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ABSTRACT 

Understanding the role of bird baths and shared water sources in the ecology and 

epidemiology of the deadly protozoan parasite Trichomonas gallinae is crucial to identify 

mitigation strategies for population-limiting epidemics. We evaluated multiple factors 

that influence the transmission of this pathogen including characterizing persistence in 

simulated bird baths, evaluating potential effects persistence may have on virulence, 

and investigating the molecular epidemiology of a concurrent outbreak. Trichomonads 

were thought to be extremely labile in the environment since their discovery over 200 

years ago to 5 years ago when maximum recorded persistence in water was 20 min. 

We show that trichomonads persist up to 48 hr in simulated bird baths at 37°C with 

organic material (OM). We also measured persistence in a variety of conditions 

including, with and without organic material (4 and 16 hr, respectively), with artificially 

decreased dissolved oxygen (30 hr), and with exposure to UV light (4hr). Moreover, 

when cytopathic effect (CPE) of post-persistence trichomonads on cultured avian cells 

was compared to non-persistence control isolates, virulence changed significantly by 

treatment or persistence time. Post-UV treated persistence broad-winged hawk isolate 

destroyed significantly more of the cell monolayer than those from the OM treatment 

illustrating that persistence type can alter virulence. Currently, live animal or cell culture 

infection trials are the only tool to define virulence of an isolate; however, the more we 

understand the phylogenetics and epidemiology of Trichomonas spp, the better we can 

contribute phenotypic differences to genetic data. Using molecular techniques, we 

showed that circulating genotypes in subclinical hunter-killed doves differ from birds with 

lesions consistent with trichomonosis. Therefore, hunter-killed doves may not be the 

source of deadly strains circulating in other sympatric species. Combining laboratory 

work with the parasite, assessment of virulence on cell culture, and molecular 

techniques we have shown that the role of bird baths and water sources in transmission 

cannot be underestimated when addressing outbreaks and that molecular information 

will continue to improve our effects to mitigate the disease in wild birds. 
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Abstract  

Trichomonosis, also known as frounce or canker, is a historic disease that continues to 

have significant negative impacts on individuals and wild bird populations around the 

world. Since the discovery of the causative agent of trichomonosis, Trichomonas 

gallinae, in the late 1800s many characteristics of the protozoan parasite have been 

well established. These eukaryotic cells are approximately 5 by 10 μm, have four 

anterior flagella and an undulating membrane termed recurrent flagellum. Like other 

members of Trichomonidae, mitochondria have been replaced with hydrogenosomes, 

which are better suited to produce energy in microaerophilic environments in which the 

organisms thrive, such as the luminal spaces of hollow organs in animals. The primary 

host of Trichomonas gallinae is a Columbiform, the rock pigeon (Columba livia), 

although members of other Orders including Accipitriformes and Passeriformes may 

also be naturally infected. Infections range from asymptomatic cases to ingluvitis, 

caseous necrosis and death. Pathogenicity depends on the “inherent” virulence of the 

individual strain of T. gallinae, the avian host species and the host’s previous exposure 

to Trichomonas spp. Birds are exposed to trichomonads via crop feeding from infected 

parents, billing during courtship and mating, contamination of shared food and water 

sources, and from eating infected prey. Deadly outbreaks have negatively impacted wild 

bird populations throughout written history. Historically columbiforms were the most 

commonly affected, but in recent years, beginning in the 2000s, passerines have faced 

large-scale population declines. From 2007-2009 the breeding population of 

greenfinches (Carduelis chloris), common garden residents in the United Kingdom, 

experienced a 35% decline. Similar population effects were also documented in the 

Canadian Maritime Provinces in the purple finch (Haemorhous purpureus) in 2007. 

These more recent outbreaks have raised questions of transmission dynamics of T. 

gallinae, most importantly, on the mechanism of spread from the typical carrier, a 

columbiform, to the passerine species that have become more recently affected. Many 

researchers have implicated contaminated bird baths as a source of trichomonads for 

backyard songbirds. There have been few studies on the persistence of T. gallinae in 
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the environment, which established that trichomonads can survive in water for short 

periods of time, i.e. 20 min, but information is lacking on the persistence capabilities of 

T. gallinae which could bolster support for, or offer an evidential challenge to, the theory 

that bird baths serve as a nidus for transmission.  

Literature Review 

A disease of trained falcons, known as canker or frounce, was described by falconers 

as early as the 1500 and 1600s as a potentially deadly illness “originating in the mouth” 

(Stabler, 1954). Trichomonas gallinae, the causative protozoan parasitic agent of this 

disease, was recovered from the upper digestive tract of a pigeon squab in Italy and first 

described by Rivolta in 1878. Rivolta named the parasite Cercomonas gallinae. Rivolta 

also described, and separately named, a liver form of the flagellate Cercomonas 

hepaticum, which today is known to be the same species as Trichomonas gallinae. In 

1880 Rivolta and Delprato also described a fecal flagellate that we now believe was 

Tetratrichomonas gallianarium, a related but non-pathogenic intestinal protozoa 

(Stabler, 1947).  

Stabler described the morphology of Trichomonas gallinae as a mostly pear-shaped 

organism with four anterior flagella arising from a basal granule, an undulating 

membrane of ⅔ to ¾ the length of the organism, and an axostyle that protruded 

posteriorly for “a short distance”. He measured T. gallinae between 6.2-18.9 μm by 2.3-

8.5 μm, with an average size of 10.5 μm by 5.2 μm (Stabler, 1947). As newer 

technology became available, Scanning Electron Microscopy (SEM) revealed that 

Trichomonas gallinae are pleomorphic and can present as piriform, ovoidal or spherical. 

Four anterior flagella of unequal length and an undulating membrane adherent to the 

cell for the majority of its length were confirmed. An internal axostyle, present for 

structural integrity, protrudes from the organism’s posterior end for about ⅓ the length of 

the cell. There is also a spherical form characterized by flagellar retraction and 

disappearance of the undulating membrane, known as the pseudocyst. The pseudocyst 

is theorized to protect the trichomonad in unfavorable conditions, including desiccation, 
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limiting temperatures and changes in pH or oxygen content; however, this pseudocyst 

form may also be seen in “normal” culture conditions (Tasca and De Carli, 2003). 

Trichomonads lack mitochondria, which typically produce energy in eukaryotic cells in 

the form of ATP (adenosine triphosphate) by utilizing oxygen as the final proton 

acceptor. However, in organisms that thrive in oxygen-restricted environments, such as 

trichomonads, mitochondria have undergone an evolution of reductive alterations of 

content and function.  These evolutional pressures have resulted in Type 4 

Mitochondrial-related organelles called hydrogensosomes, which create ATP and 

hydrogen gas through fermentation (Makiuchi and Nozaki, 2014). Accordingly, 

trichomonads are microaerophilic meaning they prefer conditions with very low oxygen 

concentrations (Amin et al., 2014b). Trichomonads can be cultured in vitro in different 

growth media (Ahmed, 2014; Clark and Diamond, 2002; Cover et al., 1994; Diamond, 

1954; Visvesvara and Garcia, 2002), with Hollander’s Fluid shown to be the best media 

to maximize rate and extent of growth (Amin et al., 2010; Clark and Diamond, 2002; 

Smith, 1983). 

Birds are the only natural hosts of Trichomonas gallinae because they  

can “acquire[ ] the infection without intervention of experimental procedures, even 

though the acquisition was accomplished under conditions of confinement or 

domestication” (Stabler, 1954). In particular the rock pigeon, Columba livia, is the 

primary host of Trichomonas gallinae and has been credited with its dispersal around 

the globe. By 1954 T. gallinae had been found naturally in multiple columbid species, 

turkeys, chickens, Java sparrows, peregrine falcons and sea gulls, and experimentally 

in species including swallows, goldfinches and song sparrows (Stabler, 1954). 

Forrester, et al. compiled a comprehensive list of avian hosts, location, wild or captive 

status, number of individuals affected and authors of each report of Trichomonas 

gallinae (2008). Briefly, naturally occurring T. gallinae infection has been described in 

19 columbiforms, 26 species of falconiforms, and 9 species of strigiforms. For captive 
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and experimental infections T. gallinae has been documented in psittaciforms, 

passeriforms, galliforms, gruiforms, and anseriforms (Forrester et al., 2008).  

Young birds are exposed to T. gallinae through crop milk from infected parents, and 

adults are exposed through contaminated feed, prey, and/or water sources (Stabler, 

1947). Trichomonads cause gross caseous necrosis consisting of purulent exudate 

containing mostly heterophils in the oral cavity, pharynx, esophagus (Amin et al., 

2014b). Trichomonads are capable of penetrating the eye, head sinuses and brain. 

They can also cause necrosis in other organ systems including the liver (most 

commonly), the lung, air sacs, heart, pericardium, and pancreas, which are presumably 

accessed by the bloodstream (Amin et al., 2014b). Histopathologic changes include 

edema, congestion of blood vessels, and infiltration of the oropharyngeal mucosa with 

mononuclear cells (El-Khatam et al., 2016). Focal areas of necrosis, eosinophilic 

infiltration, and bile duct epithelial hyperplasia have been described in the liver 

(Anderson et al., 2010; El-Khatam et al., 2016). Clinical signs of infection include matted 

feathers around the head due to dysphagia and regurgitation, depression, emaciation 

and even death (Anderson et al., 2010). Strains of Trichomonas spp. are known to vary 

greatly in pathogenicity with a spectrum of various levels of intermediate virulence 

(Kreier, 1992). Virulence also varies due to host species and the host’s previous 

exposure status to Trichomonas spp. Protection was experimentally conferred to 

pigeons by first exposing them to a moderate to highly virulent strain and subsequently 

challenging them with a different virulent strain, which suggests the role of an adaptive 

humoral antibody response (Stabler, 1951). Some strains appear “inherently avirulent” 

and are unable to cause pathology in any host/condition (Kreier, 1992). 

A definitive diagnosis of trichomonosis cannot be made based on clinical signs alone as 

there are other diseases that produce similar oral lesions including salmonellosis, fungal 

infection (e.g. aspergillosis or candidiasis), hypervitaminosis A, or avian poxviruses. 

Histopathologic findings in internal organs may be confused with herpesvirus, 

paramyxovirus, or adenovirus or other diseases which cause granulomas including 
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tuberculosis, salmonellosis, mycoplasmosis, and coligranuloma (Amin et al., 2014b). 

Definitive diagnosis can be made through laboratory and/or molecular identification of 

the organism in addition to clinical signs. Wet mounts, prepared with oral cavity swabs 

and saline, can be viewed under light microscopy immediately; however, this method 

has a low sensitivity and cannot differentiate strains of Trichomonas spp. (Bunbury et 

al., 2005). Culture increases sensitivity by allowing trichomonads to replicate so that 

likelihood of finding motile trichomonads under direct light microscopy increases. Media 

can be made inexpensively in lab, including Diamond’s media and Hollander fluid, or 

purchased in a Trichomonas foetus InPouch (BioMed Diagnostics, White City, OR, 

USA) (Amin et al., 2010; Diamond, 1954; Smith, 1983). The latter method has the 

benefit of being easier to store and carry into the field but is more expensive than 

laboratory prepared media. Molecular identification can be made from live or dead 

trichomonads in culture or on swabs and also from tissue samples of affected oral 

mucosa or affected organs. Multiple DNA targets, including the internal transcribed 

spacer region (ITS), 18S rRNA, and iron hydrogenase (FeHyd), have proven effective 

for identifying trichomonads and differentiating strain types (Felleisen, 1997; Gerhold et 

al., 2008; Lawson et al., 2011a). 

Molecular techniques allow improved detection of trichomonads in low amounts due to 

the sensitivity of polymerase chain reaction (PCR) to identify parasite DNA. Using 

molecular data further allows assessment of phylogenetic relationships among similar 

organisms to infer geographic and host origin and movement. Most investigations use 

ITS and 18S rRNA to discriminate trichomonad species and to separate lineages within 

T. gallinae (Ganas et al., 2014). Gene targets are chosen based on their conservation 

and divergence in the host. In general, non-coding regions, including ITS1 and 2, are 

under less conservational pressure than regions that code for proteins. As normal 

background mutations occur in DNA, mutations in regions that code for genes may 

improve or inhibit gene function. If a mutation occurs in a coding region that alters gene 

function that negatively affects host fitness, the mutation will not be passed to offspring 

nor perpetuated in the population. However, mutations in the non-coding regions are not 
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closely tied to function and therefore carry no advantageous or deleterious effects on 

the organism and can be introduced into the population genetic code. In this way, more 

conserved regions help identify organisms and noncoding regions allow a finer scale 

differentiation within species. Genes found in many organisms, such 18S, can be used 

for diagnosis of protozoan infections including Toxoplasma gondii (Cooper et al., 2016) 

and T. vaginalis (Mayta et al., 2000), and characterizing new species including 

Tritrichomonas spp. (Walden et al., 2013). However, 18S is not the preferred tool to 

distinguish trichomonads beyond the species level (e.g. differentiating T. gallinae, T. 

vaginalis, and T. foetus). In contrast to the above designation, the non-coding ITS 

region has been accepted as a proven tool to separate avian trichomonads beyond the 

species level into 2 major groups the T. gallinae clade and T. vaginalis-like clade based 

on ITS genotyping (Gerhold et al., 2008). The first genetic analyses of trichomonads 

targeted the 5.8S rRNA gene and the flanking internal transcribed spacer regions 1 and 

2 (Felleisen, 1997). This assay described by Felleisen has also been adapted to 

characterize related trichomonads including the economically important cause of 

abortion and infertility in cattle, Tritrichomonas foetus (Girard et al., 2014b; Grahn et al., 

2005). As another exception to the general rule, the FeHyd coding region produces 

finer-scale separations of isolates and improves phylogenetic relationships in 

amitochondrial protists (Chi et al., 2013). FeHyd is a single copy gene known as a 

“house-keeping” gene which means that the gene is required for basic cellular function 

(Ganas et al., 2014) and is useful for identifying genotypes and strains within species 

(Lawson et al., 2011a). Restriction fragment length polymorphism (RFLP) and random 

amplified polymorphic DNA (RAPD), which involve digestion of an amplified DNA target 

by specific restriction enzymes, have been suggested to allow investigation of more 

than single, individual regions of DNA at a time (Sansano-Maestre et al., 2016). A 

recent study proposed a robust multi-locus genotyping with 16 loci, including ITS and 

FeHyd, which has the ability to differentiate between strains that at first appeared 

identical (Abdulwahed, unpublished). Molecular techniques have been able to describe 

more recent strains, but without archived tissues cannot be applied to historic mortality 

events. 
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Reports of trichomonosis outbreaks have been common in columbids and raptors since 

Trichomonas gallinae was first described. Mourning doves (Zenaida macroura) across 

the US have been historically plagued by epizootics (Schulz, 2005; Stabler, 1951a). 

Although it is difficult to estimate mortality numbers or percentages of wild populations, 

a 1950-51 outbreak in Alabama had estimated mortality of 4,000 individuals in one 

county alone and an estimated 25% decrease in population in another county (Haugen, 

1952). Trichomonas gallinae is postulated to be a major contributing factor in the 

extinction of the passenger pigeon (Ectopistes migratorius) (Haugen, 1952) and is a 

leading concern in the conservation of the endangered Mauritian pink pigeon 

(Nesoenas mayeri) (Swinnerton et al., 2005). In the 1990s Cooper’s hawk nestlings 

(Accipiter cooperii) in Arizona had a 41% mortality rate in urban areas. Larger 

populations of pigeons in urban areas are thought to drive the connection of 

Trichomonas-related deaths in young birds as the hawks’ diets consist of a greater 

proportion of pigeons (Boal et al., 1998). Adult Cooper’s hawks had a lower prevalence 

of trichomonosis, which could be linked to better immune defenses in adults or oral pH 

differences in adults versus nestlings (Urban and Mannan, 2014). 

The first documented cases in wild Passeriformes began in 2002, when a small 

outbreak affected house finches (Carpodacus mexicanus) and house sparrows (Passer 

domesticus) in Kentucky, USA (Forrester et al., 2008). In 2005, two common European 

garden birds, greenfinches (Carduelis chloris) and chaffinches (Fringilla coelebs), 

experienced population declines, including an estimated 35% decrease in the breeding 

bird population of greenfinches (Lawson et al., 2012). The UK outbreak was attributed 

to a clonal strain in ITS group A (Lawson et al., 2011a). An outbreak in the Canadian 

Maritimes beginning in 2007 adversely affected purple finches (Haemorhous purpureus) 

and American goldfinches (Spinus tristis) was attributed to the same clonal UK strain 

subtyped as A1 with FeHyd (Forzán et al., 2010). Both the UK and Canadian outbreaks 

were specifically associated with backyard bird feeding stations. 
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Trichomonosis also continues to negatively impact columbiforms, particularly Pacific 

Coast band-tailed pigeons (Patagioenas fasciata), as evidenced by ongoing mortality 

events linked to shared water sources in southern California. These outbreaks have 

been exacerbated by drought conditions in the region which concentrate high numbers 

of individuals near scarce water resources (Rogers et al., 2016). A new Trichomonas 

species, Trichomonas stableri, (formerly ITS Group K) was described in the Pacific 

Coast BTPI (Girard et al., 2014a). Using molecular techniques, we investigated 

trichomonads cultured from subclinical hunter-killed doves and lesion tissue samples 

from 16 species of affected birds. This opportunity to compare and contrast isolates 

from overlapping temporal and spatial ranges gave us an ideal chance to compare 

associated strains with subclinical and clinical cases in relation to geography, avian host 

source, and time. 

As illustrated, trichomonosis outbreaks are capable of causing significant mortality 

events in birds (Forzán et al., 2010; Lawson et al., 2011b; Rogers et al., 2016). Studies 

have implicated water troughs in domesticated birds, and bird baths and feeders as a 

source of infection for passerines (Anderson et al., 2009; Lawson et al., 2012; Schulz et 

al., 2005). However, it has not been sufficiently proven to what extent T. gallinae can 

persist in water past 20 min. Previous persistence investigations of T. gallinae in 

contaminated water and feed sources found that some trichomonad isolates could 

persist in distilled water combined with NaCl and in grain extracts for days and that the 

parasite was negatively affected by lower temperatures of 10°C and 25°C (Kocan, 

1969). Gerhold, et al. (2013) reported that T. gallinae isolates survived up to 20 min (the 

final sampling point in the study) in chlorinated or distilled water with added organic 

material and in distilled water without organic material; however, they documented no 

persistence of isolates in chlorinated water without organic material.  

Establishing the capability of trichomonads to persist in water longer than 20 min will 

shift our understanding of transmission. Instead of requiring that birds overlap 

temporally in their use of bird baths, birds visiting water sources could be infected 
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hours, or possibly days, after contamination. Further research is also needed on other 

factors in water such as salinity, pH, temperature and UV light exposure. Exploring 

these factors, and the mechanisms with which organic material increases trichomonad 

persistence could lead to practical information to distribute to wildlife biologists and 

home owners to make changes with bird baths to help limit the severity trichomonosis 

outbreaks. 

Certain laboratory procedures have been shown to alter the virulence of isolates of 

Trichomonas gallinae. For this reason, it is necessary to assess any changes simulated 

environmental conditions, such as persistence in water, may have on their virulence. 

Persistence alone does not indicate the ability of birds to be become infected with 

virulent trichomonads through contaminated water. Early research on Trichomonas 

gallinae showed that the virulence of an isolate could be decreased after serial passage 

through abiotic media (Honigberg et al., 1970). However, when the researchers then 

passed those isolates back through live birds, the isolates regained their ability to cause 

disease. Honigberg, et al. also showed that long-term cryopreservation with DMSO 

preserved pathogenicity for up to 7 years and that maintenance of virulent trichomonads 

in avian cell culture, but not in live mice, could retain virulence (1970).  

Research has failed to establish a causative relationship between molecular data and 

virulence of an isolate (Anderson et al., 2009; Chi et al., 2013; Ecco et al., 2012; 

Gerhold et al., 2009b; Grabensteiner et al., 2010) leaving the only reliable measure of 

virulence as the ability of that isolate to produce disease in a live bird (Honigberg et al., 

1971; Stabler and Kihara, 1954; Stabler, 1948a, b, 1951; Stabler and Braun, 1975; 

Stabler and Engley, 1946). Researchers tried to apply methods that worked to inform 

virulence capability in Trichomonas vaginalis, including assessing hemolytic potential 

(Gerhold et al., 2009b) and looking for DNA-viruses (Gerhold et al., 2009a), neither of 

which was successful.  Early evaluations of virulence used a bioassay method in mice 

by determining if subcutaneously injected trichomonads could produce lesions (Amin et 

al., 2014a) or live bird infection trials (Stabler and Engley, 1946). Due to ethical reasons, 
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refining live animal models by using in vitro methods is preferred when possible. Cell 

culture has been confirmed as a suitable model to assess virulence in trichomonads 

(Silva Filho and de Souza, 1988). Many cells lines have been used to assess the 

virulence of trichomonads in vitro including trypsin-dispersed cells (Honigburg, et al., 

1964; Kulda and Honigberg, 1969) and cells grown on culture plates (Alderete and 

Pearlman, 1984; Amin et al., 2012a). An avian fibroblast cell line (QT35) was used as a 

comparative cell type to the epithelial lining of the pharynx, a cell target for T. gallinae 

(Amin et al., 2012a). Liver cells have also been used as an appropriate representative 

of the most affected internal origin of T. gallinae (Amin et al., 2012a). Using avirulent 

and virulent isolates purchased from a cell repository (ATCC), Amin, et al. showed the 

virulent isolates caused more damage than the avirulent or control isolates (2012a). 

Cytopathic effect has been measured both qualitatively, on a visual scale, and 

quantitatively by cell staining methods including crystal violet, CellTitre 96 and trypan 

blue. A study on the virulence of pseudocysts used fluorescent stains to detect CPE 

(Pereira-Neves et al., 2012) and found CPE was greater for pseudocysts than the 

piriform T. vaginalis. There has been much debate over the mechanism of 

pathogenicity, namely adherence-mediated versus secreted substances but evidence 

has been provided to support both theories (Alderete and Pearlman, 1984; Amin et al., 

2012b; Gilbert et al., 2000; Gould et al., 2017).  

The persistence of Trichomonas spp. in simulated environmental conditions remains 

mostly unexplored. Along with genetic characterization of circulating genotypes of T. 

gallinae, persistence, and virulence thereafter, we will give a more complete 

assessment of ongoing outbreaks. By filling this gap in knowledge we can suggest 

evidence-based strategies to decrease the spread of trichomonosis via bird baths. 
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CHAPTER II 
Trichomonas gallinae persistence in four water treatments 
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Abstract 

Trichomonas gallinae is a protozoan parasite commonly found in columbids, 

passerines, and several raptor species.  It is suspected that T. gallinae is spread 

between individuals and across species through shared water sources.  However, little 

research has been conducted regarding the persistence of T. gallinae in the 

environment.  To determine the persistence of T. gallinae in various communal water 

sources, we inoculated 1 x 106 trichomonads into 500 mL samples of distilled water, 

quarry water, bird bath water, and rain barrel water in two replicates. Aliquots of 0.5 mL 

were collected from each source at -1, 0, 15, 30, and 60 min; aliquots were incubated at 

37oC and examined for trichomonads by light microscopy for five consecutive days.  

Live trichomonads were observed in all samples and at all sampling times except prior 

to inoculation (-1 min).  The pH of water sources ranged from an average of 5.9 to 7.4 

post sampling.  Our findings indicate that T. gallinae can persist for up to 60 min in 

various water treatments and thus be infectious for birds drinking T. gallinae-

contaminated water. 
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Short Communication 

Trichomonas gallinae is a protozoan parasite that primarily infects birds of the orders 

Columbiformes (Kocan, 1969; Robinson et al., 2010; Stabler, 1954) and Passeriformes 

(Anderson et al., 2009; Robinson et al., 2010), as well as several raptor species (Ecco 

et al., 2012; Gerhold et al., 2008).  Avian trichomonosis, the disease caused by T. 

gallinae or T. stableri n. sp., usually manifests as lesions and caseous masses in the 

oral cavity and upper respiratory tract (Ecco et al., 2012; Girard et al., 2014a; Stabler, 

1954). Clinical infection causes difficulty with respiration and feeding, emaciation, and 

eventual death (Ecco et al., 2012).  Spread of the parasite is perpetuated by the feeding 

behavior of columbids, which involves adults providing nestlings with crop milk; 

therefore, T. gallinae is commonly transmitted through this route (Stabler, 1954).  Other 

behaviors such as billing, when mates touch and clasp each other’s bills, also result in 

transmission among adults (Gerhold et al., 2007).  Trichomonosis is considered the 

most important disease of the mourning dove (Zenaida macroura), a highly popular 

game species in the United States (Gerhold et al., 2007).   

Trichomonosis outbreaks in passerine species have been documented in Canada, 

Europe, and the United States, and have caused substantial declines in British finch 

populations since 2005 (Robinson et al., 2010).  All of these outbreaks have been 

associated with bird feeders and artificial water sources (e.g., bird baths).  However, few 

studies have examined the persistence of T. gallinae in water or food sources that may 

serve as a route of transmission (Gerhold et al., 2013; Kocan, 1969).  Kocan (1969) 

used varying concentrations of NaCl in distilled water at a pH of 6.5 and found that 

motility and survival of T. gallinae were greatest and of the longest duration in 

concentrations greater than or equal to 0.05% NaCl.  Gerhold et al. (2013) found that T. 

gallinae persists for variable periods of time (up to 20 min) in both distilled and 

chlorinated water that contains organic material, but it does not survive in clean, 

chlorinated water.  Organic material may include deciduous leaf litter, soil, and other 

vegetation.  Although the exact mechanism is unknown, it is suggested that the 
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presence of organic material in water sources such as bird baths or well water may 

provide sufficient nutrients to allow T. gallinae to persist in the environment (Gerhold et 

al., 2013).  Increased persistence in the presence of organic material may also be due 

to change in pH, dissolved oxygen, microorganisms or a combination of factors. Quarry 

water, bird bath water, and rain barrel water naturally contain organic material as it may 

inadvertently fall into open water sources or become suspended as water runs through 

contaminated rain gutters (in the case of the rain barrel).  Therefore, we hypothesized 

that T. gallinae would persist in the three water treatments with organic material for 

greater than 20 minutes.  We also wanted to evaluate the differences between these 

three water types, which would be expected to have varying particle sizes from smaller 

(in quarry and rain barrel water) to larger pieces of material (in bird bath water).  

Although distilled water contains no organic material, Gerhold et al. (2013) showed that 

T. gallinae can persist in distilled water. Accordingly, the objective of our study was to 

examine the persistence of T. gallinae in four water treatments from various sources 

(i.e., distilled water, quarry [i.e. pond] water, bird bath water, and rain barrel water). 

Two isolates of T. gallinae collected from a Cooper’s hawk and a rock pigeon were used 

for the experiment.  Individual plastic containers were filled with 500 mL of one of the 

four water treatments – distilled water, quarry water, bird bath water, and rain barrel 

water – and maintained at room temperature, approximately 23oC.  Two replicates of 

each water treatment were completed for each isolate, for a total of 16 plastic 

containers.  A hemocytometer was used to determine the desired inoculating 

concentration of trichomonads (1x106 trichomonads/mL), and each container was 

inoculated with 1x106 trichomonads (1 mL), which were immediately stirred using a 

plastic pipette.  One million trichomonads has been used as the dose for experimental 

oral infection as well as in previous persistence trials (Conti et al., 1985; Gerhold et al., 

2013). 

To evaluate the persistence of the trichomonad isolates in all four water treatments, 0.5 

mL aliquots were collected at four time points, including immediately following 
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inoculation (time 0), and at 15, 30, and 60 min post-inoculation.  One sample from each 

container was collected prior to inoculation to serve as negative controls (time = -1 min). 

Rather than measure pH at every time point, pH was measured only after all samples 

had been taken as it was assumed that pH after the organic material had been present 

for over 24 hr, and after the trichomonads had been added would be more 

representative of pH in natural conditions. Each 0.5 mL aliquot was collected from the 

center of the container at a depth of approximately 3 cm, and pipetted into a pre-labeled 

flask containing Diamond’s media (Diamond, 1983) with the following antibiotics and 

antifungals: 10% Penicillin/Streptomycin, 0.4% Kanamycin and Gentamycin and 1% 

Amphotericin B. All flasks were incubated at 37oC for five days.  Flasks were examined 

daily during the incubation period for the presence of live trichomonads using a light 

microscope.  As few as one motile trichomonad observed in a sample was considered a 

positive result.   

No trichomonads were detected in any of the water treatments prior to inoculation (-1 

min), illustrating that no water source initially contained any live trichomonads.  Both 

trichomonad isolates were detected during all sampling points (0, 15, 30, and 60 min) 

for all four water treatments post-inoculation (Table II-I).  The pH in each container 

varied by treatment water type: distilled water had a mean pH of 6.3, 95% CI [6.00, 

6.60], quarry water, 5.9, 95% CI [5.80, 5.97], bird bath, 7.4, 95%CI [7.10, 7.69], and rain 

water, 7.1, 95%CI [6.94, 7.21] (Table II-II).  However, there was no significant difference 

in persistence between water types with different isolates.   

Gerhold et al. (2013) found that T. gallinae is more likely to persist in distilled water 

containing organic material than in distilled water containing no organic material.  

Additionally, in that same study, T. gallinae persisted in distilled and chlorinated water 

containing organic material at varying times up to 20 min post-inoculation, but did not 

survive in clean, chlorinated water (Gerhold et al., 2013).  Organic material may provide 

a nutrient source for T. gallinae to persist in water for longer periods of time  
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Table II-I. Trichomonas gallinae persistence over time in various water treatments. 

 

Detectable growth was determined by light microscopy detection of at least one motile trichomonad. 

 

 Distilled water Quarry water Bird bath water Rain barrel water 

Sampling 

times 

(min) 

Isolate 1a Isolate 2b Isolate 1 Isolate 2 Isolate 1 Isolate 2 Isolate 1 Isolate 2 

Rep 

1 

Rep 

2 

Rep 

1 

Rep 

2 

Rep 

1 

Rep   

2 

Rep 

1 

Rep 

2 

Rep 

1 

Rep 

2 

Rep 

1 

Rep 

2 

Rep 

1 

Rep 

2 

Rep 

1 

Rep 

2 

-1 - - - - - - - - - - - - - - - - 

0 + + + + + + + + + + + + + + + + 

15 + + + + + + + + + + + + + + + + 

30 + + + + + + + + + + + + + + + + 

60 + + + + + + + + + + + + + + + + 

 

 

a Isolate 1 = Cooper’s hawk; b Isolate 2 = rock pigeon; c Rep = replication; d + = detectable growth; e - = no detectable growth.
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Table II-II. Water pH measurements. 

 

The pH of each container following final sample collection. 

pH Average 95% Confidence Interval 

Distilled water 6.3 6.00, 6.60 

Quarry water 5.89 5.80, 5.97 

Bird bath water 7.40 7.10, 7.69 

Rain barrel water 7.07 6.94, 7.21 
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(Gerhold et al., 2013).  Collection time points for the current study were extended up to 

60 min (-1, 0, 15, 30, 60 min) to further assess the duration of time that the protozoan 

parasite can persist in four types of water sources.  We measured a positive result by 

the presence of as few as one motile trichomonad; therefore, it is possible that low 

numbers of T. gallinae were present in the distilled water.  This result is of particular 

importance since it has been shown that experimental infection with one trichomonad 

can cause mortality in pigeons (Stabler and Kihara, 1954).   

Our results support past research that T. gallinae can persist in water for short periods 

of time, however, determining the persistence of T. gallinae for longer periods of time, 

for example, 75, 90, and 120 min, would provide additional information about the 

persistence of T. gallinae in common bird water sources, and may help determine the 

point at which T. gallinae is no longer viable in the environment.  Our study did not take 

into account variation between treatments such as salinity and dissolved oxygen, which 

may be important for the survival of T. gallinae in the environment.  Therefore, future 

research should account for these variables when evaluating trichomonad persistence 

in water, including various pH levels. Research focusing on a better understanding of 

the lifecycle of T. gallinae would provide biologists and wildlife managers with valuable 

insight on how to manage and prevent the spread of T. gallinae in wild bird populations.  
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CHAPTER III 
Persistence of two isolates of Trichomonas gallinae in simulated bird 

baths with and without organic material 
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Abstract 

Trichomonas gallinae, a well-documented protozoan parasite of avian hosts, has been 

implicated in major passerine mortality events recently and historically throughout the 

literature. It has been suggested that bird baths and artificial water sources could serve 

as a source of infection for naïve birds, however, trichomonad persistence in water is 

not well understood. We measured the persistence of T. gallinae isolates from two avian 

hosts in distilled water and distilled water with the addition of organic material. We 

inoculated plastic containers in a laboratory setting with 1 × 106 trichomonads and then 

sampled 500 μl from each container at various time points post-inoculation (0-20 hr).  

The 500 μl aliquots were inoculated into flasks with 5 ml of modified Diamond’s media at 

each time point. Flasks were incubated at 37 C and examined by light microscopy for 5 

consecutive days for the characteristic movements of live trichomonads. The maximum 

persistence was 16 hr with a Cooper’s hawk isolate in the organic material treatment, 

far longer than the 1 hr persistence previously reported. We show that T. gallinae 

isolates are capable of persisting for long periods of time in water, illustrating that bird 

baths may be validated as a potential source of transmission in epidemics. 
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Introduction 

Trichomonas gallinae is a protozoan parasite of birds first described by Rivolta in 1878 

(Stabler, 1947).  Cases of trichomonosis range from subclinical infection to 

oropharyngeal ulceration, caseous necrosis, visceral organ involvement, and death 

(Stabler, 1947). Young birds are exposed to T. gallinae through crop milk from infected 

parents, and adults are exposed through contaminated feed, prey, and/or water sources 

(Stabler, 1947). 

The natural host of T. gallinae is the rock pigeon (Columba livia), although other 

potential hosts include passerines, domestic and wild turkeys and chickens, and raptors 

(Lawson et al., 2011b; Stabler, 1954). An outbreak in the Canadian Maritimes beginning 

in 2007 adversely affected purple finches (Haemorhous purpureus) and American 

goldfinches (Spinus tristis); it was determined that the outbreak was associated with 

backyard bird feeding stations (Forzán et al., 2010). Additionally, trichomonosis caused 

large-scale mortality in Great Britain from 2007–2009 in finches, which resulted in a 

35% reduction of breeding greenfinches (Chloris chloris) (Lawson et al., 2012). These 

recent outbreaks have reemphasized the importance of fully understanding T. gallinae, 

especially its mode of spread to naïve, susceptible host species. Previous persistence 

investigations of T. gallinae in contaminated water and feed sources found that some 

trichomonad isolates could persist in distilled water combined with NaCl and in grain 

extracts for days and that the parasite was negatively affected by lower temperatures of 

10°C and 25°C (Kocan, 1969). Gerhold, et al. reported that T. gallinae isolates survived 

up to 20 min (the final sampling point in the study) in chlorinated or distilled water with 

added organic material and in distilled water without organic material; however, they 

documented no persistence of isolates in chlorinated water without organic material 

(Gerhold et al., 2013). We further established an increased persistence of up to 1 hr 

post-inoculation with 2 isolates in distilled, rain barrel, residential bird bath, and quarry 

(natural fresh water source) waters (Purple et al., 2015). 
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More research is needed to elucidate the extent of persistence and the ecology of 

Trichomonas in common backyard bird baths.  This report describes the persistence of 

2 isolates of T. gallinae in distilled water, with and without organic material, to simulate 

bird baths at various levels of sanitation and examines if these anthropogenic water 

sources may be a source of T. gallinae transmission.    

Materials and Methods  

Previously described T. gallinae isolates from two avian hosts included Cooper’s hawk 

(Accipiter cooperii) 4 from Arizona (COHA) and broad-winged hawk (Buteo platypterus) 

1 from Florida (BWHA) (Gerhold et al., 2008). Two treatments included (1) distilled 

water, and (2) distilled water with the addition of 15 g organic material. Organic material, 

including soil, deciduous leaf litter, and ground vegetation, was collected at a local 

natural area (latitude, 35.957369000; longitude, −83.869332000; elevation, 274 m) in 

Knoxville, TN.  

Rigid plastic containers were filled with 500 ml commercially obtained distilled water. 

The organic material containers received 15 g of organic material approximately 24 hr 

before inoculation. Isolates were stored in liquid nitrogen before use and cultured in 

trypticase-yeast extract-maltose (TYM) media as previously described (Diamond, 1983), 

with the following additions: 10% heat-inactivated horse serum, 10% penicillin/ 

streptomycin, 0.4% kanamycin and gentamicin, and 1% amphotericin B. Isolates were 

quantified with a hemocytometer and adjusted to a concentration of 1 x 106 

trichomonads/ml inoculating stock. Using the protocol from Gerhold et al. (Gerhold et 

al., 2013), each experimental container was then inoculated, within 2 hr of 

quantification, with 1 x 106 trichomonads from one of the respective isolates. Each 

combination of isolate and treatment was replicated in triplicate. The water was stirred 

immediately upon inoculation, and aliquots of 500 ml were collected from each 

container at six time points, ranging from 0 to 20 hr post-inoculation, and placed into 50-

ml-capacity sample flasks (Corning Inc., Corning, NY) containing 5 ml TYM media, 

modified as above. After the 20-hr sampling time point, flasks were placed into an 
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incubator at 37°C and read for five consecutive days by light microscopy. Flasks were 

examined for approximately 1 min (six reading frames) once a day. Negative control 

containers consisted of distilled water and organic material from the same sources as 

the experimental containers that were not inoculated with T. gallinae. Positive control 

flasks, to ensure the media would support growth of trichomonads if present, were 

obtained for each isolate by inoculating the flask with 500 ml of inoculating stock at time 

point 0 hr. All flasks were read until they became positive or, if they remained negative, 

until day 5.  

Statistical analysis 

ANOVA was conducted with SAS (Glimmix procedure, SAS Institute, Cary, NC, v. 9.4), 

and least squares means were compared with Tukey test to compare mean persistence 

by treatment and by isolate. An alpha level of ≤0.05 was used to detect significant 

differences.  

Results  

Isolates consistently had a higher mean persistence in the organic material treatment 

than in distilled water, but mean persistence in the two treatments was not significantly 

different for either isolate (Fig. III-I). The mean (±SD) persistence of the COHA isolate 

was 5.33 ± 1.15 hr in the distilled water and 9.33 ± 6.11 hr in the organic material 

treatment. The BWHA isolate persisted 1.5 ± 0.87 hr in the distilled water and 2.67 ± 

1.15 hr in the organic material treatment (Table III-I). COHA mean persistence was 

higher than the BWHA in both treatments. In distilled water the COHA persistence was 

significantly higher than the BWHA (F = 14.4, p = 0.02); however, this relationship was 

not significant in the organic material treatment (F= 3.5, p = 0.14). Flasks from negative 

control containers remained negative for 5 days, while positive control flasks became 

positive on day 1.  
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Figure III-I. Persistence of trichomonads. 
Persistence of Trichomonas gallinae isolates in simulated bird baths. Mean persistence of a T. 

gallinae isolate from a COHA and a BWHA was measured in either 500 mL distilled water (white 

bars) or 500 mL distilled water with 15 g of organic material (grey bars). Negative controls 

remained negative for 5 days and positive controls became positive on day 1. Error bars 

indicate standard deviation among 3 replications. *Indicates a significant difference in mean 

persistence (p=0.02). 
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Table III-I. Trichomonas gallinae persistence over time in two different water treatments using two isolates. 

 
Water treatments 

 
Distilled Organic material 

  

COHA BWHA 

 

COHA BWHA 

Sampling 

time (hr) 
Neg control Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Neg control Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 

0 - + + + + + + - + + + + + + 

0.5 - + + + + + + - + + + + + + 

2 - + + + + + - - + + + + + + 

4 - + + + - - - - + + + + - - 

6 - + + - - - - - + - - - - - 

8 - - - - - - - - + + - - - - 

16 - - - - - - - - - + - - - - 

18 - - - - - - - - - - - - - - 

20 - - - - - - - - - - - - - - 

 

One isolate from a Cooper’s hawk (COHA) and one from a Broad-winged hawk (BWHA) with gross lesions consistent with 

trichomonosis. Detectable growth, determined by light microscopy detection of at least one motile trichomonad. + = 

detectable growth; − = no detectable growth. Positive controls, to ensure media would support growth of trichomonads, 

were positive by day 1 for both isolates in each water treatment. Negative (neg) controls, to detect contamination in water 

treatments, were negative for all 5 days. 
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Discussion  

Trichomonosis outbreaks are capable of causing significant mortality events in birds 

(Forzán et al., 2010; Lawson et al., 2012). Studies have implicated bird baths and 

feeders as a source of infection for passerines (Anderson et al., 2009; Lawson et al., 

2012; Schulz et al., 2005), although it has not been sufficiently proven to what extent T. 

gallinae can persist in water past 1 hr. We demonstrated the trend for the addition of 

organic material to increase the persistence of T. gallinae, suggesting that contaminated 

bird baths may be a contributing factor in the transmission of T. gallinae during 

outbreaks. We established a new persistence endpoint of between 16 and 18 hr, which 

is substantially increased compared with previously demonstrated persistence of T. 

gallinae of 1 hr (Purple et al., 2015). We also noted a significant difference in 

persistence between two isolates in distilled water; however, the causes for interspecific 

differences are unknown. Investigators have discovered various genotypes of T. 

gallinae (Gerhold et al., 2008), and further work is needed to determine whether specific 

genotypes are associated with enhanced persistence. Both isolates in this experiment 

were from the T. gallinae clade; COHA4 has been further classified into the ITS 

sequence group A, and BWHA1 into group B (Gerhold et al., 2008). 

In this study both isolates were from raptors and from closely related internal 

transcribed spacer sequence groups. Future studies should include isolates from 

columbids and passerines as well as isolates from different related trichomonad 

species. Studies on the effect of temperature and ultraviolet light on T. gallinae will 

expand our knowledge of naturally occurring conditions in bird baths and how these 

factors may influence T. gallinae persistence.  
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CHAPTER IV 
Artificially decreased dissolved oxygen increases the persistence of 

Trichomonas gallinae in water  
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Abstract 

Water containing organic material (OM) has been shown to increase the persistence of 

the avian pathogenic protozoa, Trichomonas gallinae.  We hypothesized that the 

decrease in dissolved oxygen (DO) due to the microbes in the OM could increase 

persistence of these microaerophilic trichomonads. Using simulated birdbaths, we 

determined 1) the levels of DO in distilled water with various amounts of OM, 2) the 

concentration of the oxygen scavenging enzyme, Oxyrase®, needed to achieve the DO 

levels obtained in OM-contaminated water, and finally, 3) the persistence of two T. 

gallinae isolates in Oxyrase®-supplemented water.  An average 9.6% DO was obtained 

with 15 g OM in 500 ml of distilled water; whereas OM-free water had 86.2% DO.  The 

addition of 0.5% and 1.0% Oxyrase® to OM-free water yielded DO of 18.6% and 6.9%, 

respectively. Using 0.5% and 1.0% concentrations of Oxyrase®, we evaluated the 

persistence of two trichomonad isolates by inoculating ~1x106 trichomonads into 500 ml 

distilled water in triplicate.  At various time-points, 0.5 ml aliquots of trichomonad-

inoculated water were transferred into Hollander Fluid media, incubated at 37°C, and 

read by light microscopy every other day for 5 days. Utilizing 1% Oxyrase®, both of our 

isolates persisted to our final sampling time point (30 hr) which is a substantial increase 

from the previously reported persistence of 4 and 16hrs for the BWHA and COHA 

isolates, respectively. These results indicate the mechanism of OM-mediated 

trichomonad persistence is associated with decreased DO and further emphasize the 

importance of keeping birdbaths free of OM to discourage trichomonad persistence. 
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Introduction 

The avian protozoan parasite Trichomonas gallinae has been, and continues to be, an 

important cause of mortality in many bird species (Amin et al., 2014a; Stabler, 1947) 

and is typically transmitted from rock pigeons (Columba livia), to other Columbiformes 

(Bunbury et al., 2007; Girard et al., 2014a), raptors (Boal et al., 1998; Martínez-Díaz et 

al., 2015), and passerines (Forzán et al., 2010; Neimanis et al., 2010; Robinson et al., 

2010). Transmission of trichomonads from Columbids to passerine species has been 

linked to backyard birdbaths and other contaminated water sources (Anderson et al., 

2009; Forrester et al., 2008; Ganas et al., 2014; Stabler, 1954). Trichomonads were 

traditionally believed to be labile in the environment due to a lack of a true cyst stage 

(Kocan, 1969); however, recent research has shown that trichomonads persist in 

various simulated ambient conditions in water (Gerhold et al., 2013; Purple and 

Gerhold, 2015; Purple et al., 2015a) and on moist bird seed (McBurney et al., 2017). 

The addition of organic material (OM), including leaves, soil, and other detritus, has 

consistently resulted in increased persistence of T. gallinae in water (Gerhold et al., 

2013; Purple and Gerhold, 2015; Purple et al., 2015a), although the mechanism 

remains unknown. The added organic components may include a variety of 

environmental microorganisms. The relationships among Trichomonas spp., 

environmental bacteria, and other soil-dwelling protists provided by OM, is suspected to 

play a role in the increased persistence of trichomonads in distilled water with the 

addition of OM. 

Most trichomonad species adapted to anaerobic conditions in the host gastrointestinal 

tract by replacing mitochondria with hydrogenosomes, evolutionary mitochondrial 

replacement organelles (Makiuchi and Nozaki, 2014). This adaptation allows 

Trichomonas gallinae to thrive in the microaerophilic microclimate in the oral cavity 

created by the destruction of the esophageal lining, and the resulting caseous lesions. 

We hypothesized that environmental microorganisms within OM may consume oxygen 
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and create microaerophilic microclimates thus providing a mechanism by which OM 

increases the persistence of T. galline in water.  

To determine the relationship between DO and trichomonad persistence (in the 

absence of the confounding properties of OM including provision of nutrients, alterations 

in pH, or other unkown factors) we recorded 1) the levels of DO in water due to the 

addition of various amounts of OM, 2) the concentration of the oxygen scavenging 

enzyme, Oxyrase®, needed to achieve the DO levels in OM-contaminated water, and 

finally, 3) the persistence of two T. gallinae isolates in Oxyrase®-supplemented water 

containing DO concentrations found in OM-contaminated water. Oxyrase® is a 

commercially available enzyme system that decreases DO in water (Oxyrase®, Inc., 

Mansfield, OH). It is effective over a wide temperature range (5-65°C) and a wide pH 

range (6.8-9.4) (Oyrase® white paper). 

Results 

Measuring DO levels with added OM 

 The DO saturation with 15g OM, at 24hr, was 10.3% (+/-4.43) (Table IV-I). The DO in 

the control containers (0g OM) at 24hr were 86.6% (+/- 2.12). Dissolved oxygen 

decreased proportionally as the amount of OM added to the simulated birdbaths 

increased (Fig IV-I). At all time-points (0.5, 24, 48, 72hr), excluding time 0hr, DO was 

highest in the control container and was lower in the remaining treatments. Containers 

with OM had an average pH of 7.0 (+/- 0.07) at 24hr (Table IV-I), similar to 7.02, the pH 

in trichomonad-specific growth media. Containers without OM had a pH of 5.84 at 24hr. 

Measuring DO with added Oxyrase® 

Oxyrase® added in 0.5% and 1.0% vol/vol resulted in DO saturations of 19.0% and 

6.9%, respectively, between the DO saturation range that results from the addition of 

15g OM, the previous amount used to measure persistence (Table IV-II). The 0% 

Oxyrase® control container averaged 92% DO, similar to the 85.6% average for the 0g  
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Table IV-I.  Dissolved oxygen (DO) with organic material (OM). 

DO saturation and pH (with standard deviation) over time after the addition of different amounts of organic material (OM) 

in 500 mL distilled water in plastic containers.

 Hours post-addition of OM 
(hours) 

 0 0.5 24 48 72 

Organic  
Material 

(g) 

DO 
(mean +/- 

SD) 

DO 
(mean +/- 

SD) 

DO 
(mean +/- 

SD) 

pH 
(mean +/- 

SD) 

DO 
(mean +/- 

SD) 

pH 
(mean 
+/- SD) 

DO 
(mean +/- 

SD) 

pH 
(mean +/- 

SD) 

0 88.42 +/- 
1.57 

88.94 +/ -
1.42 86.6 +/- 2.12 5.84 +/- 

0.10 
84.74 +/- 

0.97 
5.68 +/- 
0.0.22 

87.14 +/- 
1.79 5.64 +/- 0.27 

1 84.05 +/- 
2.34 

86.44 +/ -
0.73 

73.83 +/ -
0.23 

6.97 +/- 
0.08 

69.27 +/- 
0.72 

7.11 +/- 
0.11 

73.32 +/- 
1.24 7.23 +/- 0.14 

5 90.0 +/- 3.68 79.32 +/- 
4.45 

30.37 +/- 
14.29 

6.98 +/- 
0.07 

29.09 +/- 
14.40 

7.19 +/- 
0.05 

33.29 +/- 
15.61 7.28 +/- 0.07 

10 83.3 +/- 1.31 75.53 +/ -
1.08 

14.65 +/- 
0.44 

7.02 +/- 
0.03 

24.37 +/- 
3.65 

7.20 +/- 
0.06 

15.22 +/- 
3.35 7.25 +/- 0.02 

15 85.1 +/ -5.48 65.09 +/- 
2.68 

10.31 +/- 
4.43 

6.88 +/- 
0.07 8.35 +/- 4.76 7.12 +/- 

0.16 
10.19 +/- 

0.88 7.10 +/- 0.08 
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Figure IV-I. Organic material and resulting dissolved oxygen. 
Dissolved oxygen (DO) saturation over time after the addition of different amounts of 

organic material (OM) to 500 mL distilled water in plastic containers. Error bars= 

standard deviation from 3 replicates. Legend title: OM (in grams). 
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OM control in the preceding experiment. The 0% Oxyrase® control container had a pH 

of 5.1 averaged from time-points 24, 48 and 72 hr, whereas the 0.5% and 1.0% 

treatments had average pHs of 7.13, and 6.88 over the same time-points (Table IV-II). 

Measuring persistence of trichomonads in water with decreased DO 

 Persistence in containers with 0.5% and 1% Oxyrase® was greater than previously  

reported persistence in water with OM for both the COHA and BWHA isolates (Figure 

IV-II). The experimental 0.5% and 1% Oxyrase® treatments had 43.9% and 16.1% DO, 

respectively (Appendix 1: Supplemental data). In the present study, the maximum 

persistence occurred in the 1% Oxyrase® treatments, where both the COHA and 

BWHA persisted to our final sampling time point of 30 hr. At time-point 0 hr the 0.5% 

and 1.0% Oxyrase® had an average pH of 7.13 and 7.24 for the COHA, and 7.10 and 

7.24 for the BWHA, respectively. 

Discussion 

We determined that artificially decreased DO, using Oxyrase®, increased the maximum 

trichomonad persistence to 30 hr in the COHA and 30hr in the BWHA. This increase is 

substantial compared to previous published studies using 15 g of OM in which COHA 

isolate persisted 16 hr and BWHA isolate persisted 4 hr.  

We report maximum persistence because both isolates persisted until our final sampling 

time-point (30 hr) in at least 1 replicate (1/3 for the COHA; 2/3 for the BWHA). Maximum 

persistence indicates the isolates persisted to the final sampling time-point; however, 

the isolates may have persisted even longer.  Future persistence trials should extend 

past 30 hr to determine the potential persistence end points.    

Amoeba-bacteria and protozoan-bacteria relationships provide examples of one 

microorganism benefiting from the reduction in DO created by another. Acanthamoeba 

castellanii, a common environmental protist, has been shown to increase the survival of 
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Table IV-II. Dissolved oxygen (DO) saturation and pH (with standard deviation) with Oxyrase ®. DO and pH over time 

after the addition of different concentrations (% vol/vol) Oxyrase ® to 500 mL distilled water in plastic containers. 

 

 
Hours post-addition of Oxyrase ®  

(hours) 

 
24 48 72 

Oxyrase ®  

(vol/vol) 
DO pH DO pH DO pH 

0% 89.50 +/- 0.57 5.07 +/- 0.25 92.59 +/- 0.23 5.05 +/- 0.20 94.02 +/- 0.21 5.18 +/- 0.31 

0.50% 17.52 +/- 3.32 6.89 +/- 0.01 13.37 +/- 12.19 6.99 +/- 0.02 25.15 +/- 9.26 7.52 +/- 0.04 

1% 6.00 +/- 0.97 7.10 +/- 0.02 5.30 +/- 0.80 6.68 +/- 0.21 9.35 +/- 4.29 6.85 +/- 0.08 
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Figure IV-II. Isolate persistence. 

Persistence of two Trichomonas isolates (COHA, BWHA) in 500 mL distilled water in 

plastic containers with different concentrations (vol/vol) of Oxyrase®. Error bars= 

standard deviation from 3 replicates. Legend title: Concentration of Oxyrase® (vol/vol). 
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the microaerophilic bacterium, and medically important pathogen, Campylobacter jejuni, 

by decreasing DO in a shared liquid medium (Bui et al., 2012). The same authors found 

a similar trend with the addition of the protozoa Tetrahymena pyriformis, another oxygen 

consumer, suggesting this phenomenon is not unique to A. castellanii.  

We conclude that DO is an important factor that leads to increased persistence of 

trichomonad isolates when OM is added. This information will be helpful to the public 

and to biologists that provide supplemental water (i.e. birdbaths) for wildlife. Prompt 

removal of OM from these outdoor sources and mechanical aeration of the water could 

benefit birds that visit these places by increasing DO and making artificial waterers less 

suitable to Trichomonas spp. Chemical treatment of water for bacterial or protist 

contamination is precluded by an inability to calculate and create disinfectant levels safe 

for bird and wildlife consumption, in a volume that is ever-changing (due to refilling, rain, 

splashing, and evaporation). Aerators, like those used in fish tanks, would add DO to 

the water and could be explored as an option, although issues with power and function 

in the outdoors would have to be investigated.  

Materials and Methods 

Measuring DO levels with added OM 

Organic material, including deciduous leaf litter, soil, and other detritus, was collected 

from the same local natural area as in previous persistence studies (Purple and 

Gerhold, 2015). Organic material in the amounts of 1, 5, 10, and 15 grams (with 0 g as 

a negative control) were added to 500 mL of distilled water in plastic containers in 3 

replicates. Dissolved oxygen and temperature were measured with a Sper Scientific DO 

Meter (Scottsdale, AZ) at 5 time-points after the OM was added to the water (0min, 

30min, 24hr, 48hr, 72 hr). pH was measured at 24 hr, 48 hr, and 72 hr with a Denver 

Instrument UltraBASIC pH/mV meter (Arvada, CO). Both meters were calibrated per 

manufacturer’s instructions before each time point. 
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Measuring DO with added Oxyrase® 

To establish the amount of Oxyrase® needed to decrease DO to levels achieved with 

the addition of OM found in the preceding experiment, we added 2 amounts of 

Oxyrase® (2.5, and 5 mL) to 500 mL of distilled water (0.5%, and 1% vol/vol, 

respectively). Dissolved oxygen, temperature, and pH were measured as above at time 

points 24, 48, and 72 hr. 

Measuring persistence of trichomonads in water with decreased DO  

Using the results from above, we re-created the levels of DO found in OM-

supplemented distilled water by adding 0.5% and 1% Oxyrase® (vol/vol) to plastic 

containers with 500 mL of distilled water. We evaluated two trichomonad isolates, one 

from Cooper’s hawk 4 (COHA) and one from broad-winged hawk 1 (BWHA), which 

were used in previous persistence trials (Gerhold et al., 2013; Purple and Gerhold, 

2015; Purple et al., 2015a). Both of these hawks showed pathologic lesions consistent 

with trichomonosis characterized by fulminate oral necrosis. Trichomonas was collected 

at necropsy, cultured in Diamond’s media (Diamond, 1957) with antibiotics until cultures 

were axenic, and cryopreserved in liquid Nitrogen. These isolates were analyzed with 

PCR to amplify the ITS region and sequences were compared with other Trichomonas 

isolates (Gerhold et al., 2008). The COHA sequence was in ITS group A, and the 

BWHA in group B.  

Before Trichomonas inoculation into our simulated birdbaths, isolates were revived from 

cryopreservation in Hollander media (Smith, 1983) with supplemental fetal bovine 

serum, antibiotics, and antifungals as previously reported (Purple and Gerhold, 2015). 

After logarithmic growth was achieved, trichomonads were counted using a 

hemocytometer, and cultures were adjusted to a concentration of 1x106 

trichomonads/mL of media. The inoculating dose of 1x106 trichomonads was used to 

allow comparison with live animal infection studies using 1x105-5x105 (Kocan and 
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Knisley, 1970), 2x104 organisms to test in vitro drug efficacy (Franssen and Lumeij, 

1992), and 1x106 as in our previous persistence work.  

For the persistence experiment, containers were filled with 500 mL of bottled, distilled 

water. Oxyrase® was pipetted into the water in the amounts of 0.5 and 2.5 mL. At time 

point 0 min, 1 mL of each trichomonad culture was added to individual simulated 

birdbaths. The water was immediately stirred with the pipette tip and the 0 min sample 

was taken. Samples, aliquots of 0.5 mL from the baths taken at 4, 8, 13, 18, 26, and 30 

hr, were introduced into Falcon® 25 mL plug-sealed tissue culture flasks (Corning Inc., 

Corning, NY) with 5 mL Hollander fluid media. Flasks were incubated at 37°C for 5 

days. On days 1, 3, and 5 post-inoculation, flasks were examined by light microscopy to 

detect the characteristic movement of live trichomonads. Positive flasks, containing at 

least one live trichomonad, were recorded and negative flasks were read until day 5. 

Research, and personal experience of the authors, show that samples still negative at 

day 5 are unlikely to become positive (Bunbury et al., 2005; Cover et al., 1994). 

Dissolved oxygen and temperature were measured as above at time-point 0 (after 

Oxyrase®, but before trichomonads were added), 8, and 30 hr. pH was measured at 0 

and 30 hr. 

The accession number for the COHA-4 is EU215369 and for the BWHA-1 is EU215368. 
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CHAPTER V 

Evaluation of the cytopathic effect of Trichomonas gallinae before 

and after persistence in simulated bird baths using avian fibroblasts 

in cell culture  
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Abstract 

The transmission potential of Trichomonas gallinae at bird baths will improve our 

knowledge of the role of shared water sources in outbreaks of the deadly avian disease, 

trichomonosis. We have established that trichomonads can persist in simulated bird 

baths when different environmental conditions are recreated. Although persistence is 

established, the effect of persistence on parasite virulence has not been investigated. 

We aimed to determine any effects persistence trials may have on trichomonad 

virulence to assess whether persistent trichomonads retained the capability of 

trichomonads to cause disease and death in birds. We used cell culture to measure 

cytopathic effect (CPE) of trichomonads maintained in parasite-specific culture versus 

parasites that persisted after different time points in simulated environmental conditions. 

We documented a broad-winged hawk (BWHA) trichomonad isolate exposed to UV light 

for 2 and 4 hours in clean, distilled bird baths produced increased CPE than media 

cultured BWHA (or non-persistence (NP)). In an organic material bird bath BWHA and 

Cooper’s hawk (COHA) persistence isolates did not show statistically different changes 

in CPE than NP isolates indicating less effect of these conditions on trichomonad 

virulence. We have established that trichomonad virulence can be affected by 

persistence in bird baths and this discovery can change our understanding about the 

role of bird baths and shared water sources in the transmission of T. gallinae. 

Introduction 

Trichomonas gallinae, the causative protozoan parasite of a trichomonosis, is 

responsible for widespread mortality events and decreased recruitment in doves, 

pigeons, raptors and song birds (Boal et al., 1998; Bunbury et al., 2007; Gerhold et al., 

2007; Haugen, 1952; Lawson et al., 2006). Within the last decade, studies in the United 

Kingdom and the Canadian maritime provinces have associated mortality events with 

backyard bird feeders and bird-baths (Forzán et al., 2010; Robinson et al., 2010). 

Ongoing epidemics in California have coincided with drought conditions and 
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subsequently decreased fresh water access for band-tailed pigeons, which has been 

suggested to increase the transmission of trichomonads via shared water sources 

(Girard et al., 2014b; Rogers et al., 2016). This perceived connection of trichomonosis 

to water has been investigated in laboratory conditions and the persistence of T. 

gallinae in simulated bird-baths up to 16 hr has been established (Purple and Gerhold, 

2015). The addition of organic material to water, to recreate neglected backyard bird-

baths, has consistently increased persistence (Gerhold et al., 2013; Purple and 

Gerhold, 2015; Purple et al., 2015).  

Certain laboratory practices, including passage of trichomonads through abiotic culture 

media, have been shown to decrease the virulence of some strains of T. gallinae 

(Honigberg and Goldman, 1968; Honigberg et al., 1970). Trichomonads can regain their 

former virulence, however, when passed through a series of live birds (Stabler et al., 

1964). This ability to alter phenotypic behavior suggests that the virulence of certain 

strains of trichomonads, like those used in our previous persistence experiments, could 

be altered by the process of persisting in water baths, which are less hospitable to 

trichomonads than either abiotic culture media or live birds. We aimed to document any 

changes in virulence that may occur after persistence in different conditions in simulated 

bird-baths. Cell culture has been validated as an adequate and appropriate bioassay to 

assess virulence of trichomonads (Alderete and Pearlman, 1984; Amin et al., 2012). We 

elected to use cell culture to assess changes in virulence as a precursor to possible live 

animal infection studies because of the proven effectiveness of cell culture models, and 

in accordance with the institutional animal care and use committee guidelines to replace 

live animals with non-animal systems when possible. 

Materials and Methods 

Parasites 

Two isolates, one from a Cooper’s hawk 4 (COHA) and one from a broad-winged hawk 

1 (BWHA), were previously described and persistence was characterized (Gerhold et 
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al., 2008; Purple and Gerhold, 2015). Isolates were cryopreserved and stored in liquid 

Nitrogen before use. To standardize parasites for experiments, cultures were grown to 

maximum capacity and cryopreserved in large batches to achieve parasites from the 

same passage. Cryovials were revived in Hollander Fluid medium with serum and 

antibiotics (HF). Logarithmic growth was reached by 24 hr at which time cell viability 

approached 100% as determined by trypan blue staining. Trichomonads were passed 

no more than 10 times prior to use in these experiments. Trichomonad culture was 

adjusted to a concentration of [1x106 parasites/ml]. From each isolate culture, 

trichomonads were assigned to two groups- “non-persistence” (NP) (maintained in HF) 

or “persistence.” “Persistence” trichomonads were then inoculated into simulated bird-

baths as previously described (Gerhold et al., 2013; Purple and Gerhold, 2015), 

sampled at certain time points into HF. For the duration of the persistence study, 

parallel, NP cultures for each isolate were maintained in HF at 37°C. Before infection of 

cell culture, all trichomonad cultures were resuspended in cell culture media, “non-

serum” Dulbecco’s Minimum Essential Medium (DMEM) with 1% Streptomycin/Penicillin 

(hereafter referred to as “NS DMEM”). Prior to the persistence experiments, motility and 

survival of trichomonads in cell media were confirmed by light microscopy for 72 hr to 

ensure NS DMEM could support both cells and parasites for co-culture experiments. 

Persistence Experiments 

Simulated bird-baths were set up as in previous research (Gerhold et al., 2013; Purple 

and Gerhold, 2015; Purple et al., 2015). Briefly, 500 ml of distilled water in plastic 

tupperware containers were used to simulate bird baths. The “OM” treatment had 15 g 

of organic material (Purple and Gerhold, 2015) and was maintained at 37°C. The “UV” 

treatment containers contained 500 ml of distilled water and were exposed to a 5.0 UVB 

18 watt ReptiSun UV light (Zoo Med Laboratories Inc., CA), at a distance of 12 in from 

the top of each container at room temperature. Twenty-four hours after bird baths 

treatments were applied, 1 ml of trichomonads at [1x106 /ml] were added and aliquots 

were taken at regular intervals as before (Gerhold et al., 2013). The UV treatment baths 
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were sampled at 2, 4, and 6 hr post-inoculation and the OM treatment baths at 2, 6, 24, 

and 48 hr. Sample flasks were incubated at 37°C until high densities were reached 

(between 24-48 hr). Persistence sample cultures were then quantified and adjusted, 

centrifuged (1,000 rpm) for 5 min, and the resulting pellet was resuspended in 3 mL NS 

DMEM to yield [1x106/mL]. NP controls for each isolate were maintained in HF until 

needed, adjusted and pelleted as above, and resuspended in NS DMEM before 

infection of cell culture. Aliquots of 250 µL of the post-persistence and NP parasite 

suspension were used to infect cell culture.  

Cell culture 

Virulence of trichomonads was assessed on spontaneously transformed avian 

fibroblasts cells (DF-1; ATCC® UMNSAH/DF-1) grown at 37°C with 5% CO2. Cells were 

cultured in 5 ml of DMEM with 10% fetal bovine serum (FBS) and 1% 

Streptomycin/Penicillin (hereafter noted as “DMEM”) in 25 cm2 cell culture flasks until 

confluence was reached (generally in 96 hr) then trypsinized and passed into 75 cm2 

flasks with 15 ml DMEM. After cells reached 80-90% coverage they were incubated with 

trypsin until dislodged and DMEM was added to stop the action of the trypsin. Cells 

were pelleted, washed with phosphate-buffered saline (PBS), pelleted again and 

resuspended with 1 µL /1x106 cells VybrantTM DiI (1,1'-Dioctadecyl-3,3,3',3'-

Tetramethylindocarbocyanine Perchlorate ('DiI'; DiIC18(3))) cell-labeling solution 

(Molecular Probes Inc., Invitrogen) suspended in 1 mL sterile PBS. DiI remains in the 

cell cytoplasm until the cell membrane is compromised during cell death and then 

quickly disperses into the media. Cells were protected from light as much as possible 

after the DiI fluorescent dye was added. Cells were incubated with the stain at 37°C for 

15 min. Cells were then washed with PBS, pelleted and resuspended in DMEM before 

seeding onto 48-well tissue culture plates and grown until confluent before inoculation 

(~72 hr). One T-75 yielded 4x106 cells once confluent; each flask yielded four 48-well 

plates seeded with 50 µL of 4x105/mL cells suspended in 10 mL DMEM.  
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Infection trials 

Parasite concentrations were determined in a pilot study by adding [1x104], [1x105] and 

[1x106] to determine cytopathic effect (CPE) of NP isolates. A concentration of 

[1x106/ml] of trichomonads produced CPE between 24 and 48 hr and was chosen for 

infection trials. Cell cultures were infected with 250 µL of the parasite cultures at 

[1x106/ml] for both the NP and the post-persistence trichomonads, while 250 µL of 

DMEM was the negative control. As the experimental parasite cultures reached 

appropriate densities, four 48-well plates were infected. The initial set of two 48-well 

plates included 6 treatments (BWHA OM 2 and 6 hours, and COHA OM 2, 6, and 24 

hours) and 3 controls (DMEM, NP BWHA, and NP COHA). The second set of two 48-

well plates were infected with (BWHA UV 2 and 4 hours, BWHA OM 24 and 48 hours, 

and COHA OM 48 hours) and controls were repeated. All persistence treatments were 

repeated in 10-12 well-replicates and the NP and DMEM controls at 21 well-replicates. 

Assessment of CPE 

DiI-red fluorescence was observed with an 8-bit standard rhodamine filter set (excitation 

BP 534- 558 nm, emission LP 590 nm) on a Zeiss microscope and imaged with NIS 

Elements Imaging Software (BR 4.13.05). Trichomonads showed autofluorescence with 

a standard fluorescein filter set (excitation BP 450-490 nm, emission LP 520nm). Red 

fluorescent images were before infection, 24, 48 and 72 hr post-infection. Green 

fluorescent images were taken with every red fluorescent photograph, without moving 

the plate, to allow superimposition of two photos per well, and to document any 

background green fluorescence. After taking the 72 hr images, the plates were washed 

twice with PBS to remove unadhered trichomonads, 500 µL non-serum DMEM was 

added, and wells were imaged again with both red and green fluorescent filters for 

“post-wash” images (hereafter referred to as “post-wash images”). All images were 

centered in each well of the 48-well plates and taken with the same exposure time (100 

ms) and magnification (10x). Images were analyzed using ImageJ free software (NIH). 

Percent area coverage (% cover) was measured for every red fluorescent photograph 
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after subtracting background with rolling ball set at 60 and threshold adjusted to 25-255. 

For green fluorescent photos rolling ball was set 20 and threshold to 11-255.  

Statistical Analyses 

Percent cover with cells at 0 hr and post-wash were compared. Differences between 

treatments were compared with a nested completely randomized design (CRD). 

Differences among cells infected with treated trichomonads, NP trichomonads, and the 

DMEM control wells were analyzed in a split plot ANOVA with repeated measures and a 

square root transformation. A Bonferroni correction was applied. All statistical 

assumptions were met. 

Results 

For the OM treatment, both BWHA and COHA were positive at every sampling point (2, 

4, 6, 24 and 48 hr) (Table V-I). For the UV experiment the BWHA was positive at 2 and 

4 hr and negative at 6 hr, while the COHA did not persist at any sampling time point (2, 

4, or 6 hr). 

During incubation of the infected cell culture, some wells experienced bacterial/fungal 

overgrowth making wells opaque and prohibiting inclusion in the trial (Table V-I). The 

contamination was limited to specific parasite-treatment combinations; COHA OM 6 hr 

and BWHA OM 24 hr were contaminated in every well indicating contamination 

presence in the persistence sample. BWHA OM 6 hr had 3 contaminated wells leaving 

7 well-replicates for analysis and BW OM 48 hr lost all but 1 well to contamination. 

There was no contamination in any control wells. 

Percent cover by red fluorescence was skewed by trichomonads that incorporated red 

stain and resulted in cells that were indistinguishable from trichomonads cells in images. 

Trichomonads could be detected when in motion at a live feed for the microscope, but 

this movement was not uniform among all trichomonads and could not be captured in 

still images. Therefore, images taken at intermediate time points (24, 48, and 72 hr)  
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Table V-I. Persistence results.  

Isolates: BWHA = broad-winged hawk, COHA = Cooper’s hawk. Bird bath treatments: 

UV = clean, distilled water at room temperature with UV light exposure, OM = distilled 

water with the addition of 15 g organic material (OM) at 37°C. Culture results: + = 

positive for live trichomonads, - = negative for live trichomonads. After infection of cell 

culture: * = all replicates lost due to contamination, ° = some replicates lost to 

contamination. 

 

 
 Isolate 

Sampling time 

point (hour) 
BHWA COHA 

Bird Bath 

Treatment 

UV 

2 + - 

4 + - 

6 - - 

OM 

2 + + 

6 +° +* 

24 +* + 

48 +° + 
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were not informative. Red fluorescent images of cells before infection and after post-

wash were not confounded by the unintended uptake of DiI stain by trichomonads and 

were compared to assess CPE of the trichomonads. 

We measured the percent cover of cells in each well (with ImageJ “% area cover” 

function) to evaluate changes and quantify CPE measured before infection and post-

wash. Comparing BWHA “early hours” persistence trichomonads from OM (2 and 6 hr) 

and UV (2 and 4 hr) treatments we found a significant difference in percent cover by 

treatment type (p<0.0001) (Figure V-I). Cells infected with OM treatment trichomonads 

had an average of 10.4% cover (SD +/-0.84) while UV treated trichomonads had 4.1% 

cover (SD +/- 0.73). Both hours for UV (2 and 4 hr) were significantly different from both 

hours of OM (2 and 6 hr) (p<0.005). For the BWHA isolate, parasites from the UV 

treatment caused more cell destruction by area than trichomonads in the OM treatment. 

COHA did not persist in any UV treatment. 

Differences between cells with treated trichomonads, NP trichomonads, and the DMEM 

control wells were statistically significant for BWHA UV 2 and 4 hr (p<0.0001), BWHA 

OM 2, 6, and 48 hr (p<0.0001), and COHA OM 2, 24, and 48 hr (p<0.0001). For the 

BWHA UV treatment, time in bath (2 or 6 hr), picture time (0 hr or post-wash), and the 

interaction between the two factors were all statistically different (p<0.0001) (Figure V-

IIa). Cells in DMEM control wells did not change significantly from 0 to 72 hr (2.95 +/-

0.17 SD to 2.97 +/-0.17 SD) as expected. Cells treated with NP, 2 hr, and 4 hr UV 

BWHA significantly decreased from 0 hr to post-wash (p<0.0001; p<0.0002; p<0.0001 

respectively). With the greatest change in the UV treatment at 4 hr (2.36 +/-0.34 SD). 

For BWHA in the OM treatment, the DMEM control and 2 hr trichomonads did not cause 

a statistically significant decrease in percent cover, however they were both statistically 

different from NP and the 48 hr (p<0.05), which caused significant decreases from 0 hr 

to post-wash (p<0.05) (Figure V-IIb). OM treatments, 2 hr, 6 hr, NP, and DMEM were 

not statistically different from each other at post-wash. 



 50 

 

Figure V-I. Bird bath treatment differences. 

Percent area of wells covered with cells was lower when infected with UV (ultraviolet 

light) treated trichomonads versus OM (organic material) treated. Error bars represent 

standard deviation (SD) of the mean. Pctarea = area of cell coverage. 
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   (a)                (b) 

  

(c) 

Figure V-II. Changes to cell coverage after infection. 

Percent area of wells covered with cells changes among (a) UV (ultraviolet light) 

treatments for BWHA (broad-winged hawk). Blue = 2 hours, red = 4 hours, gold = non-

persistence (NP), and green = DMEM (negative control), (b) OM (organic material) 

treatments for BWHA. Blue = 2 hours, red = 48 hours, green = 6 hours, brown =, 

DMEM, and purple = NP, (c) OM treatments for COHA (Cooper’s hawk). Blue = 2 hours, 

red = 24 hours, green = 48 hours, brown = DMEM, and purple = NP. Error bars 

represent standard deviation (SD) of the mean. Pctarea = area of cell coverage. 
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For the COHA OM, there were significant differences in CPE between treatments (2, 24, 

48 hr, DMEM and NP) (p<0.0001). The 2 hr OM treated cells were not significantly 

different from the DMEM control, however, the longer persistence in the OM treatment 

(24 and 48 hr) and NP treatments were all statistically different from the control (p<0.05) 

(Figure V-IIc). Interestingly, the 2 hr OM treatment produced significantly less 

destruction than the NP for both isolates (BWHA p<0.004; COHA p<0.0001). The 2 hr 

BWHA UV was lower, but not statistically different from the NP, but the 4 hr was 

significantly lower (p<0.05) than NP indicating an increase in CPE. 

Discussion 

 We used fluorescent imaging as a quantitative alternative to visual scoring. We 

discovered that trichomonads incorporated the DiI stain in their cytoplasm as it was 

released by the dying avian cells. This precluded our ability to image avian cells alone 

over time. Trichomonads were stained with CellTraceTM CFSE Cell Proliferation Kit in a 

pilot study (data not shown), but we later noticed significant green autofluorescence 

under the FITC filter without staining, so we omitted dying trichomonads for this study. 

The autofluoresence of the trichomonads allowed us to image trichomonads at multiple 

time points without destructive sampling, however, this flouresence was not uniform and 

could not be relied upon to quantify trichomonads.  If an accurate measure of 

trichomonads at each imaging time-point were available, we could have monitored 

changes in trichomonad density and changes in parasite morphology. While these 

changes could help our understanding of trichomonad activity in cell culture, the number 

and morphology of trichomonads is not correlated with CPE in cell culture. For example, 

a virulent isolate may not require high numbers to destroy a monolayer while a large 

number of avirulent parasites may cause little effect on co-cultured cells. Trichomonads 

incorporated the red DiI stain during co-culture, which confounded using red 

fluorescence as a measure of cell density and coverage. Because red fluorescence of 

trichomonads occurred, and autofluorescence was inconsistent, we could not use red 

and green fluorescence to reliably distinguish between cells and parasites.  However, 
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the pre-infection (0 hr) had no parasites yet, and the post-wash images had minimal 

trichomonads after being washed twice with PBS. Therefore, we used 0 hr and post-

wash images to compare treatments. 

We documented significant differences in CPE produced between the non-persistence 

and the persistence treatments indicating a change in virulence due to persistence 

trials. Interestingly, the persistence effect for the earlier sampling points for BWHA 

showed that UV exposure to the bird baths produced trichomonads that were more 

virulent than non-persistence treatments. We theorize that by sampling trichomonads 

that persisted in this inhospitable environment we selected the most robust, and likely 

more virulent, trichomonads. Another influence could be the stress of the persistence 

conditions, which could induce a higher number of pseudocyt formation. Pseudocysts of 

T. foetus have been shown to be the more cytotoxic than the pyriform cells (Pereira-

Neves et al., 2012). The change in virulence may have resulted from a higher number of 

trichomonads becoming pseudocysts in the simulated bird baths. Trichomonads 

reverted to the pyriform morphology in our sample cultures, but the transition through 

the pseudocyst form may have affected the cytotoxicity of the persistence 

trichomonads. The increased virulence of the UV trichomonads compared to their OM 

and NP counterparts could indicate that the higher stress environment favored the 

hardier, more virulent trichomonads For the longer time points in the OM treatment, the 

differences between NP and 24 and 48 hr post-persistence trichomonads were not 

statistically different suggesting the persistence neither increased nor decreased the 

virulence of the trichomonads.  

We saw differences in CPE produced between the BWHA and COHA isolates. This is 

not surprising as we documented differences in isolate persistence in earlier trials, and 

other authors have decribed differences in isolate behavior in cell culture (Amin et al., 

2012), suggesting that even among virulent isolates behavior and virulence can vary. 

Isolate differences in each treatment could not be appropriately compared due to 

missing data at some levels. For example, no COHA persisted in the UV treatment, but 
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2 and 4 hr were available for BWHA. Also, the BWHA later hours from the OM treatment 

(24 and 48 hr) were lost as a result of contamination. Using the nested statisical design 

we made comparisons where the data allowed.  

Our treatment combinations, OM at 37°C and clean distilled water with UV light 

exposure, were chosen to mimic common environmental factors including 

environmental temperature changes and exposure to UV radiation from sunlight. Based 

on trial persistence experiments (data not shown), we chose conditions we expected to 

be ideal for parasite survival outside of the host, increased temperature and OM, and 

the conditions that would decrease the persistence of T. gallinae the most, clean, 

distilled water with UV light exposure. With these extremes we hoped to measure any 

changes to virulence that may occur. Now that we have shown that CPE differences 

exist after persistence trials, subsequent studies can isolate individual factors, or 

expand on combinations of factors, that may affect the cytotoxicity of trichomonads. 

In addition to documenting destruction of the monolayer we also saw noticed that cells 

lost their original, i.e. healthy, stellate appearance. Cells experienced shrinkage, tended 

to cluster, and stain intensity increased. Our findings support an Amin et. al study that 

showed trichomonads tended to make holes in the monolayer that expanded before 

complete detachment (2012). This behavior resulted in a pattern of remaining adhered 

cells into a “spider web” appearance (Pindak et al., 1986). Another study also 

documented cellular response to damage by trichomonads and found “progressive 

degeneration of the cells, including shrinkage” (Abraham and Honigberg, 1965), but did 

not use fluorescent staining. The changes they saw were also with T. gallinae and avian 

fibroblasts. The effects of cellular damage on DF-1 cells is not well described, but the 

changes we saw with trichomonads in this study clearly were different to non-serum 

controls and consistently followed the same changes to detachment.  

After careful consideration we did not eliminate bacterial/fungal contamination from our 

post-persistence trichomonad cultures. Birds in the wild are not expected to acquire 

clonal, axenic parasites, therefore microorganisms other than trichomonads will always 
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be a part of the equation during true natural infection. The bacteria in our cultures came 

from environmental sources, e.g. the OM we used, and would not be expected to be 

particular pathogens of birds. The effect of antibiotics in media to diminish virulence is 

documented, but requires many passages in antibiotic medium (~100) to have such an 

effect. Our sample aliquots in HF from each bird bath contained antibiotics and our 

cultures were passed in this media 1-2 times. We felt that this level of treatment would 

decrease bacterial contamination without affecting the virulence of the trichomonads, 

but chose not to pass any longer for unknown influence of antibiotics on the virulence of 

these post-persistence trichomonads. Further, both the DMEM and NS DMEM 

contained the same amount of antibiotics as the HF so all parasites and cells had the 

protective effect of antbiotics throughout co-culture. Two treatments (COHA OM 6 hr 

and BWHA OM 24 hr) were completely excluded from the study due to bacterial or 

fungal overgrowth in the cell culture, which also caused a third treatment (BWHA OM 48 

hr) to have only one uncontaminated replicate. In the future eliminating bacteria from 

post-persistence trichomonad culture and/or infecting cells with bacteria from OM 

treatments as a control will improve the conclusions we can draw from this type on 

infection trial. In this trial we were limited by the unknown effect on cell culture of 

bacterial and fungal contamination that may have been introduced with persistence 

trichomonads from the simulated bird baths. 

In conclusion, we documented changes in virulence after trichomonads persisted in 

simulated bird baths with different environmental conditions. Previously we documented 

persistence of trichomonads in simulate bird baths, however, it was unknown whether 

these trichomonads were still capable of causing disease. We used cell culture in this 

study as a measure of virulence and suggest more trials to characterize different 

conditions. After in vitro methods have characterized CPE with a range of conditions, 

live animal infections can be used for an in vivo assessment. Improving our knowledge 

of the relationship of trichomonad virulence and bird baths we can suggest strategies to 

help mitigate outbreaks and decrease transmission. 
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Chapter VI  

Molecular investigation of Trichomonas spp. from clinically affected 

birds and subclinical hunter-killed Columbiformes in California 
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Abstract 

Avian trichomonosis is a deadly disease in wild birds caused by flagellated protozoan 

parasites of the Trichomonas genus. We investigated whether Trichomonas spp. 

isolated from subclinical, hunter-killed Columbiformes belonged to the same genetic 

groups, based on ITS1-5.8S-ITS2 region (ITS) and iron hydrogenase gene (FeHyd), as 

isolates we collected from carcasses with lesions consistent with trichomonosis. We 

then compared the genotypes of the aforementioned isolates to those responsible for a 

spatially and temporally overlapping outbreak in Pacific Coast band-tailed pigeons 

(Patagioenas fasciata monilis) (BTPI) in San Diego County, CA. Hunter-killed doves 

were sampled for Trichomonas spp. via the InPouch™ TF culture system (BioMed 

Diagnostics) in Imperial County, CA during September, 2015. Tissue samples of 

trichomonas lesions were collected at the Wildlife Diseases Investigations Laboratory 

(Rancho Cordova, CA) from 16 species from 2013-2018. We documented a prevalence 

of Trichomonas spp. in 53% of hunter-killed birds (17/32) by culture and 70% of 

clinically affected birds (77/110) using PCR.  We found ITS group genotypes I and L in 

hunter-killed cultures and A, D, and I in tissue samples; FeHyd subtyping revealed 

subtypes E1 and K1 in hunter-killed samples, and A1 and A2 in tissue samples. 

Phylogenetic analyses indicate that hunter-killed isolates cluster together while tissue 

lesion genotypes form a separate group. A single hunter-killed isolate grouped with the 

tissue lesion genotypes. These data suggest the isolates responsible for clinical disease 

are not primarily circulating in the subclinical columbids we sampled. Ongoing 

investigations of avian host species, trichomonad genotype, and geographic 

associations among California wild birds is needed to improve our understanding of the 

ecology and epidemiology of avian trichomonosis. 

Introduction 

Trichomonas gallinae, the pathogenic protozoan parasite of birds, is responsible for 

negative population-level effects. Trichomonosis has historically been reported in 
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Columbiformes and raptors, and more recently described in songbirds (Boal et al., 

1998; Forzán et al., 2010; Haugen, 1952; Robinson et al., 2010; Stabler, 1954). The 

often asymptomatic natural host, the rock pigeon (Columba livia), has been implicated 

in the worldwide distribution of the parasite (Stabler, 1954). Other columbid species 

including mourning doves, white-winged doves, Eurasian collared doves, and band-

tailed pigeons can harbor trichomonads subclinically, and be a source of infection for 

naïve birds (Conti and Forrester, 1981; Conti et al., 1985), or they may develop clinical 

disease when infected with virulent isolates. The Pacific Coast Band-tailed pigeon 

(Patagioenas fasciata monilis) is currently experiencing marked increase in mortality in 

Southern California leading to population declines. Periodic outbreaks of trichomonosis 

have plagued Pacific Coast Band-tailed pigeons (BTPI) since the 1940s (Rogers et al., 

2016). Drought conditions have reportedly exacerbated the outbreak as birds 

congregate around limited water sources and are more likely to acquire trichomonads 

from shared food and water sources (Bunbury et al., 2007; Kocan, 1969; McBurney et 

al., 2017; Purple and Gerhold, 2015).  

Molecular analyses of trichomonad strains associated with outbreaks in a variety of 

species has temporally and spatially described the relationships among strains (Ganas 

et al., 2014; Lawson et al., 2011b). The internal transcribed spacer (ITS) region (5.8S 

rDNA and flanking ITS regions, ITS1 and ITS2) and the hydrogenosomal Fe-

hydrogenase (Fe-Hyd) gene are widely used for genotyping trichomonad isolates 

(Lawson et al., 2011a; McBurney et al., 2015). A clonal strain belonging to ITS group A 

(Gerhold et al., 2008) and FeHyd subtype 1 was shown to be responsible for outbreaks 

in the U.K. (Lawson et al., 2011a), Spain (Sansano-Maestre et al., 2009), Austria 

(Grabensteiner et al., 2010), Mauritius (Gaspar da Silva et al., 2007), and Brazil (Kleina 

et al., 2004) based on typing at the ITS and FeHyd loci (Ganas et al., 2014; Lawson et 

al., 2011a; McBurney et al., 2015). The FeHyd target, a house-keeping gene previously 

identified in T. vaginalis, allowed further subtyping to separate avian trichomonad 

strains that are indistinguishable with ITS analysis alone (Sansano-Maestre et al., 

2016). Applying these molecular techniques, we aimed to characterize Trichomonas 
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spp. isolates from non-clinical hunter-killed columbids. In addition, we analyzed tissue 

samples, from multiple avian species, with lesions consistent with trichomonosis and 

compared the results to those of the hunter-killed columbids. The collection of the 

aforementioned avian samples spatially and temporally overlapped in southern 

California from 2013-2015. In particular, we were interested to determine if any of the 

hunter-killed or tissue samples aligned with previously determined ITS groups, 

especially L and K (now T. stableri), that have been associated with trichomonas 

mortality events in Pacific Coast BTPI in California (Gerhold et al., 2008; Girard et al., 

2014a). 

Molecular analysis of BTPI in California has implicated Trichomonas gallinae ITS group 

L, and has described a new species, formerly ITS group K, Trichomonas stableri 

(Gerhold et al., 2008; Girard et al., 2014a). We sought to determine if hunter-killed 

columbids were carrying the same strains responsible for the Pacific Coast Band-tailed 

pigeon outbreak and the mortality of a wide variety of birds that presented to the 

California Department of Fish and Wildlife, Wildlife Investigations Laboratory. 

Materials and Methods 

Culture for subclinical hunter-killed birds 

Sterile cotton-tipped applicators were used to swab the oral cavity of 32 hunter-killed 

doves on September 1st, 2015 in Imperial County, California. InPouch™ TF pouches 

(BioMed Diagnostics, White City, OR) were inoculated with sample swabs and mailed 

overnight at ambient temperature to the University of Tennessee Molecular Parasitology 

Laboratory in Knoxville, Tennessee. Samples were incubated at 37°C upon arrival 

(September 2nd, 2015) and inspected by light microscopy every other day for 7 days for 

motile trichomonads. Culture-positive samples were incubated until trichomonads 

reached logarithmic growth and were frozen in -20°C for molecular analyses. 
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Tissue from suspected infected birds 

Oral cavity tissue samples were obtained from birds with suspected trichomonosis 

during necropsies performed at the Wildlife Investigations Laboratory, California 

Department of Fish and Wildlife (Rancho Cordova, CA) and were frozen and shipped to 

the University of Tennessee (Knoxville, TN) for DNA extraction. A total of 110 samples 

from 16 different species were examined (Table VI-II). 

Molecular Analyses 

DNA extraction was performed on concentrated trichomonads from culture or on tissues 

with Qiagen DNeasy kit according to manufacturer’s instruction with the following 

modifications: samples were incubated at room temperature for 15-20 minutes with the 

microcentrifuge lids open to ensure ethanol evaporation before elution; buffer AE was 

incubated for 30 minutes instead of 1 minute to optimize DNA elution. Polymerase-chain 

reaction (PCR) reactions were performed to amplify two different targets. For each ITS 

1, 5.8S, ITS 2 region PCR reaction we used a total volume of 25 uL containing 1 uL 

ITSF and 1 uL ITSR primers (Cepicka et al., 2005), 12.5 uL DreamTaq DNA 

Polymerase (Thermo Fisher Scientific, Waltham, MA), 8.5 uL nuclease-free water 

(NFW), and 2 uL DNA template. Our thermocycler program was as follows: 94°C for 15 

minutes, then 39 cycles of 94°C for 1 minute, 52°C for 30 seconds, and 72°C for 1 

minute, followed by 72°C for 10 minutes. The FeHyd  reactions were performed as 

above with the primers TrichhydFOR (5’-GTTTGGGATGGCCTCAGAAT-3’) and 

TrichhydREV (5’-AGCCGAAGATGTTGTCGAAT-3’) (Lawson et al., 2011a) and the 

same thermocycler program. A known Trichomonas PCR-positive rock pigeon sample, 

“R20” (Gerhold et al., 2008), was used as a positive control and NFW was included as 

negative control for every PCR reaction. Seven microliters of PCR products were run 

using gel electrophoresis on a 2% agarose gel with 1x TAE buffer and 2 uL ethidium 

bromide for ~1.5 hours at 90v. UV light enabled viewing of DNA as “bands” at ~375bp 

for ITS and ~900bp for FeHyd. All controls yielded appropriate results.  
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 The remaining PCR products, 18 uL, from each PCR reaction were purified using 

the QIAquick® PCR purification kit (Qiagen, Valencia, CA). Purified DNA was sent to 

the University of Tennessee Genomics Core Facility (Knoxville, TN) for Sanger 

Sequencing. Sequences were automatically aligned with SequencherTM 5.0.1 DNA 

Analysis software and verified manually by the authors. Sequences were compared to 

published sequences from NCBI GenBank® via BLAST® analysis. 

For both targets, phylogenetic analyses were conducted using MEGA version 7 

(Kumar et al., 2016). A maximum likelihood (ML) dendrogram was constructed to scale 

with evolutionary distances computed using the Kimura 2-parameter method (Figure VI-

II). Bootstrapping was performed with 500 replicates.  

Results  

Culture of hunter-killed birds 

Of the cultures, 53.1% (17/32) were positive for trichomonad growth, all detectable by 

day 5. Forty-three percent of mourning doves were culture positive (10/23), 100% of 

white-winged doves (6/6), and 33.3% of Eurasian collared doves (1/3) (Table VI-I).   

Molecular 

ITS Region 

For the positive hunter-killed bird cultures, 100% (17/17) were PCR-positive at the 

target level (~300bp) of ITS. The Eurasian collared dove (Streptopelia decaocto) 

(EUCD) positive sample (HK_17) did not form a consensus when analyzed in 

SequencherTM. Consensus sequences, and the unidirectional strands from the EUCD, 

were matched with previously published ITS-group designated letters (Gerhold et al., 

2008). Consensus sequences most closely matched the ITS groups previously reported 

in the Trichomonas vaginalis-like clade by Gerhold et al. (Gerhold et al., 2008). Both 

unidirectional strains from HK_17 most closely matched ITS group C. Non-overlapping 
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sequences belonging to different groups could indicate a dual or multiple strain 

infection, which has been described by other authors (Robinson et al., 2010; Sansano-

Maestre et al., 2016) 

Out of the 110 tissue samples, 103 were from birds suspected of having trichomonosis 

and 7 were from birds with unknown history or had no lesions consistent with 

trichomonosis (Table VI-II). Overall, 24.5% of samples were PCR-negative (27/110). 

The remaining samples were PCR-positive (75.5%; 83/110) at the expected ITS target 

size (~300bp), including 1 sample that sequenced as bird DNA, 5 samples that had 

additional bands at non-target sizes, and 1 sample which could not form a consensus 

but had forward and reverse strands with 100% identity to ITS group K and L, 

respectively. This left 76 positive samples out of 110 (69.1%) with single bands for our 

analyses.  

For the ITS phylogenetic analysis, we combined the HK and KR sequences into one ITS 

dendrogram to elucidate the phylogenetic relationship among both subclinical and 

clinical isolates (Figure VI-II). We had 76 tissue samples (KR) and 16 hunter-killed (HK) 

isolates that had consensus sequences (Table VI-III). For the tissue samples, KR_44 

and KR_86 had fewer base pairs and less overlap, and so were removed to maintain 

sequence length available to analyze. To eliminate identical sequences from interfering 

with the phylogenetic algorithm, we used our unique sequences (KR_25, 62, 73, 87 and 

HK_2, 6 and 16), ITS Groups that had 100% identity with some of our sequences (A, D, 

I, and L), and ITS Groups B, F, and J for their close matches to our sequences (but not 

identical). Trichomonas vaginalis (AY957955) and T. stableri (KC215390) were used as 

comparison sequences from GenBank due to their close relationship with the outbreak. 

The tree was rooted with Trichomonas nonconforma (AY886845) as the outgroup.  

The phylogenetic relationships disclosed that all the tissue samples as well as ITS 

Groups A, B, and D clustered together (bootstrap value 88). The tissue samples all 

came from birds with lesions consistent with trichomonosis. Published ITS Groups did 

not correspond to presence or absence of clinical disease. The hunter-killed samples 
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could not be resolved, but were more closely grouped with T. vaginalis and ITS Groups 

I, J, and L, which are in the T. vaginalis-like group (Gerhold et al., 2008). 

FeHyd Gene 

PCR was positive at the FeHyd loci for all 17 (100%) of the culture positive hunter-killed 

samples. Of these, 13 samples formed consensus sequences, of which 3 samples 

aligned most closely with T. gallinae, 4 sequences with Trichomonas sp., and 6 

sequences with T. vaginalis. A consensus sequence for the remaining 4 sequences was 

not achieved, however, two isolates had one directional match with Trichomonas sp. 

and the other with T. vaginalis. Of the final 2 isolates, each had only one successfully 

sequenced strand; one matched most closely with T. vaginalis and the other with 

Trichomonas sp. 

Of the 76 PCR-positive tissue samples that had consensus sequences based on ITS, 

28.9% (22/76) were PCR-positive for FeHyd. When comparing our FeHyd sequences to 

those in GenBank, 14.5% (11/76) most closely aligned with KX514380.1, 6.6% (5/76) 

with HG008115, 3.9% (3/76) with KP900029, and 3.9% (3/76) with KP900030. 

For the FeHyd phylogenetic analysis, we had 22 tissue samples (KR) and 13 hunter-

killed (HK) isolates that had consensus sequences (Figure VI-III). For the tissue 

samples, KR_46 had fewer base pairs and less overlap, and so was removed to 

maintain length available of all other sequences to analyze. There was one unique 

sequence, KR_97, and 2 groups based on 100% shared identity at the FeHyd locus. 

Group 1 contained KR_80 and 44, and Group 2 included the remaining 18 FeHyd 

sequences: KR_100, 36, 38, 40, 47, 49, 65, 67, 68, 82, 85, 86, 90, 93, 96, 98, 99, and 

101. For the hunter-killed samples, HK_16 and HK_7 were removed to maintain length 

for the group. The remaining HK samples were all unique (HK_1, 5, 8-15, and 17). 

We combined our HK and KR sequences with FeHyd subtyped sequences generously 

shared with us by Drs. Kevin Tyler and Fahad Alrefaei Abdulwahed (unpublished) into 

one FeHyd dendrogram to elucidate the phylogenetic relationship among our subclinical 
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and clinical isolates and the described subtypes. To eliminate identical sequences from 

interfering with the phylogenetic algorithm, we checked all sequences (521 bases once 

trimmed) for 100% identity. Our KR_100 group was identical with A1, A1.1, and A1.3; 

KR_44 and KR_80 were identical to A2; HK_1 was identical to E1; and K1.1 was 

identical to K1. In our final tree, we used our unique sequences (KR_97 and HK_1, 5, 8-

15), with unique subtyped FeHyd sequences (A1.1, A1.2, C1, C2, C4, D1, G1, H1, K2, 

L1, L2, L3, L4, and L5), subtypes that were identical to some of our isolates (A1, A2, E1, 

and K1), and T. stableri (KC215390) (Table VI-III). The tree was rooted with 

Trichomonas vaginalis (AY957955) as the outgroup (there were no FeHyd sequences 

available on GenBank for Trichomonas nonconforma at the time of writing). 

The FeHyd tree (Figure VI-III) shows the tissue samples, the A, C, D, E, G, and H 

subtypes, and the HK_17 from the EUCD at a basal location on the tree to the root, T. 

vaginalis, while the other hunter-killed isolates, the L3 and L4 subtypes, and T. stableri 

show more evolutionary divergence to the rest of the tree. Strong bootstrap values (>/= 

98%) support separate branches for K subtypes, L1 and L2 subtypes, and the most 

divergent branch containing most of the hunter-killed isolates.  

Discussion 

We showed a prevalence of Trichomonas spp. in 53.1% (17/32) in subclinical hunter-

killed columbids by culture, which	was higher than the prevalence detected in hunter-

killed BTPI sampled in 2011 in northern California (11.1%; 6/54) (Girard et al., 2014b) 

and hunter-killed mourning doves in Missouri (5.6%; 226/4052) (Schulz et al., 2005). 

Reported prevalence for wild-caught birds can be much higher than that recorded for 

hunter-killed birds, for example, wild-caught European turtle doves had a prevalence of 

85.7% (12/14) (Lennon et al., 2013). Wild pigeons in eastern Spain had a higher 

prevalence of Trichomonas spp. (41%; 180/439) than birds of prey in the same study 

(19.6%; 20/102) (Sansano-Maestre et al., 2009). Reported prevalence can vary widely 

based on host species, method of capture, presence or absence of lesions, geographic 

location of sampling, etc. Traditionally, sampling of wildlife species often presents 
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similar challenges. Monitoring the prevalence of Trichomonas spp. in any population, 

identifying circulating genotypes, and publishing findings to make the data widely 

available, will continue to improve our understanding of the epidemiology of 

Trichomonas spp.  

All of our positive cultures (100%; 17/17) were also PCR-positive at ITS. The strains 

from these species (MODO, WWDO and EUCD) grouped with ITS groups I, J and L as 

well as Trichomonas vaginalis. Of the tissue samples, we found Trichomonas spp. by 

ITS PCR in 70.0% of birds tested (77/110), most of which (97.4% (74/76)) had clinical 

evidence of trichomonosis. Tissue sample sequences formed a separate group than the 

hunter-killed bird isolates. These phylogenetic differences suggest that these hunter-

killed doves were not carrying the strain responsible for the clinical disease in birds that 

presented to the Wildlife Investigations Laboratory.  

Phylogenetic grouping based on the ITS locus show that hunter-killed strains group 

most closely with other hunter-killed isolates, ITS Groups I and J, and T. vaginalis, but 

could not be resolved any further (Figure VI-II). These sequences had no strong 

relationship (bootstrap values under 50) to either T. vaginalis or T. nonconforma (the 

outgroup). Tissue samples from the unique KR_25, 62, 73 and 87 grouped most closely 

with ITS Group A (identical to 67 of the KR isolates), Group D (identical to two KR 

isolates) and Group B.  

At the FeHyd locus all hunter-killed isolates grouped more closely to one another and 

genotype L and T. stableri except for the HK_17 EUCD isolate which was identical to 

E1. E1 was more closely related to genotypes C and D, and the tissue samples. This 

suggests that the EUCD isolate could be more similar to the clinical strains and more 

sampling of EUCD could improve our understanding of the phylogenetic relationships. It 

is possible that the subclinical columbids we have shown to harbor strains related to T. 

stableri could spread this and other virulent strains to susceptible birds. It is also 

possible that the virulent T. stableri in BTPI is the result of a divergence from this group 

of isolates recovered from subclinical doves. The phylogenetic relationship among 
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FeHyd type C1, C2, D1, and E1 (HK_17) was unresolved, but diverged earlier than the 

hunter-killed isolate group (evolutionary distance scale <0.02) and was closer to the 

tissue samples within A1 and A2. The majority of hunter-killed isolates grouped more 

closely to one another and with genotype L and T. stableri. Molecular analyses will be 

greatly improved with the increasing accessibility and decreasing cost of whole genome 

sequencing.  

The effects of climate change on wildlife and impacts of the subsequent emerging 

diseases are extensively documented and have no evidence of slowing down. Drought 

conditions in California are increasing in frequency and severity, which influences 

availability of water for wildlife both in number and size of water sources. As birds 

congregate around diminishing resources pathogens are transmitted in new patterns. 

Trichomonosis outbreaks have been linked to drought conditions in California (Rogers 

et al., 2016) and backyard bird feed and water stations (Forzán et al., 2010; McBurney 

et al., 2017). Climate change may increase the reliance of wildlife on anthropogenic 

sources of food and water. The prevalence of Trichomonas spp. in doves in Spain was 

associated with supplementary feeding sites for gamebirds (Lennon et al., 2013). More 

research is needed to identify strategies to mitigate deleterious anthropogenic effects on 

wildlife populations.  
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Figure VI-I. Range map. 

Geographic representation of band-tailed pigeon range in Southern California relative to 

the location of band-tailed pigeon mortality event between January and March 2015 

(solid black circle) and the sampling of the 2015 hunter-killed Columbiformes (green 

circle).  
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Figure VI-II. Molecular Phylogenetic analysis based on ITS by Maximum Likelihood 

method.  

The evolutionary history was inferred by using the Maximum Likelihood method based 

on the Tamura-Nei model (Tamura and Nei, 1993). The tree with the highest log 

likelihood (-478.55) is shown. The percentage of trees in which the associated taxa 

clustered together is shown next to the branches. Initial tree(s) for the heuristic search 

were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix 

of pairwise distances estimated using the Maximum Composite Likelihood (MCL) 

approach, and then selecting the topology with superior log likelihood value. The tree is 

drawn to scale, with branch lengths measured in the number of substitutions per site 

(next to the branches). The analysis involved 17 nucleotide sequences. All positions 

containing gaps and missing data were eliminated. There were a total of 175 positions 

in the final dataset. Evolutionary analyses were conducted in MEGA7 (Kumar et al., 

2016). 
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Figure VI-III. Molecular Phylogenetic analysis based on FeHyd by Maximum Likelihood 

method.  

The evolutionary history was inferred by using the Maximum Likelihood method based 

on the Tamura-Nei model (Tamura and Nei, 1993). The tree with the highest log 

likelihood (-1768.58) is shown. The percentage of trees in which the associated taxa 

clustered together is shown above the branches. Initial tree(s) for the heuristic search 

were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix 

of pairwise distances estimated using the Maximum Composite Likelihood (MCL) 

approach, and then selecting the topology with superior log likelihood value. The tree is 

drawn to scale, with branch lengths measured in the number of substitutions per site 

(below the branches). The analysis involved 31 nucleotide sequences. All positions 

containing gaps and missing data were eliminated. There were a total of 495 positions 

in the final dataset. Evolutionary analyses were conducted in MEGA7 (Kumar et al., 

2016). 
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Table VI-I. Culture results. 

Culture results from hunter-killed doves from Imperial County, California in September, 

2015. MODO = mourning dove; WWDO = white-winged dove; EUCD = Eurasian 

collared-dove. 

 

Species Species 

abbreviation 

Positive/Total 

Mourning 

dove 

MODO 10/21 

White-

winged dove 

WWDO 6/8 

Eurasian 

dove 

EUCD 1/3 
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Table VI-II. Trichomonas spp. isolates from California avian tissue samples. 

  

Species Species 
abbreviation 

Total Samples (Year) 

Mourning dove MODO 5 (2013); 2 (2014); 10 (2015); 40 (2016) 

Barn owl BANO 3 (2014); 3 (2015); 2 (2016) 

Red-tailed hawk RTHA 5 (2015); 2 (2016) 

Cooper's hawk COHA 2 (2015); 4 (2016) 

Rock pigeon ROPI 3 (2014); 3 (2016) 

American crow AMCR 3 (2013); 1 (2014); 1 (2016) 

Great-horned owl GHOW 1 (2013); 2 (2015) 

Pine Siskin PISI 3 (2016) 

American kestrel AMKE 1 (2014); 1 (2016) 

Red-shouldered hawk RSHA 1 (2014); 1 (2016) 

Lesser goldfinch LEGO 1 (2016) 

Steller's jay STJA 1 (2016) 

Band-tailed pigeon BTPI 1 (2015) 

Peregrine falcon PEFA 1 (2015) 

White-tailed kite WIKI 1 (2015) 

Bald eagle BAEA 1 (2014) 

Burrowing owl BUOW 1 (2014) 

Eurasian collared-dove EUCD 1 (2014) 

Northern mockingbird NOMO 1 (2014) 

Golden eagle GOEA 1 (2013) 
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Table VI-III.  Molecular Results  

Molecular results for hunter-killed (HK) and tissue samples (KR) and ITS Groups and 

FeHyd subtypes for phylogenetic analyses. ITS Group Letters L, I, A, and D (Gerhold et 

al., 2008) aligned in column to identical to Study ID sequences in rows. FeHyd column 

with subtypes (Sansano-Maestre et al., 2016) E1, A1, and A2 aligned with identical 

study IDs in rows. Unique ITS and FeHyd labels indicate study IDs that had no identical 

matches to published ITS or FeHyd Groups. * = Birds with lesions consistent with 

trichomonosis. Host species codes: MODO = mourning dove, WWDO = white-winged 

dove, BANO = Barn owl, RTHA = Red-tailed hawk, ROPI = Rock pigeon, COHO = 

Cooper's hawk, AMCR = American crow, GHOW = Great-horned owl, PISI = Pine 

Siskin, AMKE = American kestrel, RSHA = Red-shouldered hawk, BTPI = Band-tailed 

pigeon, PEFA = Peregrine falcon, WIKI = White-tailed kite, LEGO = Lesser goldfinch, 

STJA = Steller's jay, GOEA = Golden eagle, EUCD = Eurasian collared-dove, BUOW = 

Burrowing owl, NOMO = Northern mockingbird, BAEA = Bald eagle. Gray shading = no 

consensus sequence for isolate and corresponding column target. 

 

Study 

ID 

Host 

Species 

ITS 

Group 

FeHyd 

Group 

HK_1 MODO 

L Unique 

HK_4 MODO 

HK_5 MODO 

HK_6 MODO 

HK_9 MODO 

HK_10 MODO 

HK_11 WWDO 

HK_12 WWDO 

HK_13 WWDO 

HK_14 WWDO 
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Table VI-III continued.  Molecular Results  

Study 

ID 

Host 

Species 

ITS 

Group 

FeHyd 

Group 

HK_7 MODO    

  HK_3 MODO 

I HK_8 MODO 
Unique 

HK_15 WWDO 

HK_2 MODO 

Unique 

  

  

  

  

  

  

HK_16 WWDO 

KR_25 MODO* 

KR_62 BANO* 

KR_73 PEFA* 

KR_87 MODO* 

HK_17 EUCD   

  

  

E1 

KR_44 ROPI* A2 

KR_86 MODO* A1 

KR_80 RSHA* 

A 

A2 

KR_36 MODO* 

A1 

KR_38 MODO* 

KR_40 ROPI* 

KR_47 AMCR 

KR_49 AMCR* 

KR_65 BUOW* 

KR_67 COHA* 

KR_68 COHA* 

KR_82 RSHA* 

KR_85 MODO* 

KR_90 MODO* 

KR_93 MODO* 
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Table VI-III continued.  Molecular Results  

Study 

ID 

Host 

Species 

ITS 

Group 

FeHyd 

Group 

KR_96 MODO* 

A 

A1 KR_98 MODO* 

KR_99 MODO* 

KR_100 MODO*  

KR_101 MODO* 

KR_1 BTPI* 

KR_2 EUCD* 

KR_4 MODO* 

KR_5 MODO* 

KR_6 MODO* 

KR_7 MODO* 

KR_11 MODO* 

KR_14 MODO* 

KR_15 MODO* 

KR_16 MODO* 

KR_18 MODO* 

KR_19 MODO* 

KR_20 MODO* 

KR_21 MODO* 

KR_22 MODO* 

KR_23 MODO* 

KR_27 MODO* 

KR_29 MODO* 

KR_31 MODO* 

KR_33 MODO* 
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Table VI-III continued.  Molecular Results  

Study 

ID 

Host 

Species 

ITS 

Group 

FeHyd 

Group 

KR_34 MODO* 

A 

 

KR_35 MODO* 

KR_37 MODO* 

KR_39 MODO* 

KR_43 ROPI*^ 

KR_45 AMCR 

KR_46 AMCR* 

KR_48 AMCR* 

KR_57 BANO* 

KR_58 BANO* 

KR_59 BANO* 

KR_60 BANO* 

KR_61 BANO* 

KR_63 BANO* 

KR_71 GHOW* 

KR_75 RSHA* 

KR_76 RSHA* 

KR_77 RSHA* 

KR_79 RSHA* 

KR_83 WTKI* 

KR_84 MODO* 

KR_88 MODO* 

KR_95 MODO* 

KR_102 MODO* 

KR_103 MODO* 

KR_105 AMKE* 



 76 

Table VI-III continued.  Molecular Results  

Study 

ID 

Host 

Species 

ITS 

Group 

FeHyd 

Group 

KR_106 COHA* 

A 

 

KR_109 STJA* 

KR_110 STJA* 

KR_87 MODO* 

KR_3 MODO* 
D KR_13 MODO* 
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Chapter VII 

Conclusion 
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We established that trichomonads can survive in water with added organic material for 

at least 48 hr. Because Trichomonas gallinae does not have a true cyst phase previous 

knowledge suggested a poor ability of trichomonads to persist in the environment. Early 

research that subjected trichomonads to different in vitro conditions including saline 

water and aqueous grain extracts found trichomonads were capable of persisting, and 

even suggested they could reproduce, in some of the conditions tested (Kocan, 1969). 

We continued to explore the unanswered question of whether trichomonads could 

persist in conditions closer to those found in the environment by using different water 

types found in nature (ie. bird bath, rain barrel, etc) and adding organic material to water 

to simulate backyard bird baths of varying levels of sanitation. For the OM and water 

types experiments we recorded a maximum persistence documented at 16 hr that far 

exceeded the 20 min persistence established in similar conditions (i.e. distilled water 

with added organic material). The extended persistence we demonstrated would allow 

more than just horizontal transfer between two birds feeding/drinking next to one 

another to birds that visit a water source at different times. 

To further understand persistence, we isolated dissolved oxygen (DO) as a possible 

mechanism to explain increased persistence of trichomonads in the presence of OM. 

We showed that with artificially lower DO, trichomonads persisted up to 30 hr. We 

added more treatments and assessed the virulence of two isolates, BWHA and COHA, 

before and after persistence treatments. In simulated bird baths with OM at a 

temperature of 37°C, we documented a persistence of 48 hr for both isolates. This 

illustrates trichomonads are capable of long periods of persistence in certain 

environmental conditions. We also chose a less hospitable environment, distilled water 

with UV light exposure, and saw persistence of up to 4 hr with the BWHA. These 

findings confirm that trichomonads are not the fragile organisms as previously 

suggested. Our results clearly show that organic material increases persistence in 

water. Evaluating other methods that increase or decrease persistence will further our 

understanding on transmission conditions and enable us to take corrective actions to 

decrease mortality in outbreaks. 
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The research described above establishes the persistence of trichomonads in water 

environments. A major unanswered question remains: do these trichomonads retain 

their virulence? Pathogenicity of isolates is known to decline in certain in vitro 

conditions, especially over time. Amin, et al. reported that cell culture is a valuable tool 

to evaluate pathogenicity characteristics of trichomonad isolates (2014). To address this 

question, we evaluated the cytopathic effect of trichomonads on cell culture before and 

after persistence experiments. We found that trichomonads that persisted 4 hours in the 

UV treatment produced more monolayer destruction than the non-persistence 

trichomonads indicating increased virulence. This study confirms that persistence can 

alter virulence. We also found a significant treatment difference between OM and UV 

treatments after 2-6 hr. The microenvironment of the bird bath and other water sources 

can affect the length of persistence and the virulence of isolates and will be a critical 

target for intervention of transmission during outbreaks. 

Understanding trichomonad ecology in water and the virulence of isolates has given us 

an understanding of the transmission on a small scale. We wanted to expand our 

understanding of how isolates are transmitted through populations and how virulence 

between strains vary. To do this we applied molecular techniques to document 

genotypes of Trichomonas spp. circulating in a current outbreak in California. Climate 

change is increasing occurrence and severity of extreme weather patterns. California 

experiences one impact of climate change in the form of severe droughts. The current 

outbreak and Pacific Coast band-tailed pigeons has been associated with drought 

(Rogers et al., 2016). As water becomes scarce wildlife congregate in larger groups 

around fewer, smaller resources, including water pathogens can spread more quickly 

and to novel hosts. We found that subclinical hunter-killed birds and a variety of 

clinically affected birds tend to have separate groups of primarily circulating genotypes. 

Our understanding of phylogenetic relationships among wild populations will be 

improved with the increasing accessibility of molecular techniques including whole 

genome sequencing. With complete genomes we will no longer be limited by single 

targets or even multi-locus sequencing and RAPD (random amplified polymorphic DNA) 
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techniques. We anticipate these and other improved molecular techniques to improve 

our understanding of the role of genes in virulence of trichomonads, the evolutionary 

changes in various strains, and also connections between strains and geography or 

host species. 

The combination of these findings- persistence in water in a variety of conditions by a 

variety of different genotypes, and the effect of persistence on virulence will provide the 

scientific foundations for other studies. We have shown that trichomonads are not 

fragile in the environment and that virulence can increase after short periods (4 hr) in 

simulated environmental conditions. Using this information on the behavior of 

trichomonads on the individual level can help us understand the larger scale of 

genotypes circulating around the world. We have improved the understanding of 

transmission dynamics and can provide targets for wildlife biologists and backyard bird 

enthusiasts to mitigate outbreaks, namely to keep bird bath clean from organic debris.  
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Supplemental Data 

Table A-I. Oxyrase and persistence. 

Persistence of two trichomonad isolates with two different concentrations of Oxyrase® 

in 3 replicates with the recorded dissolved oxygen (DO) saturation for each time point. 

pH was also recorded at hour 30 and is shown with standard deviation. COHA= 

Cooper’s hawk; BWHA= broad-winged hawk; STDEV= standard deviation  

 

Oxyrase ® 

(vol/vol) 

0.5% 1.0% 

 Replicate 

Minimum 

persistence 

(hours) 

Minimum 

persistence   

(hours) 

COHA 

1 13 26 

2 18 26 

3 18 30 

Mean +/- SD 16.33 +/- 2.89 27.33 +/- 2.31 

BWHA 

1 18 26 

2 18 30 

3 26 30 

Mean +/- SD 20.67 +/- 4.62 28.67 +/- 2.31 
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