Figure 6.8: Comparison of the averaged Lz error in approximating g from (6.14) using
weighted ¢! minimization with various choices of weights in (top) d = 8, N = 1843, and
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6.3 Numerical results for the approximation of solu-
tions to the parameterized elliptic PDE with sparse
Hilbert-valued recovery

In this section we provide several numerical experiments solving the parameterized problem
(2.2) on the unit square D = [0, 1]> C R?, demonstrating the efficiency of sparse HV recovery
relative to other approaches. As in Section 6.1, for a general coefficient a(z,y), we do
not know the exact solution u to (2.2). Therefore, we check convergence of parametric
discretizations against “highly-enriched” reference sparse grid SC approximations, as in
Section 6.1, which we denote here uy, x(x, y). More specifically, all approximations (including
the enriched reference solution) are computed on fixed finite element meshes 7, (to be
described), and our enriched SC approximation is computed using Clenshaw-Curtis abscissas
with level Ly, larger than that of the other SC approximations. We then approximate the
relative errors of the expectation and standard deviation in the H(D)-norm for each of the
approximations U approx as

e N HEy [uh,ex _ uh,approx] HHol (D) relo N HVary [Uh,ex - Uh,approx]Q “H(} (D)
h,approx h,approx ||Vary [uh,exP ||H& (D)

(6.15)

| Ey [t ex] ||H3 (D)

where E,[-] and Var,[-] denote expectation and variance with respect to y € U from (2.3) &
(2.4), respectively.

As in Section 6.1, we follow the convention from [7, 54] in identifying the important
stochastic degrees of freedom (SDOF) as the number of random sample points m for the CS,
MC, and sparse HV recovery approaches and number of structured sparse grid points M,
for the SC method. For the SG method, SDOF remains N, the cardinality of the particular
index set J used in construction. While this metric is not an accurate representation of the
computational complexity of obtaining the approximation, it provides a useful benchmark
in comparing the sample complexity of the sampling-based methods. We include the SG
method only to compare the L2({f)-optimal (w.r.t. SDOF) error of the Galerkin projection
against the error of the sampling-based approximations.

In Section 6.3.1 we give a comparison between our sparse HV recovery approach and
global recovery through compressed sensing-based polynomial approximation of the point-
wise functionals (3.61). Section 6.3.2 compares the sparse HV recovery approach to several
popular alternatives for high-dimensional approximation of solutions to parameterized PDEs,
including the Monte Carlo, stochastic Galerkin, and stochastic collocation methods. In our
plots and discussion in these sections, we use the following abbreviations. For the CS and
sparse HV recovery methods, we use: “CS-TD” and “HV-TD” to denote the approximations
obtained using the CS and sparse HV recovery methods in the total degree subspace Pzro U)
with jpTD given in (3.9) for a fixed p to be provided. Similarly, for the SG method, we use:
“SG-TD” to denote the SG approximation obtained in the subspace jpTD for increasing p.
For the SC method, we use: “SC-CC” to denote the sparse grid Smolyak approximation
constructed on Clenshaw-Curtis abscissas of level L increasing, with gy and m given in
(3.25) and (3.28). For the Monte Carlo approximation, we use “MC” often also including
the convergence rate O(m~1/2) of the MC method in plots for comparison.

113



In all examples excluding MC and SC, we use the orthonormal Legendre polynomials
(U, )pes in parametric discretization. For the MC, CS-TD, and HV-TD methods, we use
the same set of random sample points (y;)”, in obtaining a given approximation. However,
since each method relies on random sampling, in order to better understand the average
performance of the algorithms, we use the strategy of running all three methods on 24 trials,
fixing the initial seed ¢ for the pseudorandom number generator per trial, and then solving
each trial’s problem with the same set (yi(Q))?il. We then average the results when plotting
convergence over the trials.

6.3.1 Comparison of sparse HV recovery and CS point-wise
functional recovery for global approximation of solutions to
parameterized PDEs

In this section we give a comparison of the sparse HV recovery and CS point-wise functional
recovery techniques of Sections 3.6.1 & 3.5.3, respectively. For both approaches we construct
a fully discrete approximation of the solution u to the parameterized elliptic PDE (2.2). In
this comparison, both methods use the same set of random points (y;)7; drawn from the
measure ¢ and corresponding normalized samples (up(x,y;)/v/m)™, € V", with up,(z,y)
from (3.2), obtained with the finite element method from Section 3.1. We describe details
of obtaining the approximations as follows.

For the sparse HV recovery method, we solve the unconstrained optimization prob-
lem (3.70), with measurement matrix A given by (3.68) and data w given by u" =
(un(z,yi)/v/m)™, € Vi*. To yield solutions to the HV-BPDN problem (3.69) through
problem (3.70), we apply Bregman-FPC iterations of Algorithm 2 with the values from
Table 4.1 where ¢* = ¢™* € V¥ used in parameterizing by, to satisfy the residual constraint
of (3.69), is given by

Ky,

ot (x) = Z [unuli () € Va(D) Vv e J.

k=1

Here (up,)ves from (3.12) are the coefficients of the solution obtained with the SG and FE
methods (sufficiently resolved by the PCG solver), see Sections 3.2 & 6.1.

Letting ¢# € VY denote the HV approximation obtained by the combined Bregman-
FPC solver, our fully discrete sparse HV recovery approximation to u is then given by

Kh
HV
Uhj# 7y E C E § & k (Pk (y) (616)
veJ veJ k=1

When J is the total degree set from (3.9), we refer to uHV # as the HV-TD approximation
to u. We can also view our algorithm as simultaneously solvmg for the matrix of coefficients
¢ e CV*En given by [eM#], ). = é};f foreachk =1,..., Ky and v € J, i.e., approximating
the matrix é"* € CN*Er associated with c™* € VI given by [é"*], = [upu]p for

each k = 1,...,K, and v € J. Therefore ¢"# directly approximates the coefficients of
the SG approximation in the finite element and orthonormal bases ()i, and (V,),cz,
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respectively. Due to the sparse regularization, enforced by the ¢y ;-norm, we expect the
matrix ¢"# to be row-sparse, or approximately row-sparse.

Recalling the modifications of the forward-backward and Bregman-FPC iterations from
Remark 4.3 and Sections 4.2.1 & 4.3, at each iteration involving J. from (4.10) we must
compute | - |ly-norms of the components of the Hilbert-valued vectors ¢ in regularization
to solve (3.70). With the FE expansions (3.79) we can easily compute the energy norms
requn"ed in regularization as ||c}|ly = [|éklls = (&],., B(¢}.)")2 where €. denotes the v-th
row of ¢" and B is the FE stlffness matrix resulting from substituting @ = 1 in Blu, v](y)
from (2.10), i.e., given by [B];z = [, Vor - Vo da for Lk =1,... K.

For the CS point-wise functional recovery approach, we solve the decoupled problems
(3.60) with the same measurement matrix A from (3.68) and data g% := (uy (2, y;)), C
C™ at all points z; on the finite element mesh 7,. We apply the standard Bregman-FPC
algorithm from [129], using the same parameters from Table 4.1 with ¢* as above. From
this procedure, we obtain a set of sparse vectors (¢*)# ) . € C™ where the vector &*)-#
defined by [e®)#], = c’;}f for each v € J from (3.62) approx1mates c® € CN given by
[c®], = ¢, () for each v € J with ¢, (2) from the expansion (3.61). As in the case of sparse
HV recovery, we can define the matrix é¢"# € CN*Kr by éh# = [eM)# c@#  cFEn)#],
This matrix will also approximate the matrix é"* of coefficients of the SG and FE
approximations. However, recalling the discussion of Remark 3.14, this matrix ¢ may
not be (approximately) row-sparse due to the fact that the set of s largest terms of the
point-wise GPC expansions may have disjoint supports.

To construct the fully discrete approximation to u from the point-wise approximations,
we interpolate the GPC expansions g,ffj(y) ~ gx(y) from (3.62) associated with the vectors

(e®#)[n in the basis (¢g)rt, to obtain

Ky,

upy Fay) =0 at enle) Tuly). (6.17)

veJ k=1

When 7 is the total degree set from (3.9), we refer to uZTfjcS’# as the CS-TD approximation

to u, which can be used to compute any desired quantity of interest, such as the error metrics
of (6.15) in comparing to the HV-TD approximation.

Recalling the example from Section 6.1.3, we study problem (2.2) when parameterized
with a deterministic load f = 1 and diffusion coefficient a(z,y) given by a modification of
the right hand side of (6.7), i.e., the affine function

1/2 d
a(r,y) =104y (@) + Z G V() i (6.18)

Here ¢; and 9; are given in (6.8) and (6.9), respectively, y; ~ U(—+/3,v/3) (uniform on
(—=v3,V/3)) Vi = 1,...,d, and the constant 10 is chosen to guarantee a(z,y) satisfies
Assumption (Al). For x; € [0,b], let L. be a desired physical correlation length for the
random field a(x,y), chosen so that the random variables a(x1,y) and a(x},y) become
essentially uncorrelated for |z; — 2| > L.. Also, let L, = max{b,2L.} and A = L./L,.
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In the following example, with L. = 1/4 and d = 100 in (6.18), we construct the
approximations HV-TD and CS-TD from (6.16) & (6.17), respectively, in a total degree
basis of order p = 2 having cardinality N = (d;p ) = 5151. We compute the random samples
of our FE approximations (us(z,y;)/v/m)™, € V" using a quasi-uniform mesh 7, having
206 degrees of freedom, corresponding to a maximum mesh size of h =~ 1/16.

The left panel of Figure 6.10 shows a comparison of the relative error statistic EZ?LE]IE”OX
from (6.15) for the HV-TD and CS-TD approximations. For each data point, we increase
the number of random samples m following the rule m; = [kN/8] for k = 1,2,...,7,
keeping N = 5151 fixed. The top middle and top right panels display the decay of the
SG coefficients ¢* in || - ||y-norm, before and after sorting by magnitude, and the bottom
middle and bottom right panels show the decay of |c*(z;)| at a selection of points x;
on the mesh for 7,, before and after sorting by magnitude. We note that the choice of
parameterization implies u is highly compressible, in the sense that the coefficients ¢, € V
from (3.5) satisfy ||ey|y — O rapidly as |v| — oo, making it ideal for approximation with
compressed sensing-based polynomial strategies. This can be seen as a consequence of the
choice of correlation length L., resulting in the coefficient a(y) and hence u(y) having highly
anisotropic dependence on the variables y € U, with decreasing dependence on y; as © — oo.

While the difference in errors between the HV-TD and CS-TD approximations is
somewhat dramatic, it should be noted that the parameterization for the solvers use the
tolerance by, = 1.2+ ||Ac™* —ul|y 9, a global error statistic. Since the CS-TD approximations
involve a sequence of point-wise solves, this value of by, may lead to poor point-wise
approximations as it does not account for the error of truncation at a particular point xj in
the mesh. In practice however, such point-wise truncation estimates are often unavailable
for practical parameterized PDE problems. On the other hand, a priori estimates in global
energy norms have been shown for a wide variety of parameterized PDEs under reasonable
assumptions on the input data, see Section 5.3.
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Figure 6.10: (left) Comparison of relative error statistics 526,;?”0)( from (6.15) for the sparse

HV recovery method (HV-TD) and compressed sensing point-wise functional recovery (CS-
TD) methods, both computed with a total degree basis of order p = 2 in d = 100 dimensions
having cardinality N = 5151. (center) Magnitudes of the coefficients in (top) energy norm
and (bottom) pointwise at three physical locations z; sorted lexicographically, (right) same
as center after sorting by largest in magnitude. Here ¢"* is obtained with the stochastic
Galerkin method in the same total degree polynomial subspace.
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6.3.2 Comparison of sparse HV recovery with SC, SG, and MC
methods for parameterized PDEs

In this section, we give a comparison of the approximation errors that can be obtained
solving the stochastic elliptic PDE (2.2) with the sparse HV recovery method and the SG,
MC, and SC methods from Sections 3.2, 3.3, and 3.4, respectively. For all of the methods
considered, we use a fixed triangulation 7, of D. For the MC and HV-TD methods, we
parameterize both solvers with the same set of points (y;)"; drawn from the measure p.
We focus on two types of parameterizations, namely the affine coefficient from (6.18) over a
range of values of dimension d and correlation length L., and the transcendental coefficient
from (6.7). Each example highlights an important aspect of the convergence of the sparse
HV recovery method.

The first example we study is that of the affine coefficient (6.18) with fixed L. = 1/4
and increasing d. As in the previous section, the physical FE discretization for this problem
uses a fixed quasi-uniform mesh 7;, of D = [0,1]? having K}, = 206 degrees of freedom, i.e.,
corresponding to a maximum mesh size of h ~ 1/16 in n = 2 physical dimensions. Each
row of Figure 6.11 plots the relative error metrics 526715;1;Epmx on the left and €§Z‘f§gprox on the
right from (6.15), while keeping the order p of the total degree polynomial subspace used in
computing the HV-TD approximation fixed. Each row increases d, from 20 on the top row
to 60 on the middle row, and 100 on the bottom row. We note that e}k uses all of the
coefficients ¢ v € J from (6.16), and is therefore a much better representation of the error
of the HV-TD method than £j°;>  , which only uses co® ie., the HV-TD approximation
of the first stochastic mode of (3.5), due to the orthonormality of (V,),cx.

As mentioned in Section 6.3.1, this choice of correlation length L. results in highly
anisotropic dependence of the solution u on the parameter vector y, with most of the
important terms in (6.18) corresponding to low index i of y;. Moreover, the solution u is
highly compressible, with the coefficients ¢, satisfying ||c, ||y, — 0 rapidly as |v| — oo.
Hence, as d increases, the relative sparsity s/N decreases, since N = #(J) depends
exponentially on d for total degree [J, while the best s terms of (3.5) scale approximately
linearly with d under the coefficient (6.18). As a result, in higher dimensions the HV-TD
approximation outperforms the SC and MC methods dramatically. This can be seen as a
consequence of the fact that the SC-CC method is using an isotropic growth rule so that M,
is growing exponentially in d. Under an anisotropic growth rule, adapted to the coefficient
decay, better performance of the SC-CC approximation would be observed. However, such
anisotropic rules often require detailed knowledge of the parametric dependence.

Figure 6.12 displays the effect of doubling the correlation length L. in the coefficient
a(z,y) from (6.7) from 1/4 to 1/2 in d = 100 dimensions, resulting in an expansion of
the solution with even fewer large terms |c,||y. For the relative standard deviation error
statistic el;g{;gpm, we begin to see the HV-TD method approaches the error of the final point
of the SG-TD method, both of which are constructed using the same basis (¥, ),cs of a
total degree polynomial space of order p = 2. As my, = [kN/8], k =1,2,...,7, approaches
N = #(J) (the cardinality of the set used in both constructions), the error of the HV-
TD approximation begins to stagnate, suggesting that the Bregman-FPC algorithm has
converged to the tolerance byy. Since byoy = 1.2 - [|Ac™* — ul|y o, with ¢™* the SG solution
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of total order p = 2, this suggests the relative errors of both approximations are of the same
order.

Both of Figures 6.11 & 6.12 highlight a key advantage of the sparse HV recovery approach
that is common to all CS-based methods of approximation. Without a priori knowledge of
the coefficient decay, or use of anisotropic weighting in the set 7, the HV-TD approximation
is able to naturally detect the underlying anisotropy of the problem in refinement as the
number of random samples m increases. Moreover, our results suggest that simply choosing
J large enough to surely cover the best s terms in the expansion (3.5) is sufficient to yield
highly accurate approximations. These approximations would only be further enhanced if a
priori knowledge of the coefficient decay is given and anisotropic weights are incorporated
into the set J. Indeed, we expect the lower set-based ¢;-weighting strategies for smooth
function approximation in Section 6.2 to also yield improved accuracy. We leave a detailed
study of such weighting techniques to a future work.

Finally, Figure 6.13 shows the result of choosing a(x, y) as the log transformed Karhunen-
Loeve expansion from problem (6.7) with correlation length L. = 1/8 in d = 17 dimensions.
As observed in Section 6.1.3, such problems with transcendental parametric dependence in
the elliptic operator are inherently more difficult to solve than those with affine or polynomial
dependence. Here all approximations are computed on a fixed finite element mesh with
K, = 713 degrees of freedom, i.e., corresponding to a maximum mesh size of h ~ 1/32.

For this problem, in d = 17 dimensions, the stochastic Galerkin system becomes
prohibitively difficult to discretize and solve, even when applying the sparse projection
technique from Section 3.2.2. As a result, we only compare the Monte Carlo, joint-sparse, and
stochastic collocation methods, using the SC error as an approximation to ||Ae™* —uly 5 in
parameterizing by,. Here we only plot the HV-TD method for my = [EN/8] for k =1,...,4.
In both the 52f§gprox and 52fgfprox error metrics, the HV-TD method outperforms the MC
and SC-CC approximations with respect to sample complexity, even in the case of slower
anisotropic decay associated with L. = 1/8. Furthermore, the rate of convergence of the HV-
TD approximation is O(m~%/2), the fastest out of all methods included, further bolstering
our claim of the ability of our approach to accurately detect and refine the most important
terms of the expansion (3.5).
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Figure 6.11: Comparison of relative approximation errors g;’i>  (left) and e
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Galerkin (SG-TD), Monte Carlo (MC), and total degree order p = 2 sparse HV recovery
(HV-TD) methods for solving (2.2) with coefficient (6.18) and correlation length L. = 1/4.

(top) d = 20, N = 231, (middle) d = 60, N = 1891, (bottom) d = 100, N = 5151.
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Chapter 7

Conclusions

The major contribution presented in this work was the extension of compressed sensing and
joint-sparse recovery methods to the recovery of sparse Hilbert-valued vectors. Our novel
sparse HV recovery approach enables efficient approximation of solutions to parameterized
PDEs, under the minimal sample complexity requirements of both methods. Moreover, with
quasi-optimal error estimates from [113], we are able to show that our method achieves
sub-exponential convergence rates similar to the popular stochastic Galerkin and stochastic
collocation methods. Throughout this work, we have addressed a number of key issues
related to the computational complexity of methods for approximation and convergence of
algorithms. We summarize our achievements as follows.

In Section 3.2, we presented the stochastic Galerkin method, which approximates
the solution u to parameterized PDEs by orthogonal projection, obtaining optimal error
estimates and fast convergence rates under mild assumptions on the input data. It was
known that the computational complexity of the method depends on the order of dependence
on the parameters in the model, though a rigorous analysis of this cost in the general
nonlinear case was lacking in the literature. We addressed this in Section 5.1, proving
bounds on the sparsity of the linear systems that result from the stochastic Galerkin
discretization in the general case, i.e., bounds that hold for all parameterizations. Using
these bounds to analyze the cost in FLOPs, we show the method enjoys optimal cost in the
affine case, in agreement with previous results [7, 55]. However, for higher-order nonlinear
parameterizations, the optimality of the SG method is lost. Indeed, when discretizing the
elliptic PDE (2.2) with the SG method, higher order parameterizations result in denser
matrices consisting of fully coupled systems of finite element equations, making matrix-
vector products required for solution cumbersome. In Section 6.1, we demonstrate this fact
with extensive numerical experiments, comparing performance in FLOPs for a variety of
affine and nonlinear parameterizations.

Recently, methods developed in the compressed sensing community for the recovery of real
or complex-valued signals have been adapted to the problem of polynomial approximation
of high-dimensional functions. Such methods rely on the smooth dependence on parameters
and fast decay of coefficients in orthogonal expansions of the target function, enabling highly
accurate approximations with minimal sample complexity. Motivated by the polynomial
approximation problem and the fact that the most important terms of such expansions of
smooth functions often lie in lower sets, in Section 3.5 we focused on improving sample
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complexity estimates for sparse polynomial approximation. We achieve this through an
extension of chaining arguments of Bourgain [15] from Hadamard to general bounded
orthonormal systems, leading to a reduction in the order of dependence on log(s) in
sample complexity estimates by one unit for sparse recovery. To further improve results
for smooth function approximation, in Section 3.5.2 we develop a structured sparsity model
for polynomial approximation on lower sets, enforced by a new lower restricted isometry
property (RIP), a specific case of the weighted RIP from [103]. Finally, in Section 6.2, we
presented numerical experiments with a novel weighting strategy, with explicit weight choice
enhancing lower set recovery, demonstrating the virtual optimality of our choice of weights
on several examples of smooth high-dimensional function approximation.

In Section 3.6, we presented the problem setting and measurement scheme required
for sparse HV reconstruction. The key extension from standard compressive sensing is
a reformulation of standard basis-pursuit denoising in terms of a mixed ¢y ,-norm which
enables energy norm regularized sparse reconstruction of solutions to parameterized PDEs.
As described in Section 3.6.3, the problem of Hilbert-valued recovery is intimately related to
compressed sensing and joint-sparse recovery, and can be seen as a generalization of those
problems. In Section 4.1, we show convergence results for a formulation of forward-backward
splitting, relevant to both joint-sparse and sparse HV recovery. Our analysis establishes a
novel angular convergence result using the firmly nonexpansive property for soft thresholding
operators. With this, and the well-known weak convergence of the method, we are able to
prove the strong convergence of the iterates in the infinite dimensional setting. Moreover,
in Sections 4.2 and 4.3, we give extensions to the Bregman iterative regularization and fixed
point continuation methods, enabling efficient recovery of sparse HV signals.

In Section 5.3, we develop a framework for the approximation of solutions to parame-
terized PDEs through sparse HV recovery. With only general assumptions on the decay
of coefficients of the parametric expansion of the solution, we are able to derive sub-
exponential convergence rates for sparse HV recovery with respect to the number of terms s.
Such compressibility results have been shown for a variety of parameterized PDE problems
28], including the parameterized parabolic and hyperbolic PDEs. Therefore we expect
the sparse HV recovery approach to also perform well in those settings. In Section 6.3
we demonstrate the minimal sample complexity requirements of the method, comparing
to popular alternative methods of solution including the SG, MC, and SC methods. Our
results reveal the superior approximation capabilities in high-dimension problems, resulting
from the ability of compressed sensing-based approximations to naturally detect underlying
problem anisotropy.
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Appendix A

Proofs from the text

A Proofs of results from Chapter 4

In this section, we include proofs from Chapter 4 that are either too long to include in the
regular text, or do not add significant insight to the discussion. Several of the proofs from
this section can be found in other works, with minor differences.

Proof of Proposition 4.16. The following is the proof of [129, Proposition 3.2], restated with
the || - ||y, norms for ¢ = 1,2 and corresponding inner product (-,-)y 2. From the definition
of the subgradient (see (4.2)) and because z* is a minimizer of the objective function of step
3 of Algorithm 1 we have
H(2") < H(2") + J(2) = J(z"71) = (p"1 2" = 2" )y

= DY (2F, 2P ¢ H(2Y)

< D?]Jk_1<zkfl’zk71) + H(zkfl)

— H(Zk_l),

which implies part 1. Now if J(Z) < oo, then since

DF'(2,2%) — D' (2,2FY) + DB (2F, 25
=JEZ) -JEZ+ -z p
— J(2) + (") = (2" V.2
+ J(2F) = J(2FY) + (zk_1 — 2" p" Ny,
= (2" —z,p" —p" ),

Y
k>V2
P 1 k71>

Letting —qg* = p* — p*~! € OH(2%), and using the properties of subgradients, we obtain

1 k—1

D®(2,2M D8 (2,25 + DP
< H(2) — H(z"),
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or, after rearranging,
DF'(2,2%) + DB (2%, 2N + H(2%) < H(2) + DB (2, 247Y). (A1)
If z is also a minimizer of H, then
DY (z,2%) < D®'(3, 2"
< D¥'(z,2") + D8
1

< DV (3, 2F ).

)+ DY (25, 2
) (25,25 — H(2) + H(2)

so that the Bregman distances to Z are monotonically nonincreasing. Subtracting H(2) from
both sides of (A.1) and summing, we have

D (2,2%) + > [Df;“(zj, 27N 4 H(2) — H(2)| < D°(2,2°) = J(2).

From the nonnegativity of the Bregman distance and the monotonicity of H(z7) due to part
1, it follows that

k

DP(2,2%) + k[H(2") — H(2)] < J(2),
implying part 2.

Now if u = AZ, and J(z) := | 2||v1 and H(z) := §||Az — ulf},, for z € H, then from
parts 1 and 2 we have

Hence

Jj=1 Jj=1
k—1
= J(2") = J(2%) = (P 2" = 2o+ Z<P] —p 2 = 2y,
j=1
k—1 k—1
:J(zk)_ <q],2§ _£>V2_ <q],Z]—Z>y2
7j=1 7=1
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Since ¢/ = A*(Az’ — u), we have

k—1 k-1
J(2) > J(z") — Z(Azj —u, AZF —u)y, — Z(Azj —u, Az' —u)y
j=1 j=1
k—1 k-1
=J(2") = (A2 —u, AZ" —u)yy - ) | A —ul},
=1 j=1
k—1 k-1
> J(2") =) A2 —ulyal Az —ulye =Y A2 —ul,
j=1 j=1
k—1 k-1
> () - Y A —ulp, - Y 1A% —ul,
j=1 j=1
k—1
> J(2") — Kl AZ" —ul}, =) A2 —ulf},
j=1

> J(2") - 2J(2)

showing that J(2*) < 3.J(2). Hence, when J(2") = ||2*|y.1, we see that {2*} is uniformly
bounded in the reflexive Banach space (VV, ]| - ||y.1), and the existence of weak-* convergent
subsequences follows from Theorem 3.16 and the Banach-Alaoglu Theorem. That the limit
of such subsequences satisfy Az = u follows from part 2. m

Proof of Theorem 4.17. Let z¥ and z*¥ denote the solutions to Version 1 and 2, respectively,
0

at the k-th iteration. From (4.37), DY (z,2°) = J(2), and (4.40) gives u! = u. Hence, at

k =0, (4.38) and (4.42) solve the same problem:

1
min J(z) + §|]Az — ul},-

zeyN

Since this problem may have more than one solution, we do not assume z! = z!, and instead
rely on Lemma 4.8, noting that A*(u — Az') = A*(u — Az'). Therefore, at step (4.39) we
have

p'=p’ - A" (Az' —u) = A*(u — Az') = A*(u— Az") = A*(u' — AZ").
Assume that p* = A*(u* — Az"), we show the following: (i) the optimization problems in

(4.38) and (4.42) at iteration k are equivalent, (i) A*(Az*"l —u) = A*(AZ*! — u), and
(111) pk+l — A*(uk+l _ A2k+1).
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Part (i): we have
D (2,2 + 5114z — ullyy = (=) — 0, 2)va + 5| Az — ulfh; + O
= J(2) ~ (uF — A2 Azhys+ S Az —uld, + s
= J(2) + 5l Az — (u+ (ut — A2, + Cy
= J(2) + |4z — w Ry + s

where (4, Cy, and Cj are constant in z. Hence steps (4.38) & (4.42) of Versions 1 & 2,
respectively, have the same objective function up to a constant in z.

Part (ii) The equivalence of A*(Az**! — u) and A*(Az**! — u) follows from part (i)
and Lemma 4.8.

Part (iii) From the induction assumption, as well as (4.39), (4.41), and part (i), we have

pk—H :pk o A*(Azk—i-l o ’LL) :pk o A*(A2k+1 o ’LL)
= A*(u* — AZF) — A*(AZF! — )
= A (u + (uf — AZF) — AZFT)
_ A*(uk-‘rl o A2k+1).
This completes the proof. m

Proof of Theorem 4.18. For any z, by the nonnegativity of the Bregman distance, we have

(z) —
= J(z) — (z — 2" A*(uf — AZF))y,
= J(z) — (Az — AZF uf — AZF),,,
=J(z)— (Az — u,u® — Uu)y 2,

where the first inequality follows from Theorem 4.17. Therefore z* satisfies J(2*) < J(2)
for any z satisfying Az = wu, and the result follows. m
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B Proofs of results from Chapter 5

In this section, we include proofs from Chapter 5 that are either too long to include in the
regular text, or do not add significant insight to the discussion.

Proof of Corollary 5.3. When d = 1 we denote a = r € Ny and note that from Theorem
4.1,

2#S(r,{) otherwise,

with S(r,0) = {s € Ng: s ={,s <r} = {{} for ¢ < r and () otherwise. We distinguish in
cases:

(. 0) = {#S(r,ﬁ) r even, {=r/2

e Caser =2k, k € Ny,
1. when 0 <r < p,
’ 1+p—¢ l+p—k 2 l4p—t
nnz(G,Jch(r,E)( 56):< fk)—i-ZZ( 65)
p p S\
=(1+p—k)—k(Bk—2p—1)
=14p—4k®>+2kp+ k?

=(p—2k+1)(2k +1) + &?
=(p—r+Dr+1)+k

2. Whenp+1§7“§2p,wehave’%lSkgp,so

1n2(G,) = i}C(r,@(l—;f;E) _ (1;f;k) v i 2(12525)

e=[r/2 (=k+1
p
1+p—+¢
— (1 _
(1+p k)+22< bt )
t=k+1
=(1+p—k)+@—-Fk@-k+1)

=(1+p—k)*
3. when r > 2p, then k > p, so

o= 32 o1 ) = (50 22 (50 ) -

t=[r/2] (=k+1
sincep—k<Oandl>k=p—(l<p—Fk<O0.

e Caser =2k+ 1, k € Ny,
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1. when 0 <r <p, then [r/2] =[(2k+1)/2] =[k+1/2] =k+ 1, so

nnz(G,) = Z c(r,€)<1+p f)_z%f (1+p—£)

¢=[r/2] p—t (=k-+1
=—(1+k)(3k — 2p)
= 4k +2p —4K* + 2kp + KX + k
= —2k(2k +2) +p(2k +2) + k> + k
=(p—2k)(2k +2)+ K+ k
=(p—-r+Dr+1)+k+k

2. when p+1<r <2p,then p/2 <k <p-—1/2, so

mz(G,) = _ET: c(r,e)(”ﬁ_g) _2253“ (1+p €> , zp: (1+p—€

p—t (=k+1 (=k+1 p—t

={@—-k)p-k+1).

3. when r > 2p, then k > p —1/2, so

mnz(G,) — Z c(r,z)(”p_f) _ %f c(r,ﬁ)(1+p_£> 0,

e=[r/2] p—t (=k+1 p—t

sincek>p—12=p—t<p—(k+1)=p—k—-1<p—(p—1/2)—1=-1/2.

This completes the proof. m
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