric spectroscopy is a versatile experimental tool for investigating the dynamics
of dipolar and ionic materials.[68] Application of an oscillating electric field of small amplitude to
thesematerials over a broad temperature range enables one to probe the dynamics of polarmolecular
and supramolecular moieties as well as charge transport. The dielectric spectra of the associating
imidazoles reveal two relaxations as evident in the real part of complex dielectric permittivity,
"′, and its corresponding derivative loss spectra, "′′der, for 2-ethyl-4-methylimidazole (2E4MIm)
(Figure 4.18). The derivative representation is employed since it suppresses the contributions of
proton conductivity to the dielectric loss while revealing the underlying dielectric relaxations. The
solid lines in Figure 4.18 represent fits obtained by a linear combination of two Havriliak-Negami
functions:

"∗(!) =
Δ"Debye

(1 + (i!�Debye)�)

+

Δ"�
(1 + (i!��)�)


+ "∞ +
�0
i!"0

(4.3)

where! = 2�f is the frequency of the applied electric field,Δ" the dielectric strength, � the model
relaxation time, � and 
 shape parameters, "∞ the high-frequency limiting permittivity, �0 the dc
ionic conductivity, and "0 the vacuum permittivity. The two molecular relaxation rates are related
to their respective model relaxation times by, !HN = (1∕�HN )[sin(��∕(2 + 2
))]1∕�[sin(�
�∕(2 +
2
))]−1∕� .[3] The fit parameters obtained by Equation 4.3 for neat 2E4MIm are provided in Table
4.1

The faster dielectric process corresponds to the primary structural, �-relaxation of the 2E4MIm
molecules and the slower, Debye-like relaxation is attributed to reorientation of supramolecular
hydrogen-bonded chains.[68, 341] The low frequency static dielectric permittivity values, indicated
in Figure 4.18(a), show a minimum at 280K owing to a strong temperature dependence of the
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Figure 4.18: Broadband dielectric spectra of 2-ethyl-4-methylimidazole. Real part of the complex
dielectric function "0 and the derivative spectra "′′der = [(−�)∕2]{)"′∕) ln(f )} of pure 2-ethyl-4-
methylimidazole (2E4MIm) vs frequency. Solid lines represent fits using a combination of two
Havriliak-Negami fitting functions. Shaded areas depict the contribution of the slow, Debye-like
relaxation and dotted-dashed blue lines correspond to the structural � relaxation.

dielectric relaxation strengthΔ"Debye. The static dielectric permittivity of associated liquids reflects
the supramolecular networks inherent in these materials especially if such networks serve to
preferentially orient neighboring dipolar moieties either parallel or antiparallel to one another.
The departure from the Onsager relation—which describes the static dielectric permittivity of
non-associated dipolar liquids—due to the orientation as described by the Kirkwood-Fröhlich
correlation factor, gK , is quantified by the expression

gK =
9"0kT
��2

("s − "∞)(2"s + "∞)
"s("∞)2

(4.4)

where "s is the static dielectric permittivity, "∞ the real part of permittivity in the high frequency
limit, N the number density of dipoles, and � the dipole moment.[75, 318] We have calculated
gK using a literature value for the molecular dipole moment of � = 3.84D and number density of
dipoles of n2E4MIm = �NA

Mw
=5.3 × 1027m−3 and n4MIm =7.5 × 1027m−3.[6] Values of gK above

or below 1 indicate a preference for parallel or antiparallel orientation of neighboring dipoles,
respectively.[75] It should be noted that the dielectric strength of Δ"� is lower than expected from
the Onsager relation. The suppression of Δ"� has also been observed in monohydroxy alcohols
and water and is attributed to a reduction in the degrees of freedom available to the molecule at the
timescale of the � relaxation.[336, 319, 318]

The static dielectric permittivity, "s = Δ"Debye + Δ"� + "∞, of 2-ethyl-4-methylimidazole
and 4-methylimidazole is given as a function of temperature in Figure 4.19 (closed symbols)
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Figure 4.19: (a) Static dielectric permittivity "s of pure 2-ethyl-4-methylimidazole (2E4MIm,
closed squares) and 4-methylimidazole (4MIm, closed circles). The departure from the Onsager
relation is captured by the Kirkwood correlation factor, gK (solid and dashed lines corresponding to
2E4MIm and 4MIm, respectively). (b) Relaxation rates of the structural, � relaxation (open squares)
and slow, Debye-like relaxation (closed squares) of 2E4MIm. Solid lines represent fits by theVogel-
Fulcher-Tammann equation, ! = !∞ exp[B∕(T − T0)], fit parameters are provided in Table 4.2.
Inset: Estimated number of molecules participating in a chain, chain length ≈ (!�∕!Debye)1∕2.

Table 4.2: Vogel-Fulcher-Tammann Fit Paramters for 2E4MIm relaxation rates.
Relaxation !∞ [s−1] � T0 [K]

� 1.3 × 1015 2240 172
Debye 2.2 × 1012 1850 180

alongside the corresponding gK (lines), revealing competing parallel and antiparallel orientations
of neighboring imidazole dipoles. In monohydroxy alcohols, such a temperature dependence of
static permittivity is associated with a shifting orientation of the relaxing supramolecular structures,
as first suggested by Dannhauser in the 1960s.[24, 25] As temperature is decreased, ring-type
supramolecular structures begin to form followed by a transition to predominantly linear chains
at the lowest temperatures. The transition from rings to chains would geometrically require
lengthening of the supramolecular structures and therefore a concomitant decrease in !Debye with
respect to !� has been observed in all MAs showing this type of temperature dependent static
dielectric permittivity. The decrease in values of!Debye has been confirmed by dielectric and shear-
mechanical spectroscopy as well as compressibility measurements.[319, 197, 223, 26, 27, 342, 343]
However, in the case of 2E4MIm the ratio between !Debye and !� remains approximately constant
over the entire temperature range in which gK transitions from above to below 1, suggesting that
the average lengths of the supramolecular structures remain relatively unaltered in the entire range.
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Evidence of the formation of a variety of linear oligomers in imidazoles has been reported
from solution infrared studies; however, the formation of cyclic oligomers with less than 10 repeat
molecules would result in strained hydrogen bonds and are therefore highly unlikely.[102] The
transient chain mechanism, which describes the slow, Debye-like relaxation of MAs, provides an
avenue to estimate an average length of supramolecular chains by applying models developed to
describe polymer dynamics.[196, 318, 344, 345, 316, 346] The Rouse model, which describes
the dynamics of short chain polymers, reveals a temperature independent average chain length,
n ≈

√

!�∕!Debye, of approximately seven 2-ethyl-4-methylimidazole molecules [inset of Figure
4.19(b)]. Therefore, if the depression in static permittivity vs temperature were due to a shift
in the equilibrium of chain and ring structures, the average lengths of the structures would need
to drastically increase as temperature is decreased. However, the ratio !�∕!Debye is temperature
independent over the range 240-290K (Figure 4.19), indicating that the average length of the
chains remains unaltered. Furthermore, the slow Debye-like relaxation in 2E4MIm has been
observed up to 450K by Brillouin-Raman spectroscopy with negligible reduction in the ratio
!�∕!Debye.[68] Therefore, we suggest that the antiparallel orientation of 2E4MIm originates not
from ring formation, but from an increase in the preference for antiparallel alignment of linear
chains. While the precise reason for the change in preferred alignment cannot be conclusively
determined from the current results, we conjecture that the ability of imidazole molecules to
engage in � - � interactions is a contributing factor to this mechanism. Further experimental and
computational work, out of the scope of the current work, are required to unravel the role of � - �
interactions in determining supramolecular hydrogen bonding in this class of materials.

Further insight into the influence of supramolecular structure on the charge transport and
dynamics of 2E4MIm is provided by examining the influence of additives on the average lengths
of the supramolecular structures, the dielectric strength of the slow, Debye-like relaxation, and the
measured proton conductivity. In a previous work, we proposed that the supramolecular chains of
2-ethyl-4-methylimidazole are disrupted by addition of 2.5 mol % levulinic acid (LA) as indicated
by shifts in the rates obtained by dynamic light scattering and broadband dielectric spectroscopy as
well as a reduction in the viscosity.[341] An inspection of the dielectric spectra over a broader acid
concentration range reveals a gradual increase in !Debye, attributed to a shortening of the average
chain lengths, Figure 4.20(a). Because of the decreasing separation between !� and !Debye, the
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Figure 4.20: Relaxation rate vs temperature for the slow, Debye-like relaxation (closed
symbols) and structural, � relaxation (open symbols) of pure 2-ethyl-4-methylimidazole and low
concentration (a) levulinic acid and (b) butyramide mixtures as obtained from the broadband
dielectric spectra.

dielectric spectra of the acid mixtures are fit with a combination of one HavriliakNegami function,
to account for the slow, Debye-like relaxation, and the random barrier model (RBM), to account
for the faster charge hopping process:

"∗(!) =
Δ"Debye

(1 + (i!�Debye)�)

+

�0
i!"0

i!�e
ln(1 + i!�e)

+ "∞ (4.5)

The structural, �-relaxation rate of pure 2E4MIm corresponds with the charge hopping rate, !e =
1∕�e, obtained by the RBM as seen in Figure 4.20. Based on the separation of the two relaxation
rates, it is apparent that the extended supramolecular hydrogen-bonded chains are disrupted at and
above 1.5 mol % LA. The disruption in supramolecular structure is sensitive to the type of diluent
and appears to rely on its ability to donate protons as shown by the invariance of relaxation rates
upon addition of nonproton donating butyramide, Figure 4.20(b).

The loss of linear hydrogen-bonded structures upon addition of levulinic acid is expected to
reduce the parallel correlations of neighboring dipoles. That is, it will decrease the static dielectric
permittivity in the regime where gK > 1. Because of the unknown influence of the shortening
of hydrogen-bonded chains on the interplay between parallel and antiparallel orientations of
neighboring dipoles, the actual influence of acid addition on "s is not so straightforward, as seen in
Figure 4.21(a). Despite this, two observations may still be made: (i) values where gK < 1 continue
to be observed up to 2.5mol%LA and (ii) the values and temperature dependence of "s approach the
prediction of Onsager’s relation for pure 2E4MIm at 10 mol % LA. The observation of antiparallel
orientation at concentrations where the chains are significantly shorter is a strong indication that
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Figure 4.21: Static dielectric permittivity vs temperature of 2-ethyl-4-methylimidazole and its
mixtures with (a) levulinic acid and (b) butyramide. Solid line is the static permittivity predicted
for pure 2E4MIm by the Onsager relation.

such orientation does not originate in ring-type supramolecular structures. The continued departure
from Onsager’s relation up to approximately 10 mol % LA indicates a contribution from linearly
H-bonded structures. The interpretation of the dielectric spectra in terms of a disruption of the
2E4MIm hydrogen bond network upon addition of proton-donating levulinic acid is qualitatively
supported by Fourier-transform infrared spectroscopy measurements of 2E4MIm and the levulinic
acid mixtures.

Infrared spectroscopy probes intramolecular, and in certain cases intermolecular, vibrational
molecular dynamics.[347, 348, 349, 350, 340, 351, 352] The room-temperature mid-IR spectrum
of pure 2-ethyl-4-methylimidazole (2E4MIm) is presented in Figure 4.22. The vibrational modes
of gas phase and crystalline imidazole as well as in aqueous and carbon tetrachloride solution
have been thoroughly investigated.[102, 348, 353, 354, 355, 356, 357, 358, 103] The region
between 3500-2300 cm−1 consists of a broad bandwith several distinct sub-bands. The fundamental
NH stretching band located within this region will be sensitive to a change in the strength of
intermolecular hydrogen bonds brought about by the addition of levulinic acid. In extremely dilute
solutions, where imidazole is “free”, the NH stretch band is located at 3500 cm−1. In slightly
less dilute solutions, where imidazole begins to associate via intermolecular hydrogen bonds,
this peak begins to shift and may be located as low as ≈2850 cm−1.[9] However, even in these
dilute solutions the peak is obscured by strongly absorbing sub-bands which appear in this region
due to Fermi resonance of stretching vibrations with overtones or combination tones of bands in
the 1600-900 cm−1 range.[9] These Fermi resonance bands are insensitive to the hydrogen bond
strength.[9] Therefore, this region cannot easily be utilized to investigate hydrogen bonding in bulk
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Figure 4.22: Left:Mid-IR spectrum of liquid 2-ethyl-4-methylimidazole at room temperature.
The spectrum is normalized by the maximum absorbance of the broad association peak centered
at 1875cm−1. Middle: Normalized absorbance versus wavenumber for 2E4MIm and low
concentration levulinic acid mixtures. Upon addition of acid the association band shifts to
higher frequency. Solid lines correspond to fits with a Gaussian function. Right: Concentration
dependence of the association band peak position. The largest shift in position occurs over the
concentration range 0-10mol% LA. Peak centers are found by Gaussian fits of the association band.
liquid imidazoles. The fingerprint region between 1200-400 cm−1 contains additional contributions
from NH bending and wagging modes which will also be sensitive to hydrogen-bond strengths.
However, the large number of closely-overlapping modes in this region also inhibits the isolation
and assignment of these peaks.

A broad and weak band centered at 1880 cm−1 in liquid 2E4MIm is far from the frequency
of any fundamental vibrational modes. A similar band in liquid water, located near 2100 cm−1,
is termed the “association” peak and arises from a combination of H-O-H bending and libration
modes[359, 360, 361, 362]. The position of the association peak is highly sensitive to the strength
of the H-bond network. Kosmotropic and chaotropic ions, which strengthen and weaken the H-
bond network of water, have an inverse influence on the peak position. Kosmotropic ions blue-shift
the peak while chaotropic ions red-shift it to lower frequencies[360]. The similarity in position,
shape, and intensity of the association band of liquid water and the band at 1880 cm−1 in 2E4MIm
encourages its possible application as a reporter of the hydrogen bond network of bulk, liquid
imidazoles. The position of the association band of 2E4MIm is temperature-independent over the
temperature range 240-330K, see Figure 4.23. Therefore, if this peak is a reporter of the H-bond
network we can suppose that the strength and number density of intermolecular hydrogen bonds
is not strongly dependent on temperature in this region. This observation is in agreement with our
previous observation of constant separation in the relaxation rates of the slow, Debye-like relaxation
and structural, �-relaxation over the same temperature range, Figure 4.19.

In contrast to temperature, the addition of levulinic acid has a strong influence on the peak
position of the association band in 2E4MIm. Upon addition of even minute amounts of levulinic
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Figure 4.23: Temperature dependence of the 2E4MIm association band. (a) Absorbance
normalized by the peak maximum at 30 ◦C versus wavenumber for pure 2E4MIm. Solid lines
correspond to fits with a Gaussian function. (b) Absorbance normalized by the peak maximum
at each respective temperature versus wavenumber. The intensity of the band decreases with
increasing temperature, however, the peak position is temperature independent over the measured
range.

Figure 4.24: Absorbance normalized by the peak maximum versus wavenumber for 2E4MIm and
low concentration butyramide and toluene mixtures. The association band is not influenced by
the addition of the non-proton donating additives. Solid lines correspond to fits with a Gaussian
function.
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Figure 4.25: Ionic conductivity �0 as a function of inverse temperature for (a) levulinic acid
and (b) butyramide mixtures with 2-ethyl-4-methylimidazole. Minute amounts of levulinic acid
substantially increase the ionic conductivity, while butyramide has no effect.

acid, the peak begins to shift to higher frequencies. The majority of the shift occurs at the
lowest acid concentrations with no significant change above 20mol% levulinic acid. At 20mol%
it has blue-shifted by approximately 80 cm−1, as shown in Figure 4.22. The concentration
dependence coincides with the disruption of hydrogen-bonded chains as deduced from changes
in supramolecular dynamics observed in dielectric spectroscopy and previously by dynamic
light scattering, Figure 4.10. This observation provides qualitative support that the addition of
levulinic acid has a significant influence on the hydrogen-bond network of 2E4MIm at very low
concentrations. The addition of other non-proton donating diluents, butyramide and toluene, has
no influence on the position of the “association” band, see Figure 4.24. This further supports the
notion that it is the proton-donating ability of levulinic acid which disrupts the H-bond network.

The exact origin of the association band of liquid 2E4MIm is unknown. The majority of
imidazole IR studies are performed in dilute solution or solid phase.[102, 348, 363, 353, 354, 355,
356, 357] To our knowledge there is no discussion of the association band of bulk, liquid imidazole
in the current literature. Indeed, despite the long history of liquid water IR studies, it is only very
recently that this band has been utilized as a probe of the hydrogen bond network.[360, 362, 361]
The blue-shift in peak position upon adding levulinic acid to 2E4MIm is opposite that observed in
water upon addition of a chaotrope. This may be due to a different fundamental mode underlying
the association band in 2E4MIm as compared to water. It suggests that one of the underlying modes
is a stretching band, possibly the N-H—N stretch located near 100 cm−1 in liquid imidazole.[348]

A significant increase in the ionic conductivity accompanies the disruption of the extended
supramolecular chains, see Fig. 4.25. Fast proton transport by structure diffusion mechanism
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Table 4.3: Parameters of the Havriliak-Negami fitting functions of Equation4.3 as obtained for the
2.5mol% butyramide + 2E4MIm mixture.

T [K] "∞ Δ"Debye �Debye 
Debye !Debye [s−1] Δ"� �� 
� !�[s−1]
280 2.8 38.4 1 0.98 2.6 × 104 2.3 0.76 0.53 6.1 × 105
270 2.8 23.7 1 1 3.4 × 103 2.2 0.76 0.56 1.1 × 105
260 2.8 15.1 1 0.82 2.2 × 102 1.5 0.76 0.56 1.4 × 104
250 2.8 7.1 1 0.73 9.6 1.8 0.76 0.56 3.9 × 102

should be strongly hindered by the reduction in the average lengths of the extended hydrogen-
bonded structures.[346] In contrast, it is observed that the ionic conductivity is enhanced at all acid
concentrations measured. The increase may be attributed to an increase in the effective number
density of mobile charge carriers.

The constant average chain length upon addition of the hydrogen bonding, but non-proton
donating butyramide molecule is illuminating. The static dielectric permittivity, by comparison, is
significantly influenced upon addition of butyramide, Figure 4.21(b). The minimum shifts to lower
temperatures while the value at the maximum increases from 68 to 88. The dielectric spectra of the
2.5mol% butyramide + 2E4MIm mixture are shown in Figure 4.26. The fit parameters obtained
from Equation 4.3 for the 2.5mol% butyramide + 2E4MIm mixtures are provided in Table 4.3.
Here we see that the shift in "s is due to changes in the dielectric strength of the slow, Debye-like
relaxation, Δ"Debye. Alongside the continued presence of the minimum in "s at lower temperatures
this suggests that it is still a shift in the supramolecular structures of 2E4MIm which is responsible
for this increase even in the butyramide mixtures. However, the butyramide molecules will also
contribute to the measured "s due to their high dipole moments even when their concentration is
low.

It is worth noting that a similar effect on "s of 2E4mIm is observed when one compares the
magnitude of the static dielectric permittivity for neat 2E4MIm of different purities of 95% and 99%,
reported in the previous studies and shown together in Figure 4.27.[68, 341] In both cases, slightly
shifted minima in the plot of the "s vs temperature are observed, but the characteristic timescales
remain unaltered. It should be noted that in previous studies of 2-ethyl-4-methylimidazole, no
analysis and discussion of the temperature dependence of "s was provided.[68] Therefore, any
direct correlation between the average length of the supramolecular chains and the static dielectric
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Figure 4.26: Real and imaginary parts of complex permittivity, "∗ and conductivity, �∗ of 2.5mol%
butyramide+2E4MIm. Solid lines correspond to fits by Equation 4.3. Fit parameters are provided
in Table 4.3. Closed symbols in the upper right panel correspond to the derivative representation of
imaginary permittivity, "′′der. Shaded areas depict the contribution of the slow, Debye-like relaxationand dotted-dashed blue lines correspond to the structural �-relaxation.

Figure 4.27: Static dielectric permittivity, "s, of pure 2-ethy-4-methylimidazole obtained from
Sigma Aldrich (95% purity, squares) and Acros Organics (99% purity, triangles)
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permittivity as well as proton conductivity could not be established. In addition, although we
conjectured that addition of levulinic acid to 2-ethyl-4-methylimidazole leads to disruption of the
supramolecular hydrogen-bonded chains, this hypothesis could not be confirmed since much higher
concentrations (≥2.5 mol%) of the acid were used in the previous study.[341]

In addition to the new insights obtained from the present study regarding the interplay between
the static dielectric permittivity and proton transport, the use of suitable diluentsmakes it possible to
verify the previous hypothesis regarding the shortening of the supramolecular chains upon addition
of levulinic acid. The measured ionic conductivity �0 shows no change over the same butyramide
concentrations. Because of the strongly temperature dependent static dielectric permittivity of
neat 2E4MIm and the absence of a direct correlation between static dielectric permittivity with
ionic conductivity in the butyramide mixtures, we conclude that the static dielectric permittivity
in imidazoles with slow, sub-� relaxation dynamics is not directly linked to proton conductivity,
in contrast to prevailing opinion in the current scientific literature.[65, 288, 312, 313] We attribute
this apparent discrepancy to the fact that proton transport in these materials is controlled by the
structural, �-relaxation while the static dielectric permittivity arises from the vector addition of the
dipole moments comprising the supramolecular chains, for which the characteristic timescales of
dynamics are much slower.

In summary, we have reported a strong non-monotonic temperature dependence of the static
dielectric permittivity in glass-forming 4-methylimidazole and 2-ethyl-4-methylimidazole. De-
viations from the Onsager relation indicate preferential antiparallel alignment of neighboring
imidazole molecules. Using the Rouse model, it is found that the supramolecular chains in
neat 2-ethyl-4-methylimidazole consist of approximately seven imidazole molecules at all the
temperatures probed. Further experiments using butyramide and levulinic acid as diluents reveal
that longer average chain lengths of the supramolecular chains correlate with lower proton
conductivity and higher static dielectric permittivity. These results challenge the longstanding
notion that higher static dielectric permittivity (or constant) in this class of supramolecular hydrogen
bonded materials enhances proton conduction. The apparent disparity is attributed to the fact that
proton transport in these materials is determined by the primary structural dynamics while the static
dielectric permittivity arises from the additivity of dipole moments comprising the supramolecular
chains with dynamics at much longer characteristic timescales.
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4.4 Conclusions

Mesoscale hydrogen-bonded (H-bonded) networks may exist in liquids which are capable of
forming two or more intermolecular hydrogen bonds per molecule.[8, 333, 270, 364] This
mesoscale organization can drastically alter the physicochemical properties of these liquids. The
hydrogen bonded networks in water, phosphoric acid, and liquid imidazoles, for example, are
believed to be critical to proton conduction in materials which contain these molecules, including
polymeric proton exchange membranes in fuel cells as well as biological membranes.[64, 65, 321,
308, 302, 310] In addition, in many H-bonded networks the organization of molecular dipoles
occurs in such a way that the network itself has an overall supramolecular dipole moment derived
from the additivity of the molecular dipole moments. The reorientation of these supramolecular
dipoles produces a slow, Debye-like dielectric relaxation, the strength of which is strongly
dependent on the relative ratio of parallel versus antiparallel orientation of molecular dipoles within
the network. The intrinsic proton conductivity of liquid imidazoles coupled with their linear-chain
type H-bond networks provides a new and unique opportunity to probe the influence of mesoscale
organization on proton transport in hydrogen-bonded liquids.[68] The formation of extended linear
chains enables the analysis of supramolecular dynamics by models originally developed to describe
the dynamics of polymers. For instance, by applying the Rouse model, an average chain length may
be estimated as, N = (!�∕!Debye)1∕2, where !� is the structural relaxation rate and !Debye is the
rate of the slow, Debye-like relaxation.[318]

In mixtures of 2-ethyl-4-methylimidazole with low concentrations of levulinic acid [LA], the
rate of the slow, Debye-like relaxation is rapidly increased until it coincides with the structural,
�-relaxation at only 2.5mol% levulinic acid. This merging of the relaxation rates, in view of the
Rouse model estimates of the average chain length, indicates a disruption of the supramolecular
H-bonded chains over the concentration range from 0 to 2.5mol% LA. Fourier transform infrared
spectroscopy measurements of the “association” band, a sensitive reporter of the H-bond network,
supports this interpretation. A comparison with the hydrogen-bonding, but not proton-donating
butyramide as the diluent reveals the important role of the proton-donating ability to the disruption
of the H-bonded chains. If the fast structure diffusion of protons along the hydrogen-bond network
is the dominant mechanism contributing to the overall proton conductivity, it is expected that such
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a significant alteration in the network as caused by the addition of such small amounts of levulinic
acid would reduce the dc ionic conductivity. However, at all levulinic acid concentrations a steady
increase in dc ionic conductivity is observed. We also highlight the importance of antiparallel
and parallel orientations of linear supramolecular H-bonded imidazole chains to the measured
static dielectric permittivities. The high static dielectric permittivity of imidazole is often cited
as contributing to its high intrinsic proton conductivities by stabilizing the imidazolium cations.
However, the static dielectric permittivity is strongly temperature dependent, passing through a
minimum at 280K, and can be influenced by addition of butyramide without any apparent effect
on the dc ionic conductivity. This indicates that the measured static permittivity values may not
actually be assisting in the formation of protonated imidazoles due to their supramolecular origin.
These results provide new insight into the organization and dynamics of the mesoscale hydrogen-
bonded network of liquid imidazoles and their influence of charge transport. This insight will be
useful in the future design of ion conducting liquids and furthers our understanding of the nature
of mesoscale organization and dynamics in general.

Disruption of imidazole chains: The detailed study of levulinic acid concentration has only been
performed for 2-ethyl-4-methylimidazole. Other imidazoles, 4-methylimidazole and imidazole,
have higher room temperature proton conductivities. This is a potential indication of a more
substantial contribution from a structure diffusion-type proton transport mechanism in these
systems. Future studies on the influence of acid concentration on dc ionic conductivity of other
imidazoles may reveal an initial drop in dc ionic conductivity not found for 2E4MIm. This could
indicate the contribution of the structure diffusion mechanism in these imidazoles. We attribute the
disruption of the H-bonded chains to the proton-donating abilities of the levulinic acid. However,
we have not directly measured the transfer of protons from levulinic acid to imidazole. A potentially
interesting future work would make a more detailed study of the influence of additive pKa on the
concentration dependence of the disruption of the H-bonded chains.

Temperature-dependent supramolecular organization of neat imidazoles: This work represents
only a first step to understanding the unusual temperature dependence of the supramolecular
organization of neat imidazoles. We have demonstrated that imidazoles have stark differences
in their organization and dynamics compared to monohydroxy alcohols. The exact mechanism
contributing to the antiparallel orientation of imidazole dipoles has not been conclusively found.
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Using mixtures to elucidate this mechanism is difficult given the additional complexity added by
the influence of additive interactions and motion to the dielectric spectra. Still, further diluent
studies, especially with diluents capable of interacting with imidazole through �-� stacking may
be helpful. Future studies with new imidazoles with wider varying chemical structures may also
be helpful in elucidating this mechanism. A challenge in this respect is finding imidazoles with
substituents which allow it to be supercooled without crystallization. Imidazoles with extended
alkyl chains substituted at the 2 and 4 position, similar to monohydroxy alcohols, are a promising
direction and can be synthesized with current procedures.[365, 7] These materials will need to be
capable of super-cooling while avoiding crystallization to allow for studies over the experimentally
relevant frequency range, as was possible for the 4-methyl and 2-ethyl-4-methylimidazoles of the
current study.
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Chapter 5

Conclusions

The aim of this dissertation is to contribute to a fundamental understanding of the influence of
mesoscale organization and dynamics on the physical and chemical properties of structured liquids.
To accomplish this objective, we have focused on two case studies: (i) ionic liquids and (ii)
imidazoles. At the outset, we highlighted several fundamental scientific questions to which we
sought answers. We now return to these questions and supply the answers as informed by our
studies.

1. How do the chemical structures of ionic liquids alter organization and dynamics at the

mesoscale?

We have demonstrated the emergence of slow mesoscale aggregate relaxation dynamics
in the dielectric and dynamic mechanical spectra of long alkyl chain, solvophobically
aggregating ILs. Additionally, in quaternary phosphonium ionic liquids it was found that the
formation of long-lived mesoscale aggregates is not simply a function of the volume fraction
of non-polar groups, as often believed, but depends more subtly on the chemical structure of
the cation and its ability to form strong coulombic interactions in the polar ionic phase.
These results can found in the following publications:
(i) Cosby, T., Vicars, Z., Wang, Y., and Sangoro, J., Dynamic-Mechanical and Dielectric
Evidence of Long-lived Mesoscale Organization in Ionic Liquids. Journal of Physical

Chemistry Letters, 8(15), 3544-3548, 2017.
(ii) Cosby T., Vicars Z., Heres M., Tsunashima, K. Sangoro J., Dynamic and Structural
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Evidence of Mesoscopic Aggregation in Phosphonium Ionic Liquids. The Journal of

Chemical Physics, 148, 193815, 2018.
(iii) Cosby T., Vicars Z., Mapesa, E., Tsunashima, K. Sangoro J., Charge Transport and
Dipolar Relaxations in Phosphonium-based Ionic Liquids. The Journal of Chemical Physics,
147, 234504, 2017.

2. In turn, how do changes to the mesoscale organization and dynamics alter the physical and

chemical properties of ionic liquids?

The existence of the slow mesoscale aggregate dynamics in the dielectric and dynamic
mechanical spectra were demonstrated to increase the static dielectric permittivities and zero-
shear viscosities, respectively.
These results can found in the following publications:
(i) Cosby, T., Vicars, Z., Wang, Y., and Sangoro, J., Dynamic-Mechanical and Dielectric
Evidence of Long-lived Mesoscale Organization in Ionic Liquids. Journal of Physical

Chemistry Letters, 8(15), 3544-3548, 2017.
(ii) Cosby T., Vicars Z., Heres M., Tsunashima, K. Sangoro J., Dynamic and Structural
Evidence of Mesoscopic Aggregation in Phosphonium Ionic Liquids. The Journal of

Chemical Physics, 148, 193815, 2018.

3. What design strategies be formulated which allow the physicochemical properties of ionic

liquids to be tuned via control of mesoscale aggregate morphology and dynamics?

Binary ionic liquid mixtures can be utilized to provide composition-dependent control of
the mesoscale aggregate morphology and dynamics. By mixing the aggregating 1-octyl-
3-methylimidazolium tetrafluoroborate with non-aggregating 1-ethyl-3-methylimidazolium
tetrafluoroborate, the mesoscale aggregate morphologies are altered from bincontinuous to
isolated spheres. As a result, the dielectric strength of the mesoscale aggregate relaxation
is significantly increased resulting in a 100% increase in the static dielectric permittivity
versus the neat IL constituents.
These results are found in a to be submitted manuscript, authors Tyler Cosby, Utkarsh
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Kapoor, Jindal Shah, and Joshua Sangoro. The manuscript constitutes Chapter 3.3.

4. How do temperature, chemical structure, and acid concentration influence the size and

dynamics of mesoscale hydrogen-bonded chains in liquid imidazoles?

The addition of minute amounts of levulinic acid is found to disrupt the hydrogen-bonded
chains of 2-ethyl-4-methylimidazole. In neat imdidazoles, there exists a competition between
parallel and antiparallel alignment of molecular dipoles, as evidenced by the temperature
dependence of static dielectric permittivity. The origin of the antiparallel alignment is
tentatively attributed to a tendency for neighboring hydrogen-bonded chains to orient in
opposite directions, perhaps aided by the ability for imidazole to participate in �-bonding.
These results can found in the following publications:
(i) Cosby, T., Holt, A., Griffin, P. J., Wang, Y. Y., and Sangoro, J., Proton Transport in
Imidazoles: Unraveling the Role of Supramolecular Structure. Journal of Physical Chemistry
Letters, 6(19), 3961-3965, 2015.
(ii) Cosby T., Vicars Z., Heres M., Sangoro J., Associating Imidazoles: Elucidating the
Correlation between the Static Dielectric Permittivity and Proton Conductivity. Physical

Review Letters, 120, 136001, 2018.

5. What is the influence of the size and dynamics of mesoscale hydrogen-bonded chains on

proton transport in liquid imidazoles?

The loss of the hydrogen-bonded chains in 2-ethyl-4-methylimdazole correlates with an
increase in the dc ionic conductivity and a reduction in the static dielectric permittivity. The
addition of the non-proton donating butyramide increases the static dielectric permittivity,
attributed to a change in the antiparallel alignment of imidazole chains, while dc ionic
conductivity is unaffected. Together, these results call into question the inference that
hydrogen-bonded chains should influence dc ionic conductivity either by fast proton transport
via structure diffusion or by their influence on the static dielectric permitttivity.
These results can found in the following publications:
(i) Cosby, T., Holt, A., Griffin, P. J., Wang, Y. Y., and Sangoro, J., Proton Transport in
Imidazoles: Unraveling the Role of Supramolecular Structure. Journal of Physical Chemistry
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Letters, 6(19), 3961-3965, 2015.
(ii) Cosby T., Vicars Z., Heres M., Sangoro J., Associating Imidazoles: Elucidating the
Correlation between the Static Dielectric Permittivity and Proton Conductivity. Physical

Review Letters, 120, 136001, 2018.

5.1 Future Outlook

The newly discovered experimental probes of mesoscale dynamics in ionic liquids provide an
exciting new ability to investigate the interplay of chemical structure, mesoscale aggregate
morphology, and mesoscale aggregate dynamics in determining the resultant physical and chemical
properties of ionic liquids. These studies on neat imidazolium and phosphonium-based ILs and
simple binary IL mixtures are a first step in this direction. The vast number of potential unique
chemical structures alongside the ability to tune mesoscale morphology by mixing two or more
ILs makes this an exciting direction. It is expected that by using these approaches to further alter
the aggregate morphology and dynamics, new abilities to tune the static dielectric permittivity, dc
ionic conductivity, and zero-shear viscosity will be realized.

In the imidazole studies, we question the influence of mesoscale hydrogen-bonded chains on
proton transport in liquid imidazoles. We also highlighted the unusual temperature-dependent
antiparallel alignment of adjacent chains. This is an unexpected departure from the findings
of hydrogen-bonded networks in the related monohydroxy alcohols and points to an additional
level of previously unrealized organization in imidazoles. Further work with a wider variety of
chemical structures and diluents will hopefully shed more light on this mesoscale organization and
its influence on static dielectric permittivity.
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