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Abstract

The radiation detection field has been rapidly growing in the recent three decades due to

the Special Nuclear Materials (SNM) proliferation hazards. Monitoring and detecting SNM

with high resolution has been a practical issue. Recently, Neutron Scatter Camera (NSC)

addressed this issue by identifying the different SNM with high efficiency. However, the huge

size of the detection system beside the poor resolution requires developing an alternative

NSC. Two Diamond-based Neutron Scatter Camera (DNSC) systems were investigated.

The two-diamond array demonstrated good energy resolution of reconstructing spectrum

of multiple neutron sources. Moreover, the spectrum of 239PuBe source was reconstructed

experimentally via the two-diamond array NSC. The measured spectrum agreed well with the

peak of 3 and 10 MeV. On the other hand, the diamond array, in addition to its capability of

spectroscopy, pinpointed several neutron sources. For instance, the simulated system could

locate and identify a highly active 252Cf source ( 2.3*1010 n/s) placed 1 meter away within

6 hours.

The Chi-Nu measurements started back in 2012 at Los Alamos National Lab to obtain

more accurate data of fission neutrons. In this dissertation, a novel Double Time-of-Flight

(DToF) detection system was utilized to investigate the capability of reconstructing the

prompt fission neutrons spectra that were produced by the fast neutron irradiation of two

fissile materials which coated a diamond detector. Unlike the Chi-Nu, DToF simulation

measurements used only one type of detector (diamond detectors) for all neutron energy

range. The simulation results represented good resolution but more accurate correction

factors are needed for the low detection efficiency (≈3%) of the system.

Protecting astronauts for future space missions from galactic cosmic rays (GCR) is an

issue for NASA. Identifying the light ions that strike through the spaceship craft is the
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first goal to design a shielding material. To address this issue, a ∆E/∆E detector was

explored for the measurement of Minimum Ionizing Particles (MIPs) using the beam-line

at the NASA Space Radiation Laboratory (NSRL). The measurements were analyzed by

Geant4 simulation, which showed promising results in using a ∆E/∆E detector to define

interacted isotopes.
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Chapter 1

Introduction

The threat of proliferation of special nuclear material (SNM) has been rapidly growing both

within the USA and worldwide. Many approaches are under investigation and development

in order to detect and identify SNM through emitted γ and neutron radiation. γ-rays are

easily shielded but neutrons are highly penetrating which makes them ideal candidates for

SNM monitoring. Consequently, immense efforts have been put forth to develop methods

for the detection of neutrons emitted by SNM. Currently, neutron measurements are most

often conducted using 3He as well as scintillation detectors. However, due to the shortage in

3He isotopes beside the limited energy resolution of scintillators detectors lead to the need

of alternative detectors [1].

The evolution of semiconducting materials has resulted in other advanced detectors with

promising detection characteristics such as high carrier mobility, superior electrical properties

and the compact size [2]. In particular, a diamond detector has several promising features

for neutron detection. Namely, fast responsive signal, low atomic number and high radiation

hardness. Moreover, the carbon atom has a high neutron elastic scattering cross-section

as well as several usable fast neutron reactions. The combination of these features make

the diamond detector a good candidate for neutron Time-of-flight (ToF) applications [3].

Nevertheless, diamond detector are considered as an insulator material due to the high-band

gap.

1



1.1 Novel Contribution

The proposed work describes the use of diamond-based radiation detection systems for a

variety of applications. One such application is a novel Diamond-based Neutron Scatter

Camera (DNSC). DNSC uses elastic scattering interactions to reconstruct the neutron source

spectrum and its location. The DNSC was investigated computationally and benchmarked

experimentally through choice experiments.

The second application of diamond detectors is the simulation of a novel Double Time-

of-Flight (DToF) detection system that utilizes many diamond detectors for spectroscopic

analysis of fissile and fissionable materials under fast neutron irradiation. A target diamond

detector is coated with a thin layer of fissile material. Then, an array of diamond detectors

surrounds the target, and the excellent timing performance of the diamond detectors is

used to discriminate between the interrogating neutron beam and the interaction of fission

neutrons with the surrounding diamond detectors. Simulations considered the placement

and number of diamond detectors and compared thier performance to other detection

systems currently used for measuring the fast neutron-induced fission neutron spectrum

and multiplicity, such as the LiI detectors in the Chi-Nu campaign [4].

The third, and final, application of diamond sensors is a ∆E/∆E detector for the

measurement of Minimum Ionizing Particles (MIPs). Experiments utilized two diamond

detectors and investigated light ions traveling through the detector from a variety of incident

particles striking thick targets. The experiments were conducted using the beam line at the

NASA Space Radiation Laboratory (NSRL) at Brookhaven National Lab (BNL).
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Chapter 2

Background

Natural diamond is an attractive material because of its many mechanical characteristics

[5]. The extreme hardness comes from its crystalline structure, cubic lattice with tetrahedral

covalent bonds between carbon atoms [6]. However, the rareness of diamond and presence

of defects or impurities in natural diamond affect the usefulness of natural diamond in the

radiation detection field. As a result, Chemical Vapor Deposition (CVD) growth of diamond

has been used to produce synthetic diamond with sufficient properties for radiation detection

applications.

2.1 Synthetic Diamond

High pressure and high temperature (HPHT) was the first growth technique used for

synthetic diamond production [6]. The synthetic diamond was fabricated by simulating

the natural thermodynamic conditions on a diamond substrate. The HPHT technique has

successfully grown synthetic diamond with the same crystal shape of natural diamond [7].

Still, the high impurity of the grown diamond yields poor electrical properties. In the 1980s,

a new growth technique, chemical vapor deposition (CVD), was utilized to grow diamond

with adequate electrical properties [8].

3



2.1.1 Chemical Vapor Deposition Growth Technique

CVD growth mechanisms involve treating a hydrogen plasma and methane gas with high

temperature (∼ 2000 0C) and low pressure (30-300 Torr) to induce chemical reactions with

the heated substrate surface (>600 0C), resulting in a diamond crystal growth [6, 8, 9]. In

the 1990s, the first polycrystalline CVD (pcCVD) diamond detector with a higher charge

collection distance was introduced [8]. Table 2.1 shows the extraordinary physical properties

of synthetic diamond detectors compared to other solid-state detectors.

Table 2.1: Physical properties of solid-state detectors at room temperature(300 K)a.

Properties Diamond Si Ge b GaAs b

Atomic number b 6 14 32 31,33

Mass density ( g/cm3 ) b 3.51 4.96 4.41 4.43

Band gap (eV) 5.5 1.12 0.67 1.42

Resistivity ( Ω.cm) > 1011 2.3 x 105 47 108

Thermal conductivity (W/cm/K) 20 1.27 0.60 0.45

Electron mobility (cm2/V/s) 1800 1500 3900 8500

Hole mobility (cm2/V/s) 1200 600 1900 400

Dielectric constant 5.7 11.9 16.3 13.1

Energy to create an e-h pair (eV) 13 3.6 3@77K 4.3

a All data taken from Michimasa et. al. 2013 [10] unless otherwise mentioned.

b Data taken from [11].

Due to the large band gap and relatively small dielectric constant, diamond detectors

exhibit low leakage current and detector capacitance, respectively..The large displacement

energy (43 eV) results in a high radiation hardness. These superior characteristics make

diamond suitable to use in a high-radiation environment compared to other semiconductor

detectors [10]. However, De Boer et.al. demonstrated the decrease of the output signal of

diamond detector by a factor of two due to the extreme irradiation of 24 GeV proton beam

(6 * 1015 p/cm2). In the same study, it was found that the high fluence of neutron irradiation

for energy below 100 MeV made the silicon detector harder by a factor of two to three (the

4



factor value differs based on the neutron energy) than pcCVD due to the high carbon elastic

scattring cross-section. However, the low band gap of silicon detector found the necessity of

cooling detector [12].

Moreover, high carrier mobilities of the diamond detector yield an extremely fast charge

collection time. All of these features make the diamond sensor a strong candidate for timing

measurements for neutron and high-energy physics experiments [13]. However, studies have

shown that the pcCVD diamond has a significant issue with charge collection due to grain

boundaries [14]. Because of poor collection efficiency, RD42 began collaborating in 1994 to

develop the CVD technique to grow a higher quality of CVD diamond detectors [15].

2.1.2 Single-Crystal Diamond Detector

In 2002, the Element Six company created the first single-crystal CVD (SDD) diamond

detector [9]. Two main advantages of the SDD over the pcCVD include a longer charge

carrier lifetime and high drift mobility [16]. Table 2.2 indicates the significant electronic

SDD performance.

Table 2.2: Electronic characteristics of CVD diamond detectors [6].

Properties Polycrystalline Single Crystal

Electron mobility (cm2/V s) 1800 >2000

Hole mobility (cm2/V s) 1000 >2000

Carrier lifetime (ns) 1-10 2000

Charge Collection Efficiency (for 500 µm plate) 36% 95%

Charge collection efficiency (CCE) is the amount of charge measured from a radiation

interaction in the diamond detector [17]. SDD shows significant improvement in CCE

compared to pcCVD due to the higher carrier mobility and lifetime. In addition, SDD

carrier mobilities show faster responsive signal than pcCVD. However, recent studies reveal

even higher carrier mobility [9]. Carrier drift mobility and mobility-lifetime play key roles

in energy resolution [16]; subsequently, SDDs have been widely adopted in the radiation

detection field as described in the next section.
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2.2 Particle Detection and Spectroscopy

2.2.1 Neutron Particles

The neutron particle is considered one of the basic constituents of the atom nucleus. A

neutron is part of all nuclei except in a hydrogen atom (1H) [18]. Because it lacks an

electric charge, a neutron penetrates deeply through objects. It interacts via the nuclear

force. In other words, the neutron interacts only with nuclei. The probability of reaction

(cross-section) depends mainly on the projectile neutron energy, the target nucleus, and the

type of interaction [19]. Various types of fast neutron interactions are possible with carbon

(diamond). The dominant fast neutron reaction with carbon atom is elastic scattering.

However, the neutron inelastic scattring results in the production of 3α particles and

absorption reactions produce light ions. Figure 2.1 shows the cross-section of neutron

reaction with 12C atom [20].
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Figure 2.1: Cross-section of neutron interactions with carbon atom [20]. Green and
blue cross-section stand for elastic and inelastic scattering, respectively. Other interactions
represent absorption cross-section.
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In elastic scattering, the total kinetic energy and momentum of the two colliding particles

are conserved. Additionally, both colliding particles (neutron and carbon atom) reappear

after interacting, but the kinetic energy redistributes between them [21]. The scattered

neutron usually escapes the diamond detector whereas the recoil carbon atom stops within

the diamond sensor due to the low range of such large atom [22]. Elastic scattering is

the main reaction for detecting neutrons with energy lower than 6 MeV, and it shows a

continuous spectrum of energy deposition because of the various energy depositions of recoil

carbon atoms. Also, neutron scattering cross-section variation reflects differences in counting

rate as shown in Figure 2.2.

92 keV and 112 keV (Fig. 7). The calculated values for this target using
the SINENA code (Schmidt and Siebert, 2000) are 57 keV, 71 keV and
94 keV. This difference isdue to the fact that the intrinsic resolutionof
the detector has not been considered yet.

The PHS spectra for irradiations with neutrons from 2.0 MeV to
2.8 MeV are given in Fig. 8. In this case the PHS is caused by
C-recoils from elastic scattering. The details in the structure of the
PHS reflect the structures of the scattering cross section at these
energies. A resonance at En¼ 2.08 MeVmight be responsible for the
more steeper PHS at 2.15 MeV neutron energy. The shapes of these
PHS are very similar to those of liquid scintillation detectors irra-
diated with 2.5 MeV neutrons. This promises the possibility of
applying unfolding methods as already been developed for these
detectors (Zimbal et al., 2004).

An important parameter for the application of this detector as
a spectrometer in very high intensity neutron fields (e.g. at ITER) is
its absolute efficiency. This value was determined from the known
absolute neutron fluence values for the PTB reference neutron

fields and the number of counts measured in the PHS. Considering
all events with deposited energies E> 0.1 MeV, the responses R
of the detector for 2.5 MeV and 14 MeV neutrons are comparable.
For the 14 MeV measurements, the response in the peak region of
the PHS (energy from 8.1 MeV to 8.6 MeV, see Figs. 3 and 4) is
nearly two orders of magnitude smaller (Table 1). Given the value of
the expected fluence rate at the detector positions in the radial
neutron camera of ITER ð _f ¼ 3# 108 cm$2s$1Þ (Esposito et al.,
2010), the count rate for such a detector would be w6#105 s$1

which can be handled by modern fast digital data acquisition
systems based on direct signal sampling (Marocco et al., 2009). For
such a setup however, the slow charge sensitive preamplifier has to
be substituted with a low noise current amplifier with appropriate
signal shaping. This is possible because of the negligible dark
current and the fast rise time of the signals (a few ns) for this
detector.

5. Conclusion

Artificial scCVD diamond detectors operated with standard
analogue electronics can be used as high resolution semiconductor
detectors. The charge collection of electrons and holes give
comparable resolution in the PHS, but it was found that electron
collection is more stable and allows a higher operational voltage.
The response of commercially available detectors is stable for
a few hours when irradiated with electrons (front and back side)
or a-particles (front side, i.e. through the charge collection
contact). For neutron measurements, certain points concerning the
stability of the PHS need to be investigated further. Whereas for
the 2.5 MeV neutron measurements the shape of the measured
PHS remains stable, the efficiency decreases during operation with
nominal high voltage after a few hours. For the 14 MeV neutron
measurements it was observed that the ratio of peak/total-effi-
ciency (Table 1) decreases during operation. First measurements
indicate that these effects depend on the neutron fluence rate
during the irradiation. All instability effects are completely
reversible after switching off the HV. The peak structure visible for
neutron energies >8 MeV allows a direct characterization of
neutron targets/beams, also in those cases where time-of-flight
methods are not applicable. If a response matrix can be deter-
mined, broadband neutron spectrometry is possible via unfolding
in the energy range from <2 MeV to around 50 MeV. The acces-
sible neutron energy range is limited at the low energy side by
additional interactions of the detector with g-radiation and on the
high energy side by the range of a-particles for full charge depo-
sition in the crystal.
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Fig. 7. Number of counts, N, as a function of the energy, E, deposited in the detector for
9.4 MeV neutrons from the D(d,n)3He-reaction in a deuterium gas target for different
pressures and the same incoming deuteron energy (Ed¼ 6.52 MeV). For better
comparison, the measurements are normalized to the same peak amplitude.

Fig. 8. Number of counts, N, as a function of the energy, E, deposited in the detector for
neutrons with energies from 2.0 MeV to 2.8 MeV produced by the T(p,n)3He-reaction
with proton beams from 2.8 MeV to 3.6 MeV. All measurements are normalized to the
same number of counts from a monitor detector.

Table 1
Fluence responses R of the scCVD diamond detector (4 mm# 4 mm# 0.5 mm) for
neutrons of En¼ 2.45 MeV and 14.0 MeV.

En Rpeak Rtotal (E> 100 keV)

cm2 cm2

2.45 MeV e 2.1# 10$3

14.0 MeV 4.7# 10$5 1.9# 10$3

A. Zimbal et al. / Radiation Measurements 45 (2010) 1313e13171316

Figure 2.2: Energy deposition spectra of distinct neutron projectiles with SDD [22].

For neutron energies greater than 6.17 MeV, fast neutron interaction peaks start to

appear in the pulse height spectrum since incident neutron exceeding interaction threshold

energy for (n,α) absorption interactions. The main fast neutron reactions with the SDD are

listed in Table 2.3 with reaction Q-values and thresholds [23]. Additionally, the secondary

charged particles out of the fast neutron interactions have a lower range, and they usually

deposit all of their energies within the SDD.
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Table 2.3: Main fast neutron reaction with SDD [23].

Reaction Q-value (MeV) Threshold Energy (MeV)

12C(n,n’)12C 0 0

12C(n,α)9Be -5.701 6.17

12C(n,n’)3α -7.275 7.886

12C(n,p)12B -12.587 13.644

12C(n,d)11B -13.732 14.886

12C(n,t)10B -18.929 20.52

Researchers have studied the capability of using diamond detectors in fast neutron

spectroscopy [23–25]. Pillon et al. emphasized the capacity of an SDD as a fast neutron

energy spectrometer. Basically, the SDD was exposed to beams of multiple mono-energetic

neutrons. Neutron beam induced inelastic and absorption interactions that shows sharp

peaks in pulse height spectrum, as provided in Figure 2.3. The 20.5 MeV neutron beam

shows all fast neutron interactions with diamond except the (n,t) interaction since the

neutron energy is lower than the interaction threshold. Moreover, for the measured peak

of 12C(n,α)9Be interaction, the SDD reached a good intrinsic resolution (FWHM=56 keV).

Moreover, the produced α particles has the range of 62 µm [23].

Similarly, Rebai et al. demonstrated the eligibility of an SDD with the ToF technique

to determine quasi mono-energetic neutrons up to the energy of 40 MeV. The source was

a spallation neutron spectrum in the nTOF CERN facility, and the ToF technique was

used to characterize each neutron energy spectrum. After pre-amplification, all coinciding

events between SDD output signals and pico-second CERN synchrotron were stored in a fast

digitizer (1 GHz sampling rate) and then post-processed offline. Pulse height spectra of the

SDD show good agreement with the Pillon et al. measurments [23, 24].

Furthermore, an SDD was exposed to high neutron fluxes out of the tokomak fusion

reactor. Both (D,D) and (D,T) reaction neutrons were detected in the SDD with good

resolution (≈ 2 % at 5 MeV). Additionally, due to the SDD’s fast signals, the SDD recorded

8



Fig. 3 (bottom) shows two PHS with more details about the
meaning of the various peaks. These spectra reveal the typical
shape produced by neutrons interacting with diamond [4]. The
peak due to the 12C(n,a)9Be reaction is clearly visible at the high
energy end of the spectra. An edge and continuum due to the
12C(n,n03a) reaction can be observed together with the continuum
created by the carbon recoil after neutron elastic scattering on
12C. For the highest energies also structures resulting from the
12C(n,p)12B and 12C(n,d)11B reactions are present. The right-most
peak visible in the spectrum induced by 8.30 MeV neutrons was
identified as being due to the 13C(n,a)10Be reaction. This reaction
has a Q-value of – 3.835 MeV and occurs in 13C, which has a 1.1%
at natural abundance.

3.1. Energy linearity and resolution

To determine the energy linearity and resolution of the
detector its response for charged particles produced in the
12C(n,a)9Be reaction was studied. The observed peak was para-
meterized by folding the neutron energy distribution N(En)
obtained with the TARGET code with the detector response. The
latter, reflecting the energy deposition within the detector, was
supposed to be a Gaussian. The final observed response N(Ed) was
expressed as:

NðEdÞ ¼
Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2ðEn,Q Þ

p e$ðEd$f ðEn ,Q ÞÞ2=2s2ðEn ,Q ÞNðEnÞdEn ð1Þ

where En is the energy of the neutron inducing the reaction and Q
the reaction Q-value. The functional dependence f(En,Q) expresses
the transfer from the neutron energy to the observed deposited
energy Ed. Experimentally, the energy scale for Ed was obtained on
the basis of the calibration with the alpha source. The width of the
distribution, which is determined by s2(En,Q), represents the
resolution of the detector. Both the relationships f(En,Q) and
s2(En,Q) are a function of the kinetic energy of the charged
particles produced in the reaction, which depends on the neutron
energy and the Q-value of the reaction. For an ideal detector one
expects that both f(En,Q) and s2(En,Q) are directly proportional
with the total kinetic energy of the produced charged particles. In
case of the 12C(n,a)9Be reaction this results in:

f ðEn,Q Þ ¼ aðEnþQ Þ ð2Þ

s2ðEn,Q Þ ¼ bðEnþQ Þ ð3Þ

For each spectrum the proportionality parameters (a and b)
have been determined by a least squares adjustment of the data
in the region of the 12C(n,a)9Be peak. First estimates were
deduced from measurements with a 241Am alpha source, which
emits an a-particle of Ea¼5.48 MeV. A disk shaped source was
placed in front of the detector entrance hole. The electronic chain
and cables were the same as the ones used during the neutron
measurements. Since the 241Am spectrum was taken with the
detector-alpha source working in air, the peak position was
corrected for the energy reduction due to the 6 mm of air
separating the alpha source from the diamond surface. The
SRIM-2008 code was used to determine this correction [19].

For all the spectra of the measurements listed in Table 3, the
least square adjustment has been performed using the neutron
spectra N(En) obtained with NeuSDesc. For neutron energies
En¼7.35, 7.82, 13.79, 16.44, 16.93, 17.47 and 17.99 MeV the
procedure was repeated using the spectra determined by the
TARGET code (Fig. 4). The agreement between the observed and
parameterised response, as indicated by the w2 per degree of
freedom, using the distribution obtained with TARGET was in all
cases better compared to the results using the distributions

Table 3
Summary of the experimental parameters of the irradiations. The D2 gas-target
had a gas pressure of 100 kPa, a gas cell length of 40 mm, a Mo entrance foil
thickness of 5 mm and a 1 mm Ta beam stop. The T/Ti-target had a Ti thickness of
2245 mg/cm2, a nominal T/Ti ratio of 1.7 and a gold backing of 0.5 mm thickness.
Deuteron energy Ed, angle of emission y, mean Emean minimum Emin and maximum
Emax neutron energy are given. Energies were calculated using the EnergySet and
are reported in MeV, angle in degrees.

Ed Target type h Emean Emin Emax

3 D-gas 45 4.79 4.73 4.86
3 D-gas 0 5.72 5.65 5.84
4.5 D-gas 45 5.94 5.9 5.99
5 D-gas 45 6.3 6.27 6.35
4.5 D-gas 0 7.33 7.31 7.43
5 D-gas 0 7.87 7.83 7.94
5.5 D-gas 0 8.3 8.26 8.36
3.5 T/Ti-solid 133 12.82 12.81 12.82
1 T/Ti-solid 107 13.79 13.79 13.81
1 T/Ti-solid 46 15.52 15.07 16.12
1 T/Ti-solid 12 15.93 15.38 16.70
1.5 T/Ti-solid 46 16.30 16.03 16.60
2 T/Ti-solid 46 16.93 16.72 17.14
2.5 T/Ti-solid 46 17.48 17.31 17.64
3 T/Ti-solid 46 17.99 17.85 18.13
3.5 T/Ti-solid 46 18.48 18.36 18.61
4 T/Ti-solid 46 18.96 18.85 19.07
4 T/Ti-solid 12 20.54 20.4 20.68
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Fig. 3. Experimental PHS spectra of all the measured neutron energies (top).
Normalized PHS as measured for 8.3 and 20.5 MeV neutron energies. Various
reaction contributions are indicated (bottom).

M. Pillon et al. / Nuclear Instruments and Methods in Physics Research A 640 (2011) 185–191188

Figure 2.3: Pulse height spectrum of two neutron projectiles ,20.5 MeV (black) and 8.3
MeV(blue), with SDD [23].

a much higher counting rate compared to the NE213 liquid scintillator. This study proved

the capability and reliability of SDDs in harsh radiation environments [25].

2.2.2 Charged Particles

Charged particles interact with any material traveling through via Coulomb interactions

with nuclei, and atoms orbital electrons. The main energy loss mechanisms of the travelling

charged particle are excitation and ionization. Excitation occurs when an electron, while still

bound to the nucleus, transfers from its orbit to occupy one of a higher energy. Ionization, on

the other hand, occurs when an electron gains enough energy to escape the nucleus, leaving

behind a positive ion [26]. Energy loss due to excitation and ionization is estimated by the

Bethe-Bloch relation (stopping power equation), as described in Equation 2.1 [27].
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〈
− dE

dx

〉
= 4πr20z

2mc
2

β2
NZ

[
ln
(2mc2

I
β2γ2

)
− β2

]
(2.1)

where

r0 = classical electron radius = 2.818 x 10−15 m

z = charged number of the incident ion.

c = speed of light = 2.997930 x 108 m
s

mc2 = electron rest mass = 0.511 MeV

β = beta Lorentz factor = ν
c

γ = gamma Lorentz factor = 1√
1−β2

N = number of atoms in the target material per unit volume (#/cm3)

Z = material atomic number

I = mean excitation energy (eV)

Pomskey et al. used an SDD to measure the spectrum of α particles emitted by a 241Am

source. The α particles stopes within few µm. The SDD presented good energy resolution

because of its high carrier lifetime and charge collection efficiency. To evaluate SDD energy

resolution, a commercial silicon (Si) detector measured the α source as well. Both detectors

used same electronics and measured for equal amounts of time. The SDD exhibited not only

comparable resolution but also a higher count rate, as provided in Figure 2.4 [28].

In the experiment, the SDD showed high stability, with no observable polarization during

the experiment (48 hours). Polarization effect causes output signal degardation over time

beacuse of the build-up of space charge [17]. Furthermore, radiation hardness and fast rise

signals make an SDD a good candidate for high-energy physics experiments [28].

2.2.2.1 Energetic Ion Measurements

Radiation hardness and fast timing capability are two essential properties that make an

SDD an alternative candidate for current silicon detectors in high-energy physics tracking

experiments [29]. One advantage of diamond sensor over silicon detector that there is no

need of cooling down due to the high band gap. An immense number of studies by the RD42
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Figure 2.4: 241Am α source spectroscopy using (left) Si detector and (right) SDD [28].

collaboration have been conducted on the feasibility of using diamond particle tracking

sensors in high-rate energetic ion accelerators [30]. In fact, CERN has already used diamond

sensors in a Large Hardon Collider (LHC) experiment [31]. The first pixelated SDD was

characterized in a high-flux experiment (≈ 1015 particles/cm2) with 100 GeV pi particles

bombardment. The SDD demonstrated high detection efficiency (≈ 99.9%), with no recorded

polarization [32].

In addition, a new pixelated diamond sensor, the Diamond Beam Monitor (DBM), was

used in the ATLAS experiment for luminosity monitoring, in which the DBM counted

the particles produced from an energetic collision in the LHC [33]. Recently, the RD42

collaboration succeeded in creating a 3D-diamond detector with low voltage bias and even

higher charge collection efficiency to be used in future heavy-ion experiments [34]. In

summary, due to its many advantages, the SDD shows excellent reliability in high-energy

physics tracking experiments; however, no study shows the feasibility of the SDD as a particle

identifier in such experiments.
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2.3 Time-of-Flight Spectrometer

The time-of-flight (ToF) concept for mass spectrometers was first proposed and designed

by McLaren and Wiley in 1955 [35]. Particle flight time reflects the energy of the detected

particle; thus, fast neutrons arrive in the detector before epithermal neutrons, wheres fast and

epithermal neutrons ranges are (1-20 MeV) and (0.0250.4 eV), respectively [36]. Additionally,

because of the high velocity of photons, ToF technique can differentiate between photons and

neutrons. Using ToF to distinguish between γ rays and neutron particles was first addressed

by Smith et al.. Detected neutron particles and γ rays emitted by a 252Cf source were plotted

as a function of time as shown in Figure 2.5a [37]. Moreover, as provided in Figure 2.5b, a

reconstructed spectrum of spontaneous fission neutrons of the 252Cf source was plotted with

acceptable accuracy.

SM I TH, F I ELDS, AN D ROBERTS

time resolution of this method, measured as the full
width of the prompt-gamma peak at half-maximum, is
5-7 mp, sec. In all, more than 20 000 traces were meas-
ured.
The preceding technique is satisfactory but tedious.

For this reason a time to pulse-height converter was
constructed. This unit linearily transformed time inter-
vals in the range 0—120mpsec into voltage pulses which
were sorted in a 256-channel pulse-height analyzer.
Upon using the same criteria as above, the time reso-
lution of this system was 2—3 mpsec. Because of its
ease of operation and its accuracy, this unit was used
for most of the experimental measurements. All of the
time-of-Right data were corrected for the energy
dependence of the neutron detector's efFiciency. This
efficiency was determined by comparing the response
of the scintillator to the response of a Rat "long"
counter in a monoenergetic neutron beam from the
Li(P,N) reaction.
For the proton recoil method, Ilford C-2, 400-micron

emulsions were exposed to the Cf'" source in such a
manner that the neutrons entered the emulsions at an
angle of 5 —10' with the emulsion surface. Furthermore
the 1 in.&3 in. emulsion plates were arranged so that
the neutrons made in the region scanned an angle of
10' or less with the longitudinal plate axis. The tracks
were measured in swaths 7.5 mm long, starting 5 mm
from the leading edge of the plates and extending no
more than 2 mm from the longitudinal axis. The plates
were processed by the temperature development meth-
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od" and treated with wood resin to reduce shrinkage.
A Bausch R Lomb research microscope, fitted with a
Leitz G.F. 10)& eyepiece and a 53)& Leitz oil-immersion
objective, was used in the measurements. About 1400
tracks were measured, the work being divided equally
between two scanners. Good observer agreement was
obtained. The tracks accepted for measurement fell
within a square prism whose axis lay along the longi-
tudinal plate axis and whose half-angle was 20'. Only
those tracks having, in the unprocessed emulsion, a
projected length along the prism axis of 15 microns or
more were measured. Both ends of a, track had to
terminate at least two microns from the emulsion
surfaces. Corrections for the probability of escape were
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FIG. 2. Experimentally determined energy spectrum
of Cf'52 fission neutrons.

made using the empirical factors obtained at the Los
Alamos Laboratory. " The tracks were grouped into
0.2-Mev intervals according to the average value of the
cos'8, where 0 is the neutron-proton angle in the
laboratory system.

RESULTS AND CONCLUSIONS
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Eight spectral measurements were carried out with
the time-of-Right techniques. A typical experimental
curve is shown in Fig. 1. The prompt gamma-ray peak
is clearly defined followed by the broad neutron
"hump. " Figure 2 shows one of the time-of-Right
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time resolution of this method, measured as the full
width of the prompt-gamma peak at half-maximum, is
5-7 mp, sec. In all, more than 20 000 traces were meas-
ured.
The preceding technique is satisfactory but tedious.

For this reason a time to pulse-height converter was
constructed. This unit linearily transformed time inter-
vals in the range 0—120mpsec into voltage pulses which
were sorted in a 256-channel pulse-height analyzer.
Upon using the same criteria as above, the time reso-
lution of this system was 2—3 mpsec. Because of its
ease of operation and its accuracy, this unit was used
for most of the experimental measurements. All of the
time-of-Right data were corrected for the energy
dependence of the neutron detector's efFiciency. This
efficiency was determined by comparing the response
of the scintillator to the response of a Rat "long"
counter in a monoenergetic neutron beam from the
Li(P,N) reaction.
For the proton recoil method, Ilford C-2, 400-micron

emulsions were exposed to the Cf'" source in such a
manner that the neutrons entered the emulsions at an
angle of 5 —10' with the emulsion surface. Furthermore
the 1 in.&3 in. emulsion plates were arranged so that
the neutrons made in the region scanned an angle of
10' or less with the longitudinal plate axis. The tracks
were measured in swaths 7.5 mm long, starting 5 mm
from the leading edge of the plates and extending no
more than 2 mm from the longitudinal axis. The plates
were processed by the temperature development meth-
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od" and treated with wood resin to reduce shrinkage.
A Bausch R Lomb research microscope, fitted with a
Leitz G.F. 10)& eyepiece and a 53)& Leitz oil-immersion
objective, was used in the measurements. About 1400
tracks were measured, the work being divided equally
between two scanners. Good observer agreement was
obtained. The tracks accepted for measurement fell
within a square prism whose axis lay along the longi-
tudinal plate axis and whose half-angle was 20'. Only
those tracks having, in the unprocessed emulsion, a
projected length along the prism axis of 15 microns or
more were measured. Both ends of a, track had to
terminate at least two microns from the emulsion
surfaces. Corrections for the probability of escape were
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FIG. 2. Experimentally determined energy spectrum
of Cf'52 fission neutrons.

made using the empirical factors obtained at the Los
Alamos Laboratory. " The tracks were grouped into
0.2-Mev intervals according to the average value of the
cos'8, where 0 is the neutron-proton angle in the
laboratory system.
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Figure 2.5: 252Cf source measurements using ToF technique. (a) ToF distribution for γ
rays and neutrons. (b) Spontaneous neutron fission spectrum [37].

252Cf neutron energies were reconstructed based on simple kinematics equations to

convert ToF into energy. After identifying a neutron particle form ToF distribution graph,

the neutrons velocity was calculated based on the ToF measurement in a previously known

path distance (d) as follows,
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υ =
d

ToF
(2.2)

The reconstructed neutron kinetic energy (non-relativistically) is approximated by,

En =
1

2
mnυ

2 (2.3)

where E is the neutron energy (MeV) and mn is the neutron rest mass (939.565 MeV).

As stated by Turner et al. [38], Equation 2.3 represents a neutron with energy equal

to or less than 10 MeV. However, relativistic kinematics was utilized for higher energies to

determine neutron energy, as described in Equation2.4,

En = (γ − 1) ∗mn (2.4)

where γ is a Lorentz factor and is defined as,

γ2 =
1

(1− β2)
=

1(
1− υ

2

c
2

) (2.5)

Additionally, the ToF technique was used to identify recoil nuclei as well. Bowman et

al. distinguished between light and heavy fission fragments from the spontaneous fission

of the 252Cf source. The fission neutron multiplicity was defined and counted; however,

identification of different nuclei, using ToF data, in each group was not achieved [39].

2.3.1 Neutron Scatter Camera

The neutron scatter camera (NSC) was first proposed by Mascarenhas et al. to locate SNM

sources for homeland security [40]. The SNM source spectrum was identified based on

the reconstructed fast fission neutrons. A source spectrum was plotted using the ToF of

neutron double-scattering events. The NSC consists of two parallel panels, each with 4

liquid scintillators. Since the SNM sources emitted photons beside neutron particles, the

pulse shaping discrimination (PSD) processing method was used for (n-γ) discrimination [41].
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The neutron source origin was located by creating probability cones of scattered neutrons,

as provided in Figure 2.6.

BRENNAN et al.: MEASUREMENT OF THE FAST NEUTRON ENERGY SPECTRUM OF AN SOURCE 2427

Fig. 2. Double scatter event geometry. The inset shows the details of a scat-
tering event. An incoming neutron scatters off a proton in , which re-
coils with energy ; can be deduced from the amplitude of the scintillation
pulse recorded by a PMT. The scattered neutron then continues with reduced
energy to scatter again in a second detector, the time interval between first and
second scatters being the TOF, . From and , the energy of the incident
neutron can be calculated and its direction constrained to the angle about the
vector connecting the two detectors.

shape discrimination (PSD) and time-of-flight (TOF) discrimi-
nation between coincident events.

The detector sizes and spacing were extensively investigated
using MCNP-PoliMi [10] to model and optimize our design
[11]. For this system, we chose 13 cm diameter cells; the front
plane cells are 5 cm thick to ensure predominantly single scat-
ters while the rear plane cells are 13 cm thick to ensure good
second scatter efficiency. The spacing between the front and rear
planes can be adjusted from approximately 13 to 127 centime-
ters to trade efficiency for angular and energy resolution; smaller
spacing gives higher efficiency, and larger spacing yields im-
proved angular and energy resolution. As motivated below, data
for this paper was acquired using a 64 cm plane spacing.

The camera electronics are conventional computer-controlled
VME-based ADC and TDC modules with NIM-based signal
conditioning and logic. Event triggers are generated by discrim-
inated signals from Mesytec MPD-8 [12] analog PSD modules
fanned in to form a coincidence between planes. Pulse height,
a pulse shape parameter, and timing are digitized by ADCs and
TDCs and saved in list mode for offline processing.

In order to calculate the neutron energy with double scatter
events, two parameters must be experimentally determined: the
energy of the recoil proton, , in the first scatter and the TOF
between the two scatters. The TOF, , is measured by the dif-
ference between the leading edges of discriminated signals dig-
itized by the TDC.

Referring to Fig. 2, if an incident neutron has energy and
the first scatter results in an energy deposit on the recoil
proton, the energy of the scattered neutron, , is determined
by conservation of energy:

(1)

The recoil proton energy, (in MeV), is calculated by in-
verting an empirically determined light yield function (LYF) of
the form

(2)

where L is the measured light output (MeVee), and , , and
are coefficients for the LYF. Coefficients a, b and c have units
of , MeVee/MeV, and MeVee, respectively. If the
neutron scatters in a second detector, the TOF between the two
scatters is measured and the scattered energy is calculated as:

(3)

where d is the detector separation and m is the mass of the neu-
tron. The incident neutron energy is then determined by (1).

The experiment was conducted in a large high-bay hall far
from walls or obstructions to minimize the effect of scattered
neutrons. The sources were placed 2 meters from the front plane
of the detector on an aluminum board, 142 cm above a concrete
floor, with no other local obstructions. The source strengths
were well over background and measured at the same position
in quick succession over a period of 24 hours to reduce any sys-
tematic angular or temporal variations.

B. Calibrations

The reconstruction of a neutron energy spectrum requires a
significant calibration procedure. The light output to energy de-
posit and neutron/gamma discrimination via PSD must be cal-
ibrated for each detector element. Every detector pair must be
calibrated for relative time delays with a TOF calibration.

Gain equalization is achieved by collecting the pulse height
spectrum of a gamma source such as and adjusting the bias
voltage of each PMT to achieve a uniform response. The pulse
height spectra are compared to MCNP-PoliMi simulations of
the gamma source to provide the electron energy scale as well as
energy resolution as a function of light output. These results are
also used in MCNP-PoliMi to create realistic detector response
functions.

Similarly, the PSD response is measured for each cell using a
mixed gamma/neutron source ( or ). A pulse
shape parameter as measured by the MPD-8 module tends to be
distributed in two bands as a function of pulse height. A two
Gaussian fit to these peaks as a function of energy is then used
to estimate the neutron/gamma probability for each event in our
data.

Each pair of detectors must also have TOF corrections for
cable and electronic path differences. These corrections are de-
termined using measured time distribution of a gamma source.
The TOF for scattered photons is constant and determined solely
by the geometry so that any time delays measured are caused by
cable and processing propagation times.

Figure 2.6: Back-projection scheme for a double neutron scattered event [42].

For spectral analysis, the incident neutron energy En1 was calculated based on the

deposited energy of the recoil proton Ep and the ToF between two scintillation detectors.

The recoil proton energy was measured using scattering angle (θ) as follows,

Ep = En1 tan(θ)2 (2.6)

Next, the scattered neutron energy was calculated by Equation 2.7,

En1 =
mn

2

( d

ToF

)2
(2.7)

Then, the incident neutron energy was reconstructed using the conversion of energy, as

described in Equation 2.8,

En = Ep + En1 (2.8)

14



With a more advanced NSC, Mascarenhas et al. successfully pinpointed a 252Cf source

placed 30 meters away from the NSC [43], as shown in Figure 2.7. The detection threshold

was set as 70 keVee to prevent noises. 120o angle view was recorded for the NSC. The system

indicated an angular resolution (1σ) of 12o and the capability to reconstruct neutron energy

in the range of 0.5-10 MeV.

Detection efficiency was improved by increasing the number of liquid scintillator detectors

(EJ-309) per each panel from 9 to 16. In this improved system, the separation distance

between the two panels was adjustable (13-127 cm), the lowest distance (13 cm) achieved

the highest detection efficiency while the separation distance of 127 cm provided the best

angular resolution. Using 40 cm spacing between the two panels, the energy resolution of

a reconstructed mono-energtic neutron (2.5 MeV) was recorded as 10-15% (non-Gaussian

peak shape). The high thickness of the detectors ( 5cm and 13 cm in front and back panels,

respectively) resulted in reducing the energy resolution of the system. In addition, the

increased number of NSC elements yielded higher angular resolution (≈ 10o) than in previous

NSC design [42, 44, 45]. However, the large size and poor energy resolution of organic liquid

scintillators remain unresolved drawbacks for the NSC systems.

Recently, the single-volume scatter camera made of pillars of plastic scintillators (SVSC-

PiPS) system was simulated to use as an NSC device to locate neutron sources. The

SVSC-PiPS (as shown in Figure 2.8) is composed of segmented pillars of plastic scintillators

with reflected channels. To increase light collection efficiency, each plastic scintillator was

separated by a 1-mm air gap [46].

The simulation located a 252Cf isotropic source with 108 particle history as shown in

Figure 2.8. Using 1 MeV as the energy threshold for each detector, the angular resolution

(1σ) of the polar and azimuth angles, were calculated as 23.93o and 17.77o, respectivly, for

a 252Cf source located at the center of the axis (0o,0o) and 1 meter away from the detection

system. The SVSC-PiPS detection efficiency increased by an order of magnitude greater than

that of the NSC [46]. Still, the ability of SVSC-PiPS to reconstruct the neutron spectrum

was not examined, and the construction of the SVSC-PiPS system is still in process.

15



MASCARENHAS et al.: RESULTS WITH THE NEUTRON SCATTER CAMERA 1271

Fig. 5. Neutron energy spectrum measured for a neutron source inside
an ocean tanker. The solid line is a Watt spectrum scaled to overlay the data.

Fig. 6. Back projected image of a source placed inside the ocean tanker.
The source was detected with greater than 3 sigma confidence in less than 5
minutes. The contour scale is in units of neutrons/second/ /steradian (1.0–10
MeV).

IV. STAND-OFF DETECTION

In addition to studying the neutron scatter camera’s perfor-
mance in shielded SNM search scenarios, we also tested its de-
tection capabilities at long range. In one such test, an unshielded

source similar in strength to an IAEA significant quantity
was hidden in a large empty space at a distance of 30 meters
from the detector as shown in Fig. 7. The source was success-
fully detected and clearly imaged as shown in Fig. 8. This image
was obtained in less than 2 hours. An imaging detector with a
wide field of view could reduce the time to scan a large area.

V. NEUTRON BACKGROUND MEASUREMENTS

In the search for SNM simply designing a better detector to
optimize the signal from the source is not enough. It is impor-
tant to have an understanding of the background (i.e. maxi-
mize S/B). Of the few known sources of neutron background,
cosmic rays and spontaneous fission neutrons are dominant. In
most cases, it is the cosmic ray neutrons that will dominate the

Fig. 7. A source placed 30 m from the detector.

Fig. 8. Back projected image of a source placed at a distance of 30 m
in air from the detector. The source was imaged and located. The contour scale
is in units of neutrons/second/ /steradian (1.0–10 MeV).

background so it is important to measure their intensity and en-
ergy distribution.

A lot of work over the last 40 years has been done on studying
the cosmic ray neutrons and their variation (see [9] for a re-
view of past measurements). Recent energy distribution mea-
surements from 1 to 10 MeV have been reported using Bonner
sphere detectors [10], however these measurements rely on sim-
ulations and unfolding to derive a spectrum and are unable to
measure the neutron angular distribution.

The full hemispherical neutron flux is usually quoted at a cer-
tain altitude (e.g. , )
and geomagnetic rigidity (e.g. ). Neutron
fluxes at other locations are scaled from the sea level data by
correcting for pressure and rigidity effects using well deter-
mined prescriptions [9].

However, there is a lack in knowledge of the angular depen-
dence of the neutron flux spectrum at sea level in the fission
energy range of 1–10 MeV. Previous measurements were re-
ported at energies 10 MeV [6], [13] and Moser et al. [12] later
revised the Saxena et al. [6] data using an improved detector re-
sponse matrix. The angular dependence is important for two rea-
sons; first, most detectors have an efficiency that changes with
the direction of the incident neutron. Second, since none of the
measurements to date has determined how the flux changes with

Figure 2.7: NSC back-projected image of 252Cf source placed 30 m away [43].
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Fig. 1. Neutron Scatter camera operational principles. Incident neutron cone angles are
created using the time of flight of the neutron between the two planes and the scintillation
brightness from neutron elastic scatter in the front plane.

the detector to estimate incident neutron direction. The location of both
scatters, the time between scatters and the energy deposited in the first
scatter may be used to describe a cone of possible incident neutron
directions whose axis is aligned with the vector connecting the two
scatters. A graphic illustrating this method is shown in Fig. 1.

1.2. Theory

Neutrons transfer some or all of their energy to the detection medium
during elastic scatter [1]. The amount of energy transferred is dependent
upon recoil nucleus mass and the angle of scatter given by

En® =
(1 + ↵) + (1 * ↵) cos ✓CM

2
En (1)

where ↵ =
⇠
A*1
A+1

⇡2
, A is the mass of the target nucleus, En is the

incident energy of the neutron, En® is the energy of the neutron after
elastic scatter and ✓CM is the scatter angle in the center-of-mass (CM)
coordinate frame. Scattering by light nuclei is isotropic in the center-of-
mass coordinate frame. Neutrons transfer all of their energy to a proton
(A = 1) in a head on collision when ✓CM = 180˝. The center-of-mass
scattering angle is related to angle in the lab frame by

tan ✓L =
sin ✓CM

1
A + cos ✓CM

(2)

where ✓L is the lab frame scattering angle. We can simplify Eq. (1) to
calculate the scattered neutron angle in the lab frame. If we use only
scatters on hydrogen (A = 1), ↵ = 0 and Eq. (1) simplifies to

Ep = Ensin2✓L (3)

where ✓L is the angle between the incident neutron and the scattered
neutron directions in the lab frame. We cannot directly measure the
incident energy of the neutron; however, we can reconstruct it by
summing the proton recoil energy in the first scatter and the energy
of the scattered neutron shown in Eq. (4)

En = Ep + En® (4)

where Ep is the proton recoil energy. We can estimate the scattered
neutron energy En® using neutron time of flight between two scatters
using

En® =
1
2
mnv

2 = 1
2
mn

⇠ d
�t

⇡2
(5)

wheremn is the mass of a neutron, v is the speed of the scattered neutron,
d is the distance between the first and second neutron elastic scatter, and
�t is the time between the two scatters. A second neutron scatter must

Fig. 2. Compact neutron scatter camera made of optically segmented pillars of scintillator
and reflective channels.

occur, otherwise scattered neutron energy cannot be estimated and cone
back-projection is impossible.

For the proposed design, we estimated the proton recoil energy
using the intensity of light emitted in the first neutron elastic scatter.
Concurrently, we estimated the scintillation position along the pillar
using photodetectors’ signal amplitude and relative timing. A neutron
must interact in different pillars to reconstruct the scintillation position
for both scatter events. We have all the information needed to back-
project a cone of incident neutron angles using Eq. (6).

✓L = tan*1
`
rrp

v
Ep

En®

a
ssq
. (6)

1.3. Imager design

In this paper, we propose a high efficiency imager design to lo-
calize neutron emitting material. The instrument design uses a semi-
contiguous volume of organic scintillator that is subdivided into opti-
cally isolated pillars. Each scintillator pillar is surrounded by a 1 mm
air gap; this air gap allows scintillation light to undergo total internal
reflection (TIR) to increase light collection efficiency. Each channel is
lined with a reflective film/paint to reflect photons escaping back into
the pillar. Orthogonal to each pillar and attached to opposing ends
are photodetectors. Opposing photodetectors enable two waveforms to
be recorded for each neutron elastic scatter. The device consists of a
scintillating volume of approximately 8000 cm3. A depiction of a single
volume scatter camera made of pillars of plastic scintillator (SVSC-PiPS)
is shown in Fig. 2.

2. Previous work

One of the first known neutron scatter telescopes was proposed
in 1968[2]. The device was used to measure solar neutrons and the
resulting albedo neutrons from earth at an altitude of 120,000 ft [3–
5]. The device consisted of two large planes of mineral oil liquid
scintillator, optically separated into eight cells per plane, located 1
m apart. In 1986, a double scatter fast neutron detector measured
the neutron energy spectrum from a thermonuclear plasma source by
utilizing the time of flight of neutrons between successive scatters [6].
In 1992, researchers measured the energy spectrum (15 to 100MeV) and
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Fig. 30. Plots of the sum of back-projected cones from a Cf-252 neutron source simulated at 1 m distances from the center of the SVSC-PiPS device. True source positions are indicated
with an ‘X’ in each plot.

observed photodetector waveforms. Subsequently, we found the best
estimate of scintillation position and proton recoil energy using MLEM
by comparing the nominal responses to the observed waveforms as
shown in Section 7.

8.2. Back-Projected images

For clarity, we will reiterate the information needed to back-project
cones. We need the first and second location of scatter in (x, y, z). We also
need the proton recoil energy of the first scatter. Finally, we require the
time of flight of between scintillation events. The back-projected cone
has an apparent ‘thickness’ correlated to the uncertainty of the input
variables: (x, y, z) position of interaction for both neutron scatters, time
of interaction for both scatters and proton recoil energy from the first
scatter. To quantify this thickness, we need to quantify the uncertainty
of all inputs. Uncertainties for all quantities are given as one standard
deviation, or 1�.

Recall the (x, y) position cannot be estimated within a pillar; we
assume all interactions occur in the center of the pillar in the (x, y)
plane. Therefore, the uncertainty in (x, y) position is that of a uniform
distribution shown in Eq. (14)

�x,y =
u

w2

12
(14)

where w is the width of the pillar.
Uncertainty in z-position estimates depend upon proton recoil en-

ergy (shown in Fig. 29). We created a look up table to estimate the
uncertainty as a function of proton recoil energy. We fixed proton
recoil energy uncertainty to 40 keV; proton recoil RMS errors were
nearly constant over a wide range of energies. Timing uncertainty for
cone back-projection was set to a constant 100 ps for all proton recoil
energies.

We propagated the uncertainty of the input parameters to the
opening angle of the cone. Cone back-projections include interactions
with incorrect pointing vectors. This includes events that first scatter
off carbon then subsequently double scatter off hydrogen-1, and events
where the neutron first scatters on hydrogen, then carbon, then hy-
drogen again. We set the detection threshold at 0.5 MeV proton recoil
energy. Each back-projected scenario is shown in Fig. 30. For all four
source locations, the peak of the back-projected image coincide with the
true source position.

Fig. 31. Normalized 2-D profiles of the back-projected image for a Cf-252 source located
at (0˝, 0˝) a distance of 1 m from the center of the SVSC-PiPS device.

8.3. Imager resolution

Using the back-projected cone image, we calculated the back-
projected image resolution of a SVSC-PiPS device for a Cf-252 point
source at (0˝, 0˝) at a distance of 1 m. We normalized the histogram to
the maximum back-projected bin value. Then, we took a cut through
the maximum bin in both polar and azimuthal directions to create
a two dimensional profile of the back-projected image. Profiles are
shown in Fig. 31. For each profile, we calculated the full width at half-
maximum (FWHM) to estimate a 1� resolution for polar and azimuth
directions. We assumed the profiles follow a normal distribution to
directly compare to the Sandia National Laboratories neutron scatter
camera back-projected image resolution of 10˝; � can be approximated
using Eq. (15).

FWHM ˘ 2.355�. (15)

Cone thickness is dependent upon proton recoil energy. There is less
uncertainty in high energy proton recoil events. Therefore, high proton
recoil energy events generate a sharper back-projected image. We can

130

Figure 2.8: (left) Schematic of an SVSC-PiPS system. (right) Reconstructed image for
a 252Cf source located 1m from the center of detection system; x indecats the true source
position [46].
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Chapter 3

Diamond-based Neutron Scatter

Camera

3.1 Introduction

The increased threat of the proliferation of radioactive materials requires more advanced

detection techniques to locate and define SNM sources. Although the NSC technique shows

a high validation in locating SNM sources, the need for large scintillator detectors makes

the transprtation of NSC instruments impractical. Additionally, the poor energy resolution

of the scintillator detectors points to the need to investigate an alternative compact NSC

system. [40, 47].

The DNSC was built to use the advantages of diamond detectors characteristics; namely,

extremely fast rise signals and radiation hardness [3]. The DNSC concept was to operate in

harsh radiation environments with high reliability such as in fusion reactors, which generate

highly intense neutron flux, or in future space missions, where small size and light weight

are extremely valuable. The system was designed for both spectral analysis and localizing

neutron sources based on a large set of Monte Carlo simulations. The DNSC was investigated

experimentally as well to proof the diamond NSC concept and validate the simulation results.
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3.2 Monte Carlo Simulation

Los Alamos National Laboratory software, the Monte Carlo N-Particles (MCNP) simulation,

was chosen for this work. MCNP is a global code used for particle transport applications.

Neutron, photon, and electron particles are simulated for various applications such as

detector design [48]. Tallies are considered the main method of printing MCNP simulation

results. However, the lack of presenting precise interaction times leads to activating a Particle

TRACk (PTRAC) card instead.

The PTRAC card outputs an immense size of file of the complete history of primary

and secondary particles. The files include detailed information of each interaction such as

particle coordinates, particle type, energy, and interaction times. Large output file size is

considered one of the drawbacks of the PTRAC card. To reduce the size of the generated

files, a filter card was implemented by including only interest detector cell numbers and

collision event types. Parallel processing of MCNP codes with different sequences of particle

history numbers was performed to gain much data in a shorter period of time.

The potential of a DNSC depends on several parameters: the number of diamond

detectors or pixels per diamond, the relative orientation between the diamond detectors,

the distances between them, the size of each diamond detector, the minimum energy

deposited, and the timing performance of each detector. In this dissertation, each of these

parameters was considered for mapping out device performance as a function of system

design parameters.

A diamond detector was simulated as 12C material because an SSD contains a very high

percentage of 12C isotopes [6]. The most recent library of evaluated nuclear reaction data

(ENDF/B-VII.1) from the National Nuclear Data Center (NNDC) was implemented in the

simulation [49]. All simulated diamond detectors were surrounded by natural air to mimic

real experiment conditions [50].

The MCNP6 treated neutron capture in either implicit or analog capture. Analog capture

was used in this study instead of implicit capture because the latter is recommended to

use only in highly absorbing media [51]. Multiple mono-energetic sources (0.25-14 MeV)

were modeled as point sources to investigate the best scattering angles that demonstrated

18



the best energy resolution while also maintaining good detection efficiency. It was found

that scattering angle has a proportional relationship to energy deposited in the diamond

detector. Once the optimum angle was defined, the separation distance between the diamond

detectors were chosen based on the accuracy of the reconstructed neutron energy of 1 MeV.

The incident neutron energy was chosen due to the high neutron cross-section with the 12C

atom.

Once DNSC geometrical designs were obtained based on mono-energetic neutrons, 252Cf

and 239Pu-Be sources were simulated as neutron sources. The 252Cf source was generated

using the built-in card option in MCNP6. 252Cf is a spontaneous fission source that generates

high yields of neutron and γ-rays. The fission neutrons exhibited the typical Watt fission

distribution, as described in the following equation [52],

p(E) = Cexp[
−E
a

]sinh(bE)0.5 (3.1)

where a and b are parameters and have the values 1.3 and 2.948 in default, respectively.

However, the MCNP manual provided the parameters values of the 252Cf spontaneous fission

source: a=1.18 and b=1.03419 [48]. The 239Pu-Be neutron source, on the other hand, shows

low yield of γ-rays but exhibits several spectral features of neutron particles and extends

as high as 11 MeV [48, 53]. The 239Pu-Be neutron source spectrum was obtained from

Reference [53]. Neutron source spectra were plotted in Figure 3.1.

Two DNSC setups were implemented through MCNP: a two-diamond array system

and a diamond-array system. The two-diamond array system was constructed to evaluate

the capability of spectroscopy measurements. Once the optimum system of geometrical

orientation was defined for a given threshold and timing uncertainty, 252Cf and 239Pu-

Be neutron sources were used to evaluate the potential of NSC. Both neutron sources

were modeled as point sources to reduce machine runtime. Additionally, the sources were

simulated far enough away from the two-diamond array to enable appropriate assumptions

of an incident plane wave of neutrons.

The main goal of diamond array implementation was to reconstruct high resolution

neutron images using the back-projection technique. The diamond arrangements were
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Figure 3.1: 252Cf and 239Pu-Be neutron sources spectra.

determined based on such factors as detection efficiency, spectral analysis, and source

localization. The diamond-array system included numerous pixelated diamond detectors

distributed in two arrays. The neutron sources were modeled as cone sources instead of

isotropic sources because the latter required considerable simulation runtime. Moreover, the

cone angle was implemented to cover the whole array of diamonds to allow simulated neutrons

to interact with each pixel. Examining different orientations with immense numbers of pixels

led to the need for creating a C++ code capable of building MCNP codes based on user input

of system geometry specifications. For instance, the code was built based on a class function

called Pixel. The class algorithm read the following user input parameters: diamond size

(width and thickness), number of diamonds per array, separation distance between diamonds

in each array, and array separation distance. Then, the same class printed the MCNP code

in an output file. The first diamond array, located in the center of the axis coordinates

(0,0,0). Additionally, the output file included all cards except source specifications, which

were typed manually after running the C++ code.

The DNSC used double-scattering interactions to reconstruct a neutron source spectrum.

Due to the limited growth capability of large volume diamond substrates, the angular
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distribution of secondary neutrons played an important role in the DNSC design (see Figure

3.2).

Figure 3.2: Relationship between the angular distribution, neutron recoil angle in CM, and
neutron energy. The plot was generated from CENDL-3.1 ENDF neutron library [20].

After running MCNP codes for a specific number of neutron particles (i.e. 1*1011), post-

processing codes were built and conducted to extract and present the simulation results.

3.3 Post-Processing Algorithm

DNSC system design parameters were optimized through a series of MCNP6 simulations.

PTRAC output files were processed through C++ code to implement all double-scattered

events. To meet kinematics equation requirements (conservation of energy), the first

interaction in any double-scattering event had to be elastic scattering. However, the second

interaction could have been any type of interaction because it was needed for measuring

ToF only. The post-processing code printed the following in an output file: incident neutron
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energy, neutron-scattered energy, coordinates, and time occurring for both events. Only

timing and recoil carbon atom energy were required to reconstruct the neutron source

spectrum in both DNSC setups. However, other parameters were used to reconstruct the

exact spectrum for comparison purposes with DNSC measurements. The flow chart in Figure

3.4 summarizes the process of C++ code for the DNSC systems.

3.3.1 Two-Diamond Array

The C++ code output files were processed through a Matlab code to build the incident

neutron spectra. Using relativistic kinematics, the incident neutron energy, En, was

calculated using Equation 3.2,

En =
E ′n ∗ (A2 + 1)[

cosϑ−
√
A2 + sinϑ2

]2 (3.2)

where ϑ is the neutron-scattered angle [54]. Based on Equation 3.2, the energy of the recoil

atom was not required to reconstruct the scattered neutron like in all current NSC systems.

However, an energy deposition threshold (10 keV) was chosen to investigate the feasibility

of the reconstructed spectra using a two-diamond array in an experimental environment.

The scattered neutron , E ′n, energy was calculated, as described before in Equation 2.4.

A histogram was built of the reconstructed incident neutron source. The histogram bins

were defined accordingly to decrease the uncertainties in each bin. Once the neutron energy

spectrum was constructed, it had to be corrected for the small and changing detection

efficiency of thin diamond detectors.

The final step in source spectrum reconstruction was correcting for the neutron cross-

section of carbon (i.e., the detection efficiency). Because diamonds have 12 nucleons, as

the energy of the neutron increases, the higher order quantum number L in the Legendre

Polynomials results in a non-flat differential scattering cross-section and must be considered

in addition to the integrated differential scattering cross-section as a function of energy (i.e.,

the neutron detection efficiency as a function of energy) [17]. With appropriate calibration of

the DNSC, the measured response was corrected to accurately represent the incident neutron
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Figure 3.3: The flowchart of C++ code to extract double-scattering events from DNSC
PTRAC output files.
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source spectrum. Finally, both modified and unmodified DNSC spectra were plotted along

with the neutron source spectrum.

3.3.2 Diamond Array System

3.3.2.1 Spectral Analysis

In contrast to the two-diamond array system, the energy deposited from the carbon recoil

atom in the first pixel must be defined to build the neutron spectrum because the scattering

angle has huge variation in this diamond array system. For any double-scattered neutron

interaction, the energy of the scattered neutron was calculated based on Equation 2.4, while

the incident neutron energy, En, was calculated using Equation 3.3,

En = E ′n + Ec (3.3)

where Ec is the energy of the recoil carbon atom measured in the first detector [2].

3.3.2.2 Source Localization

Based on scattered and incident neutron energies defined in Equations 2.4 and 3.3, the

scattered angle was calculated using Equation 3.4 [54].

cos θ =
1

2

[
(A+ 1)

√
E ′n
En
− (A− 1)

√
En
E ′n

]
(3.4)

Thus, arrival direction located the source via the back-projection cone, and several

interactions were used to pinpoint the location of the source. Nevertheless, the projection

cone angle had uncertainty, a product of uncertainties associated with timing and energy

deposition [55]. The radius of the cone was calculated using the scattering angle of the first

diamond detector and the distance to the image plane, as shown in Figure 3.4.

The post-processing code created a 2D image plane. The image was coded as a 2D matrix

consisted of 10000 cells, each with a value of zero. The built cone increment the assigned

cells. The image plane was represented in x and z axis. However, the 3D coordinates had

to be defined for the image. The y-component of the image plane represented the distance
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Figure 3.4: Illustration of the back-projection technique with two pixelated diamonds.

to the first array of the diamond array system (Y). To achieve the highest resolution, the

Y-value of the image plane had to match the source y-component to define the real radius

from the cone center to the neutron source. A color-bar was included as well in the generated

image to determine the precise source position.

3.4 Uncertainty Calculation

For ToF between any two diamond detectors, much uncertainty occurs; namely, the

uncertainties in the distance, angle between the two detectors/pixels, and timing associated

with the involved detectors and electronic devices. The uncertainty in the distance can be

minimized, but the uncertainty in the angle is a property of the size of the two detectors

and the separation distance, which increased as the distance between the two detectors

decreased. The uncertainty in the timing was dictated by the speed of the diamond

detectors and processing electronics. Literature [28] has shown that the timing between

two diamond detectors using MIPs is on the order of tens of picoseconds. Therefore, the

system performance is expected to be dominated by the uncertainty of the angle between

the two diamond detectors. Based on Cetiner M. [56], the relativistic energy resolution for

ToF measurements was calculated by Equation 3.5,
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FWHM = Γd = ∆E = E +Mc2
β2

1− β2

√[∆L

L

]2
+
[∆t

t

]2
= E +Mc2

β2

1− β2

√
[δL]2 + [δt]2 (3.5)

where δt and δL are relative uncertainties of ToF and scattered path length, respectively.

Equation 3.6 described timing uncertainties for both detectors.

δt =
√

2 ∗ δtwalk 2 + 2 ∗ δtj itter 2 + δtdepth1 2 + δtdepth2 2 + δtangle 2 (3.6)

The walk and jitter were caused by the uncertainty of the signals amplitude when it reached

the discrimination threshold. Figure 3.5 explains the timing walk and jitter of the leading-

edge timing discrimination (LED) mode.

for the dead time losses if the losses are not excessive. If the dead time losses are less than 15%, the extending, non-extending, and
cascaded dead time equations all yield values of r(t)/R(t) that agree within 1%, provided 

T = Te + U(Tne–Te) (Tne–Te) (9)

is substituted for the single dead time in the extending and non-extending equations. This permits considerable simplification of the
computation in exchange for a tolerable limit on the dead time loss.

Timing
Marking the arrival time of detected events with precision and consistency is the primary function of a timing discriminator. Achieving
the optimum time resolution is important whether the application is time spectroscopy, or simply determining that events from two
different detectors occurred simultaneously. The technique for deriving optimum time resolution depends on the type of detector.
Therefore, one must choose the right timing discriminator based on the detector characteristics and the intended application. The
descriptions and selection charts that follow will guide you to the best choice.

Jitter, Walk and Drift: The Limiting Factors in Timing
Jitter, walk and drift are the three major factors limiting time
resolution. These characteristics are most readily described by
reference to a simple leading-edge timing discriminator, as
illustrated in Fig. 1.

A leading-edge timing discriminator incorporates a simple voltage
comparator with its threshold set to the desired voltage (Fig. 1).
When the leading edge of the analog pulse crosses this threshold
the comparator generates a logic pulse. The logic pulse ends when
the trailing edge of the analog pulse crosses the threshold in the
opposite direction. The initial transition of the logic pulse is used to
mark the arrival time of the analog pulse, and this time corresponds
to the threshold crossing on the leading edge of the analog pulse.

In the absence of noise and amplitude variations, the leading-edge discriminator would mark the arrival time of each analog pulse with
precision and consistency. However, many systems include a non-negligible level of electronic noise, and this noise causes an
uncertainty or jitter in the time at which the analog pulse crosses the discriminator threshold. If en is the voltage amplitude of the noise
superimposed on the analog pulse, and dV/dt is the slope of the signal when its leading edge crosses the discriminator threshold, the
contribution of the noise to the timing jitter is

Timing jitter = en / (dV/dt). (10)

If the noise cannot be reduced, the minimum timing jitter is obtained by setting the discriminator threshold for the point of maximum
slope on the analog pulse. If a low pass filter is applied to reduce the noise by slowing down the pulse rise time, the slope in Equation
(10) normally decreases more rapidly than the noise diminishes, and the net result is an increase in timing jitter. Therefore, it is best to
preserve the fastest possible rise time from the signal source. For further guidance on choosing the appropriate rise time for the
preamplifier and amplifier that precede the timing discriminator, see the introduction on Preamplifiers and Amplifiers. Electronic noise
makes a significant contribution to timing jitter with silicon charged-particle detectors, fast photodiodes, Si(Li) detectors, and
germanium detectors, and to a somewhat lesser extent with microchannel plates, microchannel plate PMTs, and channeltrons.

With scintillation detectors (scintillators mounted on photomultiplier tubes) the noise contribution is usually negligible, but there is a
another important contribution to timing jitter: statistical fluctuations in the arrival time of the pulse at the detector output. The optimum
solution for this application is discussed below. Germanium detectors also bring a special problem to the timing task, because the rise
times of the pulses from these detectors vary over a wide range, and this variation is a dominant source of timing jitter. The special
solution for timing with germanium detectors is described later in this section.

"Walk" is the systematic dependence of the time marker on the amplitude of the input pulse. Fig. 1 shows two pulses which have
exactly the same shape, but one has twice the amplitude of the other. The higher amplitude pulse crosses the discriminator threshold
earlier than the smaller pulse. This is the source of "walk" or time slewing. With a leading-edge timing discriminator, smaller pulses
produce an output from the discriminator later than larger pulses do. When observed on an oscilloscope, the timing discriminator
output pulses appear to "walk" back and forth on the time axis in response to the variations in the input pulse amplitudes. Obviously,
"walk" can seriously degrade the time resolution when a wide range of pulse amplitudes must be processed. The constant-fraction
discriminator, ARC timing, and other zero-crossing techniques are highly recommended for eliminating or minimizing "walk".

Fast-Timing Discriminator
Introduction

ORTEC ®

3

Fig. 1. Jitter and Walk in Leading-Edge Time Derivation.
Figure 3.5: Walk and jittar uncertainties in leading-edge discriminator mode [57].

The Constant Fraction Discrimination (CFD), on the other hand, generated less walk

and jitter uncertainties because the triggering event occurred independent of the analog

signal amplitude [58]. Equation 3.7 represents the jitter timing based on rise signals of both

diamond detector and amplifier,

tj itter = σj itter =

√
trs
V0

√
trs
tra

+
tra
trs

(3.7)

where trs and V0 is the detector rise time and peak amplitude of detection signal. The

amplifier rise time is represented by tra [56].

The jitter timing of the diamond detector for a fiber-optic cable was demonstrated as 12

picoseconds based on Reference [10]. Differences in rise times of the detector and amplitude
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of the input signal caused time walk to the DNSC. In other words, higher amplitude input

signals reached the LED energy threshold faster than signals with a lower amplitude [56].

According to Reference [59], the time walk equaled approximately 12 picoseconds for the

detection system with fast preamplifiers.

Depth and angular uncertainties played a substantial role in DNSC timing. Both depth

and angular uncertainties were found by defining the difference between the interaction

locations of the scattered neutron and average angles and depths. One term (δtdepth) was

used for depths and angular and neutron flight path length uncertainties because all of them

were functions of interaction locations in the 3D coordinate system.

Due to the statistical process of electron-hole productions within the diamond detector,

the Fano factor was included to obtain the energy resolution of the detector. The FWHM

of single diamond detector is given by Equation 3.8 [21],

Γf = 2
√

(2ln2)FEdω (3.8)

where F is the Fano factor and had the theoretical value of 0.08 for diamond [60].

Additionally, Ed and ω were the energy deposition and energy required to create an electron-

hole pair, respectively. Furthermore, the two-diamond array had only two detectors; thus,

Γf t =
√

Γf 1 2 + Γf 2 2 (3.9)

Consequently, the total FWHM of DNSC is described in Equation 3.10 [21],

Γt =
√

Γd 2 + Γf t 2 (3.10)

3.5 DNSC Efficiency and Resolution Properties

Various MCNP codes were modeled for several mono-energetic neutron sources to obtain

and define the detection efficiency and energy resolution of the two-diamond array system.

All simulated sources were modeled as mono-directional, where the first diamond facing the

beam, to reduce the machine runtime. The detection system, as described in section 3.2,
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consisted of two diamond detectors, the first detector was stationary and facing the neutron

source while the second diamond was situated in two different positions according to the

detected neutron energy. Each MCNP code was run with a mono-energetic neutron source

and a specific number of simulated neutron particles (2*109) since they provide optimum

number of neutron interactions within the DNSC. The modeled neutron sources had values

from 0.25 MeV to 14 MeV. The post-processing codes were utilized to execute data from

PTRAC output files and generate an informative figure of the two-diamond array NSC

properties.

3.5.1 Detection Efficiency

Detection efficiency of DNSC is a function of system geometry (solid angle, detector

thickness, separation distance, and scattered angle) and the intrinsic properties of diamond

detectors (density and neutron cross-section). However, MCNP simulated the neutron

interaction in the diamond detectors based on those factors; thus, the detection efficiency

was determined as the number of double elastic scattering neutrons (N) recorded by the two-

diamond array system divided by the total number of generated neutrons (2*109) [2, 21].

3.5.2 Energy Resolution

Energy resolution was calculated based on the width of the reconstructed neutron energy

peak. The Matlab code defined the Full Width Half Maximum (FWHM) value of the peak

based on its standard deviation, as shown in Figure 3.6.

Equation 3.11 and 3.12 used to obtain the energy resolution of the detection system for

each neutron source,

Resolution(%) =
FWHM

Average of the reconstructed neutron energy
∗ 100 (3.11)

FWHM = 2.35 ∗ σ (3.12)

where σ is the standard deviation of the reconstructed peak.
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Figure 3.6: 5 MeV reconstructed peak using two-diamond array NSC.

3.6 Experimental Setup

To validate simulation results, an experimental evaluation of the two-diamond array was

made. The experimental work had four main stages: preparing the SSDs, designing and

fabricating the readout PCBs, mounting the SDDs with PCBs to the aluminum enclosures,

and performing the experiment.

Because of the scratchy surface of the old electroplates, the old metallization contacts gold

(Au)/chromium (Cr) were removed, and a new Au/Cr contact were applied. The following

process summarizes the process: SDDs were boiled in Aqua Regia (HCl:HNO3) (3:1) for

forty-five minutes to strip the gold layer from the contacts. Next, a chromium etchant

solution was applied for ten minutes to remove the chromium layer. Once the SDDs were

free of contact, they were rinsed thoroughly with deionized water. A sputtering machine

was used to sputter the new metallization contact to both surfaces of the SDDs. The new

diamond contacts had a thickness of 100 nm and 50 nm for the chromium and gold layers,

respectively. Furthermore, the SDDs were thermally annealed for 20 minutes in argon gas,

heated to 600 0C, to acquire better Ohmic contact properties [17, 61].

Altium software was utilized to design the readout PCB, as shown in Figure 3.7. The

PCB contained a diamond placeholder in the middle. As seen in the layout, a hole beneath

the diamond was designed to reduce scattering neutrons in the PCB and, consequently, to
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increase detection efficiency. A metal pad was included in the design to wire-bond the SDD

to the PCB. The design layout was sent to SunStone company to fabricate two boards.

Figure 3.7: Screen shot of the designed PCB board in the Altium software.

Sliver paste was applied beneath the SDDs to hold them in the PCBs. Afterwards, a

wedge bonder (Kulicke Soffa 4523D) was utilized to connect the SDDs to the boards using

gold wire (≈25 µm). However, the wire was bonded to the board for only the first SDD due

to the low electroplates layer thickness. Consequently, the wire was held with a tiny amount

of silver paste applied to the top of the SDD.

Each diamond detector was contained within its own electrical housing, and each was

mounted onto an aluminum extrusion frame, as shown in Figure 3.8. The frame allowed

control of the relative orientation between the two diamond detectors. Since the enclosures

were thick enough to increase the number of scattered neutrons, both boxes front and rear

sides were cut through, and aluminum foil was used to cover cutting areas.

Besides the SSDs, two Cividec C6 fast amplifiers and a CAEN digitizer V5730 were used

to capture the ToF of the double interaction events, as shown in Figure 3.9. The fast-shaping

amplifier produced a fast signal with a Gaussian shape (FWHM=10ns). The digitizer had a

fast sampling (500 MHz) rate with useful GUI interface. Compass software was conducted

to run the digitizer in a coincidence mode and record all events within a specific timing

window. The generated files included the time stamp in picoseconds, long gate, short gate,

and event flag. Figure 3.10 displays the different parameters of the acquisition window.
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Figure 3.8: Aluminum box enclosure.
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Figure 3.9: Electronic block diagram of the two-diamond system NSC.
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Fig. 2.5: Diagram summarizing the DPP-PSD parameters. The trigger fires as soon as the signal crosses the threshold
value. Long Gate, Short Gate, Gate Offset, Pre-Trigger, Trigger Hold-Off, and Record Length are also shown for one
acquisiƟon window.

Note: The CFD for 751 series is supported from DPP-PSD firmware release greater than 132.32.

Using analog signals the Time Stamp determinaƟon is tradiƟonally done with CFD (Constant FracƟon Dis-
criminator)modules. This technique sets the Ɵme stampof a pulse to the Ɵmewhen the amplitude reaches
a fixed fracƟon of the full amplitude. The DPP-PSD firmware for 725, 730, and 751 families intends to ex-
ploit the advantages of a CFD technique using a digital sampling device. The standard implementaƟon of
the leading edge trigger (refer to Sec. Digital Leading Edge), that may suffer from amplitude walk issues.
Conversely triggering on a constant fracƟon of the input may reduce this issue since it is independent from
the amplitude pulse. On the other side a simple linear interpolaƟon between two points can solve the
problem of the sampling clock granularity, thus improving the Ɵming resoluƟon.
The digital CFD signal has been implemented in the classical way. The input waveform is aƩenuated by a
factor f equal to the desired Ɵming fracƟon of full amplitude, then the signal is inverted and delayed by a
Ɵme d equal to the Ɵme it takes the pulse to rise from the constant fracƟon level to the pulse peak; the
latest two signals are summed to produce a bipolar pulse, the CFD, and its zero crossing – corresponding
to the fracƟon f of the input pulse – is taken as the trigger Ɵme (see Fig. 2.6).
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Figure 3.10: CAEN digitizer acquisition window.
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3.7 Results

3.7.1 Two-Diamond Array

Mapping out the system sensitivity in simulation space to fast mono-energetic neutrons

indicated that the angle between the two diamond detectors strongly impacted the sensitive

energy range of the two-array diamond NSC. Separation distance was investigated based on

the accuracy of the reconstructed energy of the 1 MeV mono-energetic neutron. Figure 3.11

displays the uncertainties of the reconstructed incident neutron for a variety of separation

distances.
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Figure 3.11: Reconstructed 1 MeV neutron energy of the two-diamond system in various
separation distances.

The first diamond detector was stationary while the second diamond movable to two

different positions for higher detection efficiency. Moreover, the two-diamond array NSC was

simulated as three diamond detectors instead of running each position of second diamond

separately. After running massive amount of different detection geometries, it was found that

33



best systems form detection efficiency and energy resolution was three 5x5x0.5 mm3 diamond

detectors separated by 10 cm. Moreover, for incident neutron energies below 1 MeV, the

ideal angle that maximized detection threshold was 160o. For neutrons at or above 1 MeV,

the best scattering angle based on simulation results was defined as 45o (see Figure 3.12).

Figure 3.12: Two-diamond array NSC setup.

As discussed in the methodology section, both energy resolution and detection efficiency

were defined for the detection system through simulation codes, as provided in Figure 3.13.

It is evident from the figure that detection efficiency had significantly low values due to

the compact size of diamond detectors beside the needs of double scattering events and

relatively large separation distance to achieve convenient energy resolution. A proportional

relationship between energy resolution and detection efficiency is seen from the figure as well.

In order to define the detection efficiency of the two-diamond NSC for experimental

work, MCNP code was utilized to obtain the counts per hour for an isotropic 239Pu-Be

source. The source was located 50 cm from the detection system and modeled as point

source with a neutron emission rate of 2.4 * 106 n/s, which is similer to the neutron emissin

rate of Monsanto research corporation [62]. Figure 3.14 displayed the counts per hour for

each separation distance.
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Figure 3.13: Detection efficiency and energy resolution of the two-diamond array system.
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Figure 3.14: Two-diamond NSC system counts per hour for an isotropic 239Pu-Be source.
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The correction factor (CF) was essential for reconstructing the correct neutron energy

spectrum from the measured response, as previously described. MCNP software was utilized

to define the CF for any neutron source, where the CF represented the multiplying factor

necessary to reconstruct the true neutron source energy spectrum. The two-diamond array

geometry was modeled with a neutron source of one fixed value. In other words, the incident

neutron was set as one histogram bin with the range 0.2-11.5 MeV (see Figure 3.15a). After

running the simulation, the CF was defined for each bin as the ratio between the MCNP

output spectrum and source value, as shown in Figure 3.15b.
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Figure 3.15: (a) Simulated neutron source and obtained spectrum. (b) Correction factor
for the neutron source.

For the two poly-energetic neutron sources used, the two-diamond array NSC worked

well to match the incident neutron spectrum. The results for a 252Cf fission neutron source

and 239Pu-Be source are provided in Figure 3.16 and 3.17, respectively. After modification

using CF, neutron spectra rendered better agreement with the neutron sources than an

unmodified one. However, the higher energy (>8 MeV) of the modified spectrum for the

239Pu-Be neutron source showed some fluctuations due to low counts.
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Figure 3.16: The reconstructed spectrum of 252Cf source using two-diamond NSC.
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Figure 3.17: The reconstructed spectrum of 239Pu-Be source using two-diamond NSC.
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The simulated number of neutrons of 252Cf (3*1011) was equvilant to the measrement

time of 6 hours of a 252Cf isotropic source with a neutron emission rate of 2.314 * 1010 n/s

located 50 cm away from the detection system, the source emission comparable to Frontier

technology corporation 252Cf source model no. 100 [63]. For isotropic 239Pu-Be source, the

emission rate was defined as 2.4 * 106 n/s, based on the expected neutron emission rate of

Universty of Tennessee 239Pu-Be source, and the distance between the source and the first

diamond was 10 cm [62]. The expected measurement time would be approximately 97 days,

which is extremely long time due to the low detection efficiency of the system.

To increase the detection efficiency and enhance energy resolution, a 16-pixel two-

diamond system was simulated as well. Each pixel was 1.25x1.25 mm2 in area. The

separation distance between the diamond plates was reduced to 5 cm to achieve higher

detection efficiency while also maintaining good energy resolution. Figure 3.18 displays the

reconstructed incident neutron spectrum for each neutron source with and without the use

of the CF. Good agreement of the incident neutron sources was also achieved for the 16-pixel

two-diamond array.

0 2 4 6 8 10 12
Neuturon Energy (MeV)

0

0.05

0.1

0.15

N
or

m
al

iz
ed

 F
re

qu
en

cy

Source
Unmodified
Modified

(a)

0 2 4 6 8 10 12
Neuturon Energy (MeV)

0

0.02

0.04

0.06

0.08

0.1

0.12

N
or

m
al

iz
ed

 F
re

qu
en

cy

Source
Unmodified
Modified

(b)

Figure 3.18: 16-pixel two-diamond array reconstructed spectrum for (a) 252Cf source and
(b)239Pu-Be source.
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3.7.1.1 Experimental measurements

Two bare 239Pu-Be neutron sources were used. Each source activity was 1 Ci with a neutron

emission rate of 2.4*106 neutrons per second. Due to the nature of isotropic sources and the

proximity of the second SDD and neutron sources, measurement was performed only for the

450 position. Additionally, the sources were aligned and placed 2 cm from the first SDD.

More separation distance was needed to gain mono-directional neutrons for better energy

resolution. However, for time consideration, both sources were kept in their positions to

obtain more neutron counts. Also, for the same reason, the separation distance was reduced

to 5 cm instead of 10 cm. To decrease the vibration of the table, all electronics were placed

atop a wooden panel (see Figure 3.19).

The CFD mode was activated for the measurements to gain good timing resolution

measurements. However, after three days of running, the system showed an insignificant

amount of counts, mostly saturation counts. Consequently, the LED mode was chosen

instead with 60 lsb threshold to avoid the low noise signals. The pulse height spectrum was

measured for the second SDD because, being further from the sources, it demonstrated lower

γ ray interactions than the first SDD. Figure 3.20 shows the pulse height spectrum of the

second SDD. The two-peak interaction of inelastic scattering 12C(n,α)9Be and 12C(n,n’)3α

were clearly seen in centered channel numbers 60 and 150, respectively. However, the first

peak was broadened because of the elastic scattering of wide neutron spectrum of the 239Pu-

Be source.

The experiment was conducted for a total time of 370 hours. The output data proceeded

offline through a Matlab code built to read both files and determine the ToF data of each

interaction. Based on a previous neutron ToF calculation of the 239Pu-Be source, the Matlab

code accepted only events with ToF in the range (1,7.2) units in nanoseconds. The time range

was calculated for the the upper and lower neutron energies of the 239Pu-Be source based on

the separation distance (5 cm). Additionally, the code extracted only events with a fine time

stamp flag. The final step was converting the measured ToF into an energy histogram and

modifying it by using the simulated CF. Figure 3.21 displays the modified spectrum along

with the expected neutron source spectrum [64].

39



Figure 3.19: Arrangement of the two-diamond array NSC experiment.
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Figure 3.20: Pulse height spectrum of 239Pu-Be source in the second SDD.
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Figure 3.21: Reconstructed neutron spectrum of the 239Pu-Be source.

41



The neutron spectrum of the 239Pu-Be source depends mainly on the mass and weight

fraction of Pu isotopes within the source which was undefined. In addition, the 239Pu-

Be sources were manufactured in 1960, which led to significant growth of daughter nuclei.

The high decay constant of the daughter nuclide (241Am) created an increase in the (α,n)

interaction rates and, consequently, in the neutron yield of the sources [65]. Thus, the

current neutron spectrum of the used sources may slightly differ from the expected neutron

spectrum. Still, the experimental results matched the peak neutron energy regions of the

239Pu-Be neutron spectrum. In addition, statistical fluctuations appeared in the spectrum

due to the low counts of the system.

3.7.2 Diamond Array System

The structure of the diamond array was obtained through different design layouts. First, it

was found that the optimum distance between the two planes was 5 cm for spectrum analysis.

Furthermore, it was found that a 1-cm separation distance between diamond planes was

best to pinpoint source location. Each of the two planes in the diamond array contained 16

diamond detectors, and each diamond detector was 5x5x0.5 mm3 with an even array of 4x4

pixels. The minimum energy deposition that could be registered was set to 10 keV. Figure

3.22 provides the detection system setup.

Figure 3.22: Schematic view of the diamond array NSC.

42



3.7.2.1 Spectral Analysis

As presented earlier, the CF was used for the diamond array system. Afterwards, the system

demonstrated the ability of reconstructing an incident neutron source spectrum, as shown

in Figure 3.23.

Both neutron sources spectra were built successfully. The modified spectrum was

significantly enhanced through CF; however, fluctuations appeared in the reconstruction

spectra due to the high variation of neutron-scattered angles in the system. Nevertheless,

the diamond array system was able to detect as low as 257 KeV incident neutrons.
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Figure 3.23: Diamond array system reconstructed spectrum of (a) 252Cf source (b) 239Pu-
Be source.

3.7.2.2 Source Localization

To investigate the image resolution of the detection system, both mono-energetic and 252Cf

poly-energetic neutron sources were modeled as point sources in various coordinates in front

of the diamond-array system. The front array of NSC was placed at the center of the axis
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coordinates (0,0,0). Configuration of source positions is listed in Table 3.1. Diamond array

NSC-generated images are displayed for all configurations in Figure 3.24.

All images pinpointed the sources with high accuracy. The image indicate the exact

2D coordinates for each source; the image resolution is discussed in the next section. The

diamond array system manifested a high sensitivity in locating neutron sources even with

low cones counts, as indicated in Figure 3.25. For only 50 cones, the diamond array NSC

define the locations of two close sources.

As stated previously, the reconstructed image plane located the neutron source in 2D

(z and x axes). However, dissimilarity of the y-component between the image plane and

incident neutron source led to a significant reduction of image resolution. Figure 3.26 shows

the reconstructed image in several different locations for configuration No. 4.

The difference between Y distances and the actual simulation resulted in image blurring,

and aliasing presented as well in Figures 3.26a and 3.26c. Consequentially, a limitation

of locating neutron sources was observed. To resolve this issue, the reconstructed code

generated numerous images for multiple distances (Y), and the user defined the optimum

image. This issue could be addressed as well through a machine-learning or image-processing

algorithm. However, because this advanced algorithm is beyond the scope of this research,

the first solution was utilized.

The measurements’ time that the system would take for all configurations, which are

listed in Table 3.1, were calculated based on neutron emission rate of 252Cf and 4MeV mono-

energitic beamline. Firstly, 252Cf source of Frontier technical cooperation was utilized in this

calculation. The 252Cf source model no. 100 has a neutron emission rate of 2.314 * 1010

n/s based on 10 mg mass of 252Cf isotopes within the source capsule [63]. The expected

Table 3.1: Configuration of simulated point sources.

Configuration No. Neutron source Coordinates (cm)

1 Mono-energetic (4 MeV) (10,100,0)
2 252Cf (0,10,0)
3 252Cf (5,200,5)

4
Mono-energetic (4 MeV) (10,100,0)
Mono-energetic (4 MeV) (0,100,10)
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(a) (b)

(c) (d)

Figure 3.24: Diamond array system reconstructed images for configuration No. (a) 1 (b)
2 (c) 3 and (d) 4 as listed in Table 3.1.

45



(a) (b) (c)

Figure 3.25: Reconstructed image planes for two 4 MeV mono-energetic neutron sources
located at (10, 100, 0) and (0, 100, 10) for multiple cone rates (a) 10 cones (b) 50 cones (c)
500 cones.

(a) (b) (c)

Figure 3.26: Reconstructed image planes for two 4 MeV mono-energetic neutron sources
located at (10, 100, 0) and (0, 100, 10) for different Y distances (a) 20 cm (b) 100 cm (c)
200 cm.
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measurements’ time was calculated by assuming the 252Cf neutron source as an isotropic

point source instead of the source’s cylindrical shape.

The beamline of the University of Ohio was considered as the mono-energtic neutron

source, since there are no other neutron sources which can afford the value of 4 MeV neutron.

The beamline generated 4 MeV neutrons with the interacted rate of 3000 n/s [66]. The

measurements’ time was calculated and listed in Table 3.2 for all configurations.

For configurations 1 and 4, very long measurements’ time was calculated due to the

low flux intensity of the beam. As an alternative, the mono-energtic neutron from the

D-T generator (14.1 MeV) would provide much higher neutron rate (5.0 * 1011 n/s) and

,correspondingly, lower measurements’ time [67]. For 252Cf source configurations, the

measurement times were found reasonable as a result of the high activity of the source.

Furthermore, the significant difference between the measurement times of configurations 2

and 3 was due to the differences in source locations.

3.7.2.3 Image Resolution

The image resolution was calculated based on the point source of 252Cf located at (0,0) and

located 10 cm away from the center of the first array of diamond array NSC. In order to

reduce the machine runtime, the source was simulated as a cone source with a history of

1010 neutron particles. Equation 3.12 was implemented to define the resolution of the image

after creating 2D profiles for horizontal and vertical axes. The two profiles were plotted for

10 keV energy threshold and normalized (see Figure 3.27).

Table 3.2: Expected measurement time for each configuration.

Configuration
No.

Neutron source Coordinates
(cm)

Measurements
time

1 Mono-energetic (4 MeV) (10,100,0) 925.92 hr
2 252Cf (0,10,0) 2.61 min
3 252Cf (5,200,5) 20.51 min

4
Mono-energetic (4 MeV) (10,100,0)

1851.85 hr
Mono-energetic (4 MeV) (0,100,10)
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Figure 3.27: The 2D profiles of (a) horizontal and (b) vertical axes of the reconstructed
image for a 252Cf point source located at (0,10,0).

The image resolution of the diamond array system was determined for each axis direction.

For horizontal axis, the mean value was found to be 0.22 cm with 1σ of 3.82 cm, while the

vertical axis resolution was 4.01 cm with the mean value of 0.21 cm. The mean values for

both directions were very close to the exact location of the 252Cf point source. However, the

uncertainties associated with the ToF equations and plotted cones are expected for slight

variation of the source location. The imaging efficiency of the system was demonstrated

by identifying the ratio of number of cones to the simulated neutron numbers and it was

calculated as 1.186*10−8 for the same threshold value (10 keV). Two more different threshold

values were applied to define the image resolution for higher neutron energy depositions as

shown in Table 3.3. The higher threshold demonstrated higher uncertainties and lower

imaging efficiency due to the low plotted cones.

Table 3.3: Diamond array NSC resolution and number of cones for different energy
thresholds.

Threshold (keV) Number of Cones σH (cm) σV (cm) Imaging efficiency

10 1186 3.83 4.01 1.19*10−7
30 720 3.83 4.34 7.20*10−8
50 456 4.32 4.67 4.56*10−8
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The simulated number of neutron particles might be similar to the neutron emissions of

Frontier technical cooperation 252Cf source located at the same location of the simulation

source in approximately 30 seconds [63]. However, measurements might take more time, since

they were calculated by assuming the 252Cf neutron source as an isotropic point source.
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Chapter 4

Diamond Time-of-Flight Detector

4.1 Introduction

Neutron particles, most frequently, induce fission reactions with actinides nuclei. The

heavy target nucleus absorbs the incident neutron and forms unstable nuclei that split

instantaneously, releasing a significant amount of energy (≈ 200 MeV). The released energy

is distributed amongst the produced fission fragments, β, neutrinos, γ rays, and neutrons.

Fission neutrons are either delayed or spontaneously generated (within a very short time

frame ≈ 10−14 second). Prompt neutrons are the dominant produced neutrons (≈ 99%)

of fission reaction. Additionally, released prompt neutrons are considered a major part in

propagation fission reactions in nuclear reactors and also in detecting SNM materials using

both passive and active neutron interrogation techniques [19, 47].

Due to the importance of prompt neutrons, Chi-Nu experiments were implemented to

obtain more accurate evaluated data of the fission reaction with actinides to replace the Los

Alamos model data. The Los Alamos model shows high uncertainties in many energy ranges

in prompt neutron spectra for major actinides isotopes [68]. The Diamond Time-of-Flight

Detector (DToF) was simulated to study both the feasibility of the obtained accurate spectra

of prompt neutrons and the multiplicity factors for reactor design and nonproliferation

application. The Monte Carlo simulation code was conducted in this simulation study using

multiple targets of two SNM materials (235U and 239Pu).
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4.2 MCNP code

MCNP6 codes were written with PTRAC card to measure the prompt fission neutron spectra

of two valuable and prevalent SNM materials (235U and 239Pu). Also, the simulation study

aimed to evaluate the effects of different thicknesses of the two SNM materials for the neutron

multiplicity counter. Isabel models physics with Denser evaporation model were invoked to

simulate the fission reaction [69].

The DToF was modeled as a target diamond detector (5 mm x 5 mm x 0.5 mm) coated

with either a 235U or 239Pu target of various thicknesses (1, 10, 100, and 1000 µm). Two

mono-energetic fast neutron sources (1 MeV and 4 MeV) were modeled as mono-directional

point sources to induce the fission reaction in the SNM targets. The released prompt fission

neutrons scattered through a diamond sphere surrounding the SNM targets, as shown in

Figure 4.1. The sphere had a thickness of 1 cm to achieve good detection efficiency (for 2

MeV neutron ≈ 26%). However, the overall detection efficiency of the DToF reduced for

the same neutron energy to approximately 2% because of the low thickness of the target

diamond.

The high released energy of the fission reaction was used as a trigger to discriminate

between fission and other interactions (elastic,inelastic and absorption). Therefore, prompt

fission neutron spectrum was reconstructed based on the measurements of the interrogating

fast neutron time (ToF 1) and the interaction of fission neutrons with the surrounding sphere

(ToF 2). Additionally, the model accounted for the neutron multiplicity factor of each SNM

thickness by computing the neutrons detected after each successful fission reaction.

4.3 Data Analysis

I modified the DNSC post-processing C++ code to analyze the PTRAC output files for this

model. For every fission interaction in the target, the ToF of the prompt fission detected

in the surrounding sphere was recorded beside interaction coordinates. Nevertheless, the

interacted γ rays were neglected due to the capability of differentiate that easily through
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Figure 4.1: Schematic view of the DToF detection system.

ToF information. For efficiency-comparison purposes, the total number of fission reactions

and generated prompt neutrons were recorded as well.

All of the recorded information was passed through a Matlab code to implement the plots

of prompt neutron fission spectra. Moreover, graphs were corrected due to the variation in

neutron interaction cross-section with carbon atoms (as discussed in the previous chapter).

Each bin of prompt neutron fission spectra was divided by the average value of corresponding

elastic scattering cross-section.

The code generated the neutron multiplicity factor for each thickness. Also, the total

number of induced fission reactions was recorded to define the average of released neutrons

per fission reaction (ν). ν values were corrected due to the overall low detection efficiency of

DToF system.

The total number of detected neutrons were recorded for each target thickness to prove

a linear relationship between the two, as shown in Figure 4.2.
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Figure 4.2: Total numbers of detected neutrons for 239Pu target with 1 MeV incoming
neutron.

4.4 Results

4.4.1 Prompt Fission Spectrum

The prompt neutron spectra have the shape of a Watt spectrum in both materials. The

simulated results were conducted with the thickest targets (1000 µm) since they have

produced the highest fission reactions and, correspondingly, has the highest detected

neutrons, thus offering the best statistical results. The DToF prompt fission spectra are

displayed in Figures 4.3 and 4.4 for the 1 and 4 MeV incident neutron, respectively. The

simulated spectra were corrected for cross-section variation and, compared to the ENDF-

evaluated data, showed good accuracy. Still, a more accurate correction factor is needed to

avoid the spectra fluctuations.

From the simulated spectra, the 4 MeV neutron aligns more with the ENDF-evaluated

spectrum. Also, plots indicate the use of coated SNM material with the diamond detector

in such measurements.
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Figure 4.3: The prompt fission neutron spectra of the 1 MeV incident neutron with 1000
µm thick target of (a) 235U (b) 239Pu.
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Figure 4.4: he prompt fission neutron spectra of the 4 MeV incident neutron with 1000
µm thick target of (a) 235U (b) 239Pu.
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In the simulation, the mono-energetic neutron history was set as 108 for each incident

neutron and target. Based on the neutron rate of the University of Ohio accelerator, the

expected measurement time for each target was 27.8 hours, which is a very reasonable time

compared to the duration of the Chi-Nu experiment for each target (9-12 weeks) [66, 70].

4.4.2 Neutron Multiplicity Counter

Neutron multiplicity factors are displayed in Figures 4.5 and 4.6 for the 1 and 4

neutron sources, respectively. The multiplicity factors of neutron interaction are needed

to demonstrate the feasibility of the DToF system in SNM detection using the active

interrogation technique. Higher thickness shows more multiplicity-counting. However, the

higher thickness of the target might prevent the target diamond from detecting the fission

fragments, which contain the majority of the fission released energy. Consequently, the DToF

might not trigger the fission interaction.
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Figure 4.5: Neutron multiplicity factor for the 1 MeV neutron source and 1000 µm thick
target of (a)235U (b) 239Pu.

The 4 MeV neutron source demonstrated a higher probability of detected multiple

neutrons (up to 4 neutrons per fission) for 1 µm for 239Pu isotope. This result indicated the

advantage of the DToF system in the field of the active interrogation detection system, even

for thin SNM targets.
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Figure 4.6: Neutron Multiplicity factor for the 4 MeV neutron source and 1000 µm thick
target of (a)235U (b) 239Pu.

4.4.3 ν Calculation

ν is the average number of fission neutrons per fission interaction. It is essential for designing

nuclear reactors to propagate fission reactions in the reactor core. For simulated results, ν

must be corrected for low efficiency of the DToF system.

Basically, the detection efficiency is defined as the number of neutrons recorded by

the DToF system (N) divided by the total neutrons generated within the target (S) [21].

Additionally, the efficiency is a function of solid angle and intrinsic resolution of the diamond

detector. Because the diamond sphere is surrounded the target diamond, the solid angle is

4π. However, the low thickness of the diamond detector provided limited intrinsic efficiency,

which must be taken into account. The detection efficiency was calculated through the

MCNP code by finding the ratio between interacting neutrons and the total fission neutrons

from the SNM target. Table 4.1 displays the detection efficiency of the DToF for the two

material targets with different thicknesses. The overall detection efficiency for all neutron

incident energies and all targets was approximately 3%. Based on the DToF detection

efficiency, ν was corrected and plotted as shown in Figure 4.7.
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Table 4.1: Detection efficiency of the DToF system.

Target material Neutron energy
(MeV)

Target thickness
(µm)

Detection
efficiency (%)

U-235

1

1 2.87
10 2.94
100 3.11
1000 3.06

4

1 2.94
10 3.13
100 3.10
1000 3.06

Pu-239

1

1 3.03
10 3.09
100 3.11
1000 3.09

4

1 3.01
10 3.17
100 3.14
1000 3.11
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Figure 4.7: ν measurements of the DToF detection system.
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Chapter 5

∆E/∆E Diamond Detector

5.1 Introduction

The NSRL accelerates a high energy beam of ions and can be used as a surrogate to Galactic

Cosmic Rays (GCR) for shielding studies related to future space missions. The beam

strikes thick targets and either escapes or is fully stopped within the shielding material.

Moreover, the massive interactions between energetic ion projectiles and shielding nuclei

produce fragments. Neutrons, protons, deuterons, tritons, and alpha particles are the most

frequently produced particles [71]. In order to define those fragments, a ∆E/∆E diamond

detector system measurement was conducted experimentally. The measured spectra were

analyzed through comparison to Geant4 simulation.

5.2 Experimental Approach

The ∆E/∆E detection system consisted of two electronic grade SDDs (4 mm x 4 mm x 0.45

mm) set parallel to each other. Each SDD was mounted onto a previously designed PCB (see

Section 3.4 for more details). The two PCBs were separated by 2 cm, and each connected to a

CR-110 charge sensitive preamplifier. The preamplifiers and detector electronic boards were

held in an aluminum enclosure, as Figure 5.1 indicates. The aluminum box was used both to

reduce electromagnetic interference with detectors and to provide necessary protection [72].
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Figure 5.1: Layout of the ∆E/∆E detection system inside the aluminum enclosure.

After pre-amplification, each detector output signal was split into two pulses using a

NSRL splitter. One pulse was delayed before being sent to the analog to digital converter

(ADC); the other pulse was fed to a constant fraction discriminator (CFD) with a low-energy

threshold for more accurate measurements. Both CFD outputs were fed into a fast-coincident

module to represent a single type of particle that interacted with the two diamond sensors

during a specific time period. The coincidence module produced two outputs: one pulse

generated the trigger gate in the controller to start integrating the pulse while the other

was delayed before being fed into an ADC. All ADC inputs were delayed to ensure that the

pulses never reached the controller before the gate signal had arrived. Experimental data

were recorded in list mode on an event-by-event basis and then displayed through a modified

root framework. The schematic diagram of the electronics is presented in Figure 5.2. The

NSRL beam spot size was 1 cm in diameter. Also, the beam had a Gaussian-distribution

along the spot size. The beam struck two polyethylene targets. The up-stream target had an

adjustable thickness (20, 40, or 60 g/cm2) while the down-stream target had a fixed thickness

(60 g/cm2). Both targets were separated by 3.5 meters. The beam started with protons of
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Figure 5.2: A schematic of the signal chain of the ∆E/∆E detection system.

energy 400, 800, and 2500 MeV. Heavier ions (Fe, He) were also accelerated. Each ion beam

ran for almost 24 hours. All measured beams using the ∆E/∆E detection system are listed

in Table 5.1 and provided in Appendix A. Only the first four runs were analyzed through

comparison to a Geant4 simulation.

The ∆E/∆E detection system suited into two different locations based on beam projectile

and energy. The detection system was placed along the beam axis behind the down-stream

target (position 1) for high energetic protons (2500 and 800 MeV) because both projectiles

could penetrate both targets. On the other hand, the ∆E/∆E system was placed in position

2 (450 off beam axis) for 400 MeV protons and heavier particles projectiles because they either

fully stopped within the targets or provided an inconsiderable count rate in position 1. The

two experimental arrangements are shown in Figure 5.3.

The coincidence mode was activated in position 1 in order to record only double

interactions of single particle with the two detectors. However, due to the expected low

count rates in position 2, the coincidence mode was disabled and pulse height spectra were

Table 5.1: ∆E/∆E detection system recorded runs.

Run No. Beam Ion Energy (MeV/nucleon)

1 Proton 2500
2 Proton 800
3 Proton 400
4 Fe 400
5 Fe 800

6
Fe 1474
He 400,800
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Figure 5.3: ∆E/∆E experimental arrangements.

recorded for each diamond whether the signals were correlated or not. Figure 5.4 depicts

the aluminum enclosure suited in position 2 at the NSRL facility.

5.3 Geant4 Simulation

Geant4 is a Monte Carlo simulation for tracking particles based on C++ language and

developed by RD44 collaboration. Geant4 has an advantage over MCNP in that it is capable

of displaying all different interacted isotopes, which leads to a better spectrum analysis. In

addition, the Geant4 simulation was developed for high-energy tracking physics experiments

and has many libraries for those type of experiments [73].

A previous Geant4 simulation from the LHC was modified; the original hardonic

simulation (Hard06) is available from Reference [74]. Adjusments included: the detector

construction and physics list. The modified Geant4 simulation included the dimensions of

the NSRL beam line room, as provided in Reference [75]. However, only the detection

system, polyethylene targets, concrete wall, and floor were modeled. In the physics list file,

the Bertini intra-nuclear cascade model with high precision neutron energies, lower than 20

MeV, was applied to simulate energetic ion interactions for all projectiles [76]. In addition,

G4Lfission was used to implement neutron fission with nuclei. Located 70 cm from the

front target, each projectile beam was simulated as a pencil beam and mono-energetic point

source.
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Figure 5.4: ∆E/∆E detection system located in position 2 at the NSRL beam room.
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The simulation code generated two output files. The first indicated that all coincidence

particles interacted with both diamonds. Moreover, the file included the type of particle,

interaction timing, and energy deposition in each detector. On the other hand, pulse height

spectrum information (the interacted particle type and deposited energy) in the first diamond

detector only was printed out in the second output file. Simulated spectra of Geant4

code were normalized and binned according to experimental measurements. Furthermore, a

minimum energy deposition was applied in the Matlab code to match CFD module threshold

value.

5.4 Results

Matching measured and simulated spectra was the first step to analyze the data. Fur-

thermore, the simulated 800 MeV proton beam pulse height spectrum of both SDDs were

compared, as indicated in Figure 5.5a. The simulated ∆E/∆E was plotted as well to compare

it to experimental work. It is evident that the simulated spectra in the two detectors are

nearly identical. On the other hand, the measured spectra of the same projectile show

significant dissimilarity (see Figure 5.5b). The second diamond spectrum could be affected

by spray of energetic delta electrons because the two diamonds were too close to each other.

Thus, the ∆E/∆E system orientation was changed and the same spectrum was observed.

By comparing simulated and experimental results, the first SDD spectrum agrees well with

simulation results. However, the second diamond pulse height spectrum shows significant

variation. Expected reasons for differences are poor metal contact of the second diamond

along with dysfunctionality of one or more of the modules in the electronic chain of the

second SDD. Because of huge variation of second diamond pulse height spectrum with Geant4

results, only first diamond measurements were evaluated through the Geant4 simulation.

5.4.1 Position 1 Measurements

The usage of different thicknesses for the up-stream target generated many peaks in the

measured spectra due to the increase in slower ions energy deposition, as seen in Figure

5.6. Moreover, high rates of secondary particles were recorded for the thickest target of
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Figure 5.5: 800 MeV proton beam (a) Geant4 simulation spectra (b) experimental
measured spectra (c) simulated ∆E/∆E measurements and (d) experimental ∆E/∆E.
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up-stream object (60 g/cm2) due to the high rate of liberated particles. Additionally, since

a 2.5 GeV proton beam is an extremely energetic beam, the simulated energy depositions

in all thicknesses are almost similar (Figure 5.6b), the interacted particles being energetic

enough to be located at the lowest region of the stopping power curve based on NIST data

[77]. Nevertheless, the simulated spectra show lower peaks than the experimental results

because of the slight variation of diamond detector location and simple simulated geometry

of the Geant4 code.

To gauge the interacted charged particles, histograms of the secondary particles and

projectiles that interacted with the diamond detector were plotted in Figure 5.7. Proton,

pion, electron, and positron particles were observed. In fact, it was found that a proton

was the dominant interacted particle and represents more than 95% of the spectrum counts.

Pion, electron, and positron particles, on the other hand, mostly contributed to the lowest

energy region of the spectrum.

5.4.2 Position 2 Measurements

As indicated in Figure 5.8 the measurement of the 400 MeV proton beam resulted in one

high peak. The spectrum generated mainly from the interaction of the proton beam with

the lowest thickness (20 g/cm2) of up-stream polyethylene target. The other two thicknesses

of the front target resulted in considerably high counts of light-charged particles located in

the lowest energy spectrum region.

The ∆E/∆E system observed more ion species than Position 1 measurements since

coincidence mode was deactivated. Detection of light and heavy ions indicated fast neutron

interactions (scattering and absorption) with carbon atom. The observed neutron-induced

ions are deuterium (2H), 3He , α, 11B, and 12C. Nevertheless, their contribution is insignificant

to the simulated spectrum. Other liberated particles such as pion, electron, and positron

were observed as well, as displayed in Figure 5.9.

Geant4 simulations were extended to measure the ToF of the light ion interaction between

the two detectors and energy deposition in the first diamond detector. The simulation

indicated the feasibility of such a measurement to differentiate between hydrogen species, as

seen in Figure 5.10.
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Figure 5.6: Experimental versus simulation spectra for (a) 2.5 GeV and (c) 800 MeV proton
beams. Simulated spectra for different upstream target thicknesses of (b) 2.5 GeV and (d)
800 MeV proton projectiles.
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Figure 5.7: Interacted particles with first diamond detector for proton beams (a) 2.5 GeV
and (b) 800 MeV
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Figure 5.8: (a) 400 MeV beam measurements and experimental results. (b) Simulated
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As evidenced by the figure above, the differentiating resolution between isotopes species

increased for lower energy particles (higher deposited energy and ToF).

69



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The fast signal response of CVD diamonds make DNSC very useful in ToF applications.

Because of the variation of both the total and differential neutron elastic-scattering cross-

sections with carbon, the correction method used with DNSC is an essential tool for

finding the correct neutron source spectrum. The capability of the DNSC in reconstructing

spectra and localizing neutron incident sources is demonstrated both computationally and

experimentally.

The two diamond array NSC shows a better reconstructed spectrum compared to recent

studies of a plastic scintillator NSC. The simulation results of two diamond array NSC

identified 252Cf and 239Pu-Be neutron sources with high accuracy (≈93%). The 16-pixel, two

diamond array system indicates good agreement with the neutron incident source spectra

and a significant improvement in detection efficiency, by one order of a magnitude, when

compared to a similar system with non-pixelated diamond sensors. As expected, angular and

depth uncertainties play an important role in defining energy resolution. The experimental

result of the two-diamond system reveals all characteristic peaks of the 239Pu-Be neutron

source. In particular, the measurements matched the source peaks of 3 and 10 MeV. However,

the reconstructed spectrum shows statistical fluctuations because of the low count rate of

the detection system.
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The computational results of the diamond array NSC indicate the systems capability

to accurately locate multiple neutron sources in different scenarios. Moreover, the system

defines the 3D-position coordinates of all simulated scenarios and adequately reconstructs the

neutron spectra of 252Cf and 239Pu-Be. The compact size of the diamond array NSC (5x5x5

cm3), with the advantage of radiation hardness, makes it a ideal system for reconstructing the

neutron spectrum and imaging with high luminosity environment such as nuclear reactors.

The DToF system simulation results indicate good spectroscopy efficiency of the

reconstructed prompt neutron spectra. The prompt neutron spectra are reconstructed

for two actinides 235U and 239Pu and are modified using correction factors based on the

neutron cross-section with carbon atom. However, a new correction technique is required

for high-accuracy measurements. Additionally, DToF demonstrates the neutron multiplicity

factors of both 235U and 239Pu-coated targets up to 5 neutrons. However, due to the overall

detection efficiency (≈3%) of the DToF, multiplication factors for more than two neutrons

have unreasonable probability values. Consequently, the low detection efficiency results in a

low multiplicity average neutron number (ν), after modification, for each incoming neutron

and target.

The measured spectra of the SDDs in the ∆E/∆E diamond-detector system indicate that

the first SDD has good agreement with computational results. However, the second SDD

exhibited poor response due to the poor metallization of the contact and/or an electronic

device in the experiment setup. From experiment results, the ∆E1 measurements with no

ToF information make defining interacted ions impractical. However, the expected ability to

detect and identify the different isotopes of the ∆E/∆E diamond-detector system is proven

computationally. The simulated detection system recognizes different isotopes of hydrogen.

These results might be validated in an energetic-ion beamline facility by using fast electronics

(a fast-shaping amplifier and high-sampling rate digitizer) to differentiate between particles

via ToF of the interacted particle and ∆E1 measurements. As stated in the results section,

the proposed system would identify low energy ions more accurately than fast interacted

ions because of the increase of both energy deposition and ToF.
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6.2 Future Work

This dissertation work could be extended and enhanced in various ways. First, by using

the same setup and procedure discussed in section 3.6, one could perform the two-diamond

array experiment to validate the capability of demonstrating the neutron spectrum of a 252Cf

source in a lab. However, the measurements would take a longer time (two months) because

the 252Cf neutron source has a lower neutron yield (≈10ˆ4 n/s) than the 239Pu-Be source.

The design of the algorithm for the diamond-array system depends mainly on the user to

define the image with the highest resolution. Even though the image construction algorithm

localizes the neutron sources with high precision, a machine-learning algorithm needs to be

implemented to automatically define the distance(Y) to the neutron source. Hence, the code

generated the spectrum of the neutron source with the 3D coordinates for each configuration

listed in Table 3.2. To increase the spectroscopy resolution of the system, a new algorithm

could be added to the machine-learning code to define the true neutron source spectrum

based on the modified spectrum.

Extending the capability of the diamond-array system by simulating four arrays instead

of two is another recommended future project. In this updated simulation, the neutron

source spectrum would be reconstructed by the interaction of the incident neutron in any

two pixels of the system. In this model, we might have a 3600-view around the system.

The diamond-array system might be built experimentally using only four pixelated

diamonds in each panel. However, this could be done using 16 different combinations of

only two pixelated diamonds (each with 16 pixels) with 32 charge-sensitive preamplifiers.

Furthermore, an aluminum frame would be necessary to hold the detectors in the correct

locations for each geometrical setup. A diamond detector would be needed for each panel,

but the configuration of the two diamonds would have to be changed every 1-2 days, with

each orientations time frame depending on the source activity. For instance, if the system

required a day for each orientation, finishing all the necessary configurations would require

16 days. The system would be used to indicate the feasibility of neutron source localization

only.

72



Due to the isotopes discrimination capability that was demonstrated by the Geant4

simulation for the ∆E/∆E system, the detection system could be utilized again in an

energetic beam-line with the CIVIDEC C6 fast amplifiers and the CAEN digitizer. Unlike

the performed ∆E/∆E in this dissertation, the reading would have to be recorded separately

for each thickness of the up-stream targets.
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[23] M. Pillon, M. Angelone, A. Krása, A. Plompen, P. Schillebeeckx, and M. Sergi,

“Experimental response functions of a single-crystal diamond detector for 5–20.5

mev neutrons,” Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 640, no. 1,

pp. 185–191, 2011. 7, 8, 9

[24] M. Rebai, A. Milocco, L. Giacomelli, E. P. Cippo, M. Tardocchi, A. Fazzi,

A. Pietropaolo, and G. Gorini, “Response of a single-crystal diamond detector to fast

neutrons,” Journal of Instrumentation, vol. 8, no. 10, p. P10007, 2013. 8

[25] C. Cazzaniga, E. A. Sundén, F. Binda, G. Croci, G. Ericsson, L. Giacomelli,

G. Gorini, E. Griesmayer, G. Grosso, G. Kaveney, et al., “Single crystal diamond

detector measurements of deuterium-deuterium and deuterium-tritium neutrons in

77



joint european torus fusion plasmas,” Review of Scientific Instruments, vol. 85, no. 4,

p. 043506, 2014. 8, 9

[26] D. W. Anderson, Absorption of ionizing radiation. University Park Press, 1984. 9

[27] H. A. Bethe, “Nuclear physics b. nuclear dynamics, theoretical,” Reviews of Modern

Physics, vol. 9, no. 2, p. 69, 1937. 9

[28] M. Pomorski, E. Berdermann, A. Caragheorgheopol, M. Ciobanu, M. Kǐs,
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A ∆E/∆E detection system recorded runs.

All runs listed in Table 5.1 using ∆E/∆E detection system are provided in this appendix.
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Figure A.1: ∆E/∆E spectral analysis of 2.5 GeV proton beam.
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Figure A.2: ∆E/∆E spectral analysis of 800 MeV proton beam.
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Figure A.3: ∆E/∆E spectral analysis of 400 MeV proton beam.
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Figure A.4: ∆E/∆E spectral analysis of 400 MeV iron beam.
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Figure A.5: ∆E/∆E spectral analysis of 800 MeV iron beam.
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Figure A.6: ∆E/∆E spectral analysis of 1474 MeV iron beam and 400 and 800 MeV
helium beams
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