
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

8-2018 

Understanding the influence of synchronization of ovulation on Understanding the influence of synchronization of ovulation on 

steroid bioavailability and its association with the presence of steroid bioavailability and its association with the presence of 

Pseudomonas aeruginosaPseudomonas aeruginosa  within the bovine reproductive tract within the bovine reproductive tract 

Sierra Ashley Lockwood 
University of Tennessee, slockwo1@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

Recommended Citation Recommended Citation 
Lockwood, Sierra Ashley, "Understanding the influence of synchronization of ovulation on steroid 
bioavailability and its association with the presence of Pseudomonas aeruginosa within the bovine 
reproductive tract. " PhD diss., University of Tennessee, 2018. 
https://trace.tennessee.edu/utk_graddiss/5060 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F5060&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Sierra Ashley Lockwood entitled 

"Understanding the influence of synchronization of ovulation on steroid bioavailability and its 

association with the presence of Pseudomonas aeruginosa within the bovine reproductive 

tract." I have examined the final electronic copy of this dissertation for form and content and 

recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor 

of Philosophy, with a major in Animal Science. 

Henry G. Kattesh, Major Professor 

We have read this dissertation and recommend its acceptance: 

Peter D. Krawczel, Ky G. Pohler, Justin D. Rhinehart, Brynn H. Voy, Brian K. Whitlock 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Understanding the influence of synchronization of ovulation on 
steroid bioavailability and its association with the presence of 

Pseudomonas aeruginosa within the bovine reproductive tract  
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 

A Dissertation Presented for the 
Doctor of Philosophy 

Degree 
The University of Tennessee, Knoxville 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Sierra Ashley Lockwood 
August 2018 

  



ii 

 

Copyright © 2018 by Sierra A Lockwood 
All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Dedication 

This dissertation is dedicated to my great grandfather, Donald L. Outhouse.   

Through his example, I developed a love and passion for agriculture. 

 

 

 

 



iv 

 

Acknowledgements 

The completion of this dissertation was made possible by many people.  First, I 

would like to thank The University of Tennessee Department of Animal Science for their 

commitment to my development as a student and young scientist, and for allowing me 

the opportunity to pursue higher education.  I am sincerely grateful for the guidance and 

mentorship from my co-mentors, Dr. Henry Kattesh and Dr. Justin Rhinehart.  Their 

passion for research, agriculture, and education is unparalleled and truly inspiring.  

Thank you to my committee members: Drs. Peter Krawczel, Ky Pohler, Brynn Voy, and 

Brian Whitlock for helping with the development and conduction of my dissertation 

project.  Additionally, I would like to thank Dr. Phil Myer’s lab for their guidance 

throughout the bacterial analysis portion of this dissertation. 

My sincere gratitude is extended to Kevin Thompson, Wes Gilliam, Hugh 

Moorehead, and the personnel at The University of Tennessee Dairy Research and 

Education Center in Lewisburg, Tennessee.  The help they provided with the heifers 

and data collection was instrumental to the conduction of the project, and they always 

made our trips to middle Tennessee enjoyable.  I would also like to thank the numerous 

graduate students who took time out of their very busy schedules to travel to middle TN 

to help with sample collection.  Barbara Gillespie was also a vital asset to this project 

and I greatly thank her for her patience while teaching me new laboratory techniques, 

and for her willingness to lend a hand.  Lastly, I must recognize my family.  Without the 

everlasting support from my parents, grandparents, and fiancé, Justin Pressnell, I would 

never have made it this far.  



v 

 

Funding for this project was obtained by Sierra Lockwood and Dr. Henry Kattesh 

through the Student and Faculty Research Award granted by The University of 

Tennessee Graduate School. 

  

    



vi 

 

Abstract 

Corticosteroid-binding globulin (CBG) transports glucocorticoids and 

progesterone, but little is known about CBG in the bovine reproductive tract.  

Pseudomonas aeruginosa is an environmental bacteria capable of colonizing the 

vaginal cavity of other species.  P. aeruginosa presence within the bovine vaginal cavity 

is not well characterized, yet evidence suggests that a controlled internal drug release 

device (CIDR) can alter the bacterial abundance within the cavity.  P. aeruginosa 

produces a protease that cleaves the reactive center loop of CBG allowing for the 

release of the steroid into its active form. Thus, the objective of this study was to 

examine effects of progesterone released from a CIDR on circulating and vaginal 

concentrations of CBG, the proportion of free progesterone and cortisol, and presence 

of P. aeruginosa following synchronization of ovulation.  Prior to CIDR insertion (d -7) 

and following removal (d 0), blood and vaginal flush samples were collected from each 

heifer (n=67).  Plasma collected at pregnancy diagnosis (d 38) from pregnant heifers 

(n=24) had greater (P=0.02) concentrations of progesterone than samples collected on 

d -7, but were similar to those measured on d 0.  Similarly, plasma CBG concentrations 

measured on d -7 and 0 did not differ, but were greatest (P=0.03) on d 38.  The free 

progesterone index (FPI) calculated from progesterone and CBG concentrations 

measured on the three sampling days were not different (P=0.16).  During the CIDR 

insertion period, P. aeruginosa abundance decreased (P<0.0001), and on d 0, P. 

aeruginosa abundance was related to both CBG concentration (r=-0.25; P=0.05) and 

FCI (r=0.37; P=0.004).  The third study aimed to determine if CBG mRNA is expressed 
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within the vagina and uterus of abattoir-sourced reproductive tracts (n=3) to determine 

the source of CBG within the vaginal cavity.  In the tissues collected, CBG gene was not 

expressed within the vaginal epithelium, but was expressed in the uterine endometrium.  

In summary, CIDR insertion did not affect CBG concentrations, but CBG may regulate 

the free fraction of progesterone in circulation during early gestation.  Additionally, P. 

aeruginosa within the vaginal cavity of heifers may alter the free proportion of cortisol as 

seen by a reduction in CBG concentration.   

  



viii 

 

Table of Contents 

Introduction ..................................................................................................................... 1 

Chapter I Literature Review ............................................................................................. 5 

Controlled internal drug release device (CIDR) ........................................................... 6 

Interaction between progesterone and bacterial community profiles ........................... 8 

Presence of Pseudomonas aeruginosa in the vaginal cavity ................................... 8 

Influence of Pseudomonas aeruginosa on steroid hormone bioavailability ............ 10 

Overview of corticosteroid-binding globulin (CBG) in circulation ............................... 11 

Free hormone hypothesis and steroid hormone distribution .................................. 12 

Reproductive functional roles of CBG ........................................................................ 14 

Regulatory role of CBG during pregnancy ............................................................. 14 

Role of CBG in transport of progesterone .............................................................. 16 

Regulatory role of CBG during parturition .............................................................. 17 

Factors that influence CBG biosynthesis ................................................................... 18 

Glucocorticoids....................................................................................................... 18 

Interleukin-6 ........................................................................................................... 20 

Estrogen ................................................................................................................. 23 

Conclusion ................................................................................................................. 25 

Chapter II Influence of synchronization of ovulation and early pregnancy on peripheral 

and vaginal concentrations of corticosteroid-binding globulin and the distribution of 

progesterone and cortisol in beef heifers ...................................................................... 27 

Abstract ..................................................................................................................... 28 

Introduction ................................................................................................................ 29 

Materials and Methods .............................................................................................. 33 

Animals .................................................................................................................. 33 

Tissue collection and synchronization of ovulation................................................. 34 

Plasma steroid hormone analyses ......................................................................... 36 

Vaginal flush steroid hormone analyses ................................................................. 36 

CBG concentration determination .......................................................................... 39 



ix 

 

Free hormone index ............................................................................................... 42 

Statistical analysis .................................................................................................. 42 

Results ....................................................................................................................... 43 

Systemic endocrine response to synchronization of ovulation and pregnancy ...... 43 

Vaginal polymorphonuclear neutrophil (PMN) percentage ..................................... 44 

Vaginal steroid hormone profiles in response to synchronization of ovulation ....... 44 

Discussion ................................................................................................................. 45 

Conclusion ................................................................................................................. 52 

Appendix .................................................................................................................... 53 

Chapter III Presence of Pseudomonas aeruginosa within the vaginal cavity of heifers 

undergoing synchronization of ovulation and the influence on biologically available 

steroid hormones........................................................................................................... 60 

Abstract ..................................................................................................................... 61 

Introduction ................................................................................................................ 63 

Materials and Methods .............................................................................................. 65 

Animals .................................................................................................................. 65 

Tissue collection and synchronization of ovulation................................................. 66 

Pseudomonas aeruginosa quantification within vaginal swabs .............................. 67 

Plasma steroid hormone analyses ......................................................................... 69 

Vaginal flush steroid hormone analyses ................................................................. 69 

CBG concentration determination .......................................................................... 70 

Free hormone index ............................................................................................... 70 

Statistical analysis .................................................................................................. 70 

Results ....................................................................................................................... 71 

Discussion ................................................................................................................. 72 

Conclusion ................................................................................................................. 77 

Appendix .................................................................................................................... 78 

Chapter IV Characterization of CBG mRNA expression within bovine vaginal epithelium 

and uterine endometrium: a pilot study ......................................................................... 82 



x 

 

Abstract ..................................................................................................................... 83 

Introduction ................................................................................................................ 83 

Materials and Methods .............................................................................................. 86 

Animals .................................................................................................................. 86 

Tissue collection..................................................................................................... 87 

RNA extraction ....................................................................................................... 87 

cDNA synthesis ...................................................................................................... 88 

Quantitative PCR analysis ..................................................................................... 88 

Statistical analysis .................................................................................................. 89 

Results ....................................................................................................................... 90 

Discussion ................................................................................................................. 90 

Conclusion ................................................................................................................. 92 

Appendix .................................................................................................................... 94 

General Research Conclusions ..................................................................................... 97 

Literature Cited ............................................................................................................ 100 

Appendices ................................................................................................................. 115 

Appendix A. Percent recovery assay for evaluating cortisol recovery capability of Sep-

Pak Classic C18 Cartridges (Waters Corporation, Milford, MA) .............................. 116 

Appendix B. Protocol for concentrating vaginal flush samples for cortisol EIA using 

Sep-Pak Classic C18 Cartridges (Waters Corporation, Milford, MA) ....................... 118 

Vita .............................................................................................................................. 120 

 

  



xi 

 

List of Tables 

Table 1. Validation of MP Biomedicals Progesterone Double Antibody RIA kit for 

determination of progesterone concentration within vaginal flush samples collected 

on d 0 and 7 of synchronization of ovulation. ......................................................... 54 

Table 2. Validation of vaginal flush cortisol concentrations (ng per volume concentrated) 

obtained following Sep-Pak Classic C18 Cartridge extraction and Salimetrics High 

Sensitivity Salivary Cortisol EIA quantification. ...................................................... 55 

Table 3. Comparison of measured plasma variables (mean ± SEM) on d -7 and 0 

between heifers that became pregnant (n = 24) following synchronization of 

ovulation followed by artificial insemination and those that remained open (n = 43).

 ............................................................................................................................... 56 

Table 4. Comparison of variables measured in flush vaginal flush samples (mean ± 

SEM) on d -7 and 0 between heifers that became pregnant (n = 24) following 

synchronization of ovulation followed by artificial insemination and those that 

remained open (n = 43). ......................................................................................... 57 

Table 5. Comparison of the abundance (mean CFU·mL-1 ± SEM) of Pseudomonas 

aeruginosa in vaginal flush samples collected on d -7 and 0 between heifers that 

became pregnant (n = 24) following synchronization of ovulation followed by 

artificial insemination and those that remained open (n = 43). ............................... 79 

Table 6. Mean ± SEM concentrations of endocrine-related variables measured within 

the vaginal flush samples collected on d -7 and 0 from heifers undergoing 

synchronization of ovulation. .................................................................................. 80 

Table 7. Spearman correlation analysis between Pseudomonas aeruginosa abundance 

and endocrine variables measured in vaginal flush samples collected on d -7 and 0 

from heifers undergoing synchronization of ovulation. ........................................... 81 

 



xii 

 

List of Figures 

Figure 1. Mean ± SEM plasma constituents measured during synchronization of 

ovulation and early gestation in heifers that became pregnant following 

synchronization and AI (n = 24).  Progesterone impregnated CIDRs were inserted 

on d -7 and removed on d 0.  Pregnancy diagnosis via transrectal ultrasonography 

occurred on d 38.  Steroid hormone concentration (nmol/L) was divided by CBG 

concentration (mg/L) to calculate a free hormone index (nmol/mg) for progesterone 

(FPI; Figure 1C) and cortisol (FCI; Figure 1E).  a,bMeans with different superscripts 

differ. ...................................................................................................................... 58 

Figure 2. Mean ± SEM progesterone, CBG, cortisol, FPI, and FCI measured in vaginal 

flush samples collected during synchronization of ovulation in heifers that became 

pregnant following synchronization and AI (n = 24).  Progesterone impregnated 

CIDRs were inserted on d -7 and removed on d 0.  Steroid hormone concentration 

(nmol/L) was divided by CBG concentration (mg/L) to calculate a free hormone 

index (nmol/mg) for progesterone (FPI; Figure 2C) and cortisol (FCI; Figure 2E).  

a,bMeans with different superscripts differ............................................................... 59 

Figure 3. Collection sites for vaginal epithelial (red arrow) and uterine endometrial tissue 

(blue arrows) harvested from bovine reproductive tracts.  Vaginal epithelial tissue 

was collected approximately 2.5 cm caudal to the cervix.  Uterine endometrial 

tissue was collected approximately 2.5 cm cranial to bifurcation and another 

sample was collected approximately 2.5 cm caudal to the beginning of the oviduct.

 ............................................................................................................................... 95 

Figure 4. Relative expression of the bovine CBG gene in endometrial tissue collected 

from four sites within the female reproductive tract.  Within the uterine horn 

ipsilateral to the corpus luteum, endometrial tissue was collected approximately 2.5 

cm cranial to bifurcation (Ipsilateral-1) and another sample was collected 

approximately 2.5 cm caudal to the beginning of the oviduct (Ipsilateral-2).  Another 

set of endometrial samples were collected within the contralateral uterine horn 

approximately 2.5 cm cranial to bifurcation (Contralateral-1) and 2.5 cm caudal to 

file:///C:/Users/slockwo1/Documents/Grad%20school/Heifer%20Development%20Center/Dissertation%20and%20associated%20manuscripts/Heifer%20Dissertation.docx%23_Toc520140236
file:///C:/Users/slockwo1/Documents/Grad%20school/Heifer%20Development%20Center/Dissertation%20and%20associated%20manuscripts/Heifer%20Dissertation.docx%23_Toc520140236
file:///C:/Users/slockwo1/Documents/Grad%20school/Heifer%20Development%20Center/Dissertation%20and%20associated%20manuscripts/Heifer%20Dissertation.docx%23_Toc520140236
file:///C:/Users/slockwo1/Documents/Grad%20school/Heifer%20Development%20Center/Dissertation%20and%20associated%20manuscripts/Heifer%20Dissertation.docx%23_Toc520140236
file:///C:/Users/slockwo1/Documents/Grad%20school/Heifer%20Development%20Center/Dissertation%20and%20associated%20manuscripts/Heifer%20Dissertation.docx%23_Toc520140236
file:///C:/Users/slockwo1/Documents/Grad%20school/Heifer%20Development%20Center/Dissertation%20and%20associated%20manuscripts/Heifer%20Dissertation.docx%23_Toc520140236


xiii 

 

the beginning of the oviduct (Contralateral-2).  Expression of the CBG gene is 

relative to the expression of β-actin.  CBG expression was similar (P = 0.95) among 

tissue collection sites. ............................................................................................ 96 

  

 

 

 

 

 



1 

 

Introduction 

Infertility poses a major economic detriment to the United States cattle industry.  

It has been estimated that reproductive inefficiency constitutes a combined loss of 

approximately $900 million per year within the dairy and beef cattle industries (Bellows 

et al., 2002).  With the world’s population expected to grow in excess of 9 billion people 

by the year 2050 (Godfray et al., 2010), research efforts focused on improving the 

reproductive efficiency of cattle remains of interest in order to continue the supply of 

animal-derived protein to our growing population.  To bolster reproductive efficiency, the 

use of estrous synchronization protocols has gained popularity within both cattle 

industries and relies on the use of coordinated administration of exogenous hormones.  

Through this management technique, producers can easily identify cows and heifers 

that fail to conceive during the breeding season and can make informed culling and 

retention decisions. 

The use of a controlled internal drug release device (CIDR) impregnated with 

progesterone is common among protocols used to synchronize estrus in cows and 

heifers to allow for coordinated ovulation and to facilitate subsequent artificial 

insemination.  However, a gap in knowledge exists in regards to the effect of exogenous 

progesterone release from a CIDR on the local endocrine and bacterial profiles within 

the bovine vaginal cavity.  Recently, research has examined the interactions between 

hormone production and bacterial community profiles that exist within the bovine 

vagina, and it has been reported that changes in the diversity and abundance of 

bacteria occur as hormone profiles vary (Laguardia-Nascimento et al., 2015).  
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Furthermore, during pregnancy, a physiological state characterized by heightened 

progesterone production, the bovine vaginal microbiome undergoes a reduction in both 

bacterial diversity and the number of bacteria inhabiting the cavity (Walther-António et 

al., 2014; Laguardia-Nascimento et al., 2015).  Although research has aimed to 

characterize the existing bacterial community profiles in the bovine vaginal cavity, the 

direct effect of exogenous progesterone release from a CIDR on the local bacterial 

community profile remains nebulous. 

In regards to women, Pseudomonas aeruginosa is a bacterial pathogen that can 

colonize the vaginal epithelium (Osset et al., 2001).  Additionally, studies characterizing 

the bovine vaginal bacterial community profiles reported that Pseudomonadaceae, the 

family in which Pseudomonas aeruginosa belong, is present within the vaginal cavity 

(Laguardia-Nascimento et al., 2015), and its abundance is augmented by progesterone 

(Padula and Macmillan, 2006).  Notably, this particular bacterial species has been 

shown to release LasB, a protease that has the ability to cleave the reactive center loop 

(RCL) of the steroid transporter, corticosteroid-binding globulin (CBG), a member of the 

serine protease inhibitor super family (Simard et al., 2014; Hammond, 2016).  After 

cleavage of the RCL, steroid hormones such as progesterone and cortisol dissociate 

from CBG and are then considered free or biologically available, and can serve their 

physiological functions (Siiteri et al., 1981).  Furthermore, it has been reported that 

under conditions of elevated progesterone production, cortisol is displaced from CBG, 

and in turn, CBG will primarily bind progesterone (Rosenthal et al., 1969; Hammond, 
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2016).  Therefore, the presence of proteases and local hormone production may both 

play roles in determining the bioavailability of these steroid hormones.   

Thus far, the presence of CBG within the uterine horns of swine and its 

interaction with cortisol and progesterone concentration has been examined in our lab 

(Klemcke et al., 1998), but to the best of our knowledge, CBG presence and possible 

involvement in steroid hormone availability and associated bacterial interaction within 

the bovine vaginal cavity has not been examined.  In the study conducted by Klemcke 

et al. (1998), it was postulated that CBG presence in the uterine horns of gilts served to 

shuttle cortisol and progesterone within cavity, but the exact mechanism and source of 

CBG was not known.  It is possible that CBG acts to impede steroid catabolism to 

ensure a constant steroid reserve (Benassayag et al., 2001).  Furthermore, the 

expression of CBG messenger ribonucleic acid (mRNA) has been reported within 

various regions of the female reproductive tract in other species (Seralini et al., 1990; 

Misao et al., 1994), but has not been characterized in cattle.  To gain a better 

understanding of the direct impact of CIDRs used to facilitate coordinated breeding, the 

main goal of the research included in this dissertation is to investigate the vaginal 

steroid hormone profile and associated bacterial interactions in beef heifers undergoing 

synchronization of ovulation.  Whereas, the second project in this dissertation aimed to 

characterize CBG synthesis sites in the female bovine reproductive tract and examine 

changes in CBG mRNA expression during different stages of the estrous cycle and 

gestation.  Through the completion of these experiments, the expected outcome was to 

gain a better understanding of bovine CBG and its influence on the reproductive axis, 



4 

 

but to also gain insight as to the local production of CBG within the bovine reproductive 

tract.  Furthermore, investigating the impact of CBG on the bound and biologically 

available fractions of progesterone within the reproductive tract during synchronization 

may prove beneficial for further understanding the ability of heifers and cows to become 

pregnant following estrous synchronization and artificial insemination. 
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Chapter I 

Literature Review 
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Controlled internal drug release device (CIDR) 

 Estrous synchronization relies on coordinated administration of exogenous 

reproductive hormones and many of the protocols developed and approved for use in 

the United States rely on the use of a controlled internal drug release device (CIDR; 

Eazi-Breed CIDR, Zoetis, Madison, NJ).  In contrast to other exogenous hormones that 

are administered by injection, CIDRs used to synchronize estrus in cattle are plastic 

devices that are infused with progesterone (1.38 g; Eazi-Breed CIDR, Zoetis, Madison, 

NJ, or 1.9 g; Eazi-Breed CIDR, São Paulo, Brazil) and after intravaginal insertion, 

progesterone is absorbed through the vaginal epithelium and migrates to the vascular 

system.  Within an hour post-insertion, circulating concentrations of progesterone reach 

a maximum peak and are sustained throughout a 7 d insertion period (Kesler, 2002).  

Similar to the rapid rise in systemic progesterone concentration after insertion, systemic 

progesterone rapidly decreases after the CIDR is removed and returns to baseline 8 hr 

post-removal (Kesler, 2002).  

Progesterone released by the CIDR has the capability to promote synchrony 

among heifers and cows through two mechanisms.  During a normal estrous cycle, 

regression of the corpus luteum (CL) must occur to allow for the onset of estrus.  

However, at the onset of the estrous synchronization process, cows and heifers may be 

at various stages of the estrous cycle that may prevent successful luteal regression 

(Kesler, 2002).  Immature CL lack the ability to respond to prostaglandin F2α (PGF2α) 

and luteal regression does not occur until the CL acquires luteolytic capacity at 

approximately d 6 of the estrous cycle (Tsai and Wiltbank, 1998; Diaz et al., 2000).  
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Insertion of CIDRs for a period of 7 d prior to PGF2α administration ensures the CL has 

reached maturity and can undergo luteolysis following PGF2α administration (Lucy et al., 

2001; Kesler, 2002).   

Another way in which CIDRs are used to synchronize a herd of cattle is by 

inducing cyclicity in pre-pubertal heifers and anestrous cows (Rhodes, 1998; Lucy et al., 

2001; Kesler, 2002).  Specifically, Lucy et al. (2001) performed a study to evaluate 

synchronization rates among pre-pubertal heifers and postpartum cows and reported 

that heifers and cows administered a CIDR followed by an injection of PGF2α displayed 

estrus earlier in a 31-d breeding season.  Additionally, greater pregnancy rates were 

observed in heifers and cows that received a CIDR followed by PGF2α when compared 

to control animals with no hormone therapy and animals that received only an injection 

of PGF2α.  During the CIDR insertion period, the low dose release of progesterone 

prevents follicular wave turn-over and promotes the development of a persistent 

dominant follicle by increasing luteinizing hormone (LH) pulse frequency (Savio et al., 

1993; Kojima et al., 2003).  As the persistent follicle continues to develop, estradiol 

production and release subsequently increases (Kojima et al., 2003).  Through positive 

feedback on the hypothalamus, estradiol promotes the release of GnRH and 

subsequent LH production and release from the anterior pituitary (Kesner et al., 1981), 

and in pre-pubertal heifers and anestrous cows and this mechanism allows for the 

resumption of cyclicity (Anderson et al., 1996; Imwalle et al., 1998).  Additionally, the 

removal of the CIDR and subsequent administration of PGF2α and GnRH, ovulation of 

the dominant follicle can occur to achieve synchrony and allow for coordinated 
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insemination.  Although the physiological mechanisms behind the use of a CIDR are 

well characterized, a gap in knowledge exists in regards to the effect of exogenous 

progesterone release from a CIDR on the local bacterial and endocrine profiles within 

the bovine vaginal cavity. 

Interaction between progesterone and bacterial community profiles 

 Within the last few years, researchers have started to examine the interactions 

between hormone production and bacterial community profiles that exist within the 

bovine vagina, and it has been reported that changes in the diversity and abundance of 

bacteria occur as hormone profiles vary (Laguardia-Nascimento et al., 2015).  

Furthermore, during pregnancy, a physiological state characterized by heightened 

progesterone production, the bovine vaginal microbiome undergoes a reduction in both 

bacterial diversity and abundance of bacteria inhabiting the cavity (Walther-António et 

al., 2014; Laguardia-Nascimento et al., 2015).  Although research has aimed to 

characterize the existing bacterial community profiles in the bovine vaginal cavity, the 

direct effect of exogenous progesterone release from a CIDR on the local bacterial 

community remains nebulous.   

Presence of Pseudomonas aeruginosa in the vaginal cavity 

 In regards to women, Pseudomonas aeruginosa is an aerobic opportunistic 

bacterial pathogen that has the capability to colonize the vaginal epithelium (Osset et 

al., 2001; Hammond, 2016).  Studies that have characterized the bovine vaginal 

bacterial community profiles reported that Pseudomonadaceae, the family in which 
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Pseudomonas aeruginosa belong, is present within the vaginal cavity (Laguardia-

Nascimento et al., 2015), but the prevalence of this particular bacterial is not well 

characterized in bovine.  Padula and Macmillan (2006) performed an experiment to 

examine the effect of CIDR (1.9 g progesterone) insertion on bacterial isolates found 

within the vagina of postpartum Holstein cows.  The study was designed such that three 

treatments were administered (control: no CIDR; CIDR-P4: two intravaginal devices 

containing progesterone were administered for 14 d; CIDR-Blank: two intravaginal 

devices without progesterone were administered for 14 d) and vaginal swabs were 

performed on d 0 (day of CIDR insertion), 7, and 14 to examine culturable bacterial 

profiles (Padula and Macmillan, 2006).  Additionally, CIDRs were swabbed immediately 

after removal on d 14 to determine bacterial species present on the device.  For both 

CIDR treatment groups, the number of samples positive for Pseudomonas aeruginosa 

increased over the sampling period.  Likewise, among the samples collected on d 7 and 

14, the presence of Pseudomonas aeruginosa was greater in the CIDR-P4 treated cows 

when compared to the other two treatment groups (Padula and Macmillan, 2006).  

Pseudomonas aeruginosa isolates were also present within the cultures obtained from 

swabbing the CIDR directly after removal.  Padula and Macmillan (2006) indicated there 

was a potential for cross-contamination between animals, but regardless of 

contamination, the presence of Pseudomonas aeruginosa increased as a result of CIDR 

insertion.   

Although it appears that progesterone released from a CIDR may impact the 

population of Pseudomonas aeruginosa within the vaginal cavity, further investigation is 
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warranted to dismiss the possibility of contamination (Padula and Macmillan, 2006).  

Furthermore, the exposure of the vaginal cavity to air during the duration of CIDR 

insertion may have contributed to the shift in aerobic bacterial populations (Padula and 

Macmillan, 2006).  We suggest that subsequent studies should aim to examine the 

effect of one CIDR on the vaginal bacterial profiles as only one insert is used in 

traditional estrous synchronization protocols.  Recognizing that only CIDRs containing 

1.38 g of progesterone are approved for use in the United States, further investigation is 

justified to determine if CIDRs impregnated with 1.38 g of progesterone elicit a similar 

pattern to those observed by Padula and Macmillan (2006). 

Influence of Pseudomonas aeruginosa on steroid hormone bioavailability 

Pseudomonas aeruginosa has the capability to synthesize and release LasB 

(Pseudomonas aeruginosa elastase), a protease that can cleave the reactive center 

loop (RCL) of the steroid hormone transporter, corticosteroid-binding globulin (CBG) 

(Simard et al., 2014; Hammond, 2016).  When Simard et al. (2014) incubated human 

CBG in a variety of bacterial cultures (Pseudomonas aeruginosa, Eschericha coli, 

Staphylococcus aureus, Burkholderia cenocepacia, Micrococcus luteus, Enterococcus 

faecalis, Acinetobacter baumannii, and Mycobacterium smegmatis) they observed a 90 

% reduction in the cortisol-binding capacity and a 5-10 kDa loss when CBG was 

incubated in Pseudomonas aeruginosa medium.  No other bacterial cultures affected 

the cortisol-binding capacity of CBG.  When human CBG was incubated with protease 

fractions extracted from Pseudomonas aeruginosa, only LasB reduced the cortisol-
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binding capacity of CBG and proved to have the ability to interfere with the ability of 

CBG to bind steroids within the RCL (Simard et al., 2014).  Based on the study 

performed by Simard et al. (2014) and the presence of Pseudomonas aeruginosa in the 

bovine vaginal cavity as reported by Padula and Macmillan (2006), further investigation 

is warranted to determine if this particular bacteria has the ability to influence CBG and 

free progesterone concentrations during the estrous synchronization process. 

Overview of corticosteroid-binding globulin (CBG) in circulation 

Corticosteroid-binding globulin is a glycoprotein that is primarily synthesized 

within hepatocytes (Hammond et al., 1991; Heo et al., 2003a) and functions as a 

transporter for a small subset of steroid hormones (i.e. glucocorticoids and 

progesterone) in which it binds with high affinity, but low capacity (Slaunwhite and 

Sandberg, 1959; Seal et al., 1966; Westphal, 1986a; Heo et al., 2003b).  Corticosteroid-

binding globulin is a member of the serine protease inhibitor superfamily (Hammond et 

al., 1987; Law et al., 2006) and acts as a target for proteases (Lin et al., 2010) such as 

neutrophil elastase (Hammond et al., 1990), chymotrypsin (Lewis and Elder, 2014), and 

LasB, a protease produced and released by the bacterial species, Pseudomonas 

aeruginosa (Simard et al., 2014).  In the presence of CBG, the aforementioned 

proteases cleave specific sites within the RCL of CBG and compromise the steroid 

binding capacity (Lewis and Elder, 2017).  After cleavage, the steroid dissociates from 

CBG and can be sequestered and loosely bound by albumin, or remain free within 

circulation, but in both instances the steroid is considered biologically available (Simard 
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et al., 2014).  Additionally, a consequence of RCL cleavage includes a 5 kDa reduction 

in molecular weight and conformational change that prevents the ability of CBG to bind 

an additional steroid molecule (Hammond et al., 1990; Potempa et al., 1994; Silverman 

et al., 2001).   

Free hormone hypothesis and steroid hormone distribution 

The free hormone hypothesis suggests that steroid hormones in the unbound or 

free-state are considered biologically available and are able to passively diffuse from 

the vasculature to specific effector tissues to serve their respective physiological 

functions (Siiteri et al., 1981; Mendel, 1989; Hammond, 2016).  A limitation that exists 

within the current literature is that many experiments with the aim to examine 

fluctuations in cortisol or progesterone, as a result of an imposed treatment, often do not 

take into consideration CBG concentration.  Consequently, this approach only provides 

insight into the production of the steroid, not alterations in the biologically available, or 

active fraction of the steroid.  The free cortisol index (FCI; nmol/mg) is a calculation that 

was derived to quantify biologically available cortisol concentrations and is determined 

by examining the ratio of circulating cortisol concentration (nmol/L) in relation to CBG 

concentration (mg/L) (Le Roux et al., 2002; Le Roux et al., 2003).  The use of this 

calculation allows for the estimation of cortisol that is biologically active in systemic 

circulation and is a better depiction of hypothalamic-pituitary-adrenal axis stimulation 

(Le Roux et al., 2003). 
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In humans, approximately 80 to 90 % of cortisol is bound to CBG, 5 to 10 % is 

loosely bound to albumin, and 5 % exists as free or completely unbound in circulation 

(Siiteri et al., 1982; Hammond et al., 1991; Estrada-Y-Martin and Orlander, 2011).  

Aside from humans, the distribution of cortisol has been documented in other species 

(Breuner and Orchinik, 2002; Malisch and Breuner, 2010), but little has been reported 

for domestic livestock species.  Our lab has previously examined the distribution in 

swine, and similar to humans, CBG is the primary protein transport for cortisol in swine, 

but it is estimated that approximately 65 % is bound to CBG, 23 % bound to albumin, 

and 12 % free in systemic circulation (Kattesh et al., 1990; Kattesh et al., 1997).  Among 

species, the RCL amino acid sequence is poorly conserved as compared to the overall 

amino acid sequence of the glycoprotein (Simard et al., 2014), and may contribute to 

the variability in the distribution of steroids observed among species.  Nonetheless, 

CBG acts as the primary transporter of cortisol in circulation. 

Thus far, progesterone distribution has not been as well characterized in the 

literature as compared to cortisol.  However, research aiming to evaluate the proportion 

of free and bound progesterone fractions have been investigated in regards to 

pregnancy.  In a study conducted by Rosenthal et al. (1969) where free and bound 

fractions of progesterone are measured during the trimesters of human pregnancy, it 

appears that CBG acts a buffer to limit the amount of free progesterone throughout the 

course of pregnancy.  More specifically, the authors noted that CBG-bound 

progesterone increases from 37 to 43 %, whereas free progesterone is maintained at 

approximately 2 % throughout pregnancy (Rosenthal et al., 1969).  The rise in CBG-
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bound progesterone was concurrent with the overall rise in circulating progesterone 

concentrations throughout the three trimesters and it appears that the proportion of 

CBG-bound progesterone is concentration dependent (Rosenthal et al., 1969).  

Additionally, by the second trimester CBG became the primary transporter for 

progesterone (Rosenthal et al., 1969), is believed to function as a buffer to regulate the 

amount of free progesterone in circulation, extend the half-life, and to create a reserve 

of the steroid (Siiteri et al., 1982; Bright, 1995; Klieber et al., 2007).  

Reproductive functional roles of CBG 

Glucocorticoids and progesterone compete for the one binding site CBG harbors 

within its RCL, and the concentration of cortisol or progesterone can alter the ratio of 

steroids bound within the RCL (Westphal, 1986a).  For example, under periods of high 

progesterone production during human pregnancy, progesterone displaces cortisol from 

the RCL to occupy the binding site (Rosenthal et al., 1969); whereas, during periods of 

elevated glucocorticoid production, cortisol displaces progesterone from the RCL 

(Westphal, 1986a).  This interaction signifies the main function of CBG which includes 

serving as a buffer and reservoir for glucocorticoids and progesterone (Rosner, 1991; 

Sivukhina and Jirikowski, 2014). 

Regulatory role of CBG during pregnancy 

The role of CBG in reproductive function still remains unclear, but previous 

research conducted in the field of human reproduction has revealed that CBG likely 

assumes the role of regulating the bioavailability of steroids at the maternal-fetal 
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interface throughout the course of pregnancy (Benassayag et al., 2001; Hammond, 

2016).  In support of this claim, Benassayag et al. (2001) examined concentrations of 

cortisol, progesterone, CBG, and albumin within maternal circulation, intervillous blood, 

the umbilical vein, and umbilical arteries at time of delivery in women with normal, full-

term pregnancies (Benassayag et al., 2001).  The authors noted no differences in 

albumin concentration among the 4 vascular sampling locations, and circulating albumin 

concentrations in pregnant women were similar to that of non-pregnant controls 

(Benassayag et al., 2001).  However, concentrations of CBG were different among the 

sampling locations.  Maternal peripheral samples contained the greatest concentration 

of CBG, and CBG concentration in the intervillous blood space was greater than those 

measured within the umbilical vein and arteries (Benassayag et al., 2001).  Peripheral 

concentrations of CBG were approximately three times greater in full-term pregnant 

women when compared to the non-pregnant controls (Benassayag et al., 2001).  

Interestingly, concentrations of progesterone and cortisol also varied greatly among the 

4 sampling locations.  Progesterone was the greatest in the intervillous space and 

lowest in peripheral circulation, but the opposite was observed for cortisol (Benassayag 

et al., 2001).  It is likely that the differences in CBG concentration between peripheral 

and intervillous circulation are a reflection of the steroid load in those particular sites.  

Additionally, the authors hypothesized that CBG within the intervillous space functions 

as a transporter of progesterone from the maternal vasculature to the fetal placenta 

(Benassayag et al., 2001).  Because of greater concentrations of CBG within the 

intervillous space when compared to the umbilical vein and arteries, and distinct varying 
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isoforms between maternal and fetal CBG, it appears that maternal-derived CBG is the 

primary source of CBG at the maternal-fetal interface (Benassayag et al., 2001).  

Furthermore, it is suggested that the elevated CBG concentration in maternal circulation 

act to buffer the greater cortisol concentrations associated with pregnancy, and to 

prevent the transfer of this steroid to fetal circulation (Murphy, 1979; Westphal, 1986b; 

Benassayag et al., 2001), but also to prevent the maternal development of 

hypercorticism (Sandberg et al., 1966).  

Role of CBG in transport of progesterone 

In addition to steroid buffering, CBG may also play a role in transporting  

progesterone from the corpus luteum (CL) to the uterus (Graham and Clarke, 1997), 

but, the exact mechanism of action is not well understood.  The presence of CBG 

mRNA in steroidogenic tissues, and specifically within both the human corpus luteum 

and endometrium supports the theory that CBG plays a role in progesterone transport 

and steroidogenic function (Misao et al., 1994; Misao et al., 1997; Misao et al., 1999).  

Misao et al. (1997) examined the expression of CBG mRNA in human CL tissue 

following hysterectomy procedures and reported a greater expression of CBG mRNA 

during the mid-luteal phase of the menstrual cycle when compared to the early and late-

luteal phases when concentrations of progesterone are lower than that of the mid-luteal 

phase (Misao et al., 1997; Misao et al., 1999).  Similarly, CBG mRNA levels are higher 

during the secretory phase of the menstrual cycle, a phase characterized by greater 

progesterone concentrations when compared to the proliferative phase (Misao et al., 
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1994).  Therefore, it is speculated that CBG may play a role in the localized transport of 

progesterone within the reproductive tract of humans, but to the best of our knowledge, 

no other mechanisms have been proposed, and this relationship has not been 

examined in regards to the bovine estrous cycle. 

Regulatory role of CBG during parturition 

 In addition to endometrial and luteal production, CBG can be found in other 

tissues with glucocorticoid or progesterone demands.  However, similar to other steroid 

transporter proteins such as albumin and sex hormone-binding globulin, CBG is 

predominantly synthesized within hepatocytes (Khan et al., 1984), and has been 

reported in many species including humans (Khan et al., 1984), swine (Heo et al., 

2003a), rats (Weiser et al., 1979), guinea pigs (Perrot-Applanat et al., 1981), and rabbits 

(Seralini et al., 1990).  Previous work conducted in our lab indicated that CBG 

biosynthesis changes throughout the course of an individual’s life and is related to 

physiological events that occur during that particular phase of development (Heo et al., 

2003b).  For example, fetal hepatic CBG mRNA levels decrease toward the end of 

gestation and was reflected by an overall reduction in plasma CBG concentrations, but 

the reverse is observed following birth through the first 40 d of the post-natal period 

when CBG mRNA levels and plasma CBG concentration were greater than those 

observed at the time of birth (Heo et al., 2003b).  In humans, the heightened production 

and release of fetal glucocorticoids (i.e. cortisol) near the end of gestation plays a vital 

role in preparing the fetus and dam for birth by aiding in fetal lung maturation (Smith, 
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2007), and upregulating estradiol and pro-inflammatory prostaglandin production to 

stimulate uterine myometrial contractions (Whittle et al., 2001).  Therefore, it is likely 

Heo et al. (2003b) observed a reduction in hepatic CBG production at the time of birth to 

allow for an increase in free, or biologically active cortisol associated with the parturition 

process.  Furthermore, it is hypothesized that the overall rise in circulating CBG 

concentration toward the end of gestation limits negative feedback on the hypothalamus 

and anterior pituitary to allow for continued hypothalamic-pituitary-adrenal (HPA) axis 

activation necessary for parturition (Ballard et al., 1982; Challis and Brooks, 1989; 

Berdusco et al., 1995).  

Factors that influence CBG biosynthesis 

Glucocorticoids 

 Glucocorticoids, interleukin-6 (IL-6), and estradiol are three main proposed 

factors that are capable of regulating CBG biosynthesis.  In many species, periods in 

which an individual experiences stress and is under heightened glucocorticoid (i.e. 

cortisol) influence are often associated with an overall reduction in circulating CBG 

concentration (Kattesh et al., 1980; Heo et al., 2005; Ho et al., 2006).  Previously it has 

been reported that the glucocorticoid receptor (GR), in conjunction with its ligand, 

regulates the transcription of the CBG promotor in mice and rats (Smith and Hammond, 

1992; Cole et al., 1999), but until recently the full mechanism in which glucocorticoids 

regulate CBG biosynthesis was not understood.  Verhoog et al. (2014) were the first to 

describe the mechanism for which glucocorticoids suppress CBG biosynthesis though a 
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series of in vivo and in vitro experiments.  First, male mice (n = 40) were subjected to 

four treatments for the duration of 10 d that included the following: no treatment 

(control), voluntary exercise, involuntary swimming (1 hr/d), and restraint in a small cage 

(1 hr/d).  After the 10 d period, mice were sacrificed and livers were harvested and used 

to evaluate CBG mRNA expression.  When compared to the control mice, the mice in 

the stress-related treatment groups (involuntary swimming and restraint) had a 27 and 

55 % reduction in CBG mRNA expression, respectively (Verhoog et al., 2014).  Next, 

the authors exposed human (HepG2) and mouse (BWTG3) hepatoma cells to 

dexamethasone (1 nM), a synthetic glucocorticoid, and reported a reduction in both 

CBG mRNA expression and CBG protein levels within both cell types which indicated 

that glucocorticoids are capable of hindering CBG biosynthesis at the transcriptional 

level (Verhoog et al., 2014). 

 To verify that dexamethasone suppression of CBG biosynthesis acts through the 

GR, Verhoog et al. (2014) then examined the effect of dexamethasone on CBG 

promoter reporter constructs transfected within mouse hepatoma cells and reported a 

dose-dependent reduction in promotor activity within the cells.  Additionally, they 

reported a heightened suppressive effect on promoter activity occurred when the 

hepatoma cells were co-transfected with GRα and incubated with dexamethasone 

(Verhoog et al., 2014).  Similar to results reported by Cole et al. (1999), in which 

dexamethasone suppression act by way of the GR, when hepatoma cells were co-

transfected with RU486, an antagonists of the GR, the suppressive effect of 

dexamethasone was nullified, indicating that glucocorticoids inhibit CBG biosynthesis 
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though interactions with the GR (Verhoog et al., 2014). More specifically, the authors 

reported that glucocorticoids cause a migration of C/EBPβ, a transcription factor, to the 

proximal promoter of the CBG gene (SerpinA6) to repress CBG transcription (Verhoog 

et al., 2014).   

Previously, Underhill and Hammond (1995) showed that C/EBPβ has the 

capability to bind to the promotor region on the CBG gene. To further support this claim, 

Verhoog et al. (2014) performed an experiment in which C/EBPβ was knocked-down in 

mouse hepatoma cells and reported a reduction in the ability of dexamethasone to 

repress CBG mRNA expression when C/EBPβ protein expression was reduced. 

Similarly, the migration of the GR to the proximal promotor region of the CBG gene was 

reduced (Verhoog et al., 2014).  All together, these results indicate that CBG 

biosynthesis is controlled in part by glucocorticoids and their receptor and it appears 

that the mechanism controlling CBG biosynthesis lies at the transcriptional level where 

the glucocorticoid activated GR, in conjunction with C/EBPβ, bind to the promotor of the 

CBG gene and represses CBG transcription (Verhoog et al., 2014). 

Interleukin-6 

 Unlike other acute phase cytokines, IL-6 has the ability to regulate hepatic CBG 

biosynthesis (Bartalena et al., 1993; Emptoz-Bonneton et al., 1997).  Interleukin-6, a 

pro-inflammatory acute phase cytokine produced by leukocytes, has the ability to 

suppress hepatic CBG biosynthesis in a dose-dependent manner, and the mechanism 

as to which it is able to regulate CBG biosynthesis is similar to that of glucocorticoids 
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(Emptoz-Bonneton et al., 1997).  In HepG2 cells, IL-6 caused a  71 and 61 % reduction 

in the secretion of the glycoprotein and the expression of CBG mRNA, respectively 

which indicates that IL-6 is a transcriptional regulator of the CBG gene (Emptoz-

Bonneton et al., 1997; Perogamvros et al., 2012).  In support of this claim, Underhill and 

Hammond (1995) previously reported that IL-6 suppressed the transcriptional process 

of the rat CBG gene by interacting with C/EBPβ, the transcription factor involved in 

glucocorticoid-induced transcriptional inhibition process mentioned above.  As a result 

of IL-6 and glucocorticoids sharing the same mechanism for inhibiting hepatic CBG 

biosynthesis, there is an accumulative suppressive effect when HepG2 cells are 

cultured in the presence of both IL-6 and dexamethasone (Emptoz-Bonneton et al., 

1997). 

 An in vivo study performed in men elicited a similar response to the in vitro study 

mentioned above.  A single administration of IL-6 at a concentration of 3.0 µg/kg caused 

a decline in circulating CBG concentrations and one week post-treatment was required 

before baseline concentrations of CBG were observed (Tsigos et al., 1998).  It is 

noteworthy to mention that the authors chose a dose of 3.0 µg/kg to ensure HPA axis 

activation to mimic the response that would be observed during periods of septic shock 

or trauma which have also been associated with reduced CBG concentrations (Tsigos 

et al., 1998; Ho et al., 2006).  The inverse relationship observed between CBG 

biosynthesis and IL-6 supports the idea that CBG acts as a negative acute phase 

protein to increase the bioavailable fraction of cortisol in circulation as a way to mediate 

the inflammatory response (Tsigos et al., 1998; Perogamvros et al., 2012).  
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 The role of CBG as a negative acute phase protein is important for its role in the 

mitigation of the inflammatory response (Hammond et al., 1990; Perogamvros et al., 

2012).  As mentioned earlier, in the presence of neutrophils, a particular group of 

leukocytes that respond during the innate immune response to inflammation, CBG 

undergoes a 5 kDa reduction in molecular weight and a loss to its steroid-binding 

capacity (Hammond et al., 1990).  The reduction in binding capacity of CBG allows for 

targeted delivery of glucocorticoids to sites of inflammation and localized immune cells 

(Hammond et al., 1990; Perogamvros et al., 2012).  Neutrophils are one of the first 

responders to sites of inflammation and are responsible for targeting invading 

pathogens and for the release of reactive oxygen species, but under periods of chronic 

inflammation, these actions can be harmful and lead to tissue destruction (Nathan, 

2006; Mantovani et al., 2011).  Glucocorticoids such as cortisol serve as immune 

regulators by suppressing the inflammatory response through a direct interaction with 

neutrophils at the site of inflammation (Hammond et al., 1990).  Once cortisol is cleaved 

from the RCL of CBG, dissociates from the transport protein, and is taken up by 

neutrophils, the steroid is able to alter gene expression within the immune cell and to 

reduce the release of reactive oxygen species (Burton et al., 2005; Buckham Sporer et 

al., 2007).  Therefore, in regards to periods of inflammation, it is evident that IL-6 

induced cortisol release occurs to prevent the negative effects of prolonged 

inflammation and to regulate the localized immune response.  Furthermore, CBG can 

be classified as a negative acute phase protein because hepatic CBG expression is 
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reduced during inflammation to allow for greater levels of bioavailable glucocorticoids 

(Pugeat et al., 1989). 

Estrogen 

 Unlike glucocorticoids and IL-6, estrogen increase hepatic CBG biosynthesis and 

elevations in CBG concentration are associated with the administration of oral 

contraceptives, but to the best of our knowledge the mechanism of action is not 

presently understood.  Previously, Doe et al. (1967) conducted an experiment to 

examine the effect of oral administration of diethylstilbestrol, a synthetic estrogenic 

compound, on fluctuations in CBG concentration in a test male patient undergoing 

treatment for prostate cancer.  Diethylstilbestrol was administered daily (1 mg/d) for 4 

weeks followed by a period of 4 weeks in which no treatment was administered.  The 

dose was then increased by 1 mg/d and the treatment schedule repeated until a 

maximum dose of 5 mg/d was achieved.  Over the treatment period, circulating 

concentrations of CBG increased in a dose-dependent manner, but following the 

treatment period, a withdrawal period of 4 weeks was required to return CBG 

concentrations back to baseline levels (Doe et al., 1967).  Similarly, other studies have 

reported an increase in circulating CBG concentrations following administration of 

diethylstilbestrol and ethinylestradiol in women (Sandberg and Slaunwhite, 1959), and a 

two-fold increase in hepatic production rate of CBG following estradiol administration in 

male rats (Feldman et al., 1979).  Therefore, it appears that estrogenic compounds are 



24 

 

capable of increasing circulating CBG concentrations by directly stimulating hepatic 

CBG biosynthesis. 

 More recently, Ågren et al. (2011) administered combined oral contraceptives to 

women to investigate the impact of estrogen and progestin-based contraceptive drugs 

on circulating levels of CBG.  The experimental subjects ranged from 18 to 50 years of 

age and were stratified into two treatment groups that received one of the following 

treatments for six 28-d cycles: nomegestrol acetate/17β-estradiol (2.5 mg/1.5 mg; 

NOMAC/E2) or levonorgestrel/ethinylestradiol (150 µg/30 µg; LNG/EE) (Ågren et al., 

2011).  Blood samples were collected prior to the start of the study and during cycles 3 

and 6 to examine changes to CBG concentration.  Both treatment groups exhibited 

greater CBG concentrations at the end of the study when compared to the baseline 

sample collected.  Women within the NOMAC/E2 treatment group experienced a 27 % 

(910 vs. 1116 nmol/L) increase in CBG concentration, but this rise was far less than that 

observed in the LNG/EE treatment group which had an overall increase of 118 % (932 

vs. 1980 nmol/L) (Ågren et al., 2011).  Differences in the overall rise in CBG 

concentration observed at the end of the experiment are attributed to the different 

estrogenic compounds used in the two treatments (Zeun et al., 2009; Ågren et al., 

2011).  Nonetheless, circulating CBG concentrations rise as a result of heightened 

hepatic biosynthesis during periods of estrogen influence, but are not affected by the 

progestin compound in the combined oral contraceptive drug (Hammond et al., 1984).   
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Conclusion 

 Although the role of CBG in regards to the regulation of glucocorticoids at various 

stages of life have been well documented in a variety of species, an overall lack in 

knowledge remains in regards to the interaction between CBG and the steroid 

hormones it transports in the bovine specifically.  Additionally, the role of CBG in 

reproductive-specific events and the transport of progesterone remains unclear and 

further investigation is warranted.  Recognizing that the use of estrous synchronization 

has become a common cattle management practice and the majority of protocols rely 

on the use of a CIDR, an opportunity exists to explore the effect of exogenous 

progesterone administration on local vaginal and systemic concentrations of CBG.  

Likewise, delving into this response will help us to better understand the role of CBG as 

a transporter and buffer for progesterone within the bovine reproductive tract.   

Furthermore, the opportunity exists to examine CBG synthesis sites within the 

bovine reproductive tract.  As mentioned previously, CBG mRNA is expressed in 

reproductive tissues of a variety of species, but has not been examined in cattle.  In 

other species, the presence of CBG within in the uterus has been documented (Milgrom 

and Baulieu, 1970; Klemcke et al., 1998), but to the best of our knowledge, 

concentrations within the vaginal cavity have not been measured.  Evaluating CBG 

mRNA expression within the vagina, uterus, oviduct, and ovary in conjunction with 

directly measuring concentrations of CBG within the reproductive tract will indicate if the 

glycoprotein is locally produced or shuttled to the reproductive tract from the vascular 

system or via migration from other regions within the tract.   
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Realizing that Pseudomonas aeruginosa is a common environmental bacterial 

pathogen and its colonization within the bovine vaginal cavity appears to be influenced 

by exogenous progesterone release from a CIDR (Padula and Macmillan, 2006), further 

investigation is warranted to determine if the presence of this particular bacteria within 

the vaginal cavity has an influence on the level of free, or biologically available 

progesterone during the estrous synchronization process, or pregnancy success 

following fixed-time artificial insemination.  Therefore, the goal of the present 

dissertation was to investigate the vaginal endocrine response and associated bacterial 

interactions in beef heifers undergoing synchronization of ovulation to gain a better 

understanding of the direct impact of CIDRs used to facilitate synchrony.  Additionally, 

this dissertation aimed to characterize CBG synthesis in the female bovine reproductive 

tract and examine changes in CBG mRNA expression during different stages of the 

estrous cycle and gestation.  Through the completion of these experiments, the 

expected outcome was to gain a better understanding of bovine CBG and its influence 

on the reproductive axis, but to also gain insight as to the local production of CBG within 

the bovine reproductive tract. 
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Chapter II 

Influence of synchronization of ovulation and early pregnancy on 

peripheral and vaginal concentrations of corticosteroid-binding 

globulin and the distribution of progesterone and cortisol in beef 

heifers 
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Abstract 

Corticosteroid-binding globulin (CBG) is a transporter for glucocorticoids (i.e. 

cortisol) and progesterone and functions to regulate the amount of free steroid in 

circulation, but little is known about CBG and its role in bovine reproductive function.  

The objective of this study was to examine the effect of exogenous progesterone 

release from a controlled internal drug release device (CIDR) on circulating and vaginal 

concentrations of CBG and the proportion of free progesterone and cortisol following 

synchronization of ovulation using the 7 d CO-Synch + CIDR protocol.  Consigned beef 

heifers (n = 67) were enrolled in the study and on d -7, immediately prior to CIDR 

insertion, blood and vaginal flush samples were collected.  Following CIDR removal on 

d 0, the same samples were collected again.  Blood samples were collected for a third 

time at the time of pregnancy diagnosis on d 38.  Steroid concentrations were 

determined using a commercially available RIA and CBG was quantified by an in-house 

ELISA.  Steroid hormone concentration (nmol/L) was then divided by CBG 

concentration (mg/L) to calculate a free hormone index (nmol/mg) for both progesterone 

(FPI) and cortisol (FCI).  A mixed model analysis of variance with repeated measures 

was performed.  Plasma samples collected at pregnancy diagnosis on d 38 from heifers 

with successful pregnancies (n = 24) following synchronization and AI had greater (P = 

0.02) concentrations of progesterone than samples collected d -7, but were not different 

than those measured on d 0.  Similarly, plasma CBG concentrations measured on d -7 

and 0 did not differ, but were greatest (P = 0.03; n = 24) on d 38.  The FPI calculated 

from progesterone and CBG concentrations measured on the three sampling days were 
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not different (P = 0.16).  Similar to plasma progesterone concentrations, circulating 

concentrations of cortisol were consistent during synchronization of ovulation (d -7 and 

0), but were lower (P = 0.01; n = 24) at pregnancy diagnosis (d 38).  Likewise, FCI did 

not change during synchronization of ovulation, but was lowest (P < 0.0001; n = 24) at 

pregnancy diagnosis on d 38.  Among heifers that became pregnant following AI, 

progesterone concentrations contained within vaginal flush samples collected 

immediately after CIDR removal on d 0 were approximately four times greater (P < 

0.0001) than concentrations measured immediately prior to CIDR insertion on d -7, but 

CBG concentrations measured on d -7 were not different (P = 0.21) from those 

measured on d 0, and thus, the FPI on d 0 was greater (P < 0.0001) than on d -7.  

Vaginal cortisol concentrations measured immediately following CIDR removal were 

approximately two times greater (P < 0.0001) than those measured before the CIDR 

was inserted.  Similarly, vaginal FCI was greater (P < 0.0001) at CIDR removal than at 

CIDR insertion.  In the current study, CIDR insertion did not affect circulating CBG 

concentrations, but it appears that CBG may play a role in regulating the free fraction of 

progesterone during early gestation. 

Introduction 

Estrous synchronization relies on coordinated administration of exogenous 

reproductive hormones and many of the protocols developed and approved for use in 

the United States rely on the use of a controlled internal drug release device (CIDR).  In 

contrast to other exogenous hormones that are administered by injection, CIDRs are 
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plastic devices that are infused with progesterone (1.38 g) and after intravaginal 

insertion, progesterone is absorbed through the vaginal epithelium and migrates to the 

vascular system.  Within 1 h post-insertion, circulating concentrations of progesterone 

reach a maximum peak (approximately 4.5 ng/mL) and are sustained throughout a 7 d 

insertion period (Kesler, 2002).  Similar to the rapid rise in systemic progesterone 

concentration after insertion, systemic progesterone rapidly decreases after the CIDR is 

removed and returns to baseline concentrations 8 h post-removal (Kesler, 2002).   

Insertion of a CIDR for a period of 7 d ensures the corpus luteum (CL) has 

reached maturity and can undergo luteolysis following PGF2α administration (Lucy et al., 

2001; Kesler, 2002).  Likewise, during the CIDR insertion period, the low dose release 

of progesterone prevents follicular wave turn-over and promotes the development of a 

persistent dominant follicle by increasing luteinizing hormone (LH) pulse frequency 

(Savio et al., 1993; Kojima et al., 2003).  As the persistent follicle continues to develop, 

estradiol production and release subsequently increases (Kojima et al., 2003).  Through 

positive feedback on the hypothalamus, estradiol promotes the release of gonadotropin-

releasing hormone (GnRH) and subsequent LH production and release from the 

anterior pituitary gland (Kesner et al., 1981), and in pre-pubertal heifers and anestrous 

cows this mechanism allows for initiation or resumption of cyclicity (Anderson et al., 

1996; Imwalle et al., 1998).   

Corticosteroid-binding globulin (CBG) is a glycoprotein that is predominantly 

synthesized within hepatocytes (Hammond et al., 1991; Heo et al., 2003a) and functions 

as a transporter for a small subset of steroid hormones (i.e. glucocorticoids and 
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progesterone) in which it binds with high affinity, but low capacity (Slaunwhite and 

Sandberg, 1959; Seal et al., 1966; Westphal, 1986a; Heo et al., 2003b).  Corticosteroid-

binding globulin is a member of the serine protease inhibitor superfamily (Hammond et 

al., 1987; Law et al., 2006), and acts as a target for proteases (Lin et al., 2010) such as 

neutrophil elastase, a protease specifically synthesized and released by neutrophils 

(Hammond et al., 1990).  More recently chymotrypsin, and LasB, an elastase produced 

and released by the bacterial species, Pseudomonas aeruginosa have also been 

reported as proteases capable of disrupting the reactive center loop (RCL) (Lewis and 

Elder, 2014; Simard et al., 2014).  In the presence of CBG, the aforementioned 

proteases cleave specific sites within the RCL of CBG and compromise the steroid 

binding capacity (Lewis and Elder, 2017).  After cleavage, the steroid dissociates from 

CBG and can be sequestered and loosely bound by albumin, or remain free within 

circulation, but in both instances the steroid is considered biologically available (Simard 

et al., 2014). 

In humans, approximately 80 to 90 % of cortisol is bound to CBG, 5 to 10 % is 

loosely bound to albumin, and 5 % exists as free or completely unbound in circulation 

(Siiteri et al., 1982; Hammond et al., 1991; Estrada-Y-Martin and Orlander, 2011).  

Aside from humans, the distribution and characterization of cortisol has been 

documented in other species (i.e. wild birds, chimpanzees, gorillas, rats, chickens, etc.) 

(Gayrard et al., 1996; Breuner and Orchinik, 2002; Malisch and Breuner, 2010), but little 

has been reported for domestic livestock species.  Our lab has previously examined the 

distribution in swine, and we estimated that approximately 65 % is bound to CBG, 23 % 
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bound to albumin, and 12 % free in systemic circulation (Kattesh et al., 1990; Kattesh et 

al., 1997).   

Thus far, progesterone distribution has not been as well characterized in the 

literature as compared to cortisol.  However, research aiming to evaluate the proportion 

of free and bound progesterone fractions have been investigated in regards to human 

pregnancy.  In a study conducted by Rosenthal et al. (1969) where free and bound 

fractions of progesterone are measured during the trimesters of human pregnancy, it 

appears that CBG acts a buffer to limit the amount of free progesterone throughout the 

course of pregnancy.  More specifically, the authors noted that CBG-bound 

progesterone increases from 37 to 43 %, whereas free progesterone is maintained at 

approximately 2 % throughout pregnancy (Rosenthal et al., 1969).  The rise in CBG-

bound progesterone was concurrent with the overall rise in circulating progesterone 

concentrations throughout the three trimesters and it appears that the proportion of 

CBG-bound progesterone is concentration dependent (Rosenthal et al., 1969).  

Additionally, by the second trimester CBG became the primary transporter for 

progesterone (Rosenthal et al., 1969), is believed to function as a buffer to regulate the 

amount of free progesterone in circulation, extend the half-life, and to create a reserve 

of the steroid (Siiteri et al., 1982; Bright, 1995; Klieber et al., 2007).  

The free hormone hypothesis suggests that steroid hormones in the unbound or 

free-state are considered biologically available and are able to passively diffuse from 

the vasculature to specific effector tissues to serve their respective physiological 

functions (Siiteri et al., 1981; Mendel, 1989; Hammond, 2016).  The free cortisol index 
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(FCI; nmol/mg) is a calculation that was derived to quantify biologically available cortisol 

concentrations and is determined by examining the ratio of circulating cortisol 

concentration (nmol/L) in relation to CBG concentration (mg/L) (Le Roux et al., 2002; Le 

Roux et al., 2003).  The use of this calculation allows for the estimation of cortisol that is 

biologically active and is a better indicator of hypothalamic-pituitary-adrenal axis 

activation (Le Roux et al., 2003).  For this manuscript, we also adapted this calculation 

to estimate the proportion of biologically available progesterone. 

Recognizing that the use of estrous synchronization has become a common 

cattle management practice and the majority of protocols rely on the use of a CIDR, an 

opportunity exists to explore the effect of exogenous progesterone administration on the 

local vaginal and systemic endocrine response.  Therefore, the goal of the present 

study was to investigate vaginal steroid hormone profiles and systemic endocrine 

response in beef heifers undergoing synchronization of ovulation using the 7 d CO-

Synch + CIDR protocol to gain a better understanding of the direct impact of CIDRs 

used to facilitate synchrony on CBG concentrations.  We hypothesized that CBG 

concentrations would rise during synchronization of ovulation to regulate the proportion 

of free progesterone in the vaginal cavity and in circulation. 

Materials and Methods 

Animals 

Prior to animal manipulation, procedures were approved by the University of 

Tennessee Institutional Animal Care and Use Committee (protocol number 2398-1115).  
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Heifers (n = 67) enrolled in the study were consigned to the University of Tennessee 

Beef Heifer Development Program in Lewisburg, TN on October 3, 2016 and remained 

in the program until September, 2017.  At arrival, heifer age and body weight ranged 

from 182 to 383 d of age and 198.7 to 390.1 kg, respectively.  Breed composition 

included the following: Angus (n = 28), Angus x Hereford (n = 4), Angus x Shorthorn (n 

= 2), Angus-cross (n = 9), Charolais (n = 7), Gelbvieh (n = 4), Hereford (n = 4), 

Simangus (n = 4), and Simmental (n = 5). All heifers were housed on pasture and 

received the same feed ration over the course of the program.  Ad libitum access to 

water and supplemented hay was also provided. 

Tissue collection and synchronization of ovulation 

Synchronization of ovulation began on March of 2017 when heifers were 416 ± 

34 d of age and had an average body weight of 415 ± 36 kg.  Heifers enrolled in the 

study included those that had not undergone prior synchronization of ovulation 

procedures at the testing center.  On d -7, immediately prior to the administration of 

GnRH (100 ug, Factrel; Zoetis, Madison, NJ) and CIDR (1.38 g progesterone; Eazi-

Breed CIDR, Zoetis, Madison, NJ) insertion as part of the 7 d CO-Synch + CIDR 

protocol, blood (6 mL) was collected in sodium heparin vacutainer tubes (Becton 

Dickinson, Franklin Lakes, NJ) via coccygeal venipuncture.  Blood samples were 

centrifuged (Sero-Fuge Centrifuge, Clay Adams, Inc., Parsippany, NJ) for 10 min and 

plasma was harvested, aliquoted into three 2 mL microcentrifuge tubes, and then stored 

at -20°C until analyzed for total cortisol, progesterone, and CBG concentrations.  
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Following blood collection, the vulva was cleaned with 70 % ethanol and vaginal 

cytological samples were collected by inserting a cytobrush (Cooper Surgical, Inc., 

Trumbull, CT) into the vaginal lumen and rotating the brush clockwise against the 

vaginal epithelium (Stratman et al., 2016).  Cytobrushes were rolled onto microscope 

slides and slides were allowed to air dry prior to being stained with a modified Wright-

Giemsa stain (Protocol hema 3 stain set, Fisher Scientific Co, Pittsburgh, PA) (Stratman 

et al., 2016).  Under 100X magnification, approximately 200 cells were counted to 

determine the proportion of polymorphonuclear neutrophils (PMN) to total cells present 

on the slide (Ghasemi et al., 2012; Stratman et al., 2016).   

 Vaginal flushes were also performed on d -7, immediately prior to CIDR insertion.  

Briefly, a rubber catheter attached to a 60 mL syringe was inserted into the vagina and 

60 mL of 0.9 % sodium chloride sterile saline was infused into the vagina and recovered 

via vaginal lavage and caught in a plastic cup, then transferred to a 50 mL conical tube 

and immediately stored on ice.  Vaginal flush samples were centrifuged at 2,000 rpm 

(821 x g; Beckman Coulter Allegra X-14R Centrifuge, Brea, CA) for 5 min at 4°C, 

aliquoted into three 13 mL culture tubes, and then stored at -20°C until analyzed for 

total cortisol, progesterone, and CBG concentrations as well as bacterial analyses.   

The same procedures mentioned above to collect blood, cytological samples, 

and perform vaginal swabs and flushes were again performed on d 0 when CIDRs were 

removed and PGF2α was administered.  On d 2, heifers received another injection of 

GnRH immediately prior to AI.  An additional blood sample for progesterone, cortisol, 
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and CBG analyses was obtained at time of pregnancy diagnosis (d 38) as determined 

by transrectal ultrasonography. 

Plasma steroid hormone analyses 

Total plasma cortisol and progesterone concentrations (ng/mL) were measured 

in duplicate by following the procedures of commercially available RIA kits (MP 

Biomedicals, Solon, OH; cat # 07-221102 and 07-170102, respectively) (Hulbert et al., 

2013; Pohler et al., 2016).  Cortisol standards ranged from 5 to 1,000 ng/mL with a 

cross-reactivity less than 12.3 % for related endogenous steroids.  Intra- and inter-assay 

CV were 17.3 % and 25.9 % for low (2.27 ng/mL) and, 12.2 % and 15.0 % for high (16.2 

ng/mL) cortisol controls.  Progesterone standards ranged from 0.2 to 50 ng/mL with a 

cross-reactivity less than 5.4 % for related endogenous steroids.  Intra- and inter-assay 

CV were 6.7 % and 6.0 % for low (0.89 ng/mL) and, 11.3 % and 15.1 % for high (5.0 

ng/mL) progesterone controls. 

Vaginal flush steroid hormone analyses 

Total progesterone concentrations within the vaginal flush samples were 

determined by following the same RIA procedures as described for the progesterone 

measured in plasma samples, but an initial validation was performed to ensure 

concentrations of progesterone in the flush samples were within the limits of the 

standard curve of the assay.  Briefly, vaginal flush samples collected on d -7 

(immediately prior to CIDR insertion) and d 0 (immediately post-CIDR removal) from 

four random heifers were used for the validation.  Undiluted samples from d -7 and 0 
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were analyzed for each heifer. Additionally, dilutions of 300 uL sample:100 uL saline, 

200 uL sample:200 uL saline, and 100 uL sample:300 uL saline were performed to 

determine if dilutions were necessary to ensure sample concentrations fit within the 

standard curve of the assay.  Based on the results of the validation (Table 1), 

concentrations of the undiluted d -7 samples and the diluted (100 uL sample: 300 uL 

saline) d 0 samples fit within the standard curve of the progesterone RIA. Samples were 

measured in duplicate and intra- and inter-assay CV were 3.6 % and 3.3 % for low (5.93 

ng/mL) and, 3.4 % and 5.7 % for high (51.0 ng/mL) progesterone controls. 

A two-step validation process was performed for measuring cortisol within the 

vaginal flush samples.  Concentrations within the samples were too low to be measured 

using the same RIA kit that was used for plasma cortisol concentrations.  Therefore, we 

tested the efficacy of the High Sensitivity Salivary Cortisol Enzyme Immunoassay (EIA) 

Kit (Salimetrics, Inc., State College, PA) in regards to measuring cortisol within the flush 

samples.  The first step of the validation included a recovery assay to determine the 

recovery capability of Sep-Pak Classic C18 Cartridges (Waters Corporation, Milford, 

MA).  We followed the procedures reported by Shackleton and Whitney (1980) for 

concentrating urine samples for cortisol determination with slight modification.  Instead 

of concentrating urinary samples, we concentrated 1 mL of 125I Cortisol Tracer Solution 

(MP Biomedicals, Solon, OH; cat # 06B256617), reconstituted in 1 mL of 0.9 % sodium  

chloride sterile saline, and measured gamma emissions (counts per minute; cpm) from 

the Sep-Pak recovered sample in comparison to 1 mL of straight 125I Cortisol Tracer 

Solution.  The straight sample and Sep-Pak recovered sample had gamma emissions of 
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47,101.7 cpm and 46,914.7 cpm, respectively, with an overall recovery of 99.6 %.  Due 

to the high recovery capabilities of the Sep-Pak Classic C18 Cartridges, we continued 

with the High Sensitivity Salivary Cortisol EIA validation to determine if concentrations of 

cortisol obtained following the use of the cartridges fall within the standard curve of the 

assay. 

First, we concentrated pre- and post-CIDR flush samples at varying volumes (1, 

2, 5, and 10 mL) using Sep-Pak Classic C18 Cartridges as described previously by 

Shackleton and Whitney (1980), and then reconstituted in 100 uL 0.9 % sodium chloride 

sterile saline.  Concentrated samples were then measured for total cortisol 

concentration following the manufacturer instructions provided within the Salimetrics 

High Sensitivity Salivary Cortisol EIA kit.  Based on concentrations obtained after 

performing the assay (Table 2), concentrating samples with a volume of 10 mL achieves 

concentrations that are within the middle portion of the standard curve (0.12, 0.37, 1.10, 

3.30, 10.0, and 30.0 ng/mL).  All subsequent vaginal flush cortisol analyses were 

performed by concentrating 10 mL of flush sample using the Sep-Pak Classic C18 

Cartridges and were quantified in duplicate via the Salimetrics High Sensitivity Salivary 

Cortisol EIA with intra- and inter-assay CV of 5.0 and 7.5 % for low (1.17 ng/mL) and 

3.3 and 7.8 % for high (9.62 ng/mL) cortisol standards.  Within the results section, 

concentrations of cortisol within the vaginal flush samples were adjusted for the 10 mL 

of flush used to concentrate the samples and are reported as nmol/L. 
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CBG concentration determination 

Concentrations of bovine CBG (mg/L) were quantified in triplicate by an indirect 

competitive ELISA developed previously in our laboratory (Kattesh et al., 2014).  

Isolation and purification of CBG from bovine plasma (bCBG) and development and 

validation of an ELISA for its quantification followed the procedures outlined by Roberts 

et al. (2003) for porcine CBG.  Briefly, bovine plasma was collected (~400 ml) and 

denuded of bound cortisol by incubation with Amberlite XAD-2 beads (Sigma-Aldrich, 

St. Louis, MO), dialyzed against 50 mM Tris, 0.5M NaCl, pH 7.6 (column buffer), and 

applied to a Sepharose affinity column containing the ligand 11 -hydroxy-3-one-pregn-

4-one-17 carboxylic acid (HCAC) (Roberts et al., 2003).  The column was washed and 

eluted sequentially with column buffer containing 200 ng/mL of cortisol.  Fractions 

containing CBG were dialyzed again using the same buffer and passed over a 10 mL 

Concanavalin A-Sepharose 4B (C9017; Sigma-Aldrich, St. Louis, MO) column (Roberts 

et al., 2003).  The column was washed and eluted with 10 % and warmed 20 % methyl 

-D-mannopyranoside (Sigma-Aldrich, St. Louis, MO) (Roberts et al., 2003).  The eluted 

fraction was dialyzed against 10 mM Tris, pH 7.6 and applied to a HPLC-DEAE anion 

exchange column and eluted with a linear gradient of 0 to 0.3 M NaCl (Roberts et al., 

2003).  The resulting purified bCBG was dialyzed against 10 mM Tris, pH of 7.6, and 

cortisol was added for storage (Roberts et al., 2003).  Location of bCBG in column 

eluates was monitored by an optical density at 280 nm, SDS-PAGE, and 3H-cortisol 

binding (Schiller and Pétra, 1976). 
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To generate a population of polyclonal antibodies specific for bCBG, 600 ug of 

purified bCBG obtained from the above procedures was sent to Pacific Immunology 

Corp. (Ramona, CA).  Two rabbits were immunized with 120 ug of bCBG and were 

provided three subsequent boosters of 60 ug of bCBG that occurred 22, 43, and 71 d 

after the first immunization.  Rabbit anti-bCBG serum was harvested via exsanguination 

and retained for the bCBG ELISA described below. 

Bovine CBG assay development was performed by following the procedures of 

Signorella and Hymer (1984) and Roberts et al. (2003).  First, 96-well plates were 

coated with purified bCBG (20 ng/100 uL/well) in coating buffer (20 mM Tris, 100 mM 

NaCl, pH 8.4), sealed, and incubated overnight at 4° C (Roberts et al., 2003).  A 

separate set of 96-well plates were blocked with 200 uL glassware treatment solution 

consisting of 0.1 % BSA and 1X PBS, pH 7.4, sealed, and incubated at 4 C overnight 

(Roberts et al., 2003).  Both coated and blocked plates were washed for 4 cycles with 

300 uL of 1X TBS (150 mM NaCl, 20 mM Tris, 3.1 mM sodium azide, pH 7.4), tapped 

dry, and stored at -20 ⁰C with desiccant (Roberts et al., 2003).  In glass tubes, plasma 

samples (40 uL) were combined with 160 uL diluent (10 % BSA, 10X PBS, and 10 % 

Tween 20) and 200 uL rabbit anti-bCBG serum at a dilution of 1/80,000, vortexed, and 

stored overnight at 4 C.  Similarly, vaginal flush samples (25 uL) were combined with 

175 uL diluent and 200 uL rabbit anti-bCBG serum at a dilution of 1/80,000, vortexed, 

and stored overnight at 4 C.  For each plate, standards ranging from 0.3 to 160 ng/100 

uL/well were prepared and combined with rabbit anti-bCBG at a dilution of 1/80,000 and 

stored overnight at 4 C.  Tubes containing either standard-rabbit anti-bCBG or sample-
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rabbit anti-bCBG mixtures were vortexed and 120 uL of the mixture was transferred to a 

blocked plate, sealed, and allowed to incubate overnight at 4 C.  An aliquot of 100 uL 

from each well of blocked plate well was transferred to the corresponding well on a 

bCBG coated well and incubated at 37 C for 2 hr in a humid chamber.  Following the 

incubation period, the bCBG coated plates containing sample-rabbit anti-bCBG mixtures 

were washed for 4 cycles with 300 uL of tris buffered saline with Tween-20 (TBST; 150 

mM NaCl, 0.05 % Tween 20, 20 mM Tris, 3.81 mM sodium azide, pH 7.4) and tapped 

dry (Roberts et al., 2003).  Then, 100 uL of a 1/16,000 dilution solution of goat anti-

rabbit IgG conjugate to alkaline phosphatase (A3687; Sigma-Adrich) was added to each 

well and allowed to incubate at 37° C for 2 hr in a humid chamber.  Plates were washed 

again for 4 cycles with TBST, tapped dry, and 100 uL of phosphatase substrate, para-

nitro-phenyl-phosphate in diethanolamine buffer (SeraCare Life Sciences, Inc., Milford, 

MA), was added to each well followed by an incubation period of 1.5 hr at 37° C in a 

humid chamber (Roberts et al., 2003).  Following incubation, 100 uL of stop solution 

(0.05 % Na2EDTA) was added to each well and absorbance was read at a 405 nm 

wavelength by an ELX808 (BioTek Instruments, Inc., Winooski, VT).  Data were 

quantified using Gen5 software version 2.03 (BioTek Instruments, Inc., Winooski, VT).  

For plasma samples, intra- and inter-assay CV were 13.0 % and 20.0 % for internal 

control A (3.78 mg/L), and 6.5 % and 24.3 % for internal control B (4.62 mg/L).  For 

vaginal flush samples, intra- and inter-assay CV were 15.5 % and 19.2 % for internal 

control A (2.02 mg/L), and 15.8 % and 18.7 % for internal control B (3.14 mg/L). 
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Free hormone index 

Progesterone and cortisol concentrations were converted from ng/mL to nmol/L 

by a multiplicative conversion factor of 3.18 and 2.76, respectively (Graham et al., 

2011).  Steroid hormone concentration (nmol/L) was then divided by CBG concentration 

(mg/L) to calculate a free hormone index (nmol/mg) for both progesterone (FPI) and 

cortisol (FCI) (Le Roux et al., 2003). 

Statistical analysis 

All heifers enrolled in the study (n = 67) were used to examine the relationship 

between the steroid hormones and CBG profiles and the ability to conceive following 

synchronization of ovulation and AI.  In addition, all heifers that were confirmed 

pregnant following timed AI (n = 24) were used as a sub-population to examine the 

influence of progesterone during synchronization of ovulation and early gestation on 

circulating and vaginal concentrations of cortisol, progesterone, and CBG. 

 All statistical analyses were performed in SAS 9.3 (SAS Institute, Cary, NC, 

USA).  A mixed model analysis of variance with heifer as the experimental unit was 

performed to assess the effect of synchronization of ovulation and early gestation on 

measured dependent variables.  Sampling day was used in the model as a repeated 

measure, and pen and heifer were included as random blocking effects.  Fisher’s LSD 

test was used to separate means (P ≤ 0.05). 
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Results 

Systemic endocrine response to synchronization of ovulation and pregnancy 

All tables and figures are included in the appendix at the end of this chapter.  

Plasma progesterone, cortisol, and CBG concentrations measured prior to CIDR 

insertion and immediately following CIDR removal were similar (P > 0.10) among heifers 

that became pregnant following AI and those that remained open (Table 3).  Likewise, 

plasma FPI and FCI calculated from progesterone, cortisol, and CBG concentrations 

measured prior to and immediately following CIDR insertion and removal were not 

different (P > 0.40) among heifers that became pregnant following AI and those that 

remained open (Table 3).  However, plasma samples collected at pregnancy diagnosis 

on d 38 from heifers with successful pregnancies following synchronization and AI had 

significantly greater (P = 0.02) concentrations of progesterone than samples collected 

on d -7 (Figure 1A), but were not different than those measured on d 0.  Similarly, 

plasma CBG concentrations measured on d -7 and 0 did not differ, but were greatest (P 

= 0.03) on d 38 at pregnancy diagnosis (Figure 1B).  The FPI calculated from 

progesterone and CBG concentrations measured on the three sampling days were not 

different (P = 0.16; Figure 1C).  Similar to plasma progesterone concentrations, 

circulating concentrations of cortisol were consistent during synchronization of ovulation 

(d -7 and 0), but were lower (P = 0.01) at pregnancy diagnosis (d 38; Figure 1D).  

Likewise, FCI did not change during synchronization of ovulation, but was lowest (P < 

0.0001) at pregnancy diagnosis on d 38 (Figure 1E). 
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Vaginal polymorphonuclear neutrophil (PMN) percentage 

 The insertion of a CIDR for a period of 7 d resulted in an increase (P < 0.0001) of 

approximately 42 % in the percentage of PMN within the vaginal cavity.  At the time of 

CIDR insertion (d -7), PMN accounted for 7.28 ± 2.83 % of the total cells on the 

cytological slides whereas PMN accounted for 48.85 ± 2.81 % of the total cells when the 

CIDR was removed (d 0).  Although day differences existed, no differences in PMN 

were observed between heifers that became pregnant or remained open following 

synchronization of ovulation and artificial insemination (Table 4). 

Vaginal steroid hormone profiles in response to synchronization of ovulation 

Vaginal flush progesterone, cortisol, and CBG concentrations measured prior to 

CIDR insertion and immediately following CIDR removal were not different (P > 0.30) 

among heifers that became pregnant following AI and those that remained open (Table 

4).  Likewise, vaginal flush FPI and FCI calculated from progesterone, cortisol, and CBG 

concentrations measured in the recovered flush solution prior to and immediately 

following CIDR insertion and removal were not different (P > 0.70) among heifers that 

became pregnant following AI and those that remained open (Table 4).  However, 

among heifers that became pregnant following AI, progesterone concentrations 

contained within vaginal flush samples collected immediately after CIDR removal on d 0 

were approximately four times greater (P < 0.0001) than concentrations measured 

immediately prior to CIDR insertion on d -7 (Figure 2A).  Although there was a rise in 

progesterone concentration within vaginal flush samples as a result of CIDR insertion, 
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CBG concentrations measured on d -7 were not different (P = 0.21) from those 

measured on d 0, and thus, the FPI on d 0 was greater (P < 0.0001) than on d -7 

(Figure 2B and C).  Vaginal cortisol concentrations measured immediately following 

CIDR removal were approximately two times greater (P < 0.0001) than those measured 

before the CIDR was inserted (Figure 2D).  Similarly, vaginal FCI was greater (P < 

0.0001) at CIDR removal than at CIDR insertion (Figure 2E). 

Discussion 

 In the present study, the pregnancy rate of heifers synchronized following the 7 d 

CO-Synch + CIDR protocol and TAI was 35.8 %.  The overall low pregnancy rate 

observed in our study in comparison to a typical pregnancy rate of 53 % in heifers 

undergoing TAI may be a result of the synchronization protocol used or the imposed 

research sample collection methods (Hall et al., 2005).  In previous years at the 

University of Tennessee Beef Heifer Development Program, synchronization of 

ovulation was performed using the 14-d CIDR-PG protocol, but heifers in our study 

underwent the 7 d CO-Synch + CIDR protocol.  In pre-pubertal heifers, CIDRs are used 

to induce cyclicity among a cohort of individuals at various stages of pubertal 

development (Rhodes, 1998; Lucy et al., 2001; Kesler, 2002).  During the CIDR 

insertion period, the low dose release of progesterone prevents follicular wave turn-over 

and promotes the development of a persistent dominant follicle by increasing luteinizing 

hormone (LH) pulse frequency (Savio et al., 1993; Kojima et al., 2003).  As the 

persistent follicle continues to develop, estradiol production and release subsequently 

increases (Kojima et al., 2003).  Through positive feedback on the hypothalamus, 
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estradiol promotes the release of GnRH and subsequent LH production and release 

from the anterior pituitary gland (Kesner et al., 1981), and in pre-pubertal heifers this 

mechanism allows for the initiation of cyclicity (Anderson et al., 1996; Imwalle et al., 

1998).  Therefore, the reduction in pregnancy rates observed in our heifers may be a 

refection in the inability of some heifers to achieve cyclicity or synchrony at the time of 

synchronization and breeding (Busch et al., 2007).  However, we cannot be certain 

because estrus detection patches or observation of standing heat were not components 

of this study.   

In addition to the synchronization protocol used, we cannot rule out the possibility 

that the method used to collect vaginal flush samples did not affect pregnancy success 

in the heifers.  Vaginal flush collections are a common method to assess reproductive 

status in other species (Caligioni, 2009), and to our knowledge, no adverse effects 

following sample collection have been reported.  However, although we used sterile 

biological saline to infuse into the vaginal cavity and collection was performed in an 

aseptic manner, it is possible that the collection method may have had an adverse 

effect on the ability of heifers to become pregnant following the synchronization period.  

Thus, precaution is advised to ensure external contaminants are not introduced into the 

reproductive tract and all infused saline is recovered to minimize the impact of the 

collection method on the reproductive tract. 

In the present study, CIDR insertion did not significantly alter circulating 

concentrations of progesterone, cortisol, or CBG.  Recognizing that FPI and FCI are 

directly proportional to progesterone, cortisol, and CBG concentration, it is not 
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surprising that FPI and FCI were not affected by the insertion period.  However, the 

numeric rise in circulating progesterone concentration at the time of CIDR removal 

indicates that the CIDRs increased plasma progesterone concentrations and were 

consistent with concentrations previously reported for beef cattle (Kesler, 2002).  At the 

time of CIDR insertion, mean progesterone concentrations were 7.15 nmol/L (2.25 

ng/mL) for heifers that failed to conceive following TAI, and 8.15 nmol/L (2.56 ng/mL) for 

those that became pregnant.  Considering heifers were not pre-synchronized and were 

at various stages of the estrous cycle at the time of CIDR insertion, we cannot rule out 

the possibility that some heifers had not achieved puberty by the time the study started.  

Puberty in beef cattle can be assessed by collecting consecutive weekly samples in 

which circulating progesterone concentrations exceed 1 ng/mL in two of the three 

samples collected.  In the current study, 13 heifers had plasma progesterone 

concentrations less than 1 ng/mL at the start of our study, but because only one blood 

sample was taken before the CIDR was inserted, we cannot conclude if the low 

progesterone concentrations observed in those 13 heifers was a result of anestrus or 

the stage of the estrous cycle in which the samples were collected.   

 Although CIDR insertion did not appear to affect plasma concentrations of CBG, 

CBG was greatest at the time of pregnancy diagnosis on d 38 among heifers that 

became pregnant following TAI.  During this time, plasma progesterone concentrations 

were also greater than those measured during the synchronization period.  Although 

CBG concentrations have not been examined in regards to progesterone and 

pregnancy in bovine, the response observed in the present study is consistent with 
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those reported for human pregnancy.  Rosenthal et al. (1969) conducted a study to 

observe the free and bound fractions of progesterone during the trimesters of human 

pregnancy, and it was postulated that CBG acts a buffer to limit the amount of free 

progesterone throughout the course of pregnancy.  The authors observed an increase 

in CBG-bound progesterone from 37 to 43 %, whereas free progesterone was 

maintained at approximately 2 % throughout pregnancy, and the rise in CBG-bound 

progesterone was concurrent with the overall rise in circulating progesterone 

concentrations throughout the three trimesters (Rosenthal et al., 1969).  Additionally, by 

the second trimester CBG became the primary transporter for progesterone (Rosenthal 

et al., 1969), and is believed to function as a buffer to regulate the amount of free 

progesterone in circulation, extend the half-life, and to create a reserve of the steroid 

(Siiteri et al., 1982; Bright, 1995; Klieber et al., 2007).  Plasma progesterone 

concentrations measured here in pregnant heifers at the time of pregnancy diagnosis 

were greater than those measured during synchronization, and were concurrent with the 

rise in plasma CBG levels observed on d 38.  Also in agreement with Rosenthal et al. 

(1969), we found no differences in the amount of free progesterone in circulation at the 

time of pregnancy diagnosis.  This response suggests that similar to humans, CBG may 

act to regulate the proportion of free progesterone in circulation especially during 

periods of high progesterone influence such as pregnancy.  However, we must also 

consider the relationship between CBG and cortisol, another steroid in which it binds 

with a high affinity (Klieber et al., 2007).    
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During periods of stress or during the inflammatory response, CBG acts as a 

negative acute phase protein as shown by a reduction in circulating CBG concentrations 

(Pugeat et al., 1989; Tsigos et al., 1998).  During the inflammatory response, there is an 

increase in neutrophils which release neutrophil elastase that can cleave the RCL of 

CBG (Hammond et al., 1990).  Once the RCL has been cleaved, CBG can no longer 

bind the steroid in which it was transporting, thus allowing the steroid to be in its 

biologically available state (Simard et al., 2014; Lewis and Elder, 2017).  Therefore, 

when cortisol concentrations are elevated, a reduction in circulating CBG concentration 

occurs to allow for an increase in bioavailable cortisol.  At the time of pregnancy 

diagnosis in pregnant heifers in the present study, plasma cortisol concentrations were 

lowest during the time in which CBG concentrations were the highest.  Although this 

response is consistent with CBG’s role as a negative acute phase protein, plasma 

cortisol concentrations on d 38 were 21.0 nmol/L (7.62 ng/mL) lower than those 

measured on d 0 and were less than baseline cortisol concentrations previously 

reported in beef heifers (Edwards et al., 1987).  Therefore, we speculate that the 

increase in CBG concentrations during early gestation was not a result of reduced 

cortisol concentration, but a reflection in the sustained increase in progesterone 

concentration that occurs with pregnancy.  However, to support the previous statement, 

a subsequent study would have to be performed in which multiple blood samples were 

collected throughout early gestation to examine the fluctuations in plasma progesterone, 

cortisol, and CBG concentration, and to evaluate the binding distribution of CBG. 
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Although CIDR insertion did not appear to influence the systemic endocrine 

response in heifers undergoing synchronization of ovulation, CIDRs directly altered the 

local vaginal endocrine response, but these changes were not related to the ability of 

the heifers to conceive following TAI.  Additionally, CIDRs induced a localized 

inflammatory response within the vaginal cavity as indicated by a 42 % increase in PMN 

migration within the vaginal lumen at the time of CIDR removal which is consistent with 

other studies conducted that have reported an increased infiltration of neutrophils within 

the reproductive tract of cattle undergoing synchronization (Ahmadi et al., 2007; Çevik 

et al., 2010; Fischer-Tenhagen et al., 2012).  We did not examine the percentage of 

neutrophils in circulation, but because plasma cortisol concentration did not differ 

between d -7 and 0, it does not appear that CIDR insertion induced a systemic 

inflammatory response which would be represented by a rise in cortisol concentration 

(Chrousos, 1995; Steensberg et al., 2003).   

CIDR insertion resulted in an increase in progesterone concentration measured 

within the vaginal lumen, but did not alter the amount of CBG within the vagina.  

Therefore, there was also a rise in the amount of free progesterone within the vaginal 

cavity.  These data are not surprising because we know that the mechanism as to which 

CIDRs work to synchronize cattle relies on the absorption of exogenous progesterone 

through the vaginal epithelium to cause a rise in systemic progesterone concentrations.  

Surprisingly, vaginal cortisol concentrations also increased during the CIDR insertion 

period, but because cortisol acts as a regulatory agent during the inflammatory 

response (Hammond et al., 1990), we believe this response occurred as a result of 



51 

 

neutrophil migration that occurred during CIDR insertion.  The presence of a CIDR has 

been linked to a numeric increase in the proportion of neutrophils within the vaginal 

cavity and an overall reduction in circulating neutrophils (Ahmadi et al., 2007; Walsh et 

al., 2008).  These patterns were noted for both progesterone impregnated and non-

impregnated devices and thus, the response appears to be a result of the presence of 

the device within the vaginal cavity (Ahmadi et al., 2007; Walsh et al., 2008).  In addition 

to mechanical induction of the immune response, hormones have the capability to 

impact the activity and presence of neutrophils within an individual.  Specifically, Lasarte 

et al. (2016) reported that progesterone administration induced a Cxcl1 chemokine 

gradient that promoted neutrophil infiltration into the vaginal cavity of mice.  Others have 

reported that progesterone can also impact the survivability of immune cells, such that 

neutrophil apoptosis was reduced in vitro when the immune cells were subjected to 

progesterone, and neutrophils harvested from women showed a greater reduction in 

apoptosis when compared to those harvested from men (Molloy et al., 2003).  Thus, it 

appears that CIDRs impregnated with progesterone have the potential to impose a 

multifaceted effect on the local immune response within the vagina. 

 We did not evaluate the cortisol and progesterone binding properties of bovine 

CBG as part of this study.  In regards to human CBG, the glycoprotein binds cortisol 

with a higher affinity than progesterone, but both with a much higher affinity than that of 

albumin (Mickelson et al., 1981; Hammond, 2016).  We were able to detect fluctuations 

in the amount of CBG measured within plasma as a result of early gestation in cattle 

that we believe is a reflection of heightened progesterone influence.  Future work should 
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be aimed at evaluating the binding affinity of CBG for both progesterone and cortisol via 

Scatchard analysis to determine if bovine CBG binding affinities are similar to those 

reported for human CBG.   

Conclusion 

To the best of our knowledge, this study is the first to examine the effect of 

exogenous progesterone release from a CIDR on local and systemic concentration of 

CBG and the corresponding FPI and FCI in heifers undergoing synchronization of 

ovulation.  Progesterone release from a CIDR inserted for a 7 d period as part of the 7 d 

CO-Synch + CIDR protocol did not affect systemic or vaginal concentrations of CBG in 

heifers enrolled in the current study.  Likewise, the endocrine profiles measured did not 

affect the ability of the heifers to become pregnant following synchronization and TAI.  

At the time of the CIDR insertion on d -7, heifers were at various stages of the estrous 

cycle.  To determine if in fact CIDR insertion does not alter circulating concentrations of 

CBG during the 7 d period, a subsequent study should be conducted such that heifers 

are pre-synchronized and are at the same stage of the estrous cycle at the time of the 

CIDR insertion.  In regards to early pregnancy, it appeared that CBG concentrations 

increased in response to the heightened output of progesterone resulting in stabilization 

of the amount of free progesterone in circulation.  Altogether, based on the preliminary 

data reported in this study, there is evidence to suggest that bovine CBG functions in a 

similar manner to human CBG during early gestation.   
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Table 1. Validation of MP Biomedicals Progesterone Double Antibody RIA kit for 
determination of progesterone concentration within vaginal flush samples collected on d 
0 and 7 of synchronization of ovulation. 

Heifer1 Day Dilution 
[P4]   

(ng/mL) 
Corrected [P4]  

(ng/mL) 

A -7 undiluted 4.52 - 

 0 undiluted 113.32 - 

  300 uL sample : 100 uL saline 69.03 91.81 

  200 uL sample : 200 uL saline 48.00 96.00 

 
 100 uL sample : 300 uL saline 21.44 85.77 

B -7 undiluted 10.83 - 

 0 undiluted 38.38 - 

  300 uL sample : 100 uL saline 33.20 44.15 

  200 uL sample : 200 uL saline 25.04 50.07 

  100 uL sample : 300 uL saline 11.31 45.24 

C -7 undiluted 6.27 - 

 0 undiluted 99.49 - 

  300 uL sample : 100 uL saline 74.75 99.42 

  200 uL sample : 200 uL saline 51.32 102.64 

  100 uL sample : 300 uL saline 26.26 105.02 

D -7 undiluted BDL2 - 

 0 undiluted 60.74 - 

  300 uL sample : 100 uL saline 45.48 60.49 

  200 uL sample : 200 uL saline 29.86 59.72 

    100 uL sample : 300 uL saline 14.22 56.87 

1Four heifers were selected at random for the validation. 
2Below detectable limits (BDL). 
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Table 2. Validation of vaginal flush cortisol concentrations (ng per volume concentrated) 
obtained following Sep-Pak Classic C18 Cartridge extraction and Salimetrics High 
Sensitivity Salivary Cortisol EIA quantification. 

 Day of vaginal flush collection1 

Sample preparation2 Pre-CIDR (d -7) Post-CIDR (d 0) 

1 mL concentrated 0.02 0.19 
2 mL concentrated 0.02 0.24 
5 mL concentrated 0.11 0.42 

10 mL concentrated 0.61 1.81 
1Vaginal flush samples were collected immediately prior to CIDR insertion on d -7 and 
immediately following CIDR removal on d 0.   
2Samples (pre-CIDR and post-CIDR) from one heifer were chosen at random for this 
validation.  Sample aliquots at varying volumes (1, 2, 5, and 10 mL) were concentrated 
using the Sep-Pak C18 cartridges and reconstituted in 100 uL of 0.9 % sodium chloride 
sterile saline.  Concentrations are represented as total ng of cortisol contained within 
each volume (1, 2, 5, and 10 mL) concentrated.  
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Table 3. Comparison of measured plasma variables (mean ± SEM) on d -7 and 0 
between heifers that became pregnant (n = 24) following synchronization of ovulation 
followed by artificial insemination and those that remained open (n = 43). 

  Pregnancy status on d 38  

Plasma variable1 Day Open Pregnant P-Value 

Progesterone (nmol/L) -7 7.15 ± 1.52 8.15 ± 2.03 0.15 
 0 11.46 ± 1.94 10.69 ± 2.28  

Cortisol (nmol/L) -7 54.06 ± 5.25 51.58 ± 7.08 0.55 
 0 76.89 ± 5.28 61.39 ± 7.02  

CBG (mg/L) -7 4.11 ± 0.31 5.22 ± 0.52 0.15 
 0 4.37 ± 0.33 4.58 ± 0.46  

FPI2 (nmol/mg) -7 1.68 ± 0.27 1.55 ± 0.36 0.43 
 0 2.42 ± 0.34 2.25 ± 0.42  

FCI2 (nmol/mg) -7 9.75 ± 1.61 7.91 ± 1.77 0.47 

 0 14.42 ± 2.42 11.42 ± 2.52  
1Plasma samples were collected from each heifer prior to CIDR insertion on d -7 and 
immediately following CIDR removal on d 0. 
2Steroid hormone concentration (nmol/L) was then divided by CBG concentration (mg/L) 
to calculate a free hormone index (nmol/mg) for both progesterone (FPI) and cortisol 
(FCI). 
  



57 

 

Table 4. Comparison of variables measured in flush vaginal flush samples (mean ± 
SEM) on d -7 and 0 between heifers that became pregnant (n = 24) following 
synchronization of ovulation followed by artificial insemination and those that remained 
open (n = 43). 

  Pregnancy status on d 38  

Vaginal variable1 Day Open Pregnant P-Value 

Progesterone (nmol/L) -7 33.63 ± 15.62 34.08 ± 17.18 0.95 
 0 139.87 ± 31.75 136.34 ± 34.69  

Cortisol (nmol/L) -7 0.038 ± 0.006 0.038 ± 0.006 0.66 
 0 0.078 ± 0.012 0.073 ± 0.013  

CBG (mg/L) -7 2.60 ± 0.18 2.32 ± 0.21 0.35 
 0 2.66 ± 0.18 2.66 ± 0.21  

FPI2 (nmol/mg) -7 14.38 ± 7.84 14.92 ± 8.54 0.95 
 0 52.73 ±15.04 52.92 ± 16.20  

FCI2 (nmol/mg) -7 0.016 ± 0.003 0.018 ± 0.004 0.75 
 0 0.030 ± 0.007 0.029 ± 0.007  

PMN3 (%) -7 7.81 ± 3.22 6.75 ± 3.87 0.92 
 0 47.98 ± 3.20 49.72 ± 3.81  

1Vaginal flush samples were collected from each heifer by infusing 60 mL of sterile 
saline into the vaginal cavity prior to CIDR insertion on d -7 and immediately following 
CIDR removal on d 0.  Concentrations are represented as whole concentrations 
contained within the flush sample. 
2 Steroid hormone concentration (nmol/L) was then divided by CBG concentration 
(mg/L) to calculate a free hormone index (nmol/mg) for both progesterone (FPI) and 
cortisol (FCI). 
3 Polymorphonuclear neutrophils (PMN) within the vaginal cavity were assessed prior to 
CIDR insertion on d -7 and immediately following CIDR removal on d 0.  
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Figure 1. Mean ± SEM plasma constituents measured during synchronization of 
ovulation and early gestation in heifers that became pregnant following synchronization 
and AI (n = 24).  Progesterone impregnated CIDRs were inserted on d -7 and removed 
on d 0.  Pregnancy diagnosis via transrectal ultrasonography occurred on d 38.  Steroid 
hormone concentration (nmol/L) was divided by CBG concentration (mg/L) to calculate 
a free hormone index (nmol/mg) for progesterone (FPI; Figure 1C) and cortisol (FCI; 
Figure 1E).  a,bMeans with different superscripts differ. 
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Figure 2. Mean ± SEM progesterone, CBG, cortisol, FPI, and FCI measured in vaginal 
flush samples collected during synchronization of ovulation in heifers that became 
pregnant following synchronization and AI (n = 24).  Progesterone impregnated CIDRs 
were inserted on d -7 and removed on d 0.  Steroid hormone concentration (nmol/L) 
was divided by CBG concentration (mg/L) to calculate a free hormone index (nmol/mg) 
for progesterone (FPI; Figure 2C) and cortisol (FCI; Figure 2E).  a,bMeans with different 
superscripts differ. 
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Chapter III 

Presence of Pseudomonas aeruginosa within the vaginal cavity of 

heifers undergoing synchronization of ovulation and the influence on 

biologically available steroid hormones 
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Abstract 

Pseudomonas aeruginosa is a gram negative aerobic bacteria that is commonly 

found in the environment and is capable of colonizing the vaginal cavity of a variety of 

species.  The presence of Pseudomonas aeruginosa within the bovine vaginal cavity 

has not been well characterized, but there is evidence to suggest that the presence of a 

controlled internal drug release device (CIDR) can alter the abundance of the bacteria 

inhabiting the cavity.  Pseudomonas aeruginosa produces and releases LasB, a 

protease that is capable of cleaving the reactive center loop (RCL) of corticosteroid-

binding globulin (CBG), a transporter for cortisol and progesterone.  When cleavage 

occurs, the steroid dissociates from CBG and is considered biologically available.  The 

main objective of the present study was to examine the effect of exogenous 

progesterone released from a CIDR on the presence of Pseudomonas aeruginosa 

within the vaginal cavity of heifers undergoing synchronization of ovulation using the 7 d 

CO-Synch + CIDR protocol.  Additionally, we examined the relationship between 

Pseudomonas aeruginosa and CBG concentration in the vaginal cavity as it relates to 

the biologically available fractions of progesterone and cortisol.  Beef heifers (n = 67) 

were enrolled in the study and immediately prior to CIDR insertion on d -7, and 

immediately following CIDR removal on d 0, vaginal flush samples were collected.  The 

abundance of Pseudomonas aeruginosa was quantified using quantitative PCR.  

Steroid concentrations were determined using a commercially available RIA and CBG 

was quantified by an in-house ELISA.  Steroid hormone concentration (nmol/L) was 

then divided by CBG concentration (mg/L) to calculate a free hormone index (nmol/mg) 
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for both progesterone (FPI) and cortisol (FCI).  A mixed model ANOVA with repeated 

measures was performed, and Spearman correlations were used to examine the 

relationship between the presence of Pseudomonas aeruginosa and the endocrine 

variables measured.  During the 7 d CIDR insertion period, the abundance of 

Pseudomonas aeruginosa within the vaginal flush samples decreased (P < 0.0001), but 

presence of Pseudomonas aeruginosa within the vaginal cavity was not related (P = 

0.96) to pregnancy status following synchronization of ovulation and AI.  Pseudomonas 

aeruginosa was unrelated (P > 0.10) to progesterone concentration, cortisol 

concentration, and the FPI measured within the vaginal flush samples.  In contrast, 

Pseudomonas aeruginosa abundance at the time of CIDR insertion on d -7 was 

negatively related (r = -0.32; P = 0.04) to the percentage of PMN within the vaginal 

cavity, but no relationship (P = 0.68) between the two variables was observed on d 0 

when CIDRs were removed.  On d 0, Pseudomonas aeruginosa abundance was related 

to both CBG concentration (r = -0.25; P = 0.05) and FCI (r = 0.37; P = 0.004).  In 

summary, the presence of Pseudomonas aeruginosa decreased as a result of CIDR 

insertion, but was unrelated to vaginal progesterone concentration.  However, under the 

current methods, it appears that Pseudomonas aeruginosa within the vaginal cavity of 

heifers may have to potential to alter the free proportion of cortisol as seen by a 

reduction in CBG concentration. 
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Introduction 

 Within the last few years, researchers have started to examine the interactions 

between hormone production and bacterial community profiles that exist within the 

bovine vagina, and it has been reported that changes in the diversity and abundance of 

bacteria occur as hormone profiles vary (Laguardia-Nascimento et al., 2015).  

Furthermore, during pregnancy, a physiological state characterized by heightened 

progesterone production, the bovine vaginal microbiome undergoes a reduction in both 

bacterial diversity and abundance of bacteria inhabiting the cavity (Walther-António et 

al., 2014; Laguardia-Nascimento et al., 2015).  Although research has aimed to 

characterize the existing bacterial community profiles in the bovine vaginal cavity, the 

direct effect of exogenous progesterone release from a controlled internal drug release 

device (CIDR) on the population of local bacterial communities in cattle undergoing 

estrous synchronization remains unclear.   

In women, Pseudomonas aeruginosa is an aerobic opportunistic bacterial 

pathogen that can colonize the vaginal epithelium and lead to infection (Osset et al., 

2001; Hammond, 2016).  Studies that have characterized the bovine vaginal bacterial 

community profiles reported that Pseudomonadaceae are present within the vaginal 

cavity (Laguardia-Nascimento et al., 2015), but the prevalence of P. aeruginosa is not 

well documented in cattle.  Previously, Padula and Macmillan (2006) examined the 

effect of CIDR (1.9 g progesterone) insertion on cultured bacterial isolates found within 

the vagina of postpartum Holstein cows.  The study was designed such that three 

treatments were administered (control: no CIDR; CIDR-P4: two intravaginal devices 
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containing progesterone were administered for 14 d; CIDR-Blank: two intravaginal 

devices without progesterone were administered for 14 d) and vaginal swabs were 

performed on d 0 (day of CIDR insertion), 7, and 14 to examine culturable bacterial 

profiles (Padula and Macmillan, 2006).  They reported that the number of samples 

positive for P. aeruginosa increased over the sampling period in cows that received a 

CIDR.  Likewise, the presence of P. aeruginosa was greater in the CIDR-P4 treated 

cows when compared to the other two treatment groups (Padula and Macmillan, 2006).  

Thus, it appears that the presence of the CIDR and progesterone are capable of altering 

the abundance of P. aeruginosa within in the bovine vaginal cavity. 

P. aeruginosa has the capability to synthesize and release LasB (P. aeruginosa 

elastase), a protease that can cleave the reactive center loop (RCL) of the steroid 

hormone transporter, corticosteroid-binding globulin (CBG) (Simard et al., 2014; 

Hammond, 2016).  When Simard et al. (2014) incubated human CBG in a culture of P. 

aeruginosa, they observed a 90 % reduction in the cortisol-binding capacity of CBG and 

a 5-10 kDa loss.  Furthermore, when human CBG was incubated with protease fractions 

extracted from P. aeruginosa, only LasB reduced the cortisol-binding capacity of CBG 

and proved to have the ability to interfere with the ability of CBG to bind steroids within 

the RCL (Simard et al., 2014).  Based on the study performed by Simard et al. (2014) 

and the presence of P. aeruginosa in the bovine vaginal cavity as reported by Padula 

and Macmillan (2006), further investigation is warranted to determine if this particular 

bacteria has the ability to influence CBG and free progesterone concentrations during 

the estrous synchronization process. 
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The objective of the present study was to examine the effect of exogenous 

progesterone released from a CIDR on the presence of P. aeruginosa within the vaginal 

cavity of heifers undergoing synchronization of ovulation using the 7 d CO-Synch + 

CIDR protocol.  Additionally, we aimed to examine the relationships between P. 

aeruginosa and CBG concentration in the vaginal cavity as it relates to the free fractions 

of progesterone and cortisol.  Based on the literature presented above, we 

hypothesized that CIDR insertion would increase the abundance of P. aeruginosa within 

the vaginal lumen, and that heifers with a greater abundance of P. aeruginosa would 

have lower CBG concentrations and greater proportion of free steroid within the vaginal 

lumen. 

Materials and Methods 

Animals 

Prior to animal manipulation, procedures were approved by the University of 

Tennessee Institutional Animal Care and Use Committee.  Heifers (n = 67) enrolled in 

the study were consigned to the University of Tennessee Beef Heifer Development 

Program in Lewisburg, TN on October 3, 2016 and remained in the program until 

September, 2017.  At arrival, heifer age and body weight ranged from 182 to 383 d of 

age and 198.67 to 390.09 kg, respectively.  Breed composition included the following: 

Angus (n = 28), Angus x Hereford (n = 4), Angus x Shorthorn (n = 2), Angus-cross (n = 

9), Charolais (n = 7), Gelbvieh (n = 4), Hereford (n = 4), Simangus (n = 4), and 

Simmental (n = 5).  All heifers were housed on pasture and received the same feed 
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ration over the course of the program.  Ad libitum access to water and supplemented 

hay was also provided. 

Tissue collection and synchronization of ovulation 

Synchronization of ovulating began on March 2017 when heifers were 416 ± 

33.73 d of age and had an average body weight of 415 ± 36 kg.  On d -7, immediately 

prior to the administration of GnRH (100 ug, Factrel; Zoetis, Madison, NJ) and CIDR 

(1.38 g progesterone; Eazi-Breed CIDR, Zoetis, Madison, NJ) insertion as part of the 7 

d CO-Synch + CIDR protocol, blood (6 mL) was collected in sodium heparin vacutainer 

tubes (Becton Dickinson, Franklin Lakes, NJ)  via coccygeal venipuncture.  Blood 

samples were centrifuged (Sero-Fuge Centrifuge, Clay Adams, Inc., Parsippany, NJ) for 

10 min and plasma was harvested, aliquoted into three 2 mL microcentrifuge tubes, 

then stored at -20°C until later cortisol, progesterone, and CBG analyses.  Following 

blood collection, the vulva was cleaned with 70 % ethanol, and vaginal cytological 

samples were collected by inserting a cytobrush (Cooper Surgical, Inc., Trumbull, CT) 

into the vaginal lumen and rotating the brush clockwise against the vaginal epithelium 

(Stratman et al., 2016).  Cytobrushes were rolled onto microscope slides and slides 

were allowed to air dry prior to being stained with a modified Wright-Giemsa stain 

(Protocol hema 3 stain set, Fisher Scientific Co, Pittsburgh, PA) (Stratman et al., 2016).  

Under 100X magnification, approximately 200 cells were counted to determine the 

proportion of polymorphonuclear neutrophils (PMN) to total cells present on the slide 

(Ghasemi et al., 2012; Stratman et al., 2016).  Vaginal flushes were then performed by 
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inserting a rubber catheter attached to a 60 mL syringe into the vagina and 60 mL of 0.9 

% sodium chloride sterile saline was infused into the vagina and recovered via vaginal 

lavage and caught in a plastic cup, then transferred to a 50 mL conical tube.  Following 

collection, vaginal flush samples were centrifuged at 2,000 rpm (821 x g; Beckman 

Coulter Allegra X-14R Centrifuge, Brea, CA) for 5 min at 4°C, aliquoted into three 13 mL 

culture tubes, and stored at -20°C until later cortisol, progesterone, and CBG 

determination.   

The same procedures mentioned above to collect blood and vaginal flush 

samples were performed again on d 0 when CIDRs were removed and PGF2α was 

administered.  On d 2, heifers received another injection of GnRH immediately prior to 

AI.   

Pseudomonas aeruginosa quantification within vaginal swabs 

 P. aeruginosa ATCC 27853 was grown overnight in 5 mL of Tryptic Soy Broth 

(Becton, Dickinson, and Company, Sparks, MD) with shaking at 37⁰ C.  Serial dilutions 

were performed to obtain sub-samples ranging from 10-1 to 10-9.  Then, 100 uL from 10-

3 to 10-7 samples were plated in triplicate on Luria-Bertani agar plates (Becton, 

Dickinson, and Company, Sparks, MD), incubated overnight at 37⁰ C, and colony 

forming units (CFU) were counted on each plate.  Following DNA isolation procedures 

described above, DNA was extracted from 1 mL of the sub-samples ranging from 100 to 

10-9, and were used to generate a standard curve on each PCR 96-well plate that 

ranged from 7.0 x 102 to 7.0 x 108  CFU·mL-1.   
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Vaginal flush samples were thawed, vortexed, and centrifuged at 3,280 x g for 20 

min, then the resulting supernatant was discarded and pellets were re-suspended in 

180 uL of Bufffer ATL provided within the DNeasy Blood & Tissue Kit (Qiagen, Hilden, 

Germany)(Clemmons et al., 2017).  Subsequent bacterial DNA extraction was 

performed as per the manufacturer instructions within the DNeasy Blood & Tissue Kit 

protocol for gram negative bacteria (Clemmons et al., 2017).  Following extraction, DNA 

concentration within each sample was quantified using a NanoDrop 1000 

Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) (Lee et al., 2011). 

 Forward (722F: 5’-GGCGTGGGTGTGGAAGTC-3’) and reverse (788R: 5’-

TGGTGAAGCAGAGCAGGTTCT-3’) primers were designed to target a gyrB gene 

specific sequence of P. aeruginosa (Lavenir et al., 2007; Lee et al., 2011).  Each PCR 

reaction contained a total volume of 40 uL which consisted of 20 uL PowerUpTM 

SYBRTM Green Master Mix (Applied Biosystems, Life Technologies, Carlsbad, CA) and 

2 uL of each the forward and reverse primers (500 nM) (Lee et al., 2011).  The 

remaining 16 uL consisted of varying volumes of nuclease-free water and DNA template 

to achieve a final mass of 150 ng of DNA template per PCR reaction.  A negative 

control was constructed following the PCR reaction recipe above, but 16 uL of 

nuclease-free water was used in place of the of DNA template.  Amplification of DNA 

was performed in triplicate using the QuantStudioTM 3 Real-Time PCR System with the 

following thermal cycling settings.  A preliminary hold stage at 50⁰ C for 2 min followed 

by 95⁰ C for 2 min was performed, and 40 cycles of denaturation at 95⁰ C for 15 sec, 

annealing at 58.5⁰ C for 1 min, and extension at 72⁰ C for 1 min was performed. 
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Plasma steroid hormone analyses 

Total plasma cortisol and progesterone concentration (ng/mL) were determined 

by following the procedures of commercially available radioimmunoassay kits (MP 

Biomedicals, Solon, OH; cat # 07-221102 and 07-170102, respectively) with a 

sensitivity of 5 ng/mL and 0.2 ng/mL, respectively (Hulbert et al., 2013; Pohler et al., 

2016).  Cortisol standards ranged from 5 to 1,000 ng/mL with a cross-reactivity less 

than 12.3 % for related endogenous steroids.  Intra- and inter-assay coefficients of 

variation (CV) were 17.3 % and 25.9 % for low (2.27 ng/mL) and, 12.2 % and 15.0 % for 

high (16.2 ng/mL) cortisol controls.  Progesterone standards ranged from 0.2 to 50 

ng/mL with a cross-reactivity less than 5.4 % for related endogenous steroids.  Intra- 

and inter-assay coefficients of variation (CV) were 6.7 % and 6.0 % for low (0.89 ng/mL) 

and, 11.3 % and 15.1 % for high (5.0 ng/mL) progesterone controls. 

Vaginal flush steroid hormone analyses 

Total progesterone and cortisol concentrations within the vaginal flush samples 

were determined by following the same RIA procedures as described in Chapter II using 

the MP Biomedical Progesterone Double Antibody RIA kit and Salimetrics High 

Sensitivity Salivary Cortisol EIA.  Intra- and inter-assay CV were 3.6 % and 3.3 % for 

low (5.93 ng/mL) and, 3.4 % and 5.7 % for high (51.0 ng/mL) progesterone controls.  

Cortisol EIA with intra- and inter-assay CV of 5.0 and 7.5 % for low (1.17 ng/mL) and 

3.3 and 7.8 % for high (9.62 ng/mL) cortisol standards.  



70 

 

CBG concentration determination 

Concentrations of bovine CBG (mg/L) were quantified by an indirect competitive 

ELISA developed in our laboratory as described in Chapter II (Roberts et al., 2003; 

Kattesh et al., 2014).  For plasma samples, intra- and inter-assay CV were 13.0 % and 

20.0 % for internal control A (3.78 mg/L), and 6.5 % and 24.3 % for internal control B 

(4.62 mg/L).  For vaginal flush samples, intra- and inter-assay CV were 15.5 % and 19.2 

% for internal control A (2.02 mg/L), and 15.8 % and 18.7 % for internal control B (3.14 

mg/L). 

Free hormone index 

To calculate the free fraction of cortisol and progesterone, concentrations of 

cortisol and progesterone were converted from ng/mL to nmol/L by a multiplicative 

conversion factor of 2.76 and 3.18, respectively (Graham et al., 2011).  Steroid hormone 

concentration (nmol/L) was then divided by CBG concentration (mg/L) to calculate a 

free hormone index (nmol/mg) for both cortisol (FCI) and progesterone (FPI) (Le Roux 

et al., 2003). 

Statistical analysis  

All heifers enrolled in the study (n = 67) were used to examine the relationship 

between the bacterial, steroid hormones, and CBG profiles following synchronization of 

ovulation and AI.  In addition, heifers that were confirmed pregnant following timed 

artificial insemination (n = 24) were used as a sub-population to examine the influence 
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of progesterone during synchronization of ovulation and early gestation on vaginal 

bacterial presence and concentrations of cortisol, progesterone, and CBG. 

 All statistical analyses were performed in SAS 9.3 (SAS Institute, Cary, NC, 

USA).  A mixed model analysis of variance with heifer as the experimental unit was 

performed to assess the effect of synchronization of ovulation on measured dependent 

variables.  Sampling day was used in the model as a repeated measure, and pen and 

heifer were included as random blocking effects.  Fisher’s LSD test was used to 

separate means (P ≤ 0.05).  Spearman correlations were also performed to examine 

relationships between the abundance of P. aeruginosa and the measured endocrine-

related variables. 

Results 

 All tables are included in the appendix at the end of this chapter.  All vaginal flush 

samples were positive for P. aeruginosa as detected by qPCR analysis.  During the 7 d 

CIDR insertion period of the 7 d CO-Synch + CIDR protocol, the abundance of P. 

aeruginosa within the vaginal flush samples exhibited a 3.5-fold decrease (P < 0.0001) 

from 9,818.10 ± 2,034.94 CFU·mL-1 on d -7 to 2,797.69 ± 527.62 CFU·mL-1 on d 0.  

However, no differences (P = 0.96) in P. aeruginosa abundance were observed on d -7 

and 0 among heifers that became pregnant (n = 24) and those that remained open (n = 

43) following synchronization of ovulation and timed AI (Table 5).   

Overall means for progesterone, cortisol, CBG, FPI, FCI, and PMN measured on 

d -7 and 0 are reported in Table 6.  Spearman correlations were performed to assess 
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the relationship between P. aeruginosa abundance and the other dependent variables 

measured in the vaginal flush samples obtained on d -7 and 0.  P. aeruginosa was 

unrelated (P > 0.10) to progesterone concentration, cortisol concentration, and the FPI 

measured within the vaginal flush samples collected on d -7 and 0 (Table 7).  In 

contrast, P. aeruginosa abundance within the vaginal cavity on d -7 was inversely 

related (P = 0.04) to the percentage of PMN within the vaginal cavity such that heifers 

with a greater abundance of PMN had fewer P. aeruginosa inhabiting the vaginal cavity, 

but no relationship (P = 0.68) between the two variables was observed on d 0 when 

CIDRs were removed (Table 7).  On d 0, P. aeruginosa abundance was negatively 

related to both CBG concentration (P = 0.05) and FCI (P = 0.004) measured in the 

vaginal flush such that heifers with a greater abundance of P. aeruginosa had lower 

CBG concentrations, but a greater proportion of free cortisol within the vaginal cavity 

(Table 7).  Likewise, FCI was directly related (r = 0.30; P = 0.02) to the percentage of 

PMN within the vaginal cavity on d 0, such that heifers with a greater proportion of PMN 

had a higher FCI. 

Discussion 

 In addition to vaginal flush samples, vaginal swab samples were collected on d -7 

and 0 with the intent to determine P. aeruginosa presence using a cotton swab 

technique instead of vaginal flush collection method.  Recognizing that P. aeruginosa is 

a gram negative bacteria that is capable of adhering to host cells (Woods et al., 1980; 

Holden et al., 1999), we hypothesized that vaginal bacterial swabs would serve as a 



73 

 

better collection method than the vaginal flush method.  Following DNA extraction, swab 

samples contained an average of 38.7 ng/uL of purified DNA on d -7 and 53.1 ng/uL on 

d 0, but the qPCR methods described above were unable to detect P. aeruginosa within 

the swab samples.  In contrast, vaginal flush samples contained an average of 17.3 

ng/uL of purified DNA on d -7 and 88.0 ng/uL on d 0 and P. aeruginosa was detectable 

in samples collected using the vaginal flush method.  We suspect that the bacterial 

swab collection method was not adequate for obtaining a sufficient representative 

sample of bacteria within the vaginal cavity of heifers.  It is also possible that the swab 

method collected primarily host cells from the vaginal epithelial instead of bacterial cells 

within the lumen.  Instead, vaginal flush samples are capable of flushing the vaginal 

lumen by making contact with a greater surface area, and may be a more 

representative sample of the bacteria communities inhabiting the vaginal lumen (Ball et 

al., 1988). 

Heifers enrolled in our study displayed a 3.5 fold reduction in the abundance of 

P. aeruginosa following the 7 d CIDR insertion period.  However, this was contrary to 

our hypothesis and data reported by Padula and Macmillan (2006) who observed an 

increase in the abundance of P. aeruginosa within the vaginal cavity as a result of CIDR 

insertion. Although both studies were conducted in beef heifers consisting of Bos taurus 

lineage, the experiment performed by Padula and Macmillan (2006) was conducted in 

the Southern region of Australia during autumn which is characterized by warmer 

seasonal temperatures and more rainfall than the spring climate in which our 

experiment occurred.  P. aeruginosa is an opportunistic environmental pathogen (Stover 
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et al., 2000), and within the United States, its prevalence is affected by season such 

that P. aeruginosa-induced respiratory infections in humans are observed more 

commonly during the summer and autumn months when compared to winter and spring 

months (Psoter et al., 2013).  Thus, it is possible that environmental conditions may 

have contributed to the varying results in our study and those reported by (Padula and 

Macmillan, 2006).  Likewise, all cows in their study were within the luteal phase of the 

estrous cycle at the time of CIDR insertion.  Recognizing the impact of progesterone on 

the vaginal microbiome (Walther-António et al., 2014; Laguardia-Nascimento et al., 

2015), and that heifers in our study were at different stages of the estrous cycle, it is 

also possible that our results conflicted to those reported by Padula and Macmillan 

(2006) due to both the physiological hormone state of the animals at CIDR insertion and 

the type of CIDR used.   

Additionally, Padula and Macmillan (2006) recognized the chance of sampling 

contamination among the cows enrolled in their study (Padula and Macmillan, 2006). 

Therefore, it is possible that their observed response was a result of cow to cow 

contamination and not necessarily a direct effect of CIDR insertion.  However, among 

the current literature it appears that there are disagreements in regards to the effect of 

progesterone on bacterial communities within the bovine reproductive tract such that 

Laguardia-Nascimento et al. (2015) observed a reduction in both the diversity and 

abundance of bacteria within the vaginal cavity during pregnancy, a state characterized 

by sustained progesterone influence, which is consistent with our results.   



75 

 

In the present study, CIDR were inserted and the plastic tail attached to the 

device was left intact.  Previous research conducted by Fischer-Tenhagen et al. (2012) 

suggested that the presence of the plastic tail is capable of altering the bacterial 

communities within the vagina and reported an increase in the occurrence of purulent 

discharge which was also observed in our samples.  More specifically, the authors 

noted an increase Escherichia coli, a pathogenic bacteria, within the vagina of heifers 

who received a CIDR with intact tail (Fischer-Tenhagen et al., 2012).  They also 

reported that heifers who received CIDRs with intact tails were more likely to have their 

CIDRs removed by pen-mates before the end of the synchronization period (Fischer-

Tenhagen et al., 2012).  Taken together, it appears that CIDR insertion may provide a 

route for pathogenic bacteria to enter the vaginal cavity either by transmission from the 

host individual into the vaginal cavity or through curious behaviors of pen-mates 

(Fischer-Tenhagen et al., 2012).  Likewise, it is possible that CIDRs allow for an influx of 

air into the vaginal cavity that may alter bacterial community profiles.   

In regards to the physiological measurements collected as part of this study, a 

relationship existed between the presence of P. aeruginosa and the amount of PMN, 

CBG, and the FCI within the vaginal cavity.  More specifically, at the time of CIDR 

insertion, heifers with a higher percentage of PMN had a lower abundance of P. 

aeruginosa within the cavity.  Notoriously, PMN (i.e. neutrophils) are one of the first 

defense mechanisms during the initiation of the innate immune response to 

inflammation or tissue damage, and function in this manner by killing pathogenic cells or 

by destroying host tissue through phagocytosis (Henson and Johnston, 1987; Weiss, 
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1989; Kobayashi and DeLeo, 2009).  Therefore, we speculate that among heifers with a 

greater population of neutrophils within the vagina, the phagocytic properties of the 

immune cell may have led to the observed reduction in P. aeruginosa as part of the 

host’s innate immune response.  

In support of our hypothesis, we observed a negative correlation between the 

presence of P. aeruginosa and concentrations of CBG measured within vaginal flush 

samples on d 0, such that heifers with a greater abundance of the bacteria had lower 

concentrations of CBG.  P. aeruginosa produces and releases a protease (LasB) that is 

capable of cleaving multiple sites within the amino acid sequence of the RCL (Simard et 

al., 2014; Hammond, 2016; Lewis and Elder, 2017).  Thus, it is possible that among 

heifers with a higher abundance of the bacteria within the vaginal cavity had less CBG 

present due to the proteolytic properties of the bacteria.  Also during this time, there was 

a positive correlation between P. aeruginosa and the free proportion of cortisol (FCI) 

within the vaginal flush sample.  When proteolytic cleavage of the RCL occurs, the 

steroid in which is bound to CBG dissociates and is considered biologically available 

which increases the free proportion of the steroid (Siiteri et al., 1981).  We also 

observed a large increase in the percentage of PMN within the vaginal cavity at the time 

of CIDR removal which was directly related to FCI such that heifers with more PMN had 

a greater proportion of free cortisol.  Therefore, it appears that the amount of free 

cortisol may be related to P. aeruginosa and PMN within the cavity, both of which are 

capable of causing a reduction in CBG concentration which would result in an increase 

in FCI.     
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Conclusion 

To our knowledge, this is the first study to examine the relationship between 

CIDR insertion and the presence of P. aeruginosa inhabiting the vaginal cavity of heifers 

using qPCR technologies.  Similarly, no other studies have been performed to examine 

the relationship between P. aeruginosa abundance and CBG concentration within the 

reproductive tract of cattle.  As a result of CIDR insertion, we observed a 3.5 fold 

reduction in the number of P. aeruginosa inhabiting the vaginal lumen, but we do not 

know what induced this response, but we speculate environment and the greater ability 

of air to enter the cavity may have altered the bacterial communities.  Based on the 

results presented in our study, a positive relationship exists between the abundance of 

P. aeruginosa and the proportion of free cortisol in the vaginal cavity.  Thus, further 

investigation is warranted to determine the ability of the P. aeruginosa and PMN to 

disrupt steroid binding within the RCL of bovine CBG and if it has the ability to impact 

reproductive function in regards to steroid bioavailability in addition to its pathogenic 

properties.   
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Table 5. Comparison of the abundance (mean CFU·mL-1 ± SEM) of Pseudomonas 

aeruginosa in vaginal flush samples collected on d -7 and 0 between heifers that 
became pregnant (n = 24) following synchronization of ovulation followed by artificial 
insemination and those that remained open (n = 43). 

 Pregnancy Status on d 38 P-Value 

Day1 Open Pregnant Day*Preg Status Day 

-7 10504.23a ± 2455.81 8779.79a ± 2577.22 0.96 <0.0001 
0 2980.70b ± 619.24 2550.48b ± 639.47   

1Vaginal flush samples were collected from each heifer immediately prior to CIDR 
insertion on d -7 and immediately following CIDR removal on d 0.   
abMeans within a row or column with different superscripts differ. 
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Table 6. Mean ± SEM concentrations of endocrine-related variables measured within 
the vaginal flush samples collected on d -7 and 0 from heifers undergoing 
synchronization of ovulation.  

 Day  

Vaginal flush variable1 -7 0 P-Value 

Progesterone (nmol/L) 33.43b ± 13.64 136.47a ± 27.57 <0.0001 
Cortisol (nmol/L) 0.038b ± 0.006 0.076a ± 0.0012 <0.0001 

CBG (mg/L) 2.49 ± 0.15 2.66 ± 0.15 0.25 
FPI2 (nmol/mg) 14.58b ± 7.45 52.81a ± 14.20 <0.0001 
FCI2 (nmol/mg) 0.016b ± 0.004 0.030a ± 0.006 <0.0001 

PMN (%) 7.44b ± 2.70 48.61a ± 2.68 <0.0001 
1Vaginal flush samples were collected from each heifer immediately prior to CIDR 
insertion on d -7 and immediately following CIDR removal on d 0. 
2Steroid hormone concentration (nmol/L) was divided by CBG concentration (mg/L) to 
calculate a free hormone index (nmol/mg) for both progesterone (FPI) and cortisol 
(FCI). 
abMeans with different superscripts differ. 
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Table 7. Spearman correlation analysis between Pseudomonas aeruginosa abundance 
and endocrine variables measured in vaginal flush samples collected on d -7 and 0 from 
heifers undergoing synchronization of ovulation. 

Day1 Variable 1 Variable 2 
Correlation 

coefficient (r) P-Value 

-7 P. aeruginosa abundance Vaginal [CBG] -0.002 0.99 
0 P. aeruginosa abundance Vaginal [CBG] -0.25 0.05 
-7 P. aeruginosa abundance % PMN -0.32 0.04 
0 P. aeruginosa abundance % PMN 0.05 0.68 
-7 P. aeruginosa abundance Vaginal [Progesterone] -0.11 0.48 
0 P. aeruginosa abundance Vaginal [Progesterone] -0.19 0.14 
-7 P. aeruginosa abundance Vaginal [Cortisol] 0.16 0.29 
0 P. aeruginosa abundance Vaginal [Cortisol] 0.19 0.14 
-7 P. aeruginosa abundance Vaginal FPI2 -0.11 0.46 
0 P. aeruginosa abundance Vaginal FPI -0.06 0.67 
-7 P. aeruginosa abundance Vaginal FCI2 0.16 0.31 
0 P. aeruginosa abundance Vaginal FCI 0.34 0.004 

1 Vaginal flush samples were collected from each heifer immediately prior to CIDR 
insertion on d -7 and immediately following CIDR removal on d 0. 
2Steroid hormone concentration (nmol/L) was divided by CBG concentration (mg/L) to 
calculate a free hormone index (nmol/mg) for both progesterone (FPI) and cortisol 
(FCI). 
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Chapter IV 

Characterization of CBG mRNA expression within bovine vaginal 

epithelium and uterine endometrium: a pilot study  
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Abstract 

 Corticosteroid-binding globulin (CBG) is a glycoprotein that serves as a 

transporter for glucocorticoids and progesterone.  Thus far, CBG has been measured 

within the uterus and vaginal lumen in swine and cattle, respectively, but the source of 

this glycoprotein remains ill-defined. Therefore, the objective of this pilot study was to 

determine if CBG mRNA is expressed locally within the bovine reproductive tract.  

Reproductive tracts (n = 3) were collected at the time of evisceration from cattle within 

the luteal phase of the estrous cycle.  Vaginal epithelial tissue was harvest 2.5 cm 

caudal to the cervix, and endometrial tissue from each uterine horn was collected 2.5 

cm cranial to the bifurcation and 2.5 cm caudal to the oviduct.  Total RNA was extracted 

from each tissue sample and cDNA was synthesized via reverse transcription PCR.  

CBG gene expression was quantified relative to β-actin via quantitative PCR.  A mixed 

model analysis of variance was performed to determine if CBG expression levels varied 

among the sample collection sites.  Within vaginal epithelial tissue samples, the CBG 

gene was not expressed.  However, expression of the gene was present in the 

endometrium, but expression levels did not differ (P = 0.95) among the collection sites.  

In summary, it appears that CBG biosynthesis may occur within the uterine 

endometrium, but not the vaginal epithelium.   

Introduction 

Corticosteroid-binding globulin (CBG) is a glycoprotein that is predominantly 

synthesized within hepatocytes (Hammond et al., 1991; Heo et al., 2003a) and functions 
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as a transporter for glucocorticoids and progesterone in which it binds with high affinity, 

but low capacity (Slaunwhite and Sandberg, 1959; Seal et al., 1966; Westphal, 1986a; 

Heo et al., 2003b).  Corticosteroid-binding globulin is a member of the serine protease 

inhibitor superfamily (SERPIN A6) (Hammond et al., 1987; Law et al., 2006).  As a 

member of this superfamily, CBG acts as a target for proteases (Lin et al., 2010) such 

as neutrophil elastase, a protease specifically synthesized and released by neutrophils 

(Hammond et al., 1990).  More recently chymotrypsin, and LasB, an elastase produced 

and released by Pseudomonas aeruginosa have also been reported as proteases 

capable of disrupting the RCL (Lewis and Elder, 2014; Simard et al., 2014).  In the 

presence of CBG, these proteases cleave specific sites within the reactive center loop 

(RCL) of CBG and compromise the steroid binding capacity (Lewis and Elder, 2017).  

After cleavage, the steroid dissociates from CBG and can be sequestered and loosely 

bound by albumin, or remain free within circulation, but in both instances the steroid is 

considered biologically available (Simard et al., 2014).  Additionally, a consequence of 

RCL cleavage includes a 5 kDa reduction in molecular weight and conformational 

change that prevents the ability of CBG to bind an additional steroid molecule 

(Hammond et al., 1990; Potempa et al., 1994; Silverman et al., 2001).   

Glucocorticoids and progesterone compete for the one binding site within the 

RCL of CBG, and the concentration of cortisol or progesterone can alter the ratio of 

steroids bound within the RCL of CBG (Westphal, 1986a).  For example, under periods 

of high progesterone production during human pregnancy, progesterone displaces 

cortisol from the RCL to occupy the binding site (Rosenthal et al., 1969); whereas, 
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during periods of elevated glucocorticoid production, cortisol displaces progesterone 

from the RCL (Westphal, 1986a).  This interaction signifies the main function of CBG 

which includes serving as a buffer and reservoir for glucocorticoids and progesterone 

(Rosner, 1991; Sivukhina and Jirikowski, 2014). 

In addition to steroid buffering, CBG may also play a role in transporting  

progesterone from the corpus luteum (CL) to the uterus (Graham and Clarke, 1997), 

but, the exact mechanism of action is not well understood.  The presence of CBG 

mRNA in steroidogenic tissues, and specifically within both the human corpus luteum 

and endometrium supports the theory that CBG plays a role in progesterone transport 

and steroidogenic function (Misao et al., 1994; Misao et al., 1997; Misao et al., 1999).  

Misao et al. (1997) examined the expression of CBG mRNA in human CL tissue 

following hysterectomy procedures and reported a greater expression of CBG mRNA 

during the mid-luteal phase of the menstrual cycle when compared to the early and late-

luteal phases when concentrations of progesterone are lower than that of the mid-luteal 

phase (Misao et al., 1997; Misao et al., 1999).  Similarly, CBG mRNA expression within 

endometrial tissue is greater during the secretory phase of the menstrual cycle, a phase 

characterized by greater progesterone concentrations when compared to the 

proliferative phase (Misao et al., 1994).  Therefore, it is speculated that CBG may play a 

role in the localized transport of progesterone within the reproductive tract of humans, 

but to the best of our knowledge the expression of CBG mRNA within the reproductive 

tract has not been studied in regards to cattle. 
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So far, our lab has shown the ability to quantify CBG within the uterine lumen of 

swine (Klemcke et al., 1998), and within the vaginal cavity of cattle as described in 

Chapter II of this dissertation.  Based on the previous studies described above, CBG 

mRNA is expressed locally in the endometrium and luteal tissue in other species, but to 

our knowledge synthesis of CBG within the vaginal epithelium has not been explored 

and uncertainty remains regarding the source of CBG measured in our experiments.  

Thus, the objective of this experiment is to determine if CBG mRNA is expressed locally 

in vaginal epithelial and uterine tissue of cattle to allow us to better understand the 

source of CBG within the bovine vaginal cavity.   

Materials and Methods 

Animals 

 Female reproductive tracts (n = 3) were harvested from cull cattle at a local 

abattoir at the time of evisceration which occurred approximately 45 min post-

exsanguination.  Exact breed composition is unknown, but two tracts were from cattle of 

dairy breed phenotype and one tract was from that of a cow of beef breed phenotype.  

Only non-gravid tracts and those without visible signs of infection were collected.  The 

stage of the estrous cycle was determined at the time of collection by assessing visible 

characteristics of the corpus luteum (CL) as described by Ireland et al. (1980).  For this 

study, only tracts classified as stage 2 (d 5 to 10 of estrous cycle; red or brown apex 

with a yellow body) or 3 (d 11 to 17 of estrous cycle; whole CL is orange or yellow) 
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according to the methods of Ireland et al. (1980) were used to determine if bovine CBG 

mRNA is expressed within the reproductive tract. 

Tissue collection 

 Using a scalpel, sections of vaginal epithelial and uterine endometrial tissue 

samples were cut from the inside of each reproductive tract at locations designated in 

Figure 8 of the appendix (Bauersachs et al., 2006; Okumu et al., 2010).  Immediately 

after collection, tissue sections were placed in a 15 mL conical tube, submerged in 

RNAlater (Ambion, Austin, TX), and stored on ice until samples were transported back 

to the laboratory (Forde et al., 2009; Okumu et al., 2010).  Once back at the laboratory, 

tubes containing the tissue sample and RNAlater solution were stored at -80 ⁰C until 

later RNA extraction. 

RNA extraction 

 Prior to total RNA extraction, the sections of tissue were frozen in liquid nitrogen, 

pulverized using a BioPulverizer (BioSpec Products Inc., Bartlesville, OK), and further 

ground to a powder with a mortar and pestle.  Ground uterine epithelium (30 mg) and 

vaginal endometrium (70 mg) were transferred to culture tubes containing 1 mL Buffer 

RTL provided within the Qiagen RNeasy Plus Mini Kit (Qiagen, Hilden, Germany).  

Tissues were further homogenized for 30 s using a homogenizer (Laboratory 

Homogenizer, Model 125, Thermo Fisher Scientific Co. Pittsburgh, PA) and were then 

passed through a 20 gauge needle and syringe to further lyse the tissue.  Total RNA 

extraction procedures were performed to the specifications of protocol provided within 
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the Qiagen RNeasy Plus Mini Kit (Okumu et al., 2010).  All samples were eluted in 50 

uL of RNase-free water and RNA concentrations were quantified using an Ultrospec 

3100 Pro UV/Visible Spectrophotometer (Amersham Bioscience Corp., 

Buckinghamshire, UK).  Eluted samples were stored at -80 ⁰ C until cDNA synthesis 

was performed.  

cDNA synthesis 

 Total RNA (500 ng) was converted to cDNA through reverse transcription PCR 

(RT-PCR) by following the instructions provided within the High Capacity cDNA Reverse 

Transcription Kit (Thermo Fisher Scientific, Pittsburgh, PA).  Each RT-PCR reaction 

contained a total volume of 20 uL which consisted of 10 uL of RT-PCR Master Mix.  The 

remaining 10 uL consisted of varying volumes of RNA template and RNase-free water 

to achieve a final mass of 500 ng of template RNA per RT-PCR reaction tube.  Thermal 

cycling conditions were performed using a Bio-Rad iCycler (Bio-Rad Laboratories, 

Hercules, CA) as per the instructions provided within the High Capacity cDNA Reverse 

Transcription Kit (25 ⁰C for 10 min, 37 ⁰C for 120 min, 85 ⁰C for 5 min, and 4 ⁰C for ∞) 

and cDNA samples were stored at -20 ⁰C until later quantitative PCR (qPCR) analyses. 

Quantitative PCR analysis 

 Forward (5’-CGCCATGGATGATGATATTGC-3’) and reverse (5’-

AAGCCGGCCTTGCACAT-3’) primers for β-actin and concentrations (900/300 nM) 

used for our experiment were previously validated in bovine endometrial tissue and 

were used as a housekeeping gene (Forde et al., 2009; Okumu et al., 2010).  Using the 
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transcript of SERPINA6 (ENSBTAG00000039808) in Ensembl (www.ensembl.org) and 

Primer3Plus (www.bioinformatics.nl/primer3plus), forward (5’-AGCTCAGCCACACTCAT 

CCT-3’) and reverse (5’-TTCTCTGGTGCTTTCCAGGT-3’) primers (500 nM) were 

designed to span an exon-intron-exon junction within the bovine CBG gene.   

 Within each qPCR reaction, 500 ng of template cDNA harvested from uterine 

endometrial or vaginal epithelial tissue was used (Okumu et al., 2010).  For β-actin, a 

total reaction volume of 20 uL was used and consisted of 10 uL of PowerUpTM SYBRTM 

Green Master Mix (Applied Biosystems, Life Technologies, Carlsbad, CA), 1.8 uL of 

forward and 0.6 uL of reverse primers, 6.6 uL RNase-free water, and 1 uL of template 

cDNA.  Thermal cycling settings included a hold stage of 50 ⁰C for 2 min then 95 ⁰C for 

2 min followed by 40 cycles of denaturation at 95⁰ C for 15 sec, annealing at 53⁰ C for 1 

min, and extension at 72⁰ C for 1 min.  For quantification of CBG gene expression, a 

total reaction volume of 20 uL was used and consisted of 10 uL of PowerUpTM SYBRTM 

Green Master Mix, 1 uL of forward and 1 uL of reverse primers, 7 uL RNase-free water, 

and 1 uL of template cDNA.  Thermal cycling settings included a hold stage of 50 ⁰C for 

2 min then 95⁰ C for 2 min followed by 40 cycles of denaturation at 95⁰ C for 15 sec, 

annealing at 54⁰ C for 1 min, and extension at 72⁰ C for 1 min.   

Statistical analysis 

 Relative expression of the CBG gene was determined by calculating the ΔCt for 

each sample relative to the expression of the β-actin gene within the same sample.  A 

mixed model ANOVA was performed in SAS 9.3 to assess if expression levels varied 
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among tissue collection sites.  Cow was included as a random blocking term to account 

for individual animal variation and Fisher’s LSD test was used to separate means (P ≤ 

0.05). 

Results 

 All figures are included in the appendix at the end of this chapter.  Although β-

actin was expressed consistently among vaginal epithelial tissue samples (Ct = 20.45 ± 

1.50) no amplification of the CBG gene was observed using the qPCR analysis methods 

described in the present study.  However, we did observe expression among uterine 

endometrial tissue samples (Figure 4).  Among all four tissue collection sites, CBG 

mRNA expression levels were similar (P = 0.95) regardless of proximity to the corpus 

luteum, but an overall low expression profile was observed.  

Discussion  

 Based on previous research conducted in our laboratory in which we reported 

that CBG concentrations within the uterine lumen rise concurrently with progesterone 

concentrations during early gestation in gilts (Klemcke et al., 1998), we chose to 

incorporate reproductive tracts harvested from cows within the luteal phase of the 

estrous cycle to determine if the CBG gene is expressed locally within the uterine 

endometrium and vaginal epithelium.  Likewise, in Chapter II we were able to quantify 

CBG concentrations within the vaginal lumen of heifers undergoing synchronization of 

ovulation.  Previous studies conducted by Misao et al. (1994) and Seralini et al. (1990) 

reported CBG gene expression within the human endometrium and ovarian, uterine, 
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and placental tissues within rabbits.  Therefore, within this pilot study, we aimed to 

determine if CBG mRNA is expressed within the bovine reproductive tract, and to the 

best of our knowledge, this is the first study to investigate CBG gene expression in 

regards to cattle. 

 Due to complications with tissue collection, we were limited to the use of three 

reproductive tracts within the luteal phase of the estrous cycle.  Nonetheless, we were 

able to detect the presence of CBG mRNA expression within the endometrial tissue 

samples collected, but not within the vaginal epithelial tissue.  Recognizing the 

histological difference between the two tissues, it was not surprising that we did not 

observed CBG gene expression in the vaginal tissue.  The lining of the vagina is 

characterized by the presence of stratified squamous epithelial tissue with two 

vestibular gland ducts that provide mucus to the vaginal lumen (Bloom and Fawcett, 

1975; Blazquez et al., 1987a; Blazquez et al., 1987b).  In contrast, the uterine 

endometrium consists of a layer of simple columnar epithelial cells that cover the 

underlying stroma layer that is comprised by highly glandular tissue that secrete 

proteins to the uterine lumen (Dawson, 1959; Bloom and Fawcett, 1975; Gray et al., 

2001).  In swine, Murray et al. (1972) observed differences in the concentration of total 

protein that was present within uterine flush samples collected at different stages of the 

estrous cycle such that protein secretions were greatest under during the luteal phase 

and were concurrent with elevated progesterone production (Murray et al., 1972), and 

heightened protein synthesis within the endometrial tissue (Basha et al., 1980; Roberts 

and Bazer, 1988).   
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 Among the four sampling locations within the uterus, the bovine CBG mRNA was 

present, but expression of the gene was low.  This observation was in agreement with 

data reported by Seralini et al. (1990) who showed that CBG mRNA is expressed within 

the uterus of rabbits, but at much lower of an abundance when compared to hepatic 

tissue.  Across the sampling sites, CBG mRNA expression was the same.  Recognizing 

that sample size is a major limitation for this study, a follow-up study with a larger 

population size should be conducted to determine if this pattern is consistent or if levels 

of CBG mRNA differ among tissue samples collected at varying proximities to the CL.  

Within uterine tissue, a progesterone concentration gradient exists such that tissue 

samples collected closer to the ovary with the CL contain greater concentrations of 

progesterone when compared to tissues collected further away from the CL (Pope et al., 

1982; Weems et al., 1988).  Likewise, tissue collected from the contralateral uterine 

horn relative to the CL have lower concentrations of progesterone than tissue collected 

from the ipsilateral horn (Pope et al., 1982).  Based on these observations and the 

heightened uterine protein production observed by Murray et al. (1972) during the luteal 

phase of the estrous cycle, it is worth investigating to determine if changes in CBG 

mRNA expression occur throughout the estrous cycle and if expression levels vary 

within samples collected from different regions of the uterus. 

Conclusion  

 To the best of our knowledge, this is the first study to examine bovine CBG gene 

expression.  The CBG gene was expressed within uterine endometrial tissue, but not in 
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vaginal epithelial tissue.  Thus, it is possible that CBG measured within the vaginal 

cavity of heifers, as described in Chapter II, was originally derived from the 

endometrium.  Recognizing that the majority of CBG in circulation is produced within the 

liver, and CBG possesses a molecular weight of approximately 50-60 kDa, it is not likely 

that hepatic-derived CBG alters the concentration within other tissues (Hammond et al., 

1991; Hammond, 2016).  To support this claim, immunohistochemical techniques 

should be employed to determine if the glycoprotein is produced locally within 

endometrial tissue.  Nonetheless, it appears that CBG plays a role within the bovine 

reproductive tract, but further investigation is warranted to determine its specific function 

as it relates to reproductive function.  
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Figure 3. Collection sites for vaginal epithelial (red arrow) and uterine endometrial 
tissue (blue arrows) harvested from bovine reproductive tracts.  Vaginal epithelial 
tissue was collected approximately 2.5 cm caudal to the cervix.  Uterine endometrial 
tissue was collected approximately 2.5 cm cranial to bifurcation and another sample 
was collected approximately 2.5 cm caudal to the beginning of the oviduct. 
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Figure 4. Relative expression of the bovine CBG gene in endometrial tissue collected 
from four sites within the female reproductive tract.  Within the uterine horn ipsilateral to 
the corpus luteum, endometrial tissue was collected approximately 2.5 cm cranial to 
bifurcation (Ipsilateral-1) and another sample was collected approximately 2.5 cm 
caudal to the beginning of the oviduct (Ipsilateral-2).  Another set of endometrial 
samples were collected within the contralateral uterine horn approximately 2.5 cm 
cranial to bifurcation (Contralateral-1) and 2.5 cm caudal to the beginning of the oviduct 
(Contralateral-2).  Expression of the CBG gene is relative to the expression of β-actin.  
CBG expression was similar (P = 0.95) among tissue collection sites. 
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General Research Conclusions 

The studies contained within this dissertation are the first to examine the 

influence of progesterone on concentrations of CBG in circulation and within the 

reproductive tract of cattle.  Likewise, we are the first to explore CBG gene expression 

within vaginal epithelial and uterine endometrial tissue in cattle.  Previously, research 

conducted in regards to humans has shown that CBG biosynthesis and concentrations 

of the glycoprotein are altered during heightened progesterone output (Rosenthal et al., 

1969; Benassayag et al., 2001).  Recognizing the role of CBG in regulating the 

proportion of biologically available steroid, we were interested in examining the effect of 

exogenous progesterone administration during synchronization of ovulation and early 

gestation in heifers on concentrations of CBG within the vaginal cavity and in circulation.    

In Chapter II, no alterations in vaginal or systemic CBG concentrations were 

observed during the CIDR insertion period.  However, among heifers confirmed as 

pregnant on d 38, CBG concentrations in circulation increased during early gestation 

when compared to those measured during the synchronization period.  Additionally, 

based on our FPI calculation that estimates the proportion of bound progesterone to 

CBG, it appeared that the overall rise in CBG during early gestation helped to buffer the 

amount of free progesterone in circulation during that time period.  Across a variety of 

species, including humans and cattle, insufficient progesterone concentrations early in 

gestation pose a threat to pregnancy sustainability.  Based on our preliminary results, 

there is evidence to believe that CBG plays a role in progesterone bioavailability.  Thus, 

future work should be aimed at examining CBG biosynthesis and the amount of free, or 
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biologically available progesterone during early gestation to determine if the rate of CBG 

production within an animal has the potential to impact the maintenance of pregnancy.   

Both P. aeruginosa and neutrophils synthesize and release proteases that cleave 

the RCL of CBG to modulate steroid bioavailability by reducing the binding capacity of 

the transporter (Hammond et al., 1990; Simard et al., 2014).  In Chapter III, CIDR 

insertion caused a localized inflammatory response within the vaginal cavity as denoted 

by an increase in PMN.  Additionally, both PMN and the presence of P. aeruginosa 

were directly related to the amount of free cortisol in circulation, but only P. aeruginosa 

was related to CBG such that heifers with a higher abundance of the bacteria had lower 

concentrations of CBG.  Thus far, this study is the first to examine the relationship 

between P. aeruginosa and the bioavailability of steroids in cattle, but our preliminary 

data suggest that the presence of the bacteria in the vaginal cavity may be capable of 

altering the local ratio of free steroid hormone.  Although these results were generated 

by correlation analysis, future work should be aimed to investigate P. aeruginosa’s role 

in disrupting the steroid binding capacity of bovine CBG via in vitro analyses.  

Additionally, the potential for P. aeruginosa and PMN to alter the amount of free cortisol 

within the vaginal cavity suggests that both are capable of direct impact on the local 

inflammatory response.   

Lastly, our pilot study described in Chapter IV provided insight as to the source of 

CBG measured within the vaginal cavity.  Previous research has indicated that although 

hepatic production of CBG is the main source for CBG in circulation, is not reflective of 

extrahepatic CBG biosynthesis (Hammond, 2016), thus we wanted to examine CBG 
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gene expression within the bovine reproductive tract.  In our study, CBG mRNA was not 

expressed within the vaginal tissue, but was expressed at low levels within the uterine 

endometrium.  Therefore, we believe CBG measured in the vaginal cavity in Chapter II 

was derived from the endometrium.  These results are novel in the sense that CBG 

gene expression has not been characterized in cattle, but these data reinforce the 

notion that CBG is present within tissues under high steroid influence. 

In summary, although our studies were limited in regards to the number of cattle 

and the number of sampling time points used, our results indicate that CBG acts as a 

buffer for steroid hormones during early gestation in beef heifers and is active within the 

bovine reproductive tract.  We believe the results from these studies set the foundation 

for future work in regards to the role of CBG and reproductive function in cattle.  

Furthermore, previous research in humans have reported polymorphisms associated 

with the SERPINA6 gene that alter the production and steroid binding properties of CBG 

(Hammond, 2016).  Therefore, further investigation into the variants of the bovine CBG 

gene may be warranted to determine if the proportion of free steroid differs among cattle 

with varying genotypes.    
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Appendix A. Percent recovery assay for evaluating cortisol recovery capability of 

Sep-Pak Classic C18 Cartridges (Waters Corporation, Milford, MA) 

 

Procedure (adapted from procedures reported by Shackleton and Whitney (1980)) 

1. Attach the Sep-Pak Classic C18 Cartridge to a 6 or 12 mL syringe. 

2. Prime 

a. Add 2 mL of methanol to the barrel of the syringe. Allow the methanol to 

flow through the cartridge one drop at a time. 

b. Add 5 mL of sterile deionized water to the barrel of the syringe and allow 

the water to flow through the cartridge one drop at a time. 

3. Sample 

a. Add 1 mL of 125I Cortisol Tracer Solution (MP Biomedicals, Solon, OH; cat 

# 06B256617) to the barrel and allow contents to flow through the 

cartridge one drop at a time. 

4. Wash 

a. Add 5 mL of sterile deionized water to the barrel of the syringe and allow 

water to flow through the cartridge one drop at a time. 

5. Recovery/elute 

a. Add 2 mL of methanol to the barrel of the syringe, allow methanol to flow 

through the cartridge one drop at a time, and collect methanol in a 

borosilicate glass test tube. 

6. Evaporation and reconstitution 
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a. Evaporate recovered methanol under air until borosilicate glass tube is 

completely dry. 

b. Reconstitute sample with 1 mL of 0.9 % sodium chloride sterile saline. 

7. Recovery determination 

a. In one polypropylene tube, add 1 mL of straight 125I Cortisol Tracer 

Solution.  In a separate tube, transfer all contents of the reconstituted 

sample in step 6. 

b. Run samples through the gamma counter to evaluate counts per minute 

(cpm) for each sample. 

c. Calculate percent recovery by using the following equation:  

% recovery = (recovered sample cpm ÷ straight sample cpm) × 100  
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Appendix B. Protocol for concentrating vaginal flush samples for cortisol EIA 

using Sep-Pak Classic C18 Cartridges (Waters Corporation, Milford, MA) 

 

Procedure (Shackleton and Whitney, 1980)  

1. Attach the Sep-Pak Classic C18 Cartridge to a 6 or 12 mL syringe. 

8. Prime 

a. Add 2 mL of methanol to the barrel of the syringe. Allow the methanol to 

flow through the cartridge one drop at a time. 

b. Add 5 mL of sterile deionized water to the barrel of the syringe and allow 

the water to flow through the cartridge one drop at a time. 

9. Sample 

a. Add 5 mL of vaginal flush sample to the barrel of the cartridge and allow 

contents to flow through the cartridge one drop at a time. 

10. Wash 

a. Add 5 mL of sterile deionized water to the barrel of the syringe and allow 

water to flow through the cartridge one drop at a time. 

11. Recovery/elute 

a. Add 2 mL of methanol to the barrel of the syringe, allow methanol to flow 

through the cartridge one drop at a time, and collect methanol in a 

borosilicate glass test tube. 

12. Evaporation and reconstitution 
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a. Evaporate recovered methanol under air until borosilicate glass tube is 

completely dry. 

b. Reconstitute sample with 100 uL of 0.9 % sodium chloride sterile saline. 

c. Freeze samples for later analyses.  
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