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ABSTRACT 

Results of recent tectonic reconstructions on the Galilean moon, Europa, have displayed plate-

like motions and rotation. Visual analysis of an area in Argadnel Regio suggests similar tectonic 

behavior in Europa’s past with a significant amount of rotation. These rotations appear to be 

analogous to kinematic behavior of rotating terrestrial microplates. Plate rotation in Argadnel 

Regio may be driven by either of two mechanisms: subsurface shear flow (i.e. originating from 

convective forces) or lateral forcing from bounding plates (e.g. edge-driven). The location of the 

instantaneous axes of rotation (IAR), the axis that passes through the point of instantaneous zero 

velocity, can be used to assess the driving mechanism of plate rotation. IARs located on the 

boundary of a rotating plate suggest laterally forced rotation. IARs located away from plate 

boundaries are indicative of rotation driven by shear flow at the interface of the lithosphere and 

asthenosphere. The hypothesis motivating the work presented here is that rotation in Argadnel 

Regio is driven by shear flow within the ice shell.  This hypothesis is tested by measuring 

locations of IARs on Galileo Solid State Imaging Camera images of Argadnel Regio. Cross-

cutting relationships were examined to obtain the sequence of plate motions to reconstruct section 

of Argadnel Regio using GPlates. The reconstruction was used to extrapolate locations of IARs 

for a circular feature (CF) composed of a group of plates that rotated collectively ~ 40°.  IARs 

detected away from plate boundaries of the CF suggest that rotation was due to shear flow within 

the ice shell. However, the IARs associated with two plates in the interior of the CF found on 

plate boundaries suggest that some “edge-driven” forces are responsible for the rotation and 

rotation related deformation due to location of IARs on plate boundaries. A plate bordering the 

(CF) appears to be completely “edge-driven” by the rotation of CF due to the detection of IARs 

on the plate boundary. These results suggest that rotation in Argadnel Regio was driven from 

edge-driven forces and forces originating in the subsurface. The detection of convective driven 

tectonics makes Argadnel Regio a landing site candidate for future missions.  
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1. INTRODUCTION 
The Galilean satellite, Europa, is one of the most geologically interesting and tectonically 

active bodies in the Solar System. The first Voyager images of Europa in 1979 displayed a unique 

surface that appeared to have “little or no record of intense bombardment” and “a system of 

overlapping bright and dark linear features” (Smith et al. 1979). In the 1990s, the Galileo 

spacecraft returned even more images at higher resolution, but a malfunction of Galileo’s high-

gain antenna resulted in only approximately 10% of Europa’s surface being imaged at resolutions 

appropriate to interpret surface geology (Belton et al. 1996).  

The relatively young (40- 90 million years) (Bierhaus et al., 2009), icy surface of Europa is 

riddled with tectonic features including: dilation bands, lenticulae, chaos terrain, double ridges, 

convergent zones, and, most recently, inferred subduction or subsumption zones (e.g., Kattenhorn 

and Hurford 2009, Kattenhorn and Prockter 2014). Galileo’s magnetometer detected an induced 

field emanating from Europa (Khurana et al. 1998), providing strong evidence for a liquid, briny 

H2O ocean beneath Europa’s complex crust with an estimated volume twice that of Earth’s 

oceans. The presence of a subsurface ocean, sustained by diurnal tidal heating, has placed Europa 

as a prime candidate for investigation of extraterrestrial life in the Solar System (e.g., Kargel et 

al., 2000).  

The majority of the heat available to drive tectonics on Europa is derived from tidal stretching 

resulting from Europa’s eccentric orbit around Jupiter. Tidal dampening would normally drive a 

moon like Europa into a circular orbit, but Europa is in a Laplace resonance with Ganymede and 

Io, whereby Io, Europa, and Ganymede orbit Jupiter with relative periods of 4:2:1 for Ganymede, 

Europa, and Io, respectively. This orbital configuration leads Europa to have a forced eccentricity 

of 0.009, causing Europa to be continually kneaded or flexed over its 3.6-day orbital period (Peale 

and Lee 2002).  

Continual tidal flexing causes heat to dissipate throughout the icy shell and the true silicate 

mantle, though the majority is thought to dissipate near the brittle-ductile transition (Sotin et al., 

2009). It is suggested that hydrothermal plumes originate from geothermal vents on the silicate 

crust, travel to the ocean – ice interface, and eventually contribute to the surface geology 

(Goodman and Lenferink 2012).  
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Regardless of where heat dissipates, it all must travel through Europa’s ice shell. Conduction, 

as well as solid-state convection, is a way to transmit heat to the exterior of the ice shell (Barr and 

Showman, 2009). It is still debated whether convection can fully drive the tectonics of the 

Europan icy shell (Sotin et al., 2009, Barr and Showman 2009, Nimmo and Manga 2009, Schubert 

et al., 2001). Solid-state convection is of particular interest due to the ability for convective 

currents to transmit material from the putative subsurface ocean to the surface (Rudolph and 

Manga 2012). A primary goal for future Europa missions is to sample material that has been in 

contact with the subsurface ocean. The ice shell is most likely too thick (approximately10 – 30 

km) to realistically penetrate with a lander (Nimmo and Pappalardo 2003). Therefore, 

understanding the evolution of Europa’s icy shell may be vital to future missions such as the 

Europa Clipper. Detecting areas that may contain material from the subsurface will ensure that 

possible points of interest can be investigated by orbiters and future landers. 

Based on the observable geomorphology, a section of Argadnel Regio, near the equatorial-

trailing hemisphere, is one of these regions of interest. Preliminary analysis of a western section 

in Argadnel Regio (Fig. 1) suggested that rotation of a circular feature (CF) consisting of 12 plates 

occurred in an anticlockwise direction with respect to the surrounding icy lithosphere. Plate 

rotation could be caused by edge-driven forces or shear forces associated with subsurface flow. 

Determining the mechanism driving rotation will provide constraints about how heat is 

transferred in the ice shell of this region. The mechanism that drives plate-like motion is also of 

interest due to the ability for convection or plumes to transport material from the subsurface to 

the surface. If convective related tectonics can be detected at a specific region, the region could a 

potential landing site for a future Europa Lander.  

A useful aspect of plate rotation is that the location of the instantaneous axes of rotation (IAR) 

can be used to determine the mechanism driving rotation. IARs that are located on the boundary 

of a rotating plate and the bounding plates suggest laterally forced rotation. If the IARs are located 

within the bounding plates and away from the plate boundaries, the mechanism behind rotation 

is likely from subsurface shear flow (e.g., McKenzie and Morgan 1969). Plate rotation should 

cause deformation at plate boundaries and plate interiors (Lamb et al., 1989). This deformation 

can be expressed as tears, fractures, or pseudofaults (Schouten et al., 1993). In terrestrial oceanic 

settings, pseudofaults are attached to IAR on opposite sides of a rotating plates. As plates rotate, 
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translate, grow and/or deform, these features will follow and trace the path of the IAR’s (Katz et 

al. 2005). Detection and geometric analysis of deformation features can be extremely useful in 

interpreting plate rotation mechanisms and history, especially when no magnetic data are 

available. These deformational features can also be useful in determining the relative duration of 

plate rotation. 

The purpose of this thesis is to kinematically analyze the history of the motions of the pieces 

or plates of ice in Argadnel Regio for the purpose of determining the contribution of solid-state 

convection as a driving force for these motions, and hence, as a mechanism for transmitting 

material from the underlying ocean to the surface (Fig.1).   
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Figure 1: Europa. The “Super Mosaic” is combined from Voyager and Galileo images. The 

study area in western Argadnel Regio (12.98 S, 139.86 W) is in the trailing southern hemisphere 

and highlighted in the green rectangle. Courtesy of Geoff Collins. 
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2. BACKGROUND 

2.1 Geologic Setting 

Argadnel Regio is located on Europa’s southern trailing hemisphere (Fig 1), south of the 

equator. It is one of the most complex of the imaged regions on the moon, with a network of 

intertwining pull-apart bands, wedge-shaped bands or “saw tooth” bands, chaos terrains, double 

ridges, and evidence of cryovolcanism (e.g., Prockter et al. 2017). One notable sub-region in 

western Argadnel Regio contains a ~100 km wide circular feature bounded by pull-apart bands 

and chaos terrain (Fig. 2). The CF is composed of 12 smaller plates. The CF is flanked by two 

large chaos terrains/intrusions, one to the northwest and one to the southeast. Several smaller units 

of chaos terrain are present within the concentric structure as well. The presence of chaos terrain 

on Europa indicates the surface has experienced stresses sufficient to break surface ice in some 

locations and raise the topographic relief approximately 300 meters in others (Schenk and 

Pappalardo 2004). Pull-apart bands surrounding the CF intersect with orthogonally oriented pull-

apart bands at four large-scale triple junctions. The geometric orientation and location of offset 

markers immediately around the CF appear to require some amount of rotation to connect pair 

back together. Two examples of this is illustrated by two sets of piercing points (see Fig.2, and 

Appendix Fig.A).   
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Figure 2: Current state of the study area in western Argadnel Regio. Orange arrows point 

to chaos terrains. Green arrows point to pull-apart bands. Red arrows point to double 

ridges that appear to change into dilational bands. The circular area referred to as the 

“CF” is outlined in blue. Two examples of piercing point pairs are represented by yellow 

and purple circles.    
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2.2 Terrestrial Microplate Kinematics 

Study of terrestrial rotating microplates began in the early 1980s. These previous studies of 

microplate kinematics provide useful insights that are applicable to tectonic reconstructions of 

Argadnel Regio. The “pinned block” model (PBM) and “floating block” model (FBM) were first 

described by McKenzie and Jackson (1983), McKenzie and Jackson (1986), and then refined by 

Jackson and Molnar (1990). Further exploration into how plate shape and aspect ratio affect plate 

rotation was conducted by Lamb (1987), and Lamb (1988). The FBM places instantaneous axis 

of rotation (IAR) within the bounding plate, and records ubiquitous slip. Rotation rates that occur 

with the FBM are expected to be more slowly than the PBM. The PBM places IARs on the margin 

of the plate boundary, records minimal slip, and rotates much more rapidly than the FBM. The 

PBM eventually developed into what is known as the “edge-driven” rotation model.  The model 

for edge-driven rotation is illustrated by a simple single gear, a double gear, or a combination, 

depending on angular velocity and whether extension has occurred (Schouten et al. 1993) (Fig. 

3). Terrestrial microplate rotation is a useful analog to Europan plate rotation due to similarities 

of the angle of rotation (~30-40) relative to binding that have been recorded on both bodies. 

Kinematic analysis seems especially appropriate to Europa due to the fact that many physical 

parameters used in mechanical analysis remain enigmatic.  
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Figure 3: Idealized simple gear model (Schouten, 1993). Blue circles 

represent IARs. The green circle represents the vertical axis. Red arrows 

represent motion of bounding plate. Location of contractional and extensional 

features are useful in determining locations of IARs. 
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 In rotational kinematics, the IAR is the axis that passes through the point of instantaneous 

zero velocity (e.g., intersection of a road with a tire not experiencing slip). By locating 

instantaneous axes of rotation, it is possible to distinguish among models for microplate dynamics 

and thereby gain insight into the mechanisms that drive rotation. IARs that are located on the 

boundary of a rotating plate and bounding plates suggest laterally forced rotation. In this situation, 

the microplate is affixed or pinned in between some configuration of bounding plates and rotation 

occurs due to forces at lateral boundaries produced by movement of the binding plates. This edge-

driven type of movement is essentially driven at instantaneous poles. (McKenzie and Jackson 

1983, Neves et al., 2003). IARs located at a distance within plates bounding a microplate (i.e., 

exterior to the rotating microplate itself) indicate rotation is occurring due to shear flow within 

the subsurface of the ice shell.  The FBM places the IAR at some distance within bounding plates. 

Physically, this type of rotation occurs when a plate exists within a shear flow. The plate is rotated 

by a torque produced on the plate boundary (Crummet 1994, Lamb et al., 1987).   

An IAR’s location is based on the relationship between angular velocity and translational 

velocity. First, if angular velocity and translational velocity are equal, an IAR will be located 

directly on the boundary of the rotating body (i.e., the intersection of a tire with the road when 

there is no slip occurring) (Reinbolt 2013). Geologically, this situation occurs due to laterally 

forced or edge-driven rotation. Second, if angular velocity is less than translational velocity, IARs 

will be located exterior to the rotating body (i.e., a car skidding while decelerating) (Crummet 

2004). A terrestrial geologic analog to this occurrence would be related to rotating plates or blocks 

within a shear zone. Lastly, if angular velocity is greater than translational velocity, an IAR would 

be located with some distance within the rotating body (i.e., tire on road that is slipping while 

rotating) (Reinbolt 2013). Geologically, an interiorly located IAR has not been considered 

terrestrial microplate rotation models (e.g., Schouten et al., 1993).  

 

 

 

 



10 

               

 

 

 

 

 

Figure 4: Modified from Schouten et al., 1993. Idealized models for the two end members of 

microplate rotation. Left: IARs located on boundary of microplate and bounding plate indicate 

lateral forcing. Right: IARs located within bounding plate suggest rotation occurs from lateral 

flow within the ice shell. 

 

Axis of Rotation 
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The application of a single or double gear model should, in theory, produce contractional and 

extensional features on a rotating plate at locations near an IAR (Schouten et al., 1993). Therefore, 

if a plate is rotating clockwise, and IARs are located exactly N-S, then extensional features near 

the northeastern and southwestern plate boundaries and contractional features at northwestern and 

southeastern plate boundaries would be expected (Figs. 3, 4). 

The single and double gear models are helpful to understand kinematics of plate rotation, but 

they do not take into account that a plate is bound in a material. Unlike a free-floating gear, 

tectonic plates are bound, or at least embayed, by material of some varying viscosity and/or 

rigidity, causing friction or shear stress that would affect plate rotation. Because of these effects, 

it is highly unlikely that sweeping extensional and contractional features would be found along 

entire plate boundaries, as is predicted in the simple gear model (Kattenhorn, pers.comm). 

Realistically, any contractional or extensional features are expected to be localized. The amount 

of deformation present on or within a rotating plate is highly dependent on the original shape of 

the plate before rotation is initiated. If conditions are equal and a similar magnitude of stress is 

applied, a circular shaped plate would rotate with less effort than a jagged plate. Therefore, more 

evidence of internal deformation should be present on a plate that was originally more inequant 

than circular (Lamb 1987). 

Internal deformational features including fractures and pseudofaults have been observed on 

terrestrial microplates (e.g., Easter microplate, Juan Fernandez microplate) between the Nazca 

and Pacific plates (Fig. 5). IARs on the northern and southern boundaries of the plate are located 

by tracing the orientation and placement of pseudofaults within the Easter plate’s interior and 

bounding plates. Considering the multiple generations of tectonic structures expressed on the 

Europan surface, pseudofault identification may be somewhat more challenging than in a 

terrestrial setting. However, orientation of relatively old ridges in the Europan ridged plains may 

prove useful in the identification of pseudofaults and IARs. 
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2.3 Stress Origins 

Origins of stress hypothesized to contribute to deformation on Europa’s observable surface 

include: nonsynchronous rotation (NSR), true polar wander (TPW), obliquity, diurnal stress, 

convection, impacts, and a thickening ice shell (Geisler 1998, Schenk 2002, Bills 2005, Greenberg 

2003, Nimmo 2004). These different types of stresses are responsible for forming observable 

tectonic surface features. For example, orientations of cycloids are strongly correlated with 

modeled diurnal tidal stress fields with a 1° contribution of NSR (e.g., Kattenhorn and Hurford 

2009). Though the stress magnitudes produced from these phenomena are strong enough to 

influence deformation, it is highly unlikely that dilation/rifting and rotation could be initiated 

from one source alone. On Earth, for example, Buck (2006) found that magmatic intrusion was 

needed to accompany rifting and extension of the Afro-Arabian rift system. On Europa, most 

modeled stress magnitudes do not appear strong enough to rotate large plates (Nimmo and Manga 

2009). Therefore, it is highly plausible that a combination of different stress origins may similarly 

contribute to plate-like movement on Europa’s surface. 

Figure 5: Oceanic topographical view of the Easter 

microplate courtesy of Google Earth (-25.280781 S, -

113.900194 W).  Red arrows illustrate the location of 

pseudofaults that trace IAR location. Faint white 

represents approximate plate boundary. 
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2.4 Chaos Terrain in Argadnel Regio 

A large contributor to Europa’s surface deformation is the intrusion of chaos terrains. Chaos 

terrains comes in a variety of morphologies on Europa. The outward appearance of these terrains 

may be described as either matrix-like, blocky, or a combination of the two (Collins and Nimmo 

2009). Regional chaos terrains can exceed diameters of 1200 km, while lenticulae, pits, and domes 

can be two orders of magnitude smaller (Collins and Nimmo 2009). Though smaller “chaotic 

terrain” species are mostly observable at higher latitudes, larger examples and regional chaos 

terrains tend to dominate equatorial regions (Riley et al., 2000) The physical process of chaos 

terrain intrusion is not well understood. Several studies have considered mechanisms for chaos 

intrusion. Earlier models invoked localized warm anomalies in the ice that were amplified by tidal 

heating, “whole shell” melting, and partial melting of the subsurface (e.g., McKinnon 1999, 

Collins et al., 2000., Carr et al., 1998). These models were eventually refined and expanded to 

include diapirism, dike injection, sill injection, brine mobilization, melt through lenses, and 

impacts (e.g., Collins and Nimmo 2009, Schmidt et al., 2009). Diapirism and associated brine 

mobilization satisfy most formation criteria, but no one hypothesis can fully explain the 

ubiquitous presence of chaos terrains (Collins and Nimmo 2009).  

More recently, Parro et al (2016) mapped chaos terrain in the “Wedges”, an area in eastern 

Argadnel Regio. Their study found two episodes of chaos terrain intrusion that were separated by 

the formation of a dark band. Generally, chaos terrain intrusions are among the youngest features 

on Europa (Kattenhorn and Hurford 2009, Collins and Nimmo 2009).  

 2.5 Previous Tectonic Reconstructions 

 Planar tectonic reconstructions have been conducted on several regions of Europa including: 

Castalia Macula (Rezza et al., 2016), Astypalaea Linea (Perkins et al., 2016), Phaidra Linea 

(Prockter et al., 2002), Libya Linea (Perkins et al., 2016), and Falga Regio (Collins et al., 2016, 

Kattenhorn and Prockter 2014). More recently, a planar reconstruction of Falga Regio (55.2 N, 

135.35 W) was presented by Kattenhorn & Prockter (2014). Falga Regio was later reconstructed 

by Collins et al. (2016) using GPlates, spherical reconstruction software that employs Euler’s 

fixed-point theorem to achieve better accuracy than planar methods. Euler’s theorem states that 

motion of a rigid body on a sphere can be described in terms of rotation about an axis, projected 

radially from the center of the sphere (e.g., Euler 1775). The Collins et al. (2016) reconstruction 
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displayed plates that exhibited clockwise rotations of approximately 45° over a 50-million-year 

period. Notably, the Collins (2016) reconstruction found a large amount of missing surface area 

as Kattenhorn and Prockter (2014), though slightly less (Collins, pers.comm). Overall, Collins 

(2016) broke up larger plates defined by Kattenhorn and Prockter (2014) into smaller plate-like 

fragments.  Accuracy of the reconstruction and plate rotations is particularly important in Falga 

Regio for assessing the first identified occurrence of subsumption bands on Europa and possible 

plate-like motions in this region (Kattenhorn and Prockter 2014).  

2.6 Hypothesis 

The apparently large amounts of rotation of plates in the CF area of Argadnel Regio indicate 

significant tectonic activity. The driving mechanism for that activity, however, is not known. To 

gain insight into the geologic history in this region, and perhaps the nature of Europan microplate 

kinematics in general, the work described in this thesis tests the following hypothesis: 

Plate rotations in Argadnel Regio are driven by shear flow within the ice shell. 

Predictions of this hypothesis are: 

• The instantaneous axes of rotation of rotating plates that compose the CF 

are predicted to be located within surrounding plates or the pull-apart bands 

that surround the structure. 

• Internal deformational features including pseudofaults, tearing, and/or 

fractures are predicted to be present, and relate to the trajectory of 

instantaneous axes of rotation.  
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3. METHODOLOGY AND ANALYSIS 

3.1 Data Acquisition   

Visible-wavelength images of the surface of Europa were taken by the Galileo Solid State 

Imaging Camera (SSI) and are available for download on NASA’s Planetary Data Systems 

website (https://pds.nasa.gov/). The images used in this study were taken as part of observation 

E17ESTREGMAP01 for Argadnel Regio. Resolution of the images is approximately 220 

meters/pixel. The E-nth naming convention relates to “E” for Europa and nth for the observation 

number. This naming convention was used here to circumvent the possibility of changes that can 

occur in the PDS without notice. Level 0 data were downloaded and processed through the USGS 

Integrated Software for Imagers and Spectrometers (ISIS3). Images were then calibrated 

radiometrically and photometrically. These steps ensured lighting was balanced and geometries 

were appropriate for the required measurements. Imagery data generally were processed to Level 

4. These processing steps attached Spacecraft Planet Instrument C-Matrix Events (SPICE) data 

with pertinent information regarding observations (i.e., solar phase and incidence angles), as well 

as radiometric calibration. Photometric balancing was applied at this point. Once processing was 

completed to Level 4, images were projected to a sinusoidal projection. After photometric 

correction and image projection, cube files were converted to Tagged Image File Format (tiff) 

files. For accuracy, mosaics were manually adjusted in ArcGIS to correct any misalignment that 

occurred by employment of the shift tool located in the Georeferencing toolbar. Measurement of 

features and distances were executed in GPlates and ISIS3. These mosaics and imaged were used 

in cross-cutting relationship mapping and geomorphic features characterization (Appendix 

Fig.A). Level 0 data were used in the characterization of surface features. The Galileo spacecraft 

contained an algorithm that averages and smooths out pixels that do not contain significant 

heterogeneity (Prockter, pers. comm). This smoothing effect can appear to emulate the appearance 

of surface flows or cryovolcanic features, potentially leading to incorrect identification of surface 

features in processed images.   

The sinusoidal projected mosaic “Super Mosaic” (SM) (Fig. 2) was used for the tectonic 

reconstruction and was composed of a combination of images mainly from Europa’s trailing 

hemisphere that range in resolution from approximately 200-400 meters/pixel. Higher resolution 

images that form this expansive mosaic are from Galileo (SSI) and Voyager images fill in data 
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gaps. The SM was used for GPlates reconstructions and obtained courtesy of Geoff Collins. Image 

brightness and contrast were adjusted as needed with Adobe Photoshop for the Argadnel Regio 

reconstruction to facilitate interpretation of the surface features. 

3.2 Tectonic Reconstruction Methods 

This study included a reconstruction of the western portion of Argadnel Regio (Fig 2). The 

first step in the tectonic reconstruction was to map cross-cutting relationships over a larger area 

(~80,000 km2) in western Argadnel Regio than the reconstructed area (~30,000 km2). The larger 

viewing window enabled a more accurate assessment of the cross-cutting relationships. These 

cross-cutting relationships provide the basis for interpreting the sequence of plate motions. 

Although most cross-cutting relationships in the area are clear, a few in the far western portion of 

the reconstructed area are more difficult to interpret due to chaos terrain disruption, possible 

cryogenic flows, and possible convergence (Sarid et al., 2002).  

The next step of reconstruction was identification and mapping of piercing points and laterally 

offset features. The identification criteria were that features be laterally offset or displaced, with 

portions on both sides of the displacement sharing a similar morphology, width, texture, and 

albedo. This document refers to piercing points, laterally offset, or displaced features as offset 

markers. Piercing points are generally linear features, such as double ridges, that are truncated by 

a fault and then displaced. Laterally offset, or displaced features are similar to piercing points, but 

are related to non-linear structures, such as chaos terrain or the sinuous bands that are observable 

in the southwestern portion of the study area. These features are especially useful in detecting slip 

and transtensional motion. I made initial (i.e., t=0) measurements of displacement distance within 

GPlates, using the Kinematics tool.  The kinematics tool recorded changes in displacement over 

each timestep. Finally, the mean, standard deviation, and standard error were calculated. 

Plate boundaries were defined by using cross-cutting relationships and offset markers 

according to the following five criteria:  

1) Plate boundaries were drawn where there was a discontinuity in preexisting features.  

2) Boundaries between plates were closely fit, and not allowed to overlap.  

3) Plates were configured, so that piercing points and features that shared similar orientation 

and morphology can be aligned. 
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4) If multiple cross-cutting relationships were observed, the youngest features were 

prioritized (Rezza 2016).   

5) Bands and Chaos terrain were defined to act as plates in the reconstruction, even though 

they are not strictly plates. Defining chaos terrain and bands in this manner was useful 

because the mechanisms of disruption are not fully known, and some contained remnants 

of degraded surface features that could be traced to adjacent plates. Such degraded features 

were helpful in the reconstruction process because they could be used as a connector 

between two terrains/plates (e.g., Fig. 6).   

  

 

 

 

 

 

I next developed a planar reconstruction in Photoshop. Once tentative plate boundaries were 

defined, the image was cut along plate boundaries according to cross-cutting relationships and 

features that showed the greatest amount of displacement. Features such as double ridges, dilating 

double ridges, and dilation bands were then sequentially removed so that offset marks could be 

aligned. Each plate was separated into individual layers to allow freedom for image segments to 

Figure 6: Remnants of a ridge complex 

disrupted by chaos terrain southwest of CF in 

Argadnel Regio (13.65 S, 140.44 W). The faint 

purple outlines the structure on the plate and 

the degraded structure in the chaos terrain 

interior. 

 

10 km 
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be moved laterally or rotated within the Photoshop interface. The planar reconstruction and plate-

boundary definition steps were iterated to refine the plate boundaries and to check the 

identification of piercing points and offset markers. The planar reconstruction provided a basic 

guide to streamline the more accurate GPlates reconstruction process.  

3.3 GPlates 

The first step in the GPlates reconstruction was to project a mosaic onto a sphere within 

GPlates with the “import raster” function. Plate from the planar reconstruction were re-drawn in 

GPlates, assigned a feature number, and assigned a time period to exist with the “Digitize New 

Polygon Geometry” tool. Piercing points were marked and attached to their parent plate with the 

“Digitize New Polyline Geometry” tool. The naming convention of piercing points was based on 

the identification number and direction towards their corresponding partner. At this point, a 

rotational file was created where plate number, latitude, longitude, time step, and rotation pole 

information were stored. Through a Python script, GPlates read through the rotational file to 

execute plate movement with user-defined timesteps. 

 To analyze the rotation of the CF, the reconstruction was executed over the five 

stratigraphically relative timesteps (see section 4.1) with 10 frames per time step. Five timesteps 

were chosen in order to investigate conditions previous to the rotation of the CF, which was the 

focus of this study. Timestep t = -50 refers to the oldest sequence and t = 0 refers to the time of 

Galileo observations. As with the planar reconstruction, the basic procedure was to determine the 

plate motions that would close the gaps between piercing point and offset markers sequentially 

for each stratigraphic relative time step. The “Modify Reconstruction Pole” tool was used to 

adjust plates directly within the GPlates interface. When this tool was used, ROT files were 

automatically updated. ROT files store information that relates to geographic position, amount of 

rotation, and duration of time at each position.  When groupings of plates were programmed to 

move collectively, coordinates in the ROT file could be altered directly. Chaos terrain and bands 

were programmed to appear instantly at the relative time of their formation. The large chaos 

terrain on the western border of the CF was programmed to exist throughout the duration of the 

reconstruction because, due its large surface area, its relative stratigraphy could not be established. 

Once the reconstruction was completed, rotational poles were exported for graphical analysis.   
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Plates were programed to move directly from one position to another in accordance with a 

tectonic movement determined from cross-cutting relationships. Another consideration in the 

reconstruction was to close gaps between plates as much as possible, especially where it was clear 

that surface area had been augmented during a time step (i.e., band formation). This step is 

important because missing surface is often expressed as empty space between plates. Finally, 

reconstructed animations were analyzed to identify and correct any inaccurate events. For 

example, any overlapping plate movement observed in the animation led to adjustments of the 

reconstruction as two objects cannot exist in the same space at the same time. 

3.4 Geomorphology 

The tracking of geomorphic features at five different timesteps was an integral aspect of this 

study. For each time step, careful attention was given to the search for potential extensional, 

contractional, and shear deformational features at plate boundaries that should accompany 

rotation. Contractional and extensional features at plate boundaries are particularly useful in 

determining whether rotation occurred as a floating block or pinned block (Schouten et al., 1993). 

Special attention was also given to features such as ridges, older chaos terrains, or cycloids that 

may become apparent through the reconstruction process at older timesteps. The appearance of 

such previously unrecognized features at older timesteps was used to corroborate the 

interpretation of a tectonic reconstruction. Similar attention was given to the identification of 

deformational features in the interior of rotating plates in the study area. Features such as scarps, 

faults or pseudofault traces record the evolution of plate rotation and often lead to IARs. This 

portion of the methodology aided in the identification of IARs and further refined the geometric 

results of IAR determination. The orientation and geometric changes of structures was recorded 

and illustrated, especially internal deformation of CF, to document any underlying patterns not 

readily discernable and was necessary for the identification of rotational deformation features. 

Visual analysis was bolstered by the measurement of offset markers.  

3.5 Instantaneous Axes of Rotation 

     For the rotation of a rigid body, several methods exist to find the IAR. These methods are 

derived from the relationship between the velocities of any two points on a rotating solid body: 

                                                              𝑣𝑏 = 𝑣𝐼𝐶 +  ω x 𝑟𝑏/𝐼𝐶,                                                     (Eq.1) 
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where vb is the linear vector velocity of point B in Fig 7, vIC is the velocity of the IAR, ω is angular 

velocity, and rb/IC is the relative position vector of points B and IC. If vIC is zero at any instance, 

then Eq.1 simplifies to: 

                                                                𝑣𝑏 =  ω x 𝑟𝑏/𝐼𝐶,                                                              (Eq.2) 

Because the linear velocity vector is orthogonal to the relative position vector (property of the 

cross product; Crummett 1994), if a linear velocity direction is known for any two points on a 

rotating rigid body, orthogonal or normal lines originating from the two vectors will intersect at 

the IAR. This method was used in the present work based on its kinematic simplicity, the lack of 

required assumptions, and because the direction of vectors could be determined between 

timesteps in this work. Other methods have been developed to determine the IAR location. 

However, those methods require the vector magnitude of offset markers on plate boundaries, 

which cannot be determined from this data set (Fig.7).  
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Figure 7: Example of the rotating rigid body. A and B represent linear vector 

direction. Blue lines intersect at the instantaneous center of zero velocity or IAR 

indicated by IC. The red arcuate arrow represents angular velocity and rotational 

direction. 
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Because the rotation of the CF could be perceived as a single rotating system of plates, as well 

as for individual rotating plates, IAR location was determined for both situations. The only 

difference in the two methods was the interval of marker placement. Images from t = -50 and t = 

-40 were captured at the same perspective, imported to Adobe Illustrator, and aligned by the pixel. 

For the individual plate system, each plate in CF was marked at five separate locations near the 

outfacing plate boundaries for both timesteps and added into separate layers. For the collective 

rotating system, markers were made around the outer radius of the CF ~5 km apart in distance. 

After marking was completed, the images were made transparent, leaving only the corresponding 

markers from each time step. To obtain the vector direction, vector direction line tips were 

connected to the center of each spatial marker. Next, squares were created, positioned parallel to 

the vector direction, and aligned to the vector tail. At this point, normal lines were projected from 

vector tails. Finally, IARs were marked at intersections of normal lines.  

3.6 Workflow 

The workflow described in Section 3 is summarized in Fig. 8. 
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Figure 8: Workflow chart for the methods described in this thesis.  
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4. RESULTS  
4.1 Cross-Cutting Relationships and Brief Description of Episodes 

Cross-cutting relationship mapping of the study area in the western portion of Argadnel Regio 

reveals that the region’s tectonics comprise a multi-stage system.  At least five generations of 

tectonic activity were detected: five events that display sub-regional microplate displacements 

that range from approximately 0.4 to 20.1 km, and two events of chaos intrusion. Current data 

sets from Voyager and Galileo have only provided a snapshot of surface imagery. Due to limited 

data from Europa, absolute timing and duration of each generation of activity is not decipherable 

from the geology.  

I visually determined cross-cutting relationships by mapping features that cross-cut or overlap 

older features. Some features crossed each other outside of the study area, rather than within, so 

searching for correlation involved tracing features out of the extent of the reconstructed scene to 

search for a correlation (Appendix Fig.B). For example, not all chaos terrain cross-cuts every 

other feature in the scene. However, individual examples of chaotic terrain disrupt every episode 

described below but the western portion of Episode 2. Two NE-trending double ridges at the 

northern and southern section of the study area were not described as an episode but were used to 

determine the relative cross-cutting relationships between Episode 1 and Episode 2, as well as 

Episode 2 and Episode 3 (see orange polyline, Fig.9, and Appendix Fig.B). 

Cross-cutting relationships and the resulting stratigraphic episodes are illustrated in Fig. 9 and 

described here. 

• Episode 1: Episode 1 displays the youngest features as they are not crossed by any 

other features. This episode consists of chaos terrains (red areas in Fig 9) and a 

prominent double ridge (red polyline in Fig 9) that extends N-S through the study area.  

The ridge and chaos terrains do not cross each other within the scene, but the ridge is 

cut by other chaos terrains ~200 km south of the scene (20.5 S, 141.52 W).  If the 

chaos terrains in this western portion of Argadnel were all approximately the same 

age, this cross-cutting relationship outside of the scene would indicate that the chaos 

terrain in the study area are the younger than the double ridge. The largest two chaos 

terrains flank a series of plates bounded by arcuate pull-apart bands, which outline the 

CF circular structure. Three smaller chaotic terrains are found within this structure, 
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one of which display a small (less than 7 km) conoidal shaped feature that obscures 

the view of a series of proto-double ridges in the southwest of CF. Observable shadows 

that are related to this feature suggest that it is relatively topographically higher than 

the ridged plains, proto-double ridges and pull-apart bands. The second feature in 

Episode 1 is an approximately 230 km long, N-S oriented, cycloidal double ridge that 

crosscuts the eastern portion of the CF. The double ridge morphology appears to 

change as it crosses pull-apart bands north of the CF. The linear feature appears to 

transition into a band with increasing distance to the north until a data gap border 

(Appendix Fig.C).   

• Episode 2: The next youngest episode consists of two linear features, one in the 

western part of the study area and one in the eastern part (green polylines in Fig. 9). 

These features do not cross each other in the reconstructed scene, but they appear to 

have similar relative timing based on cross-cutting relationships to the east (9.46 S, 

146.84 W) and to the south (18.89 S, 141.30W). The first of these features is a 

lineation near the eastern border of CF and is best described as double ridge that 

transforms to a ridge, with increasing northern distance. The second feature of this 

pair is a regional scale lineation approximately 160 km in length. The northern half 

shares a similar appearance to a bright pull-apart band, while the southern half appears 

more similar to a double ridge. Though challenging to determine with certainty, the 

transitional point between these two distinct morphologies is near a triple junction 

with lower albedo, band-like feature (see Appendix Fig.D). The relationship between 

Episode 1 and Episode 2 was determined with the aid of two double ridges that are 

cross-cut by Episode 1 yet cross-cut Episode 2.  

• Episode 3: The next oldest features are two lineations in the western part of the study 

area (blue polylines in Fig 9).  Though they are geographically close to each other, 

they do not directly overlap, but they are both cross-cut by features in Episode 2 and 

cross-cut Episode 5. The first is an approximately 135 km long, N-S trending, sinuous, 

lower albedo double ridge, which is cross-cut by the western lineation of Episode 2 

and cross-cuts episodes 4 and 5. The second structure is only 40 km long and is a N-

S trending ridge that bisects a bright band which propagates through a relatively small 
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area (815.7 km2) of higher albedo ridged plains material. This feature is cross-cut by 

Episode 2 and cross-cuts Episode 4 and Episode 5.  

• Episode 4: Episode 4 is composed of an approximately 80 km long, N-S trending 

lineation and three ridges that line a series of overlapping bands in the NW portion of 

the study area (yellow polyline and regions in Fig. 9).  The lineation is cut by the 

longer of the two lineations of Episode 3 and directly crosses several features in 

Episode 5.  The lineation is composed of three separate morphologies and cuts through 

the western third of the CF. The most northern portion of this feature is a double ridge 

that begins to transition into a possible ridge complex (Appendix Fig.E). The ridge 

complex transitions into a single ridge that runs south until intersecting with the 

conoidal feature mentioned in Episode 1. It is possible that the ridge continues far into 

the south of the study area, but the relationships become increasingly difficult to 

discern and therefore open to interpretation. The other significant portion of this 

episode is composed of W-E trending ridges that border a series of overlapping bands 

that spans the border of Argadnel Regio with Castalia Macula (approximately 800 

km). This series of overlapping bands was identified as a convergence zone (Sarid et 

al., 2002). The ridges of this episode outline the southern portion of these overlapping 

bands and intersects the large chaos terrain intrusion that borders the west of CF. This 

feature cross-cuts Episode 5 directly and is cross-cut by Episode 3.  

• Episode 5: Episode 5 is composed of a maze-like, network of low albedo bands and 

linear features that range in length, width, and morphology (pink polylines in Fig. 9). 

These features are cut by features in all other episodes except Episode 6. Despite the 

vast difference in morphologies, these bands do share a similarly low albedo. The pull-

apart bands that border the CF range in shape from sawtooth like to displaying arcuate 

boundaries. Axial-troughs (Prockter et al., 2002) and escarpments are apparent within 

most bands around CF. However, the bands display asymmetry with respect to 

orientation from the axial troughs to the edge of bands. The bands to the southwest 

display a more anastomosing texture. Some southern bands display axial troughs and 

bordering escarpments. However, these features are much less apparent than in pull-

apart bands near CF. The darker linear features observable in the interior of CF are 

much smaller in length and width. Though similar albedo is observable between all 
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features in the unit, the resolution is not adequate to discern if these features are more 

closely related to bands or scarps.  

• Besides the ridged plains, the oldest features observed in the study region was a small 

area of approximately 923 km2 with three bright chaos terrains (peach polygon, see 

Fig.9).  that are cross-cut by the arcuate pull-apart bands north of CF. A very small 

amount of a similar textured material is visible near the southeastern border of the 

study area but is unfortunately truncated by a data gap. This occurrence is rare in our 

current dataset of Europa. This feature was not expressed in the GPlates 

reconstruction. 
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Figure 9: Map of cross-cutting relationships in western Argadnel Regio. Red polygons 

symbolize Episode 1. Pea green polyline symbolizes Episode 2. Blue lines represent 

Episode 3. Yellow lines and polygons symbolize Episode 4. Pink lines represent Episode 

5. Episode 6 is represented by peach polygons. The orange line represents two different 

double ridges which aided in the determination of the cross-cutting relationships between 

Episode 1 and Episode 2. 
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4.2 Planar Reconstruction 

At times, the process of reconstructing western Argadnal Regio seemed to be akin to what a 

paleontologist may experience while trying to reconstruct a fossilized australopithecine or other 

humanoid skeleton when a specimen is missing many important pieces. Large sections of the 

study area are highly deformed either from chaos terrain disruption, band formation, strike-slip 

faulting, convergence, and possible cryovolcanic flows. In some cases, determining a plate 

boundary with certainty was not possible. Some amount of uncertainty in plate boundaries exist 

in the plates defined immediately surrounding the large chaos terrain intrusion to the west of CF 

(green arrow in Fig.10). Most of the uncertainty exists with 10 smaller plates (< ~165 km2) 

defined to the immediate southwest of CF, where plates are surrounded by anastomosing band-

like features related to Episode 5. In these cases, boundaries were determined based on the 

presence of subtle albedo changes, apparent texture changes, and the presence of truncated 

features. However, the boundaries of the majority of plates identified in the study have been 

defined with confidence by following the aforementioned criteria (section 3.2). I identified 85 

separate moving plates for the planar reconstruction, including eight band components and five 

examples of chaos terrain. The GPlates reconstruction yielded 85 separate defined plates. 13 of 

the 85 defined plates could possibly be interpreted differently (Fig.10., Appendix Fig.F).  
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Figure 10: Planar reconstruction of Argadnel Regio. Green arrows point to 

examples of plates of uncertainty. The blue arrow points to a reconstructed cycloid. 

The magenta line indicates a possible deformed double ridge that connects double 

ridge segments. The blue arrow points to a reconstructed cycloid. 
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4.3 GPlates Reconstruction Results 

       Because of the complexity of tectonically reconstructing a system with a high number of 

plates, a more detailed illustration of active plates at each timestep is provided in the Appendix 

of this thesis (Appendix Fig. G.1 -G.5). 

Timestep t = 0 to t = -10 is mainly dominated by chaos terrain intrusion. During this timestep, 

the two large separate units of chaos terrain intrude the area immediately surrounding the CF 

while three smaller chaos terrain regions disrupt the older surface within the circular structure 

itself. All but one chaos terrain was programmed to be present before t = 10. The large chaos 

terrain was included throughout the duration of the reconstruction to avoid a large empty space 

that could have been misleading in the reconstruction process. Strike-slip movement of less than 

approximately 2 km for all plates to the east of the N-S trending, cycloidal double ridge (red 

polygon in Appendix Fig. G-1; see Fig 12-b) also occurs during this timestep.  

Timestep t = -10 to t = -20 displays lateral-slip movement on the eastern and western sides of 

the reconstruction area. To the northwest, plates 1 to 8 move with the opening of a band.  These 

plates exhibit approximately 4.5 km of transtensional movement. To the east of CF, plates 81 and 

85 rotate slightly (approximately 3.6 °) and translate northwestwardly approximately 3.5 km 

(green polygons in Appendix Fig; see Fig.12-c).  

At timestep t = -20 to t = -30, most of the plates in the reconstruction remain stationary. 

However, plates to the southwest of the region (Plate ID #’s 10 – 15) move approximately 6 km 

to the northwest along a prominent double ridge (blue polygon in Appendix Fig. 11; see Fig.12-

d).  

Activity increases considerably during t = -30 to t = -40. Approximately 33 plates in the 

reconstruction to the east of the N-S-trending double ridge (yellow polyline in Fig.12) are laterally 

displaced up to 8 km. The quantity of displaced plates and the magnitudes of displacements in 

this timestep represent a significant regional event (yellow polygon in Appendix Fig , see Fig 12-

e).  

Timestep t = -40 to t = -50 was the most tectonically active periods in the reconstruction. The 

time period is characterized by a regional band formation event and a large angle of rotation. The 

reconstruction reveals that the 12 plates composing the CF rotated as a collective unit up to 



32 

approximately 40o anticlockwise. The 22 plates to the south appear to be displaced in a 

southeastwardly fan-like orientation in concert with the rotation of CF. These plates display the 

greatest displacements in a reconstruction step of up to approximately 30 km. The tectonic activity 

in this timestep is also responsible for the largest rotation in the reconstruction. One of the 

relatively smaller plates (Plate 51) exhibits 101.2 ° of clockwise rotation adjacent to the CF during 

this timestep (Appendix Figs. F and H). Though the driving mechanism would be very different, 

CF and plate 51 visually appear to rotate analogously to a gear pair with a high gear teeth ratio 

(greater than 2.5) (pink polygon in Appendix Fig. G.5, and Fig.12-f). The tectonic activity in this 

timestep is also responsible for the highest amount of rotation in our reconstruction.  

The arcuate pull-apart bands immediately surrounding CF are broken into subcomponents: 

axial troughs with corresponding scarps, and subparallel linear structures (Prockter et al., 2002). 

Other bands programmed to appear at various times throughout the reconstruction when 

movement between adjacent plates ceased and space permitted. Past reconstructions generally 

deleted bands through the duration of the reconstruction. Although deleting the bands closed the 

space between plates that were once together, bands contain valuable information about relative 

timing and the propagation of events. Though GPlates does not allow for incremental growth of 

a feature, the ability to program the feature’s appearance to a time step helps the viewer interpret 

the geologic history of a reconstruction.  

Figure 12 is an image series that displays Argadnel Regio at timesteps t = 0 (current), t = -10, 

t = -20, t = -30, t = -40, and t = -50. The images are displayed from the current timestep (t=0) 

backwards in time.  
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Figure 12-a: The state of present day (or at least at time of E17 observations). Plates are  

outlined with silver polygons. 
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Figure 12-b: Timestep t = -10. 
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Figure 12-c: Western Argadnel Regio at t = -20. 
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Figure 12-d: Western Argadnel Regio at t = -30. 
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Figure 12-e: Western Argadnel Regio at t = -40.  
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   Figure 12-f: Western Argadnel Regio at t = -50.  
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4.4 Rotation and Translation 

Most plates in the reconstructed area underwent some amount of rotation. Approximately 70 

percent of the plates displayed clockwise rotation (positive values in Table 1) and the remaining 

30 percent displayed anticlockwise rotation (negative values in Table 2). The largest amount of 

clockwise rotation recorded was approximately 85.99o while the minimum was 0.10o. The 

average amount of clockwise rotation was 20.29o with a standard deviation of 22.61o and standard 

error of 3.08o. The anticlockwise rotated plates displayed a maximum rotation of 101.18o and a 

minimum of less than 1°.  
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Table 1 

 

 

Plate 

ID Lat Lon 

Angle of 

Rotation(o) 
Plate 

ID Lat Lon 

Angle of 

Rotation (o) 

1 11.40 -37.49 -1.64 42 12.70 -40.23 37.19 

2 7.71 -43.08 -1.64 43 12.59 -40.24 34.03 

3 11.40 -37.49 -1.64 44 12.45 -40.12 33.65 

4 11.40 -37.49 -1.64 45 12.56 -39.91 30.70 

5 11.40 -37.49 -1.64 46 12.69 -40.01 30.11 

6 12.35 -35.35 -1.65 47 12.81 -40.14 41.57 

7 11.40 -37.49 -1.64 48 12.79 -40.13 39.70 

10 20.56 -64.78 0.83 49 12.51 -39.13 11.06 

11 20.56 -64.78 0.83 50 13.08 -37.83 9.50 

12 20.56 -64.78 0.83 51 13.31 -39.45 -101.18 

13 10.65 -41.85 -2.15 52 13.72 -39.62 85.99 

14 14.88 -43.77 22.55 55 13.44 -39.09 32.51 

15 14.88 -43.32 21.45 56 -12.20 146.04 -8.90 

16 15.17 -45.03 15.77 57 12.87 -38.94 21.02 

17 15.33 -45.08 15.77 58 -9.20 152.93 -3.89 

18 15.72 -44.68 17.94 59 -7.99 157.58 -2.67 

19 15.49 -45.95 14.10 60 -12.82 140.47 -20.39 

20 15.72 -45.75 15.77 61 13.00 -39.28 16.61 

21 70.29 86.42 -0.03 62 12.57 -38.74 12.61 

22 15.50 -43.81 -1.30 63 13.48 -41.61 41.75 

23 24.48 -135.32 -1.21 64 13.54 -41.01 27.18 

25 12.38 -40.55 1.80 65 13.69 -41.32 35.38 

26 29.22 -137.82 -0.25 66 13.45 -40.39 22.18 

27 11.97 -45.93 -3.97 67 12.71 -37.44 10.84 

28 -8.32 142.16 -16.99 68 13.75 -40.54 26.60 

29 8.09 -37.33 14.50 69 10.42 -31.28 6.02 

30 8.31 -38.12 17.19 70 -13.54 142.23 -15.56 

31 8.25 -37.85 15.78 71 -0.44 170.84 -1.65 

32 8.38 -37.63 16.86 72 -13.56 142.68 -5.49 

33 9.84 -34.11 3.45 73 -14.87 140.24 -25.59 

34 8.82 -37.46 19.07 74 12.27 -34.49 8.17 

35 11.64 -37.98 19.76 75 18.61 54.24 0.10 

36 12.30 -40.77 38.12 76 18.61 54.24 0.10 

37 12.38 -40.72 37.51 77 18.61 54.24 0.10 

38 12.60 -40.86 27.69 78 -56.04 20.07 0.38 

39 12.45 -40.74 40.15 79 -13.77 144.08 -11.58 

40 12.21 -39.91 21.46 80 -9.56 153.73 -4.32 

41 12.65 -40.16 33.80 81 -14.50 117.02 1.85 

42 12.70 -40.23 37.19 82 -13.15 144.71 -12.73 

43 12.59 -40.24 34.03 83 11.42 -35.19 9.72 

44 12.45 -40.12 33.65 84 9.50 -37.52 27.78 

45 12.56 -39.91 30.70 91 9.97 -33.88 8.49 

Rotational Data from t = 0 to t = 50 recorded from GPlates 

interface. Negative values indicate anticlockwise rotation. 
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4.5 Piercing Point Distance Results 

Piercing point measurement recorded and tracked in GPlates using with the “kinematics 

tool”.  A complete listing of measurements are provided in the Appendix in Table A. Average 

piercing point distance from these measurements across the reconstruction timespan show a 

general decrease in distance changes between piercing points except for a slight increase at t = - 

10 (Fig.13, Figs 12-2, and 12-f, Table.2, Appendix Table. A., Appendix Figs I.1 and I2). 
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4.6 Surface Area Budget, Bands, and Deformation 

Results of the reconstruction clearly revealed both surface area addition and removal within 

the designated study area (approximately 30,000 km2). This study estimates that pull-apart bands 

surrounding the CF created approximately 1200 km2 of surface area (Knox County has a total 

surface area of 1361.32 km2) (Appendix Fig. J, and Table. B). 

At t = -50, several gaps between plates remained after connecting piercing points and lateral 

offsets (Fig.12-f). From a summation of small rectangles within the gaps, the estimated missing 

surface area is approximately 200 km2 in the interior of the CF at the earliest stage of 

reconstruction (blue shade in Fig. 14), and approximately 100 km2 at t = -40. A removal of surface 

area was observed between two plates to the southeast of CF (plate ID 82 and 56) at the same 

timestep. Measurement of corresponding piercing points (piercing point ID 82s, and 56N) display 

an accommodation of 3.04 km of surface contraction Fig.14, and Appendix Table.C).  

Other relatively small spaces between plates exist within the CF, but it is not possible for me 

to tell in these data if micro-gaps are real or are an artifact of plate shape definition and human 

error. The reconstruction shows that the interior of CF deformed significantly due to rotation 

during timesteps t = -50 to t = -40. This deformation can be observed as concentric fracture-like 

Time step 

Average 

(km) 

St Dev 

(km) 

Error 

(km) 

t = 50 to t = 

40 5.98 6.63 1.06 

t = 40 to t = 

30 1.67 2.16 0.35 

t = 30 to t = 

20 0.38 1.12 0.18 

t = 20 to t = 

10 0.35 1.13 0.18 

t = 10 to t = 

0 0.72 1.73 0.28 

 

                                Table 2 

Average Piercing Point Distance Changes over Timesteps. 



43 

features that extend from NW and W and intersect near the plate boundary of plates 91 and 51, to 

the southeast of CF. It is possible that a topographic increase between plate 36 and 37 could be 

recording contractional deformation. However, distinguishing between shadows and lower albedo 

material is challenging at this location. No quantitative topographic data were available for this 

study. A NW– SE trending, low albedo ridge extends from the SE boundary of plate 39 and 

extends approximately 41 km until termination at the boundary of plate 48 and plate 57 (exterior 

to CF). This ridge appears to be morphologically unique compared to other ridges and does not 

correlate to any other ridge segments. Piercing point distance measurements at timestep t = -50 

to t = -40 indicate that this ridge has accommodated 0.65 km of lateral displacement (Appendix 

Table. C) (orange polylines in Fig.14). 

 

   

 

 

Figure 14: Map of CF at timestep t = -50 illustrating deformational related 

features, missing surface area, and reconstructed cycloids.  
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4.7 Instantaneous Axes of Rotation from t = -50 to t = -40 

As previously described, the location of instantaneous axes of rotation can aid in determining 

operative mechanisms for rotation. If rotation was driven from lateral forcing at plate boundaries, 

IARs would be expected on the plate boundaries. If some subsurface flow was responsible for 

rotation, IARs would be located within bounding plates. Active plates for this timestep (t = -50 

to t = -40) are illustrated in the Appendix (Fig. G.5). If we consider IAR location for each 

individual plate of the CF, the results show that all IARs except for plate 39, and 42 are found 

outside of their associated plate. For the individual plate system, vector normal lines generally do 

not intersect at one exact point. The intersections are staggered radially with varying distance for 

each plate’s set of markers (see ellipses, Fig.15). The IAR of plate 42 is located on the junction 

of plate 42, and 43, 46, and 47. The IAR of plate 39 is located on the junction of plate 39, and 42, 

and 43. The IAR of plate 37 was located approximately 20 km from its associated plate boundary 

but on the border of plates 43 and 46. The remaining IARs of (36, 40, 41, 43, 44, 45, 46, 47, and 

48) were found to be within other plates of the CF (Fig.15).  
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Figure 15: IAR locations of the CF in western Argadnel Regio for individual plates. 

Yellow numbers represent the plate number and correspond with numbered IARs. The 

green ellipses represent IARs that are associated with plates (37, 39, 42, 43, and 46). 

Plate 51 is represented by the dark blue circle. IAR location and the tectonic 

reconstruction show that plate 51 rotated clockwise due to CF’s anti-clockwise rotation. 

The axis of rotation was determined by observing that the latitude and longitude of the 

area marked by the red circle did not change during t = -50 to t =-40.  
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     The method treating the CF as one collective rotating system found approximately 230 

intersections of vector normal lines within the interior of the CF. This method of equal distant 

marker measurement displayed some single IARs as close as approximately 3 km from the 

boundary of the CF, but the majority were found in clusters of IARs at varying densities of IARs 

and distances (~7 km – 50 km from the axis of rotation) within the CF (Fig.16). The results of the 

collective rotation system and individual plate rotating system appear to be similar in that the 

majority of IARs are approximately concentrated in the same geographic locations throughout 

the interior of the CF. Though visually complex, this method captures nuances of all combinations 

of interacting plates that compose the CF (Fig.16).  
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Figure 16: IARs in the CF of Western Argadnel for a collective rotating system of plates. 

IARs are at intersection of normal lines from vector tails and noted by yellow circles with 

blue rims. Due to IAR clustering, the blue rims were used to help distinguish IARs. Markers 

were set at on the boundary of the CF at distances approximately 5 km apart. Small squares 

were used to assure proper alignment. The axis of rotation was determined by observing that 

the latitude and longitude of the area marked by the red circle did not change during t = -50 

to t =-40. 
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5. DISCUSSION AND IMPLICATIONS 
5.1 Interpretation of Results 

The location of the IARs identified in this work indicate that the axis of rotation of CF has 

undergone little to no translation during timestep t = -50 to t = 40; the overall motion of CF 

appears to be nearly purely rotational. To put it simply, the rotation of CF is analogous to a tire 

that is stuck in the mud. During remaining timesteps, plates that compose the CF display only 

lateral movement along double ridges from t = -40 to t  = -30, and t = -10 to t = 0. 

The observed distribution of IARs determined does not match either endmember that was 

introduced in the hypothesis of this thesis. Explanation for this occurrence may be related to 

overarching assumptions included in simplified models, such as spinning or slipping tires, and 

pinned block rotations or floating block rotation. First, these models assume that the behavior of 

the rotating bodies is rigid. In non-rigid body deformation, rotating blocks can be deformed either 

by dilation (change in volume) or distortion (change in original shape) (Hatcher 1995). 

Unfortunately, the Galileo SSI did not provide adequate resolution to see evidence of a change in 

volume near plate boundaries, though deformation related to volume change is common in 

terrestrial fault and shear zones. However, the missing surface area detected at t = -50 suggests 

that volume change did occur within plates that compose the CF (Fig.14).  

The results of the tectonic reconstruction suggest that the overall system of CF in western 

Argadnel Regio deformed due to rotation. This interpretation of deformation as a result of rotation 

is based on several lines of evidence. First, the inner area of CF displays approximately 200 km2 

of missing surface area at t = -50 and decreases to approximately 100 km2 by t = - 40. Second, 

the measurements of several piercing point pairs exhibit the accommodation of 0.38 km to 3.3 

km right-lateral strike slip movement. Right-lateral displacements can be observed in places 

between all 11 plates that make up the CF. Third, two E-W trending concentric fractures and one 

NW – SE trending ridge exist in the internal structure of the CF and do not reconstruct to any 

exterior features at any point during the reconstruction.  

5.2 Edge-Driven vs Shear Flow Within the Ice Shell 

The reconstruction and measured locations of the IARs indicate that rotation of the CF as a 

collective group was not edge-driven during t = -50 to t = -40, but the rotations of some of the 
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plates at the center/interior of CF do appear to have been edge-driven. Analysis of the tectonic 

reconstruction tells us a multi-plate system rotated approximately 40° about a vertical axis (plate 

42) with no measurable translation of the axis of rotation. IAR locations associated with plates 

along the outer radius of CF do not exhibit kinematic behavior of a system that is classically 

defined or characteristic of “edge-driven” tectonics. If the rotation of CF was driven by lateral 

forces from bounding plates, IARs would be located on the boundaries of plate margins rather an 

average of approximately 20 kilometers within the rotating plates as measured. However, “edge-

driven” behavior was exhibited with plates 39, and 42. These plates are located in the interior the 

CF and are surrounded by outer plates of the CF. The IAR placement suggests that these two 

plates were in fact driven by lateral forces from bounding plates.  Plate 51 appears to be 

completely “edge-driven” by the rotation of CF. This rotational behavior is analogous to a set of 

different sized, rotating simple gears. 

 5.3 Piercing Point Distance Analysis 

      The piercing point displacement distance change with respect to timesteps analysis could 

suggest that tectonic activity seems to generally decrease in tectonic movement with time, until 

the last timestep where there is a slight increase. As previously mentioned, absolute time on 

Europa is currently unknown and anyone of the five timesteps realistically could be augmented 

or diminished, greatly skewing the plot (Fig. 13). The nature and timing of chaos terrain 

emplacement is also unknown at this time. Therefore, these results do not imply a disagreement 

on the consensus that tectonic activity has changed overtime on Europa, changing from conditions 

for applicable for plate-like motion to chaos terrain emplacement. However, the occurrence of 

older examples of bright chaos terrain should be the focus of future studies. When considering 

relative timing of these modeled events, it could be possible to constrain time to some extent from 

band opening velocity models or material brightening (Prockter et al., 2002, Prockter et al., 2017). 

Many of the bands that are observable throughout Argadnel Regio display a relatively lower 

albedo than the plates that they embay as well as the albedo of many other regions on Europa. On 

Europa, it is thought that material brightens with age. This means that material that displays a low 

albedo is younger than material that displays a high albedo. The occurrence of dark albedo 

throughout Argadnel Regio (especially western Argadnel Regio) suggests that the entirety of the 

events modeled in this thesis could have taken place more recently in Europa’s history.  
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 5.4 The Evolution of Argadnel Regio 

What drove rotation of the CF in western Argadnel? IAR locations suggest that overall 

rotation of the CF did not occur due to lateral forcing at plate boundaries from bounding plates. 

Could convective forces produce lateral flow vigorous enough initiate rotation? Previous 

investigations suggest that thermal convective forces produce a very small amount of stress (< 

100 kPa) (Nimmo and Manga 2009, McKinnon 1999). However, other studies show convection 

due to compositional heterogeneity could produce up to 1 MPa of stress (Pappalardo and Barr 

2004, Han and Showman 2005). Though this amount of stress is relatively small, the right 

combination of physical parameters such as grain size, and viscosity could conceivably initiate 

rotation (Schulson, 1987). Convection does therefore appear to be a possible source that is 

consistent with the rotations observed in this study, but it is not possible to conclusively determine 

the source. If convection is the driving force, then it could be expected that material from within 

the ice shell could be close to the surface in Argadnel Regio. Considering the ice shell is most 

likely greater than 10 km thick, it is unlikely that an unmanned submersible vehicle could 

penetrate this distance to sample the ocean directly.  Therefore, Argadnel Regio could be a 

potential landing site for a future mission that aims to detect signs of life.  

The presence of asymmetric pull-apart bands that surround the CF suggest another possible 

mechanism that drove rotation. Results of Stempel et al (2005), and Nimmo (2004) suggest that 

stress associated with band opening could be substantial (0.3 – 2 MPa).  Band opening would 

especially hold if combined with other ongoing stresses. In fact, some models predict that band 

formation is directly related to nonsynchronous rotation (Stempel et al 2005). Diurnal stress 

magnitudes should be factored in with other stresses modeled due to Europa’s 3.5-day orbital 

cycle. It is conceivable that a combination of stresses could initiate rotation, especially if 

preexisting fractures exist. 

Regionally, the greater area of Argadnel Regio displays other features somewhat similar to 

the area that was reconstructed for this thesis and could suggest possible rotation of plates at a 

regional scale. Arcuate bands are observable throughout the region as well as several other 

circular structures vaguely similar to the CF. A series of four N-S trending saw-tooth shaped pull-

apart bands are observable directly east of the CF. The geometry of these bands suggests these 

features could have formed by a combination of transtensional and anticlockwise rotational 
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movement, similar to the CF. It is conceivable that similar further analysis of eastern Argadnel 

Regio would yield similar results as this study. Unfortunately, the current data set is not suitable 

to make out surface features in any significant detail.  

It has been suggested that the deformation in Argadnel Regio could be related to regional right 

– lateral strike slip motion and that the current state of Argadnel Regio is a result as a type of 

“meta-cataclasis” (Kattenhorn, pers.comm). On Earth, cataclasis can be observed in fault zones 

as material gets broken down into smaller components (i.e., comminution).  If correct, this idea 

would involve regional deformation occurring as a result of Argadnel existing within a shear zone. 

As the larger plate began to fracture due to movement, heat flow would exploit zones of weakness 

yielding band formation and rotation of deformed material. In this model, band rotation could 

conceivably be accompanied by uplift due to thermal buoyancy (Schubert et al 2001). If no 

thermally buoyant force or other force existed at the time of rotation, then IARs would be 

expected to be on plate boundaries. This assumes that band formation is analogous to terrestrial 

mid-ocean ridge formation and forces can be produced laterally at a plate boundary. In all 

likelihood, a combination of both forces is conceivable. 

Based on previous work by Prockter et al (2002) and Stempel et al (2005), this study assumes 

that Europan band formation is analogous to terrestrial mid-oceanic ridges and that slower 

spreading rates apply. Therefore, assuming spreading rates between (0.2 - 3.5 cm per year) and 

the average bandwidth (4.71 km) near the CF, the rotation of the CF could have taken place over 

a period of 1.3 x 105 – 2.3 x 10 6 years.    

5.5 Far Reaching Implications 

The results of the reconstruction, and cross-cutting relationship mapping have several far-

reaching implications. Overall, these results corroborate with the idea that Europa has undergone 

a transition in resurfacing style from a more tectonically active system to a more chaos-driven 

system (Prockter et al 2002). However, older bright chaos terrain mapped in my study area as 

well as in the “Wedges” in eastern Argadnel Regio. Parro et al (2016) suggest that regional 

conditions within the ice or below the ice shell have been favorable to chaos terrain intrusion at 

least twice in Argadnel Regio. The possible cyclical occurrence of chaos terrain intrusion does 

not necessarily reflect the characteristics of the entire ice shell on a global scale. In fact, the 

amalgam of results from this study and recent tectonic reconstructions suggest that plate-like 
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motions on Europa vary from regionally and appear to be episodic (Collins et al., 2018). With the 

current studies, it is interesting that in Argadnel Regio old chaos terrain is immediately followed 

by band formation. Is it possible that chaos intrusion and band spreading are related? If so, old 

chaos terrain could be the first gasp of heat from a single or multiple ascending thermal plume 

originating from within the ice shell or from the silicate surface.  

Results of this research show that double ridges have many functions on Europa. Firstly, the 

results of the reconstruction corroborate the idea suggested that surface area contraction can be 

accommodated in smaller, discrete locations such as double ridges (Patterson et al., 2002, Culha 

et al., 2014). This occurrence does not solve the Europan surface area budget disparity at the same 

magnitude of subsumption bands. Nonetheless, combing the double ridge contraction with 

regional folding across the Europan surface (Prockter and Pappalardo 2000) could make a small 

contribution. Secondly, the transition of double ridges to bands, and double ridges to ridge 

complexes in our study area confirm that bands can possibly exploit preexisting weakness in 

double ridges during tectonic movement of plates (Prockter et al., 2002). This occurrence can be 

observed in Episode 1 in the double ridge that transitions to a “fast spreading” pull-apart band, 

and in Episode 5 in a double ridge that transitions to a small, low albedo ridge complex 

The results of this study could be tested by future studies. Future studies will conceivably 

investigate the presence of chaos intrusions, old and young, when better data are available. 

Instruments such as the Radar for Europa Assessment and Sounding: Ocean to Near-surface 

(REASON) planned to be aboard NASA’s Europa Clipper could detect the characteristics of 

chaos terrain intrusion, internal ice shell structure, and interface with chaos terrain and 

surrounding ice (“country ice”). REASON also could possibly detect subsurface structure that 

may accompany solid-state convection or the effects of plume emplacement. The Shallow Radar 

Sounder aboard the Mars Reconnaissance Orbiter has similar specifications to REASON and has 

been successful at identifying dome-like structures in the Martian south polar cap. Hopefully, data 

REASON will enable Europan scientist to provide answers to many of our questions to which 

currently remain elusive. It would also be useful to investigate the composition of Argadnel 

Regio, as composition would help put better constraints on the stratigraphy. Finally, it would be 

beneficial for future studies to tectonically reconstruct more regions of Europa with GPlates, 

especially eastern Argadnel Regio, and perform a similar kinematic analysis and compare results. 
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The same type of analysis could be completed polygonal ice blocks that were embayed and rotated 

during the event that created Conomara Chaos, Europa, investigated by Spaun et al., (1998). The 

kinematic analytical methodology outlined in this document could also be used on past tectonic 

reconstructions where significant rotation has been detected. Though terrestrial microplate 

rotation models (e.g., McKenzie and Jackson 1983, Lamb 1988, Schouten et al., 1993) have done 

well in describing a one microplate terrestrial system, future work with terrestrial methods may 

need to be more finely tuned to a complex system of multiple rotating plates that exist in western 

Argadnel Regio and potentially the greater Argadnel Regio area. This idea is clearly based on the 

fact that a significant portion of the presented results were not considered in the design of this 

hypothesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 



54 

6. CONCLUSIONS 

The objective of this research was to investigate the mechanisms behind microplate rotation 

in western Argadnel Regio. I have presented a tectonic reconstruction was presented within the 

study area that was used as the subject of kinematic analysis. The kinematic analysis determined 

that Argadnel Regio underwent significant episodes of tectonic plate movement and rotation of 

up to approximately 40 ° in an anticlockwise orientation. Lateral offset and piercing point analysis 

displayed a general waning of tectonic activity that transitioned to a more chaotic system. The 

IAR location results suggest that microplate rotation in the study area was driven by a 

combination of shear flow within the ice shell for the collective unit referred to as the CF in this 

document and edge-driven processes within the structure. This work offers an evolutionary model 

of western Argadnel Regio. Moving forward, plate tectonics, especially regarding microplate 

rotation, do not as yet have a unified mechanism that can describe the evolution of the Europan 

surface. Finally, a combination of stresses are interpreted to be responsible from CF’s rotation 

during t = -50 to t = -40. Similar to previous studies of Europa, this work has likely posed more 

questions than answers. Missions such as the Europa Clipper, and an eventual lander will 

hopefully provide opportunities to collect more data that will help us answer Europa’s mysteries. 

This study scratches the surface of one small portion. 
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Figure A: Sinusoidal projected mosaic of western Argadnel Regio from images 

E17ESREGMAP01(s-clock number s0466664226, and s0466664239). Processed 

in ISIS3. 
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Figure B: Extended view of the cross-cutting relationship map (Fig.9). The reference double 

ridges are symbolized by the orange polylines and extend approximately 1600 km. The 

reference double ridges are cross-cut by features in Episode 1 and cross-cut features in 

Episode 2 and 3. 
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Figure C: Zoomed in view of the double 

ridge in Episode 1 that transforms into a 

band. 
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Figure D: Zoomed in view that displays the two distinct 

morphologies near a triple junction with lower albedo, 

band-like feature Episode 2. 
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Figure E: Zoomed in view of the double ridge 

in Episode 4 that transforms into a small 

section of a ridge complex. 
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Figure F: Defined plates in GPlates. Yellow numbers correlate to plate identification number. 

Plates are outlined by yellow polylines. Plates 21, 38, 52-54, and 75-81 represent bands and 

chaos terrain. 
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Figure G.1: Illustration of active surfaces from t = 0 to t = -10. Active surfaces are 

symbolized by red polygons. 
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Figure G.2: Illustration of active surfaces from t = -10 to t = -20. Active surfaces are 

symbolized by green polygons. 
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Figure G.3: Illustration of active surfaces from t = -20 to t = -30. Active surfaces are 

symbolized by blue polygons. 
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Figure G.4: Illustration of active surfaces from t = -30 to t = -40. Active surfaces are 

symbolized by yellow polygons. 
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Figure G.5: Illustration of study area at t = -40 to t = -50. Active surfaces are symbolized 

by the pink polygon. 
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Figure H: Plate 51 to the east of the CF. The white circles with green borders indicate 

markers for measurements. Black lines represent vectors. Green lines represent normal lines 

projected from vector tails. The blue ellipse represents the IARs. Plate 51 rotated ~100° 

clockwise as the CF rotated anticlockwise. 

5 km 
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Figure I.1: Piercing point locations recorded in GPlates in the northern portion of the study 

area. The yellow numbers and characters refer to plate ID number and approximate 

geographic location on the plate. The changes in distance over all timesteps are located on 

Table A. 
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Figure I.2: Piercing point locations recorded in GPlates in the southern portion of the study 

area. The yellow numbers and characters refer to plate ID number and approximate 

geographic location on the plate. The changes in distance over all timesteps are located on 

Table A. 
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Figure J: Band measurements around the CF (Appendix Table.C). Black number 

correlate to band ID measurement number. Yellow lines indicate place of measurement 

along the width of bands. Brown numbers correlate to measurements. 
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Figure K: CF at t = -40. IAR location illustration with displacement markers, and normal 

lines at t = -40. Yellow numbers on image indicate plate ID. Black numbers in key correspond 

to plate number/adjacent symbol that was used as a marker at t = -50, and t =-40. Numbered 

circles in within the CF indicate the furthest IAR location of the associated parent plate. The 

axis of rotation was determined by observing that the latitude and longitude of the area 

marked by the red circle did not change during t = -50 to t =-40. 
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Figure L: CF at t = -50. IAR location illustration with displacement markers, squares for 

alignment, vectors, and normal lines. IARs locations are symbolized by ellipses.  
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Pair Ppoint Timestep lat lon Distance Total 

∆ 

Distance 

31E, 

32W 31E 50 -9.6646 139.111 0.272019866  0 

  31E 40 

-

10.0306 139.5035 3.443823303 3.1718034 

  31E 30 

-

10.4289 139.6134 1.595046823 

-

1.8487765 

  31E 20 

-

10.4289 139.6134 2.183342878 0.5882961 

  31E 10 

-

10.4289 139.6134 2.183342878 0 

  31E 0 

-

10.4289 139.6134 3.445424017 1.2620811 

              

  32W 50 -9.6743 139.1134     

  32W 40 

-

10.1551 139.5257     

  32W 30 

-

10.4591 139.6644     

  32W 20 

-

10.4961 139.6578     

  32W 10 

-

10.4961 139.6578     

  32W 0 

-

10.5542 139.6308     

              

32s, 27N  32S 50 

-

10.2942 139.0454 1.695135828  0 

  32S 40 

-

10.7627 139.6681 20.08087807 18.385742 

  32S 30 

-

11.0716 139.7831 19.99547103 -0.085407 

  32S 20 

-

11.1086 139.7766 20.38389884 0.3884278 

 

TABLE A. Complete table of piercing point measurements from GPlates. 

Measurements were tracked in GPlates with the “Kinematics Tool”. Change in 

distance for each timestep was calculated by subtracting distances of the younger 

timestep from the older. For example, distances from piercing points at t = -40 were 

subtracted from distances at t = -50. Distances change was only reported in rows 

of the first listed piercing point pair. 
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Table A Continued 

Pair Ppoint Timestep lat lon Distance Total 

∆ 

Distance 

  32S 10 

-

11.1086 139.7766 20.38389884 0 

  32S 0 

-

11.1667 139.7495 20.72311404 0.3392152 

              

  27N 50 

-

10.3558 139.0365     

  27N 40 

-

10.4294 138.9993     

  27N 30 

-

10.6957 139.1412     

  27N 20 

-

10.6957 139.1412     

  27N 10 

-

10.6957 139.1412     

  27N 0 

-

10.6957 139.1412     

              

32E, 

34W 32E 50 

-

10.1829 139.931 1.20107932  0 

  32E 40 

-

10.3717 140.4684 5.066138206 3.8650589 

  32E 30 

-

10.7109 140.5989 1.768570924 

-

3.2975673 

  32E 20 

-

10.7479 140.5925 4.045762481 2.2771916 

  32E 10 

-

10.7479 140.5925 4.045762481 0 

  32E 0 

-

10.8061 140.5656 5.066852759 1.0210903 

              

  34W 50 

-

10.2268 139.9351     

  34W 40 -10.557 140.4526     

  34W 30 

-

10.7758 140.5975     

  34W 20 

-

10.8955 140.5759     

  34W 10 

-

10.8955 140.5759     

  34W 0 

-

10.9907 140.5426     

              

34E, 

84W 34E 50 

-

10.7822 140.0067 1.858979231   
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Table A Continued 

Pair Ppoint Timestep lat lon Distance Total 

∆ 

Distance 

  34E 40 

-

11.0486 140.7254 3.075976712 1.2169975 

  34E 30 -11.292 140.8182 9.715545012 6.6395683 

  34E 20 

-

11.3968 140.8297 7.003899203 

-

2.7116458 

  34E 10 

-

11.3968 140.8297 9.716835353 2.7129362 

  34E 0 

-

11.4921 140.7964 9.716196794 

-

0.0006386 

            

-

9.7161968 

  84W 50 

-

10.8436 140.037     

  84W 40 

-

11.1432 140.7882     

  84W 30 

-

11.6218 140.9566     

  84W 20 

-

11.6218 140.9566     

  84W 10 

-

11.7173 140.9894     

  84W 0 

-

11.8126 140.9561     

84s, 33N 84S 50 

-

10.9734 140.1148 5.367491404  0 

  84S 40 

-

11.2323 140.9119 18.32898847 12.961497 

  84S 30 

-

11.7086 141.0823 21.87516872 3.5461803 

  84S 20 

-

11.7086 141.0823 21.74061198 

-

0.1345567 

  84S 10 

-

11.7961 141.1204 23.58956798 1.848956 

  84S 0 

-

11.8914 141.0872 23.8317297 0.2421617 

            -23.83173 

  33N 50 

-

11.1461 140.2114     

  33N 40 

-

11.1386 140.2328     

  33N 30 -11.385 140.3323     

  33N 20 

-

11.4335 140.3177     
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Table A Continued 

Pair Ppoint Timestep lat lon Distance Total 

∆ 

Distance 

  33N 10 

-

11.4335 140.3177     

  33N 0 

-

11.4802 140.2988     

33s, 

45NW  33S 50 

-

11.4771 140.0907 1.43928405  0 

  33S 40 

-

11.4796 140.1459 19.86104583 18.421762 

  33S 30 

-

11.7225 140.232 19.13947822 

-

0.7215676 

  33S 20 -11.771 140.2174 18.97321994 

-

0.1662583 

  33S 10 -11.771 140.2174 18.97321994 0 

  33S 0 

-

11.8177 140.1985 18.08918973 

-

0.8840302 

              

  45NW 50 -11.526 140.0703     

  45NW 40 

-

11.3011 139.4249     

  45NW 30 

-

11.6307 139.5208     

  45NW 20 

-

11.6307 139.5208     

  45NW 10 

-

11.6307 139.5208     

  45NW 0 -11.679 139.5353     

45N, 35s 45N 50 

-

11.6442 140.1726 0.870777256  0 

  45N 40 

-

11.3317 139.5798 20.94333507 20.072558 

  45N 30 -11.686 139.6686 21.18232861 0.2389935 

  45N 20 -11.686 139.6686 21.18232861 0 

  45N 10 -11.686 139.6686 21.18232861 0 

  45N 0 

-

11.7297 139.6849 20.97175822 

-

0.2105704 

  35S 50 

-

11.6171 140.1899     

  35S 40 

-

11.5604 140.3286     

  35S 30 

-

12.1287 140.3218     

  35S 20 

-

12.1287 140.3218     

  35S 10 

-

12.1287 140.3218     
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Table A Continued 

Pair Ppoint Timestep lat lon Distance Total 

∆ 

Distance 

  35S 0 

-

12.2239 140.2882     

              

35SE, 

83N 35SE 50 

-

12.1553 140.6424 0.660607107  0 

  35SE 40 

-

12.0117 140.871 6.117123997 5.4565169 

  35SE 30 

-

12.4852 140.9347 6.959115668 0.8419917 

  35SE 20 

-

12.4852 140.9347 6.959115668 0 

  35SE 10 

-

12.4852 140.9347 6.959115668 0 

  35SE 0 

-

12.5805 140.9013 6.959012311 

-

0.0001034 

              

  83N 50 

-

12.1557 140.6672     

  83N 40 

-

12.2275 140.9344     

  83N 30 

-

12.7355 140.8825     

  83N 20 

-

12.7355 140.8825     

  83N 10 

-

12.7355 140.8825     

  83N 0 

-

12.8308 140.8491     

              

83E, 

91W 83E 50 

-

12.2238 141.0403 0.620903297  0 

  83E 40 

-

12.2819 141.3099 2.122869917 1.5019666 

  83E 30 -12.741 141.2628 3.236404748 1.1135348 

  83E 20 -12.741 141.2628 3.236404748 0 

  83E 10 -12.741 141.2628 6.565558446 3.3291537 

  83E 0 

-

12.8363 141.2295 6.565923325 0.0003649 

              

  91W 50 

-

12.2281 141.0632     

  91W 40 

-

12.3303 141.3724     

  91W 30 

-

12.7766 141.379     
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Table A Continued 

Pair Ppoint Timestep lat lon Distance Total 

∆ 

Distance 

  91W 20 

-

12.7766 141.379     

  91W 10 

-

12.8434 141.4865     

  91W 0 

-

12.9387 141.4533     

              

83W, 

49E 83W 50 

-

12.4983 140.437 0.221827171  0 

  83W 40 

-

12.5784 140.7175 21.9024028 21.680576 

  83W 30 

-

13.1114 140.7146 23.57944365 1.6770409 

  83W 20 

-

13.1114 140.7146 22.54048828 

-

1.0389554 

  83W 10 

-

13.1114 140.7146 21.64891207 

-

0.8915762 

  83W 0 

-

13.2066 140.6811 18.29667829 

-

3.3522338 

              

  49E 50 -12.496 140.429     

  49E 40 

-

11.8779 140.3139     

  49E 30 

-

12.3495 140.2937     

  49E 20 

-

12.3868 140.3052     

  49E 10 

-

12.4175 140.3176     

  49E 0 

-

12.5793 140.4351     

              

83S, 50N 83S 50 

-

12.7461 140.5219 0.728903508  0 

  83S 40 

-

12.8229 140.8119 8.54186177 7.8129583 

  83S 30 

-

13.3415 140.8416 13.78299614 5.2411344 

  83S 20 

-

13.3415 140.8416 13.78299614 0 

  83S 10 

-

13.3415 140.8416 13.78299614 0 

  83S 0 

-

13.4368 140.8081 13.78467815 0.001682 

              



85 

Table A Continued 

Pair Ppoint Timestep lat lon Distance Total 

∆ 

Distance 

  50N 50 

-

12.7716 140.5136     

  50N 40 

-

12.9469 140.5165     

  50N 30 

-

12.9469 140.5165     

  50N 20 

-

12.9469 140.5165     

  50N 10 

-

12.9469 140.5165     

  50N 0 

-

13.0421 140.4829     

              

49W, 

46E 49W 50 

-

12.5476 140.2054 0.563318147  0 

  49W 40 

-

12.0562 140.1748 3.188903877 2.6255857 

  49W 30 

-

12.4876 140.1127 2.540667066 

-

0.6482368 

  49W 20 

-

12.5204 140.1207 3.340008052 0.799341 

  49W 10 

-

12.5478 140.1305 4.093789861 0.7537818 

  49W 0 

-

12.6719 140.2257 6.999441739 2.9056519 

              

  46E 50 

-

12.5331 140.1903     

  46E 40 

-

12.0004 140.0696     

  46E 30 

-

12.4248 140.0421     

  46E 20 

-

12.4248 140.0421     

  46E 10 

-

12.4248 140.0421     

  46E 0 

-

12.4564 140.0824     

              

51N, 50s 51N 50 

-

12.9091 140.4208 1.100464966  0 

  51N 40 

-

13.3085 140.5091 6.957483536 5.8570186 

  51N 30 

-

13.5375 140.5766 13.43675073 6.4792672 
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Table A Continued 

Pair Ppoint Timestep lat lon Distance Total 

∆ 

Distance 

  51N 20 

-

13.5375 140.5766 13.43675073 0 

  51N  

-

13.5279 140.4595 12.79960735 

-

0.6371434 

  51N 0 

-

13.4466 140.1359 11.05451159 

-

1.7450958 

              

  50S 50 

-

12.8718 140.4367     

  50S 40 

-

13.0581 140.4576     

  50S 30 

-

13.0581 140.4576     

  50S 20 

-

13.0581 140.4576     

  50S 10 

-

13.0581 140.4576     

  50S 0 

-

13.1533 140.424     

              

51s, 82N 51s 50 -13.239 140.2013 3.698004295  0 

  51s 40 

-

13.6888 140.4066 11.90729271 8.2092884 

  51s 30 

-

13.8971 140.4131 9.449798777 

-

2.4574939 

  51s 20 

-

13.8971 140.4131 9.449798777 0 

  51s 10 

-

13.9098 140.3636 9.088451333 

-

0.3613474 

  51s 0 

-

13.6567 140.4777 18.86527331 9.776822 

  82N 50 

-

13.3747 140.1982     

  82N 40 

-

14.1024 140.2611     

  82N 30 

-

14.2428 140.384     

  82N 20 

-

14.2428 140.384     

  82N 10 

-

14.2428 140.384     

  82N 0 -14.338 140.3502     

              

45s, 46N 45s 50 

-

12.0387 140.0143 0.572527489  0 
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  45s 40 

-

11.7372 139.7056 2.209348299 1.6368208 

  45s 30 

-

12.1064 139.724 2.064356939 

-

0.1449914 

  45s 20 

-

12.1064 139.724 2.064356939 0 

  45s 10 

-

12.1064 139.724 2.064356939 0 

  45s 0 

-

12.1481 139.754 2.065403195 0.0010463 

              

  46N 50 

-

12.0573 140.0043     

  46N 40 

-

11.7392 139.6228     

  46N 30 

-

12.0916 139.648     

  46N 20 

-

12.0916 139.648     

  46N 10 

-

12.0916 139.648     

  46N 0 

-

12.1357 139.6775     

46s, 47N 46s 50 

-

12.5165 139.8329 1.092092253  0 

  46s 40 

-

12.2035 139.779 2.344699369 1.2526071 

  46s 30 

-

12.5754 139.7193 1.688000723 

-

0.6566986 

  46s 20 

-

12.5754 139.7193 1.688000723 0 

  46s 10 

-

12.5754 139.7193 1.688000723 0 

  46s 0 -12.617 139.7647 2.858737953 1.1707372 

  47N 50 

-

12.5552 139.8222     

  47N 40 

-

12.2201 139.6926     

  47N 30 -12.597 139.6598     

  47N 20 -12.597 139.6598     

  47N 10 -12.597 139.6598     

  47N 0 

-

12.6444 139.6609     
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∆ 
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47NW, 

42E 47NW 50 

-

12.3881 139.4367 4.66505835  0 

  47NW 40 

-

12.3865 139.3069 1.350551513 

-

3.3145068 

  47NW 30 

-

12.7086 139.2534 2.348760738 0.9982092 

  47NW 20 

-

12.7086 139.2534 2.348760738 0 

  47NW 10 

-

12.7086 139.2534 2.348760738 0 

  47NW 0 

-

12.7689 139.2584 1.452828261 

-

0.8959325 

  42E 50 

-

12.4315 139.2671     

  42E 40 

-

12.4256 139.2757     

  42E 30 

-

12.7808 139.2051     

  42E 20 

-

12.7808 139.2051     

  42E 10 

-

12.7808 139.2051     

  42E 0 

-

12.7808 139.2051     

              

42W, 

41E 42W 50 

-

12.5447 138.5994 1.315896315  0 

  42W 40 

-

12.9553 138.8694 0.664133824 

-

0.6517625 

  42W 30 -13.265 138.7423 1.252458445 0.5883246 

  42W 20 -13.265 138.7423 1.252458445 0 

  42W 10 -13.265 138.7423 1.252458445 0 

  42W 0 -13.265 138.7423 1.252458445 0 

  41E 50 

-

12.5228 138.5553     

  41E 40 

-

12.9561 138.8444     

  41E 30 

-

13.2427 138.701     

  41E 20 

-

13.2427 138.701     

  41E 10 

-

13.2427 138.701     

  41E 0 

-

13.2427 138.701     
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39s, 41N 39s 50 

-

12.4489 138.2293 2.092035219   

  39s 40 -13.16 138.4314 3.575485433 1.4834502 

  39s 30 -13.16 138.4314 7.515547374 3.9400619 

  39s 20 -13.16 138.4314 7.515547374 0 

  39s 10 -13.16 138.4314 7.515547374 0 

  39s 0 -13.16 138.4314 7.515547374 0 

              

  41N 50 -12.519 138.1972     

  41N 40 

-

13.1758 138.5652     

  41N 30 

-

13.4342 138.4004     

  41N 20 

-

13.4342 138.4004     

  41N 10 

-

13.4342 138.4004     

  41N 0 

-

13.4342 138.4004     

              

41sw, 

63N 41sw 50 

-

13.3482 137.6273 0.6723539  0 

  41sw 40 

-

14.1687 138.6691 26.4000832 25.727729 

  41sw 30 

-

14.4322 138.4018 23.40511269 

-

2.9949705 

  41sw 20 

-

14.4322 138.4018 23.40511269 0 

  41sw 10 

-

14.4322 138.4018 23.40511269 0 

  41sw 0 

-

14.4322 138.4018 23.40511269 0 

              

  63N 50 -13.351 137.6021     

  63N 40 

-

13.8939 137.7113     

  63N 30 

-

13.8939 137.7113     

  63N 20 

-

13.8939 137.7113     

  63N 10 

-

13.8939 137.7113     

  63N 0 

-

13.8939 137.7113     
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41se,57N 41SE 50 

-

13.9196 138.2844 0.574824956  0 

  41SE 40 

-

14.1999 139.5524 14.50910586 13.934281 

  41SE 30 

-

14.5489 139.2786 13.57102697 

-

0.9380789 

  41SE 20 

-

14.5489 139.2786 13.57102697 0 

  41SE 10 

-

14.5489 139.2786 13.57102697 0 

  41SE 0 

-

14.5489 139.2786 13.57102697 0 

              

  57N 50 

-

13.9406 138.2823     

  57N 40 

-

14.5377 139.1274     

  57N 30 

-

14.8401 138.8608     

  57N 20 

-

14.8401 138.8608     

  57N 10 

-

14.8401 138.8608     

  57N 0 

-

14.8401 138.8608     

              

63s, 64N 63s 50 

-

13.4651 137.5094 0.261425798  0 

  63s 40 

-

14.0391 137.7203 3.645675552 3.3842498 

  63s 30 

-

14.0391 137.7203 3.645675552 0 

  63s 20 

-

14.0391 137.7203 3.645675552 0 

  63s 10 

-

14.0391 137.7203 3.645675552 0 

  63s 0 

-

14.0391 137.7203 3.645675552 0 

              

  64N 50 

-

13.4711 137.5017     

  64N 40 

-

14.1401 137.6298     

  64N 30 

-

14.1401 137.6298     
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  64N 20 

-

14.1401 137.6298     

  64N  

-

14.1401 137.6298     

  64N 0 

-

14.1401 137.6298     

              

64s, 65N 65N 50 

-

13.5816 137.4243 1.638965044  0 

  65N 40 

-

14.3075 137.5931 2.698556088 1.059591 

  65N 30 

-

14.3075 137.5931 2.698556088 0 

  65N 20 

-

14.3075 137.5931 2.698556088 0 

  65N 10 

-

14.3075 137.5931 2.698556088 0 

  65N 0 

-

14.3075 137.5931 2.698556088 0 

              

  64s 50 

-

13.5362 137.4649     

  64s 40 

-

14.2143 137.6277     

  64s 30 

-

14.2143 137.6277     

  64s 20 

-

14.2143 137.6277     

  64s 10 

-

14.2143 137.6277     

  64s 0 

-

14.2143 137.6277     

              

65s, 66N 65s 50 

-

13.7809 137.3022 1.290458811  0 

  65s 40 

-

14.5387 137.6126 3.102909653 1.8124508 

  65s 30 

-

14.5387 137.6126 3.102909653 0 

  65s 20 

-

14.5387 137.6126 3.102909653 0 

  65s 10 

-

14.5387 137.6126 3.102909653 0 

  65s 0 

-

14.5387 137.6126 3.102909653 0 
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  66N 50 -13.827 137.291     

  66N 40 

-

14.6525 137.6079     

  66N 30 

-

14.6525 137.6079     

  66N 20 

-

14.6525 137.6079     

  66N 10 

-

14.6525 137.6079     

  66N 0 

-

14.6525 137.6079     

              

60s, 62N 60s 50 

-

13.6666 137.7262 0.383533179  0 

  60s 40 

-

14.2568 138.3386 5.026958589 4.6434254 

  60s 30 

-

14.5441 138.1984 5.458632659 0.4316741 

  60s 20 

-

14.5441 138.1984 5.458632659 0 

  60s 10 

-

14.5441 138.1984 5.458632659 0 

  60s 0 

-

14.5441 138.1984 5.458632659 0 

              

  62N 50 -13.678 137.7177     

  62N 40 

-

14.1807 138.1652     

  62N 30 

-

14.4068 138.0477     

  62N 20 

-

14.4068 138.0477     

  62N 10 

-

14.4068 138.0477     

  62N 0 

-

14.4068 138.0477     

              

57s, 58N 57s 50 

-

14.0697 138.27 2.864590586  0 

  57s 40 

-

14.6668 139.1157 13.06153644 10.196946 

  57s 30 

-

14.9648 138.8974 6.924878705 

-

6.1366577 

  57s 20 

-

14.9648 138.8974 6.924878705 0 
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  57s 10 

-

14.9648 138.8974 6.924878705 0 

  57s 0 

-

14.9648 138.8974 6.924878705 0 

              

  58N 50 

-

14.1552 138.3331     

  58N 40 

-

14.8601 138.662     

  58N 30 

-

15.1114 138.6824     

  58N 20 

-

15.1114 138.6824     

  58N 10 

-

15.1114 138.6824     

  58N 0 

-

15.1114 138.6824     

              

58s, 59n 58s 50 

-

14.3651 138.3281 1.077278152  0 

  58s 40 -15.07 138.6616 2.234680929 1.1574028 

  58s 30 

-

15.3211 138.6919 2.281100932 0.04642 

  58s 20 

-

15.3211 138.6919 2.281100932 0 

  58s 10 

-

15.3211 138.6919 2.281100932 0 

  58s 0 

-

15.3211 138.6919 2.281100932 0 

              

  59N 50 

-

14.4044 138.3326     

  59N 40 

-

15.0638 138.5769     

  59N 30 

-

15.2698 138.6233     

  59N 20 

-

15.2698 138.6233     

  59N 10 

-

15.2698 138.6233     

  59N 0 

-

15.2698 138.6233     

              

58NE, 

56s 58ne 50 

-

14.7236 139.2555 1.77154684  0 
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  58ne 40 

-

15.4091 139.5999 4.482065626 2.7105188 

  58ne 30 

-

15.6185 139.6463 3.621155263 

-

0.8609104 

  58ne 20 

-

15.6185 139.6463 3.621155263 0 

  58ne 10 

-

15.6185 139.6463 3.621155263 0 

  58ne 0 

-

15.6185 139.6463 3.621155263 0 

              

  56s 50 

-

14.6841 139.3089     

  56s 40 

-

15.4927 139.7469     

  56s 30 

-

15.6701 139.7735     

  56s 20 

-

15.6701 139.7735     

  56s 10 

-

15.6701 139.7735     

  56s 0 

-

15.6701 139.7735     

              

56N, 82s 56n 50 

-

14.1709 139.5289 6.036913728  0 

  56n 40 

-

14.9558 139.8955 2.99418503 

-

3.0427287 

  56n 30 -15.13 139.9091 5.15431427 2.1601292 

  56n 20 -15.13 139.9091 5.15431427 0 

  56n 10 -15.13 139.9091 5.15431427 0 

  56n 0 -15.13 139.9091 2.523466171 

-

2.6308481 

              

  82s 50 

-

13.9614 139.6033     

  82s 40 

-

14.8459 139.8953     

  82s 30 

-

14.9425 139.9352     

  82s 20 

-

14.9425 139.9352     

  82s 10 

-

14.9425 139.9352     
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  82s 0 

-

15.0377 139.9011     

              

71s, 74N 71s 50 

-

14.6487 137.5057 0.711466011   

  71s 40 -15.468 137.8383 8.231600963 7.520135 

  71s 30 

-

15.5524 137.8663 5.817839804 

-

2.4137612 

  71s 20 

-

15.5524 137.8663 5.817839804 0 

  71s 10 

-

15.5524 137.8663 5.817839804 0 

  71s 0 

-

15.5524 137.8663 5.817839804 0 

              

  74N 50 

-

14.6737 137.5135     

  74N 40 -15.757 137.9298     

  74N 30 -15.757 137.9298     

  74N 20 -15.757 137.9298     

  74N 10 -15.757 137.9298     

  74N 0 -15.757 137.9298     

              

13, 10s 13W 50 

-

14.8007 136.1096 0.734598004  0 

  13W 40 

-

14.9967 136.0491 5.640286923 4.9056889 

  13W 30 

-

14.9967 136.0491 6.182834139 0.5425472 

  13W 20 

-

14.7226 135.9509 5.639989349 

-

0.5428448 

  13W 10 

-

14.7226 135.9509 5.639989349 0 

  13W 0 

-

14.7226 135.9509 5.639989349 0 

              

  10S 50 

-

14.7923 136.0831     

  10S 40 

-

14.7923 136.0831     

  10S 30 

-

14.7698 136.0448     

  10S 20 

-

14.5178 135.9821     
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  10S 10 

-

14.5178 135.9821     

  10S 0 

-

14.5178 135.9821     

              

7E, 8W 7E 50 

-

11.4092 136.2733 1.293936972  0 

  7E 40 

-

11.4092 136.2733 1.293936972 0 

  7E 30 

-

11.4092 136.2733 1.293936972 0 

  7E 20 

-

11.4092 136.2733 1.293936972 0 

  7E 10 

-

11.2342 136.2776 5.760071912 4.4661349 

  7E 0 

-

11.2342 136.2776 5.760071912 0 

              

  8w 50 

-

11.4437 136.3066     

  8w 40 

-

11.4437 136.3066     

  8w 30 

-

11.4437 136.3066     

  8w 20 

-

11.4437 136.3066     

  8w 10 

-

11.4437 136.3066     

  8w 0 

-

11.4437 136.3066     

              

2W, 6E 2w 50 

-

12.0697 135.5115 0.286940951  0 

  2w 40 

-

12.0957 135.4897 1.548965639 1.2620247 

  2w 30 

-

12.0961 135.5125 0.745603123 

-

0.8033625 

  2w 20 

-

12.0984 135.5169 1.08255338 0.3369503 

  2w 10 

-

12.0281 135.385 7.246405327 6.1638519 

  2w 0 

-

12.0281 135.385 7.246405327 0 
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  6E 50 

-

12.0593 135.5132     

  6E 40 

-

12.0454 135.5168     

  6E 30 -12.069 135.5164     

       

  6E 20 

-

12.0667 135.5414     

  6E 10 -11.803 135.5298     

  6E 0 -11.803 135.5298     

              

41EE, 

48W 41EE 0 

-

13.4117 138.5628 0.376533153  0 

  41EE 40 

-

13.6364 139.4324 2.171622852 1.7950897 

  41EE 30 

-

13.9766 139.2171 0.601543887 -1.570079 

  41EE 20 

-

13.9766 139.2171 0.601543887 0 

  41EE 10 

-

13.9766 139.2171 0.601543887 0 

  41EE 0 

-

13.9766 139.2171 3.129273519 2.5277296 

              

  48W 50 -13.41 138.5769     

  48W 40 

-

13.6958 139.4871     

  48W 30 

-

13.9983 139.2213     

  48W 20 

-

13.9983 139.2213     

  48W 10 

-

13.9983 139.2213     

  48W 0 

-

14.0736 139.2805     

              

73N,  

74s 73N 50 

-

14.9827 137.5173 3.703192717   

  73N 40 

-

16.1079 137.829 5.484692786 1.7815001 

  73N 30 

-

16.1079 137.829 5.484692786 0 

  73N 20 

-

16.1079 137.829 5.484692786 0 
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  73N 10 

-

16.1079 137.829 5.484692786 0 

  73N 0 

-

16.1079 137.829 5.484692786 0 

              

  74s 50 

-

14.8491 137.4914     

  74s 40 

-

15.9336 137.9338     

  74s 30 

-

15.9336 137.9338     

  74s 20 

-

15.9336 137.9338     

  74s 10 

-

15.9336 137.9338     

  74s 0 

-

15.9336 137.9338     

              

73n, 74s 73n 50 

-

14.9827 137.5173 3.703192717  0 

  73n 40 

-

16.1079 137.829 5.484692786 1.7815001 

  73n 30 

-

16.1079 137.829 5.484692786 0 

  73n 20 

-

16.1079 137.829 5.484692786 0 

  73n 10 

-

16.1079 137.829 5.484692786 0 

  73n 0 

-

16.1079 137.829 5.484692786 0 

              

  74s 50 

-

14.8491 137.4914     

  74s 40 

-

15.9336 137.9338     

  74s 30 

-

15.9336 137.9338     

  74s 20 

-

15.9336 137.9338     

  74s 10 

-

15.9336 137.9338     

  74s 0 

-

15.9336 137.9338     
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66s, 68N 66s 50 

-

14.1693 137.3386 0.743538954  0 

  66s 40 

-

14.9519 137.7862 3.308870674 2.5653317 

  66s 30 

-

14.9519 137.7862 3.308870674 0 

  66s 20 

-

14.9519 137.7862 3.308870674 0 

  66s 10 

-

14.9519 137.7862 3.308870674 0 

  66s 0 

-

14.9519 137.7862 3.308870674 0 

              

  68N 50 

-

14.1965 137.3409     

  68N 40 -15.072 137.7675     

       

  68N 30 -15.072 137.7675     

  68N 20 -15.072 137.7675     

  68N 10 -15.072 137.7675     

  68N 0 -15.072 137.7675     

              

66W, 

69N 66W 50 

-

14.2247 137.0025 1.382412707  00 

  66W 40 

-

15.1266 137.4958 8.993948272 7.6115356 

  66W 30 

-

15.1266 137.4958 8.993948272 0 

  66W 20 

-

15.1266 137.4958 8.993948272 0 

  66W 10 

-

15.1266 137.4958 8.993948272 0 

  66W 0 

-

15.1266 137.4958 8.993948272 0 

              

  69N 50 

-

14.2658 136.9718     

  69N 40 

-

15.4491 137.4227     

  69N 30 

-

15.4491 137.4227     

  69N 20 

-

15.4491 137.4227     

  69N 10 

-

15.4491 137.4227     
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  69N 0 

-

15.4491 137.4227     

              

69s, 70N 69s 50 

-

14.3617 136.9231 2.277008096  0 

  69s 40 

-

15.5495 137.3844 4.970167278 2.6931592 

  69s 30 

-

15.5495 137.3844 4.041902829 

-

0.9282644 

  69s 20 

-

15.5495 137.3844 4.041902829 0 

  69s 10 

-

15.5495 137.3844 4.041902829 0 

  69s 0 

-

15.5495 137.3844 4.041902829 0 

              

  70N 50 

-

14.3776 137.0078 23.22518869   

  70N 40 

-

15.7319 137.3877 57.82132253   

  70N 30 

-

15.6805 137.4567 58.09493376   

  70N 20 

-

15.6805 137.4567 65.56820931   

  70N 10 

-

15.6805 137.4567 65.56820931   

  70N 0 

-

15.6805 137.4567 65.56820931   

          0   

10, 9 10 50 

-

13.8996 136.2799 1.222933161  0 

    40 

-

13.8996 136.2799 1.222933161 0 

    30 

-

13.8834 136.2696 1.032871813 

-

0.1900613 

    20 

-

13.6227 136.1667 7.331082065 6.2982103 

    10 

-

13.6227 136.1667 7.331082065 0 

    0 

-

13.6227 136.1667 7.331082065 0 

              

  9 50 

-

13.8589 136.2994 3666.596677   
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    40 

-

13.8589 136.2994 3666.596677   

    30 

-

13.8589 136.2994 3666.596677   

    20 

-

13.8589 136.2994 3666.596677   

    10 

-

13.8589 136.2994 3666.596677   

    0 

-

13.8589 136.2994 3666.596677   
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CF Bands 

Width 

(km) 

Avg for 

each 

(km) Length (km) 

Area 

(km2) 

1 5.4707 5.57 58 322.9614 

  6.201      
  5.0332      

2 4.842 5.06 20.1 101.6551 

  6.0706      
  4.2598      

3 4.4191 5.16 31.14 160.7623 

  5.0269      
  6.0417      

4 2.9173 3.62 22.83 82.74734 

  3.476      
  4.4802      

5 2.7105 3.45 14.61 50.40645 

  3.0397      
  4.6002      

6 9.1618 8.21 18.03 148.057 

  8.014      
  7.4593      

7 2.3716 2.76 12.91 35.68238 

  2.3671      
  3.5531      

8 2.8373 2.85 17.1 48.70137 

  1.7596      
  3.9472     0 

9 4.9295 5.89 34.4 202.7754 

  6.7447       

  6.0097       

Table B: Table of band measurements that surround the CF. 

Measurements were conducted with the GPlates “Measurement 

tool”. 
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L (km) 

 W 

(km) 

 Area 

(km2) 

      

33.2103 2.35 78.04421 

15.5 1.2 18.6 

12.2 2.5 30.5 

3.2 1.3 4.16 

14.4 3.3 47.52 

7.6 4.7 35.72 

      

  Total 214.5442 

Table C: Table of missing 

surface area calculation for 

interior of CF. These 

measurements were 

calculated by the summation 

of smaller rectangles within 

the gaps of the CF at t = -50. 

 



104 

VITA 

Chad Melton was born in Dallas, TX September 15, 1978 and was raised in Cleveland, TN. 

After 13 years as a professional touring and teaching musician, Chad returned to the University 

of Tennessee to in Jan of 2013 to study geology and planetary sciences. Chad graduated the 

University of Tennessee with a B.S. in Geology and Environmental Sciences in August of 2016 

and a M.S. in August of 2018. Chad accepted a post-masters position in UAV remote sensing at 

Oak Ridge National Lab. 


	Kinematics of Plate Rotation on Europa: Case study in Argadnel Regio
	Recommended Citation

	tmp.1543872582.pdf.aD9_Y

